ARM: dma-api: fix max_pfn off-by-one error in __dma_supported()
[linux/fpc-iii.git] / arch / x86 / events / core.c
blob3bb738f5a47201e79b0db21e12681590d92e617f
1 /*
2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
32 #include <asm/apic.h>
33 #include <asm/stacktrace.h>
34 #include <asm/nmi.h>
35 #include <asm/smp.h>
36 #include <asm/alternative.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
39 #include <asm/timer.h>
40 #include <asm/desc.h>
41 #include <asm/ldt.h>
42 #include <asm/unwind.h>
44 #include "perf_event.h"
46 struct x86_pmu x86_pmu __read_mostly;
48 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
49 .enabled = 1,
52 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
53 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
55 u64 __read_mostly hw_cache_event_ids
56 [PERF_COUNT_HW_CACHE_MAX]
57 [PERF_COUNT_HW_CACHE_OP_MAX]
58 [PERF_COUNT_HW_CACHE_RESULT_MAX];
59 u64 __read_mostly hw_cache_extra_regs
60 [PERF_COUNT_HW_CACHE_MAX]
61 [PERF_COUNT_HW_CACHE_OP_MAX]
62 [PERF_COUNT_HW_CACHE_RESULT_MAX];
65 * Propagate event elapsed time into the generic event.
66 * Can only be executed on the CPU where the event is active.
67 * Returns the delta events processed.
69 u64 x86_perf_event_update(struct perf_event *event)
71 struct hw_perf_event *hwc = &event->hw;
72 int shift = 64 - x86_pmu.cntval_bits;
73 u64 prev_raw_count, new_raw_count;
74 int idx = hwc->idx;
75 u64 delta;
77 if (idx == INTEL_PMC_IDX_FIXED_BTS)
78 return 0;
81 * Careful: an NMI might modify the previous event value.
83 * Our tactic to handle this is to first atomically read and
84 * exchange a new raw count - then add that new-prev delta
85 * count to the generic event atomically:
87 again:
88 prev_raw_count = local64_read(&hwc->prev_count);
89 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
91 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
92 new_raw_count) != prev_raw_count)
93 goto again;
96 * Now we have the new raw value and have updated the prev
97 * timestamp already. We can now calculate the elapsed delta
98 * (event-)time and add that to the generic event.
100 * Careful, not all hw sign-extends above the physical width
101 * of the count.
103 delta = (new_raw_count << shift) - (prev_raw_count << shift);
104 delta >>= shift;
106 local64_add(delta, &event->count);
107 local64_sub(delta, &hwc->period_left);
109 return new_raw_count;
113 * Find and validate any extra registers to set up.
115 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
117 struct hw_perf_event_extra *reg;
118 struct extra_reg *er;
120 reg = &event->hw.extra_reg;
122 if (!x86_pmu.extra_regs)
123 return 0;
125 for (er = x86_pmu.extra_regs; er->msr; er++) {
126 if (er->event != (config & er->config_mask))
127 continue;
128 if (event->attr.config1 & ~er->valid_mask)
129 return -EINVAL;
130 /* Check if the extra msrs can be safely accessed*/
131 if (!er->extra_msr_access)
132 return -ENXIO;
134 reg->idx = er->idx;
135 reg->config = event->attr.config1;
136 reg->reg = er->msr;
137 break;
139 return 0;
142 static atomic_t active_events;
143 static atomic_t pmc_refcount;
144 static DEFINE_MUTEX(pmc_reserve_mutex);
146 #ifdef CONFIG_X86_LOCAL_APIC
148 static bool reserve_pmc_hardware(void)
150 int i;
152 for (i = 0; i < x86_pmu.num_counters; i++) {
153 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
154 goto perfctr_fail;
157 for (i = 0; i < x86_pmu.num_counters; i++) {
158 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
159 goto eventsel_fail;
162 return true;
164 eventsel_fail:
165 for (i--; i >= 0; i--)
166 release_evntsel_nmi(x86_pmu_config_addr(i));
168 i = x86_pmu.num_counters;
170 perfctr_fail:
171 for (i--; i >= 0; i--)
172 release_perfctr_nmi(x86_pmu_event_addr(i));
174 return false;
177 static void release_pmc_hardware(void)
179 int i;
181 for (i = 0; i < x86_pmu.num_counters; i++) {
182 release_perfctr_nmi(x86_pmu_event_addr(i));
183 release_evntsel_nmi(x86_pmu_config_addr(i));
187 #else
189 static bool reserve_pmc_hardware(void) { return true; }
190 static void release_pmc_hardware(void) {}
192 #endif
194 static bool check_hw_exists(void)
196 u64 val, val_fail = -1, val_new= ~0;
197 int i, reg, reg_fail = -1, ret = 0;
198 int bios_fail = 0;
199 int reg_safe = -1;
202 * Check to see if the BIOS enabled any of the counters, if so
203 * complain and bail.
205 for (i = 0; i < x86_pmu.num_counters; i++) {
206 reg = x86_pmu_config_addr(i);
207 ret = rdmsrl_safe(reg, &val);
208 if (ret)
209 goto msr_fail;
210 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
211 bios_fail = 1;
212 val_fail = val;
213 reg_fail = reg;
214 } else {
215 reg_safe = i;
219 if (x86_pmu.num_counters_fixed) {
220 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
221 ret = rdmsrl_safe(reg, &val);
222 if (ret)
223 goto msr_fail;
224 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
225 if (val & (0x03 << i*4)) {
226 bios_fail = 1;
227 val_fail = val;
228 reg_fail = reg;
234 * If all the counters are enabled, the below test will always
235 * fail. The tools will also become useless in this scenario.
236 * Just fail and disable the hardware counters.
239 if (reg_safe == -1) {
240 reg = reg_safe;
241 goto msr_fail;
245 * Read the current value, change it and read it back to see if it
246 * matches, this is needed to detect certain hardware emulators
247 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
249 reg = x86_pmu_event_addr(reg_safe);
250 if (rdmsrl_safe(reg, &val))
251 goto msr_fail;
252 val ^= 0xffffUL;
253 ret = wrmsrl_safe(reg, val);
254 ret |= rdmsrl_safe(reg, &val_new);
255 if (ret || val != val_new)
256 goto msr_fail;
259 * We still allow the PMU driver to operate:
261 if (bios_fail) {
262 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
263 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
264 reg_fail, val_fail);
267 return true;
269 msr_fail:
270 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
271 pr_cont("PMU not available due to virtualization, using software events only.\n");
272 } else {
273 pr_cont("Broken PMU hardware detected, using software events only.\n");
274 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
275 reg, val_new);
278 return false;
281 static void hw_perf_event_destroy(struct perf_event *event)
283 x86_release_hardware();
284 atomic_dec(&active_events);
287 void hw_perf_lbr_event_destroy(struct perf_event *event)
289 hw_perf_event_destroy(event);
291 /* undo the lbr/bts event accounting */
292 x86_del_exclusive(x86_lbr_exclusive_lbr);
295 static inline int x86_pmu_initialized(void)
297 return x86_pmu.handle_irq != NULL;
300 static inline int
301 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
303 struct perf_event_attr *attr = &event->attr;
304 unsigned int cache_type, cache_op, cache_result;
305 u64 config, val;
307 config = attr->config;
309 cache_type = (config >> 0) & 0xff;
310 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
311 return -EINVAL;
312 cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
314 cache_op = (config >> 8) & 0xff;
315 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
316 return -EINVAL;
317 cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
319 cache_result = (config >> 16) & 0xff;
320 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
321 return -EINVAL;
322 cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
324 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
326 if (val == 0)
327 return -ENOENT;
329 if (val == -1)
330 return -EINVAL;
332 hwc->config |= val;
333 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
334 return x86_pmu_extra_regs(val, event);
337 int x86_reserve_hardware(void)
339 int err = 0;
341 if (!atomic_inc_not_zero(&pmc_refcount)) {
342 mutex_lock(&pmc_reserve_mutex);
343 if (atomic_read(&pmc_refcount) == 0) {
344 if (!reserve_pmc_hardware())
345 err = -EBUSY;
346 else
347 reserve_ds_buffers();
349 if (!err)
350 atomic_inc(&pmc_refcount);
351 mutex_unlock(&pmc_reserve_mutex);
354 return err;
357 void x86_release_hardware(void)
359 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
360 release_pmc_hardware();
361 release_ds_buffers();
362 mutex_unlock(&pmc_reserve_mutex);
367 * Check if we can create event of a certain type (that no conflicting events
368 * are present).
370 int x86_add_exclusive(unsigned int what)
372 int i;
375 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
376 * LBR and BTS are still mutually exclusive.
378 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
379 goto out;
381 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
382 mutex_lock(&pmc_reserve_mutex);
383 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
384 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
385 goto fail_unlock;
387 atomic_inc(&x86_pmu.lbr_exclusive[what]);
388 mutex_unlock(&pmc_reserve_mutex);
391 out:
392 atomic_inc(&active_events);
393 return 0;
395 fail_unlock:
396 mutex_unlock(&pmc_reserve_mutex);
397 return -EBUSY;
400 void x86_del_exclusive(unsigned int what)
402 atomic_dec(&active_events);
405 * See the comment in x86_add_exclusive().
407 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
408 return;
410 atomic_dec(&x86_pmu.lbr_exclusive[what]);
413 int x86_setup_perfctr(struct perf_event *event)
415 struct perf_event_attr *attr = &event->attr;
416 struct hw_perf_event *hwc = &event->hw;
417 u64 config;
419 if (!is_sampling_event(event)) {
420 hwc->sample_period = x86_pmu.max_period;
421 hwc->last_period = hwc->sample_period;
422 local64_set(&hwc->period_left, hwc->sample_period);
425 if (attr->type == PERF_TYPE_RAW)
426 return x86_pmu_extra_regs(event->attr.config, event);
428 if (attr->type == PERF_TYPE_HW_CACHE)
429 return set_ext_hw_attr(hwc, event);
431 if (attr->config >= x86_pmu.max_events)
432 return -EINVAL;
434 attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
437 * The generic map:
439 config = x86_pmu.event_map(attr->config);
441 if (config == 0)
442 return -ENOENT;
444 if (config == -1LL)
445 return -EINVAL;
447 hwc->config |= config;
449 return 0;
453 * check that branch_sample_type is compatible with
454 * settings needed for precise_ip > 1 which implies
455 * using the LBR to capture ALL taken branches at the
456 * priv levels of the measurement
458 static inline int precise_br_compat(struct perf_event *event)
460 u64 m = event->attr.branch_sample_type;
461 u64 b = 0;
463 /* must capture all branches */
464 if (!(m & PERF_SAMPLE_BRANCH_ANY))
465 return 0;
467 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
469 if (!event->attr.exclude_user)
470 b |= PERF_SAMPLE_BRANCH_USER;
472 if (!event->attr.exclude_kernel)
473 b |= PERF_SAMPLE_BRANCH_KERNEL;
476 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
479 return m == b;
482 int x86_pmu_max_precise(void)
484 int precise = 0;
486 /* Support for constant skid */
487 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
488 precise++;
490 /* Support for IP fixup */
491 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
492 precise++;
494 if (x86_pmu.pebs_prec_dist)
495 precise++;
497 return precise;
500 int x86_pmu_hw_config(struct perf_event *event)
502 if (event->attr.precise_ip) {
503 int precise = x86_pmu_max_precise();
505 if (event->attr.precise_ip > precise)
506 return -EOPNOTSUPP;
508 /* There's no sense in having PEBS for non sampling events: */
509 if (!is_sampling_event(event))
510 return -EINVAL;
513 * check that PEBS LBR correction does not conflict with
514 * whatever the user is asking with attr->branch_sample_type
516 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
517 u64 *br_type = &event->attr.branch_sample_type;
519 if (has_branch_stack(event)) {
520 if (!precise_br_compat(event))
521 return -EOPNOTSUPP;
523 /* branch_sample_type is compatible */
525 } else {
527 * user did not specify branch_sample_type
529 * For PEBS fixups, we capture all
530 * the branches at the priv level of the
531 * event.
533 *br_type = PERF_SAMPLE_BRANCH_ANY;
535 if (!event->attr.exclude_user)
536 *br_type |= PERF_SAMPLE_BRANCH_USER;
538 if (!event->attr.exclude_kernel)
539 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
543 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
544 event->attach_state |= PERF_ATTACH_TASK_DATA;
547 * Generate PMC IRQs:
548 * (keep 'enabled' bit clear for now)
550 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
553 * Count user and OS events unless requested not to
555 if (!event->attr.exclude_user)
556 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
557 if (!event->attr.exclude_kernel)
558 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
560 if (event->attr.type == PERF_TYPE_RAW)
561 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
563 if (event->attr.sample_period && x86_pmu.limit_period) {
564 if (x86_pmu.limit_period(event, event->attr.sample_period) >
565 event->attr.sample_period)
566 return -EINVAL;
569 /* sample_regs_user never support XMM registers */
570 if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
571 return -EINVAL;
573 * Besides the general purpose registers, XMM registers may
574 * be collected in PEBS on some platforms, e.g. Icelake
576 if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
577 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
578 return -EINVAL;
580 if (!event->attr.precise_ip)
581 return -EINVAL;
584 return x86_setup_perfctr(event);
588 * Setup the hardware configuration for a given attr_type
590 static int __x86_pmu_event_init(struct perf_event *event)
592 int err;
594 if (!x86_pmu_initialized())
595 return -ENODEV;
597 err = x86_reserve_hardware();
598 if (err)
599 return err;
601 atomic_inc(&active_events);
602 event->destroy = hw_perf_event_destroy;
604 event->hw.idx = -1;
605 event->hw.last_cpu = -1;
606 event->hw.last_tag = ~0ULL;
608 /* mark unused */
609 event->hw.extra_reg.idx = EXTRA_REG_NONE;
610 event->hw.branch_reg.idx = EXTRA_REG_NONE;
612 return x86_pmu.hw_config(event);
615 void x86_pmu_disable_all(void)
617 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
618 int idx;
620 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
621 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
622 u64 val;
624 if (!test_bit(idx, cpuc->active_mask))
625 continue;
626 rdmsrl(x86_pmu_config_addr(idx), val);
627 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
628 continue;
629 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
630 wrmsrl(x86_pmu_config_addr(idx), val);
631 if (is_counter_pair(hwc))
632 wrmsrl(x86_pmu_config_addr(idx + 1), 0);
637 * There may be PMI landing after enabled=0. The PMI hitting could be before or
638 * after disable_all.
640 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
641 * It will not be re-enabled in the NMI handler again, because enabled=0. After
642 * handling the NMI, disable_all will be called, which will not change the
643 * state either. If PMI hits after disable_all, the PMU is already disabled
644 * before entering NMI handler. The NMI handler will not change the state
645 * either.
647 * So either situation is harmless.
649 static void x86_pmu_disable(struct pmu *pmu)
651 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
653 if (!x86_pmu_initialized())
654 return;
656 if (!cpuc->enabled)
657 return;
659 cpuc->n_added = 0;
660 cpuc->enabled = 0;
661 barrier();
663 x86_pmu.disable_all();
666 void x86_pmu_enable_all(int added)
668 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
669 int idx;
671 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
672 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
674 if (!test_bit(idx, cpuc->active_mask))
675 continue;
677 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
681 static struct pmu pmu;
683 static inline int is_x86_event(struct perf_event *event)
685 return event->pmu == &pmu;
688 struct pmu *x86_get_pmu(void)
690 return &pmu;
693 * Event scheduler state:
695 * Assign events iterating over all events and counters, beginning
696 * with events with least weights first. Keep the current iterator
697 * state in struct sched_state.
699 struct sched_state {
700 int weight;
701 int event; /* event index */
702 int counter; /* counter index */
703 int unassigned; /* number of events to be assigned left */
704 int nr_gp; /* number of GP counters used */
705 u64 used;
708 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
709 #define SCHED_STATES_MAX 2
711 struct perf_sched {
712 int max_weight;
713 int max_events;
714 int max_gp;
715 int saved_states;
716 struct event_constraint **constraints;
717 struct sched_state state;
718 struct sched_state saved[SCHED_STATES_MAX];
722 * Initialize interator that runs through all events and counters.
724 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
725 int num, int wmin, int wmax, int gpmax)
727 int idx;
729 memset(sched, 0, sizeof(*sched));
730 sched->max_events = num;
731 sched->max_weight = wmax;
732 sched->max_gp = gpmax;
733 sched->constraints = constraints;
735 for (idx = 0; idx < num; idx++) {
736 if (constraints[idx]->weight == wmin)
737 break;
740 sched->state.event = idx; /* start with min weight */
741 sched->state.weight = wmin;
742 sched->state.unassigned = num;
745 static void perf_sched_save_state(struct perf_sched *sched)
747 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
748 return;
750 sched->saved[sched->saved_states] = sched->state;
751 sched->saved_states++;
754 static bool perf_sched_restore_state(struct perf_sched *sched)
756 if (!sched->saved_states)
757 return false;
759 sched->saved_states--;
760 sched->state = sched->saved[sched->saved_states];
762 /* this assignment didn't work out */
763 /* XXX broken vs EVENT_PAIR */
764 sched->state.used &= ~BIT_ULL(sched->state.counter);
766 /* try the next one */
767 sched->state.counter++;
769 return true;
773 * Select a counter for the current event to schedule. Return true on
774 * success.
776 static bool __perf_sched_find_counter(struct perf_sched *sched)
778 struct event_constraint *c;
779 int idx;
781 if (!sched->state.unassigned)
782 return false;
784 if (sched->state.event >= sched->max_events)
785 return false;
787 c = sched->constraints[sched->state.event];
788 /* Prefer fixed purpose counters */
789 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
790 idx = INTEL_PMC_IDX_FIXED;
791 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
792 u64 mask = BIT_ULL(idx);
794 if (sched->state.used & mask)
795 continue;
797 sched->state.used |= mask;
798 goto done;
802 /* Grab the first unused counter starting with idx */
803 idx = sched->state.counter;
804 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
805 u64 mask = BIT_ULL(idx);
807 if (c->flags & PERF_X86_EVENT_PAIR)
808 mask |= mask << 1;
810 if (sched->state.used & mask)
811 continue;
813 if (sched->state.nr_gp++ >= sched->max_gp)
814 return false;
816 sched->state.used |= mask;
817 goto done;
820 return false;
822 done:
823 sched->state.counter = idx;
825 if (c->overlap)
826 perf_sched_save_state(sched);
828 return true;
831 static bool perf_sched_find_counter(struct perf_sched *sched)
833 while (!__perf_sched_find_counter(sched)) {
834 if (!perf_sched_restore_state(sched))
835 return false;
838 return true;
842 * Go through all unassigned events and find the next one to schedule.
843 * Take events with the least weight first. Return true on success.
845 static bool perf_sched_next_event(struct perf_sched *sched)
847 struct event_constraint *c;
849 if (!sched->state.unassigned || !--sched->state.unassigned)
850 return false;
852 do {
853 /* next event */
854 sched->state.event++;
855 if (sched->state.event >= sched->max_events) {
856 /* next weight */
857 sched->state.event = 0;
858 sched->state.weight++;
859 if (sched->state.weight > sched->max_weight)
860 return false;
862 c = sched->constraints[sched->state.event];
863 } while (c->weight != sched->state.weight);
865 sched->state.counter = 0; /* start with first counter */
867 return true;
871 * Assign a counter for each event.
873 int perf_assign_events(struct event_constraint **constraints, int n,
874 int wmin, int wmax, int gpmax, int *assign)
876 struct perf_sched sched;
878 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
880 do {
881 if (!perf_sched_find_counter(&sched))
882 break; /* failed */
883 if (assign)
884 assign[sched.state.event] = sched.state.counter;
885 } while (perf_sched_next_event(&sched));
887 return sched.state.unassigned;
889 EXPORT_SYMBOL_GPL(perf_assign_events);
891 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
893 struct event_constraint *c;
894 struct perf_event *e;
895 int n0, i, wmin, wmax, unsched = 0;
896 struct hw_perf_event *hwc;
897 u64 used_mask = 0;
900 * Compute the number of events already present; see x86_pmu_add(),
901 * validate_group() and x86_pmu_commit_txn(). For the former two
902 * cpuc->n_events hasn't been updated yet, while for the latter
903 * cpuc->n_txn contains the number of events added in the current
904 * transaction.
906 n0 = cpuc->n_events;
907 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
908 n0 -= cpuc->n_txn;
910 if (x86_pmu.start_scheduling)
911 x86_pmu.start_scheduling(cpuc);
913 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
914 c = cpuc->event_constraint[i];
917 * Previously scheduled events should have a cached constraint,
918 * while new events should not have one.
920 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
923 * Request constraints for new events; or for those events that
924 * have a dynamic constraint -- for those the constraint can
925 * change due to external factors (sibling state, allow_tfa).
927 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
928 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
929 cpuc->event_constraint[i] = c;
932 wmin = min(wmin, c->weight);
933 wmax = max(wmax, c->weight);
937 * fastpath, try to reuse previous register
939 for (i = 0; i < n; i++) {
940 u64 mask;
942 hwc = &cpuc->event_list[i]->hw;
943 c = cpuc->event_constraint[i];
945 /* never assigned */
946 if (hwc->idx == -1)
947 break;
949 /* constraint still honored */
950 if (!test_bit(hwc->idx, c->idxmsk))
951 break;
953 mask = BIT_ULL(hwc->idx);
954 if (is_counter_pair(hwc))
955 mask |= mask << 1;
957 /* not already used */
958 if (used_mask & mask)
959 break;
961 used_mask |= mask;
963 if (assign)
964 assign[i] = hwc->idx;
967 /* slow path */
968 if (i != n) {
969 int gpmax = x86_pmu.num_counters;
972 * Do not allow scheduling of more than half the available
973 * generic counters.
975 * This helps avoid counter starvation of sibling thread by
976 * ensuring at most half the counters cannot be in exclusive
977 * mode. There is no designated counters for the limits. Any
978 * N/2 counters can be used. This helps with events with
979 * specific counter constraints.
981 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
982 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
983 gpmax /= 2;
986 * Reduce the amount of available counters to allow fitting
987 * the extra Merge events needed by large increment events.
989 if (x86_pmu.flags & PMU_FL_PAIR) {
990 gpmax = x86_pmu.num_counters - cpuc->n_pair;
991 WARN_ON(gpmax <= 0);
994 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
995 wmax, gpmax, assign);
999 * In case of success (unsched = 0), mark events as committed,
1000 * so we do not put_constraint() in case new events are added
1001 * and fail to be scheduled
1003 * We invoke the lower level commit callback to lock the resource
1005 * We do not need to do all of this in case we are called to
1006 * validate an event group (assign == NULL)
1008 if (!unsched && assign) {
1009 for (i = 0; i < n; i++) {
1010 e = cpuc->event_list[i];
1011 if (x86_pmu.commit_scheduling)
1012 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
1014 } else {
1015 for (i = n0; i < n; i++) {
1016 e = cpuc->event_list[i];
1019 * release events that failed scheduling
1021 if (x86_pmu.put_event_constraints)
1022 x86_pmu.put_event_constraints(cpuc, e);
1024 cpuc->event_constraint[i] = NULL;
1028 if (x86_pmu.stop_scheduling)
1029 x86_pmu.stop_scheduling(cpuc);
1031 return unsched ? -EINVAL : 0;
1035 * dogrp: true if must collect siblings events (group)
1036 * returns total number of events and error code
1038 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1040 struct perf_event *event;
1041 int n, max_count;
1043 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1045 /* current number of events already accepted */
1046 n = cpuc->n_events;
1047 if (!cpuc->n_events)
1048 cpuc->pebs_output = 0;
1050 if (!cpuc->is_fake && leader->attr.precise_ip) {
1052 * For PEBS->PT, if !aux_event, the group leader (PT) went
1053 * away, the group was broken down and this singleton event
1054 * can't schedule any more.
1056 if (is_pebs_pt(leader) && !leader->aux_event)
1057 return -EINVAL;
1060 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1062 if (cpuc->pebs_output &&
1063 cpuc->pebs_output != is_pebs_pt(leader) + 1)
1064 return -EINVAL;
1066 cpuc->pebs_output = is_pebs_pt(leader) + 1;
1069 if (is_x86_event(leader)) {
1070 if (n >= max_count)
1071 return -EINVAL;
1072 cpuc->event_list[n] = leader;
1073 n++;
1074 if (is_counter_pair(&leader->hw))
1075 cpuc->n_pair++;
1077 if (!dogrp)
1078 return n;
1080 for_each_sibling_event(event, leader) {
1081 if (!is_x86_event(event) ||
1082 event->state <= PERF_EVENT_STATE_OFF)
1083 continue;
1085 if (n >= max_count)
1086 return -EINVAL;
1088 cpuc->event_list[n] = event;
1089 n++;
1090 if (is_counter_pair(&event->hw))
1091 cpuc->n_pair++;
1093 return n;
1096 static inline void x86_assign_hw_event(struct perf_event *event,
1097 struct cpu_hw_events *cpuc, int i)
1099 struct hw_perf_event *hwc = &event->hw;
1101 hwc->idx = cpuc->assign[i];
1102 hwc->last_cpu = smp_processor_id();
1103 hwc->last_tag = ++cpuc->tags[i];
1105 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1106 hwc->config_base = 0;
1107 hwc->event_base = 0;
1108 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1109 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1110 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1111 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1112 } else {
1113 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1114 hwc->event_base = x86_pmu_event_addr(hwc->idx);
1115 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1120 * x86_perf_rdpmc_index - Return PMC counter used for event
1121 * @event: the perf_event to which the PMC counter was assigned
1123 * The counter assigned to this performance event may change if interrupts
1124 * are enabled. This counter should thus never be used while interrupts are
1125 * enabled. Before this function is used to obtain the assigned counter the
1126 * event should be checked for validity using, for example,
1127 * perf_event_read_local(), within the same interrupt disabled section in
1128 * which this counter is planned to be used.
1130 * Return: The index of the performance monitoring counter assigned to
1131 * @perf_event.
1133 int x86_perf_rdpmc_index(struct perf_event *event)
1135 lockdep_assert_irqs_disabled();
1137 return event->hw.event_base_rdpmc;
1140 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1141 struct cpu_hw_events *cpuc,
1142 int i)
1144 return hwc->idx == cpuc->assign[i] &&
1145 hwc->last_cpu == smp_processor_id() &&
1146 hwc->last_tag == cpuc->tags[i];
1149 static void x86_pmu_start(struct perf_event *event, int flags);
1151 static void x86_pmu_enable(struct pmu *pmu)
1153 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1154 struct perf_event *event;
1155 struct hw_perf_event *hwc;
1156 int i, added = cpuc->n_added;
1158 if (!x86_pmu_initialized())
1159 return;
1161 if (cpuc->enabled)
1162 return;
1164 if (cpuc->n_added) {
1165 int n_running = cpuc->n_events - cpuc->n_added;
1167 * apply assignment obtained either from
1168 * hw_perf_group_sched_in() or x86_pmu_enable()
1170 * step1: save events moving to new counters
1172 for (i = 0; i < n_running; i++) {
1173 event = cpuc->event_list[i];
1174 hwc = &event->hw;
1177 * we can avoid reprogramming counter if:
1178 * - assigned same counter as last time
1179 * - running on same CPU as last time
1180 * - no other event has used the counter since
1182 if (hwc->idx == -1 ||
1183 match_prev_assignment(hwc, cpuc, i))
1184 continue;
1187 * Ensure we don't accidentally enable a stopped
1188 * counter simply because we rescheduled.
1190 if (hwc->state & PERF_HES_STOPPED)
1191 hwc->state |= PERF_HES_ARCH;
1193 x86_pmu_stop(event, PERF_EF_UPDATE);
1197 * step2: reprogram moved events into new counters
1199 for (i = 0; i < cpuc->n_events; i++) {
1200 event = cpuc->event_list[i];
1201 hwc = &event->hw;
1203 if (!match_prev_assignment(hwc, cpuc, i))
1204 x86_assign_hw_event(event, cpuc, i);
1205 else if (i < n_running)
1206 continue;
1208 if (hwc->state & PERF_HES_ARCH)
1209 continue;
1211 x86_pmu_start(event, PERF_EF_RELOAD);
1213 cpuc->n_added = 0;
1214 perf_events_lapic_init();
1217 cpuc->enabled = 1;
1218 barrier();
1220 x86_pmu.enable_all(added);
1223 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1226 * Set the next IRQ period, based on the hwc->period_left value.
1227 * To be called with the event disabled in hw:
1229 int x86_perf_event_set_period(struct perf_event *event)
1231 struct hw_perf_event *hwc = &event->hw;
1232 s64 left = local64_read(&hwc->period_left);
1233 s64 period = hwc->sample_period;
1234 int ret = 0, idx = hwc->idx;
1236 if (idx == INTEL_PMC_IDX_FIXED_BTS)
1237 return 0;
1240 * If we are way outside a reasonable range then just skip forward:
1242 if (unlikely(left <= -period)) {
1243 left = period;
1244 local64_set(&hwc->period_left, left);
1245 hwc->last_period = period;
1246 ret = 1;
1249 if (unlikely(left <= 0)) {
1250 left += period;
1251 local64_set(&hwc->period_left, left);
1252 hwc->last_period = period;
1253 ret = 1;
1256 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1258 if (unlikely(left < 2))
1259 left = 2;
1261 if (left > x86_pmu.max_period)
1262 left = x86_pmu.max_period;
1264 if (x86_pmu.limit_period)
1265 left = x86_pmu.limit_period(event, left);
1267 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1270 * The hw event starts counting from this event offset,
1271 * mark it to be able to extra future deltas:
1273 local64_set(&hwc->prev_count, (u64)-left);
1275 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1278 * Clear the Merge event counter's upper 16 bits since
1279 * we currently declare a 48-bit counter width
1281 if (is_counter_pair(hwc))
1282 wrmsrl(x86_pmu_event_addr(idx + 1), 0);
1285 * Due to erratum on certan cpu we need
1286 * a second write to be sure the register
1287 * is updated properly
1289 if (x86_pmu.perfctr_second_write) {
1290 wrmsrl(hwc->event_base,
1291 (u64)(-left) & x86_pmu.cntval_mask);
1294 perf_event_update_userpage(event);
1296 return ret;
1299 void x86_pmu_enable_event(struct perf_event *event)
1301 if (__this_cpu_read(cpu_hw_events.enabled))
1302 __x86_pmu_enable_event(&event->hw,
1303 ARCH_PERFMON_EVENTSEL_ENABLE);
1307 * Add a single event to the PMU.
1309 * The event is added to the group of enabled events
1310 * but only if it can be scheduled with existing events.
1312 static int x86_pmu_add(struct perf_event *event, int flags)
1314 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1315 struct hw_perf_event *hwc;
1316 int assign[X86_PMC_IDX_MAX];
1317 int n, n0, ret;
1319 hwc = &event->hw;
1321 n0 = cpuc->n_events;
1322 ret = n = collect_events(cpuc, event, false);
1323 if (ret < 0)
1324 goto out;
1326 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1327 if (!(flags & PERF_EF_START))
1328 hwc->state |= PERF_HES_ARCH;
1331 * If group events scheduling transaction was started,
1332 * skip the schedulability test here, it will be performed
1333 * at commit time (->commit_txn) as a whole.
1335 * If commit fails, we'll call ->del() on all events
1336 * for which ->add() was called.
1338 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1339 goto done_collect;
1341 ret = x86_pmu.schedule_events(cpuc, n, assign);
1342 if (ret)
1343 goto out;
1345 * copy new assignment, now we know it is possible
1346 * will be used by hw_perf_enable()
1348 memcpy(cpuc->assign, assign, n*sizeof(int));
1350 done_collect:
1352 * Commit the collect_events() state. See x86_pmu_del() and
1353 * x86_pmu_*_txn().
1355 cpuc->n_events = n;
1356 cpuc->n_added += n - n0;
1357 cpuc->n_txn += n - n0;
1359 if (x86_pmu.add) {
1361 * This is before x86_pmu_enable() will call x86_pmu_start(),
1362 * so we enable LBRs before an event needs them etc..
1364 x86_pmu.add(event);
1367 ret = 0;
1368 out:
1369 return ret;
1372 static void x86_pmu_start(struct perf_event *event, int flags)
1374 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1375 int idx = event->hw.idx;
1377 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1378 return;
1380 if (WARN_ON_ONCE(idx == -1))
1381 return;
1383 if (flags & PERF_EF_RELOAD) {
1384 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1385 x86_perf_event_set_period(event);
1388 event->hw.state = 0;
1390 cpuc->events[idx] = event;
1391 __set_bit(idx, cpuc->active_mask);
1392 __set_bit(idx, cpuc->running);
1393 x86_pmu.enable(event);
1394 perf_event_update_userpage(event);
1397 void perf_event_print_debug(void)
1399 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1400 u64 pebs, debugctl;
1401 struct cpu_hw_events *cpuc;
1402 unsigned long flags;
1403 int cpu, idx;
1405 if (!x86_pmu.num_counters)
1406 return;
1408 local_irq_save(flags);
1410 cpu = smp_processor_id();
1411 cpuc = &per_cpu(cpu_hw_events, cpu);
1413 if (x86_pmu.version >= 2) {
1414 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1415 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1416 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1417 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1419 pr_info("\n");
1420 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1421 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1422 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1423 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1424 if (x86_pmu.pebs_constraints) {
1425 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1426 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1428 if (x86_pmu.lbr_nr) {
1429 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1430 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1433 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1435 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1436 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1437 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1439 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1441 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1442 cpu, idx, pmc_ctrl);
1443 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1444 cpu, idx, pmc_count);
1445 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1446 cpu, idx, prev_left);
1448 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1449 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1451 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1452 cpu, idx, pmc_count);
1454 local_irq_restore(flags);
1457 void x86_pmu_stop(struct perf_event *event, int flags)
1459 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1460 struct hw_perf_event *hwc = &event->hw;
1462 if (test_bit(hwc->idx, cpuc->active_mask)) {
1463 x86_pmu.disable(event);
1464 __clear_bit(hwc->idx, cpuc->active_mask);
1465 cpuc->events[hwc->idx] = NULL;
1466 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1467 hwc->state |= PERF_HES_STOPPED;
1470 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1472 * Drain the remaining delta count out of a event
1473 * that we are disabling:
1475 x86_perf_event_update(event);
1476 hwc->state |= PERF_HES_UPTODATE;
1480 static void x86_pmu_del(struct perf_event *event, int flags)
1482 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1483 int i;
1486 * If we're called during a txn, we only need to undo x86_pmu.add.
1487 * The events never got scheduled and ->cancel_txn will truncate
1488 * the event_list.
1490 * XXX assumes any ->del() called during a TXN will only be on
1491 * an event added during that same TXN.
1493 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1494 goto do_del;
1497 * Not a TXN, therefore cleanup properly.
1499 x86_pmu_stop(event, PERF_EF_UPDATE);
1501 for (i = 0; i < cpuc->n_events; i++) {
1502 if (event == cpuc->event_list[i])
1503 break;
1506 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1507 return;
1509 /* If we have a newly added event; make sure to decrease n_added. */
1510 if (i >= cpuc->n_events - cpuc->n_added)
1511 --cpuc->n_added;
1513 if (x86_pmu.put_event_constraints)
1514 x86_pmu.put_event_constraints(cpuc, event);
1516 /* Delete the array entry. */
1517 while (++i < cpuc->n_events) {
1518 cpuc->event_list[i-1] = cpuc->event_list[i];
1519 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1521 cpuc->event_constraint[i-1] = NULL;
1522 --cpuc->n_events;
1524 perf_event_update_userpage(event);
1526 do_del:
1527 if (x86_pmu.del) {
1529 * This is after x86_pmu_stop(); so we disable LBRs after any
1530 * event can need them etc..
1532 x86_pmu.del(event);
1536 int x86_pmu_handle_irq(struct pt_regs *regs)
1538 struct perf_sample_data data;
1539 struct cpu_hw_events *cpuc;
1540 struct perf_event *event;
1541 int idx, handled = 0;
1542 u64 val;
1544 cpuc = this_cpu_ptr(&cpu_hw_events);
1547 * Some chipsets need to unmask the LVTPC in a particular spot
1548 * inside the nmi handler. As a result, the unmasking was pushed
1549 * into all the nmi handlers.
1551 * This generic handler doesn't seem to have any issues where the
1552 * unmasking occurs so it was left at the top.
1554 apic_write(APIC_LVTPC, APIC_DM_NMI);
1556 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1557 if (!test_bit(idx, cpuc->active_mask))
1558 continue;
1560 event = cpuc->events[idx];
1562 val = x86_perf_event_update(event);
1563 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1564 continue;
1567 * event overflow
1569 handled++;
1570 perf_sample_data_init(&data, 0, event->hw.last_period);
1572 if (!x86_perf_event_set_period(event))
1573 continue;
1575 if (perf_event_overflow(event, &data, regs))
1576 x86_pmu_stop(event, 0);
1579 if (handled)
1580 inc_irq_stat(apic_perf_irqs);
1582 return handled;
1585 void perf_events_lapic_init(void)
1587 if (!x86_pmu.apic || !x86_pmu_initialized())
1588 return;
1591 * Always use NMI for PMU
1593 apic_write(APIC_LVTPC, APIC_DM_NMI);
1596 static int
1597 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1599 u64 start_clock;
1600 u64 finish_clock;
1601 int ret;
1604 * All PMUs/events that share this PMI handler should make sure to
1605 * increment active_events for their events.
1607 if (!atomic_read(&active_events))
1608 return NMI_DONE;
1610 start_clock = sched_clock();
1611 ret = x86_pmu.handle_irq(regs);
1612 finish_clock = sched_clock();
1614 perf_sample_event_took(finish_clock - start_clock);
1616 return ret;
1618 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1620 struct event_constraint emptyconstraint;
1621 struct event_constraint unconstrained;
1623 static int x86_pmu_prepare_cpu(unsigned int cpu)
1625 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1626 int i;
1628 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1629 cpuc->kfree_on_online[i] = NULL;
1630 if (x86_pmu.cpu_prepare)
1631 return x86_pmu.cpu_prepare(cpu);
1632 return 0;
1635 static int x86_pmu_dead_cpu(unsigned int cpu)
1637 if (x86_pmu.cpu_dead)
1638 x86_pmu.cpu_dead(cpu);
1639 return 0;
1642 static int x86_pmu_online_cpu(unsigned int cpu)
1644 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1645 int i;
1647 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1648 kfree(cpuc->kfree_on_online[i]);
1649 cpuc->kfree_on_online[i] = NULL;
1651 return 0;
1654 static int x86_pmu_starting_cpu(unsigned int cpu)
1656 if (x86_pmu.cpu_starting)
1657 x86_pmu.cpu_starting(cpu);
1658 return 0;
1661 static int x86_pmu_dying_cpu(unsigned int cpu)
1663 if (x86_pmu.cpu_dying)
1664 x86_pmu.cpu_dying(cpu);
1665 return 0;
1668 static void __init pmu_check_apic(void)
1670 if (boot_cpu_has(X86_FEATURE_APIC))
1671 return;
1673 x86_pmu.apic = 0;
1674 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1675 pr_info("no hardware sampling interrupt available.\n");
1678 * If we have a PMU initialized but no APIC
1679 * interrupts, we cannot sample hardware
1680 * events (user-space has to fall back and
1681 * sample via a hrtimer based software event):
1683 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1687 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1688 .name = "format",
1689 .attrs = NULL,
1692 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1694 struct perf_pmu_events_attr *pmu_attr =
1695 container_of(attr, struct perf_pmu_events_attr, attr);
1696 u64 config = 0;
1698 if (pmu_attr->id < x86_pmu.max_events)
1699 config = x86_pmu.event_map(pmu_attr->id);
1701 /* string trumps id */
1702 if (pmu_attr->event_str)
1703 return sprintf(page, "%s", pmu_attr->event_str);
1705 return x86_pmu.events_sysfs_show(page, config);
1707 EXPORT_SYMBOL_GPL(events_sysfs_show);
1709 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1710 char *page)
1712 struct perf_pmu_events_ht_attr *pmu_attr =
1713 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1716 * Report conditional events depending on Hyper-Threading.
1718 * This is overly conservative as usually the HT special
1719 * handling is not needed if the other CPU thread is idle.
1721 * Note this does not (and cannot) handle the case when thread
1722 * siblings are invisible, for example with virtualization
1723 * if they are owned by some other guest. The user tool
1724 * has to re-read when a thread sibling gets onlined later.
1726 return sprintf(page, "%s",
1727 topology_max_smt_threads() > 1 ?
1728 pmu_attr->event_str_ht :
1729 pmu_attr->event_str_noht);
1732 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1733 EVENT_ATTR(instructions, INSTRUCTIONS );
1734 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1735 EVENT_ATTR(cache-misses, CACHE_MISSES );
1736 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1737 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1738 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1739 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1740 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1741 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1743 static struct attribute *empty_attrs;
1745 static struct attribute *events_attr[] = {
1746 EVENT_PTR(CPU_CYCLES),
1747 EVENT_PTR(INSTRUCTIONS),
1748 EVENT_PTR(CACHE_REFERENCES),
1749 EVENT_PTR(CACHE_MISSES),
1750 EVENT_PTR(BRANCH_INSTRUCTIONS),
1751 EVENT_PTR(BRANCH_MISSES),
1752 EVENT_PTR(BUS_CYCLES),
1753 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1754 EVENT_PTR(STALLED_CYCLES_BACKEND),
1755 EVENT_PTR(REF_CPU_CYCLES),
1756 NULL,
1760 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1761 * out of events_attr attributes.
1763 static umode_t
1764 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1766 struct perf_pmu_events_attr *pmu_attr;
1768 if (idx >= x86_pmu.max_events)
1769 return 0;
1771 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1772 /* str trumps id */
1773 return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1776 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1777 .name = "events",
1778 .attrs = events_attr,
1779 .is_visible = is_visible,
1782 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1784 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1785 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1786 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1787 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1788 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1789 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1790 ssize_t ret;
1793 * We have whole page size to spend and just little data
1794 * to write, so we can safely use sprintf.
1796 ret = sprintf(page, "event=0x%02llx", event);
1798 if (umask)
1799 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1801 if (edge)
1802 ret += sprintf(page + ret, ",edge");
1804 if (pc)
1805 ret += sprintf(page + ret, ",pc");
1807 if (any)
1808 ret += sprintf(page + ret, ",any");
1810 if (inv)
1811 ret += sprintf(page + ret, ",inv");
1813 if (cmask)
1814 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1816 ret += sprintf(page + ret, "\n");
1818 return ret;
1821 static struct attribute_group x86_pmu_attr_group;
1822 static struct attribute_group x86_pmu_caps_group;
1824 static int __init init_hw_perf_events(void)
1826 struct x86_pmu_quirk *quirk;
1827 int err;
1829 pr_info("Performance Events: ");
1831 switch (boot_cpu_data.x86_vendor) {
1832 case X86_VENDOR_INTEL:
1833 err = intel_pmu_init();
1834 break;
1835 case X86_VENDOR_AMD:
1836 err = amd_pmu_init();
1837 break;
1838 case X86_VENDOR_HYGON:
1839 err = amd_pmu_init();
1840 x86_pmu.name = "HYGON";
1841 break;
1842 default:
1843 err = -ENOTSUPP;
1845 if (err != 0) {
1846 pr_cont("no PMU driver, software events only.\n");
1847 return 0;
1850 pmu_check_apic();
1852 /* sanity check that the hardware exists or is emulated */
1853 if (!check_hw_exists())
1854 return 0;
1856 pr_cont("%s PMU driver.\n", x86_pmu.name);
1858 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1860 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1861 quirk->func();
1863 if (!x86_pmu.intel_ctrl)
1864 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1866 perf_events_lapic_init();
1867 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1869 unconstrained = (struct event_constraint)
1870 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1871 0, x86_pmu.num_counters, 0, 0);
1873 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1875 if (!x86_pmu.events_sysfs_show)
1876 x86_pmu_events_group.attrs = &empty_attrs;
1878 pmu.attr_update = x86_pmu.attr_update;
1880 pr_info("... version: %d\n", x86_pmu.version);
1881 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1882 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1883 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1884 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1885 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1886 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1889 * Install callbacks. Core will call them for each online
1890 * cpu.
1892 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1893 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1894 if (err)
1895 return err;
1897 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1898 "perf/x86:starting", x86_pmu_starting_cpu,
1899 x86_pmu_dying_cpu);
1900 if (err)
1901 goto out;
1903 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1904 x86_pmu_online_cpu, NULL);
1905 if (err)
1906 goto out1;
1908 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1909 if (err)
1910 goto out2;
1912 return 0;
1914 out2:
1915 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1916 out1:
1917 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1918 out:
1919 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1920 return err;
1922 early_initcall(init_hw_perf_events);
1924 static inline void x86_pmu_read(struct perf_event *event)
1926 if (x86_pmu.read)
1927 return x86_pmu.read(event);
1928 x86_perf_event_update(event);
1932 * Start group events scheduling transaction
1933 * Set the flag to make pmu::enable() not perform the
1934 * schedulability test, it will be performed at commit time
1936 * We only support PERF_PMU_TXN_ADD transactions. Save the
1937 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1938 * transactions.
1940 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1942 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1944 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
1946 cpuc->txn_flags = txn_flags;
1947 if (txn_flags & ~PERF_PMU_TXN_ADD)
1948 return;
1950 perf_pmu_disable(pmu);
1951 __this_cpu_write(cpu_hw_events.n_txn, 0);
1955 * Stop group events scheduling transaction
1956 * Clear the flag and pmu::enable() will perform the
1957 * schedulability test.
1959 static void x86_pmu_cancel_txn(struct pmu *pmu)
1961 unsigned int txn_flags;
1962 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1964 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1966 txn_flags = cpuc->txn_flags;
1967 cpuc->txn_flags = 0;
1968 if (txn_flags & ~PERF_PMU_TXN_ADD)
1969 return;
1972 * Truncate collected array by the number of events added in this
1973 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1975 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1976 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1977 perf_pmu_enable(pmu);
1981 * Commit group events scheduling transaction
1982 * Perform the group schedulability test as a whole
1983 * Return 0 if success
1985 * Does not cancel the transaction on failure; expects the caller to do this.
1987 static int x86_pmu_commit_txn(struct pmu *pmu)
1989 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1990 int assign[X86_PMC_IDX_MAX];
1991 int n, ret;
1993 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1995 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1996 cpuc->txn_flags = 0;
1997 return 0;
2000 n = cpuc->n_events;
2002 if (!x86_pmu_initialized())
2003 return -EAGAIN;
2005 ret = x86_pmu.schedule_events(cpuc, n, assign);
2006 if (ret)
2007 return ret;
2010 * copy new assignment, now we know it is possible
2011 * will be used by hw_perf_enable()
2013 memcpy(cpuc->assign, assign, n*sizeof(int));
2015 cpuc->txn_flags = 0;
2016 perf_pmu_enable(pmu);
2017 return 0;
2020 * a fake_cpuc is used to validate event groups. Due to
2021 * the extra reg logic, we need to also allocate a fake
2022 * per_core and per_cpu structure. Otherwise, group events
2023 * using extra reg may conflict without the kernel being
2024 * able to catch this when the last event gets added to
2025 * the group.
2027 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2029 intel_cpuc_finish(cpuc);
2030 kfree(cpuc);
2033 static struct cpu_hw_events *allocate_fake_cpuc(void)
2035 struct cpu_hw_events *cpuc;
2036 int cpu = raw_smp_processor_id();
2038 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2039 if (!cpuc)
2040 return ERR_PTR(-ENOMEM);
2041 cpuc->is_fake = 1;
2043 if (intel_cpuc_prepare(cpuc, cpu))
2044 goto error;
2046 return cpuc;
2047 error:
2048 free_fake_cpuc(cpuc);
2049 return ERR_PTR(-ENOMEM);
2053 * validate that we can schedule this event
2055 static int validate_event(struct perf_event *event)
2057 struct cpu_hw_events *fake_cpuc;
2058 struct event_constraint *c;
2059 int ret = 0;
2061 fake_cpuc = allocate_fake_cpuc();
2062 if (IS_ERR(fake_cpuc))
2063 return PTR_ERR(fake_cpuc);
2065 c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2067 if (!c || !c->weight)
2068 ret = -EINVAL;
2070 if (x86_pmu.put_event_constraints)
2071 x86_pmu.put_event_constraints(fake_cpuc, event);
2073 free_fake_cpuc(fake_cpuc);
2075 return ret;
2079 * validate a single event group
2081 * validation include:
2082 * - check events are compatible which each other
2083 * - events do not compete for the same counter
2084 * - number of events <= number of counters
2086 * validation ensures the group can be loaded onto the
2087 * PMU if it was the only group available.
2089 static int validate_group(struct perf_event *event)
2091 struct perf_event *leader = event->group_leader;
2092 struct cpu_hw_events *fake_cpuc;
2093 int ret = -EINVAL, n;
2095 fake_cpuc = allocate_fake_cpuc();
2096 if (IS_ERR(fake_cpuc))
2097 return PTR_ERR(fake_cpuc);
2099 * the event is not yet connected with its
2100 * siblings therefore we must first collect
2101 * existing siblings, then add the new event
2102 * before we can simulate the scheduling
2104 n = collect_events(fake_cpuc, leader, true);
2105 if (n < 0)
2106 goto out;
2108 fake_cpuc->n_events = n;
2109 n = collect_events(fake_cpuc, event, false);
2110 if (n < 0)
2111 goto out;
2113 fake_cpuc->n_events = 0;
2114 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2116 out:
2117 free_fake_cpuc(fake_cpuc);
2118 return ret;
2121 static int x86_pmu_event_init(struct perf_event *event)
2123 struct pmu *tmp;
2124 int err;
2126 switch (event->attr.type) {
2127 case PERF_TYPE_RAW:
2128 case PERF_TYPE_HARDWARE:
2129 case PERF_TYPE_HW_CACHE:
2130 break;
2132 default:
2133 return -ENOENT;
2136 err = __x86_pmu_event_init(event);
2137 if (!err) {
2139 * we temporarily connect event to its pmu
2140 * such that validate_group() can classify
2141 * it as an x86 event using is_x86_event()
2143 tmp = event->pmu;
2144 event->pmu = &pmu;
2146 if (event->group_leader != event)
2147 err = validate_group(event);
2148 else
2149 err = validate_event(event);
2151 event->pmu = tmp;
2153 if (err) {
2154 if (event->destroy)
2155 event->destroy(event);
2158 if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2159 !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2160 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2162 return err;
2165 static void refresh_pce(void *ignored)
2167 load_mm_cr4_irqsoff(this_cpu_read(cpu_tlbstate.loaded_mm));
2170 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2172 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2173 return;
2176 * This function relies on not being called concurrently in two
2177 * tasks in the same mm. Otherwise one task could observe
2178 * perf_rdpmc_allowed > 1 and return all the way back to
2179 * userspace with CR4.PCE clear while another task is still
2180 * doing on_each_cpu_mask() to propagate CR4.PCE.
2182 * For now, this can't happen because all callers hold mmap_sem
2183 * for write. If this changes, we'll need a different solution.
2185 lockdep_assert_held_write(&mm->mmap_sem);
2187 if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2188 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2191 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2194 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2195 return;
2197 if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2198 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2201 static int x86_pmu_event_idx(struct perf_event *event)
2203 int idx = event->hw.idx;
2205 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2206 return 0;
2208 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2209 idx -= INTEL_PMC_IDX_FIXED;
2210 idx |= 1 << 30;
2213 return idx + 1;
2216 static ssize_t get_attr_rdpmc(struct device *cdev,
2217 struct device_attribute *attr,
2218 char *buf)
2220 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2223 static ssize_t set_attr_rdpmc(struct device *cdev,
2224 struct device_attribute *attr,
2225 const char *buf, size_t count)
2227 unsigned long val;
2228 ssize_t ret;
2230 ret = kstrtoul(buf, 0, &val);
2231 if (ret)
2232 return ret;
2234 if (val > 2)
2235 return -EINVAL;
2237 if (x86_pmu.attr_rdpmc_broken)
2238 return -ENOTSUPP;
2240 if (val != x86_pmu.attr_rdpmc) {
2242 * Changing into or out of never available or always available,
2243 * aka perf-event-bypassing mode. This path is extremely slow,
2244 * but only root can trigger it, so it's okay.
2246 if (val == 0)
2247 static_branch_inc(&rdpmc_never_available_key);
2248 else if (x86_pmu.attr_rdpmc == 0)
2249 static_branch_dec(&rdpmc_never_available_key);
2251 if (val == 2)
2252 static_branch_inc(&rdpmc_always_available_key);
2253 else if (x86_pmu.attr_rdpmc == 2)
2254 static_branch_dec(&rdpmc_always_available_key);
2256 on_each_cpu(refresh_pce, NULL, 1);
2257 x86_pmu.attr_rdpmc = val;
2260 return count;
2263 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2265 static struct attribute *x86_pmu_attrs[] = {
2266 &dev_attr_rdpmc.attr,
2267 NULL,
2270 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2271 .attrs = x86_pmu_attrs,
2274 static ssize_t max_precise_show(struct device *cdev,
2275 struct device_attribute *attr,
2276 char *buf)
2278 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2281 static DEVICE_ATTR_RO(max_precise);
2283 static struct attribute *x86_pmu_caps_attrs[] = {
2284 &dev_attr_max_precise.attr,
2285 NULL
2288 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2289 .name = "caps",
2290 .attrs = x86_pmu_caps_attrs,
2293 static const struct attribute_group *x86_pmu_attr_groups[] = {
2294 &x86_pmu_attr_group,
2295 &x86_pmu_format_group,
2296 &x86_pmu_events_group,
2297 &x86_pmu_caps_group,
2298 NULL,
2301 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2303 if (x86_pmu.sched_task)
2304 x86_pmu.sched_task(ctx, sched_in);
2307 static void x86_pmu_swap_task_ctx(struct perf_event_context *prev,
2308 struct perf_event_context *next)
2310 if (x86_pmu.swap_task_ctx)
2311 x86_pmu.swap_task_ctx(prev, next);
2314 void perf_check_microcode(void)
2316 if (x86_pmu.check_microcode)
2317 x86_pmu.check_microcode();
2320 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2322 if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2323 return -EINVAL;
2325 if (value && x86_pmu.limit_period) {
2326 if (x86_pmu.limit_period(event, value) > value)
2327 return -EINVAL;
2330 return 0;
2333 static int x86_pmu_aux_output_match(struct perf_event *event)
2335 if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2336 return 0;
2338 if (x86_pmu.aux_output_match)
2339 return x86_pmu.aux_output_match(event);
2341 return 0;
2344 static struct pmu pmu = {
2345 .pmu_enable = x86_pmu_enable,
2346 .pmu_disable = x86_pmu_disable,
2348 .attr_groups = x86_pmu_attr_groups,
2350 .event_init = x86_pmu_event_init,
2352 .event_mapped = x86_pmu_event_mapped,
2353 .event_unmapped = x86_pmu_event_unmapped,
2355 .add = x86_pmu_add,
2356 .del = x86_pmu_del,
2357 .start = x86_pmu_start,
2358 .stop = x86_pmu_stop,
2359 .read = x86_pmu_read,
2361 .start_txn = x86_pmu_start_txn,
2362 .cancel_txn = x86_pmu_cancel_txn,
2363 .commit_txn = x86_pmu_commit_txn,
2365 .event_idx = x86_pmu_event_idx,
2366 .sched_task = x86_pmu_sched_task,
2367 .task_ctx_size = sizeof(struct x86_perf_task_context),
2368 .swap_task_ctx = x86_pmu_swap_task_ctx,
2369 .check_period = x86_pmu_check_period,
2371 .aux_output_match = x86_pmu_aux_output_match,
2374 void arch_perf_update_userpage(struct perf_event *event,
2375 struct perf_event_mmap_page *userpg, u64 now)
2377 struct cyc2ns_data data;
2378 u64 offset;
2380 userpg->cap_user_time = 0;
2381 userpg->cap_user_time_zero = 0;
2382 userpg->cap_user_rdpmc =
2383 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2384 userpg->pmc_width = x86_pmu.cntval_bits;
2386 if (!using_native_sched_clock() || !sched_clock_stable())
2387 return;
2389 cyc2ns_read_begin(&data);
2391 offset = data.cyc2ns_offset + __sched_clock_offset;
2394 * Internal timekeeping for enabled/running/stopped times
2395 * is always in the local_clock domain.
2397 userpg->cap_user_time = 1;
2398 userpg->time_mult = data.cyc2ns_mul;
2399 userpg->time_shift = data.cyc2ns_shift;
2400 userpg->time_offset = offset - now;
2403 * cap_user_time_zero doesn't make sense when we're using a different
2404 * time base for the records.
2406 if (!event->attr.use_clockid) {
2407 userpg->cap_user_time_zero = 1;
2408 userpg->time_zero = offset;
2411 cyc2ns_read_end();
2415 * Determine whether the regs were taken from an irq/exception handler rather
2416 * than from perf_arch_fetch_caller_regs().
2418 static bool perf_hw_regs(struct pt_regs *regs)
2420 return regs->flags & X86_EFLAGS_FIXED;
2423 void
2424 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2426 struct unwind_state state;
2427 unsigned long addr;
2429 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2430 /* TODO: We don't support guest os callchain now */
2431 return;
2434 if (perf_callchain_store(entry, regs->ip))
2435 return;
2437 if (perf_hw_regs(regs))
2438 unwind_start(&state, current, regs, NULL);
2439 else
2440 unwind_start(&state, current, NULL, (void *)regs->sp);
2442 for (; !unwind_done(&state); unwind_next_frame(&state)) {
2443 addr = unwind_get_return_address(&state);
2444 if (!addr || perf_callchain_store(entry, addr))
2445 return;
2449 static inline int
2450 valid_user_frame(const void __user *fp, unsigned long size)
2452 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2455 static unsigned long get_segment_base(unsigned int segment)
2457 struct desc_struct *desc;
2458 unsigned int idx = segment >> 3;
2460 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2461 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2462 struct ldt_struct *ldt;
2464 /* IRQs are off, so this synchronizes with smp_store_release */
2465 ldt = READ_ONCE(current->active_mm->context.ldt);
2466 if (!ldt || idx >= ldt->nr_entries)
2467 return 0;
2469 desc = &ldt->entries[idx];
2470 #else
2471 return 0;
2472 #endif
2473 } else {
2474 if (idx >= GDT_ENTRIES)
2475 return 0;
2477 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2480 return get_desc_base(desc);
2483 #ifdef CONFIG_IA32_EMULATION
2485 #include <linux/compat.h>
2487 static inline int
2488 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2490 /* 32-bit process in 64-bit kernel. */
2491 unsigned long ss_base, cs_base;
2492 struct stack_frame_ia32 frame;
2493 const void __user *fp;
2495 if (!test_thread_flag(TIF_IA32))
2496 return 0;
2498 cs_base = get_segment_base(regs->cs);
2499 ss_base = get_segment_base(regs->ss);
2501 fp = compat_ptr(ss_base + regs->bp);
2502 pagefault_disable();
2503 while (entry->nr < entry->max_stack) {
2504 unsigned long bytes;
2505 frame.next_frame = 0;
2506 frame.return_address = 0;
2508 if (!valid_user_frame(fp, sizeof(frame)))
2509 break;
2511 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2512 if (bytes != 0)
2513 break;
2514 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2515 if (bytes != 0)
2516 break;
2518 perf_callchain_store(entry, cs_base + frame.return_address);
2519 fp = compat_ptr(ss_base + frame.next_frame);
2521 pagefault_enable();
2522 return 1;
2524 #else
2525 static inline int
2526 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2528 return 0;
2530 #endif
2532 void
2533 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2535 struct stack_frame frame;
2536 const unsigned long __user *fp;
2538 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2539 /* TODO: We don't support guest os callchain now */
2540 return;
2544 * We don't know what to do with VM86 stacks.. ignore them for now.
2546 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2547 return;
2549 fp = (unsigned long __user *)regs->bp;
2551 perf_callchain_store(entry, regs->ip);
2553 if (!nmi_uaccess_okay())
2554 return;
2556 if (perf_callchain_user32(regs, entry))
2557 return;
2559 pagefault_disable();
2560 while (entry->nr < entry->max_stack) {
2561 unsigned long bytes;
2563 frame.next_frame = NULL;
2564 frame.return_address = 0;
2566 if (!valid_user_frame(fp, sizeof(frame)))
2567 break;
2569 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2570 if (bytes != 0)
2571 break;
2572 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2573 if (bytes != 0)
2574 break;
2576 perf_callchain_store(entry, frame.return_address);
2577 fp = (void __user *)frame.next_frame;
2579 pagefault_enable();
2583 * Deal with code segment offsets for the various execution modes:
2585 * VM86 - the good olde 16 bit days, where the linear address is
2586 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2588 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2589 * to figure out what the 32bit base address is.
2591 * X32 - has TIF_X32 set, but is running in x86_64
2593 * X86_64 - CS,DS,SS,ES are all zero based.
2595 static unsigned long code_segment_base(struct pt_regs *regs)
2598 * For IA32 we look at the GDT/LDT segment base to convert the
2599 * effective IP to a linear address.
2602 #ifdef CONFIG_X86_32
2604 * If we are in VM86 mode, add the segment offset to convert to a
2605 * linear address.
2607 if (regs->flags & X86_VM_MASK)
2608 return 0x10 * regs->cs;
2610 if (user_mode(regs) && regs->cs != __USER_CS)
2611 return get_segment_base(regs->cs);
2612 #else
2613 if (user_mode(regs) && !user_64bit_mode(regs) &&
2614 regs->cs != __USER32_CS)
2615 return get_segment_base(regs->cs);
2616 #endif
2617 return 0;
2620 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2622 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2623 return perf_guest_cbs->get_guest_ip();
2625 return regs->ip + code_segment_base(regs);
2628 unsigned long perf_misc_flags(struct pt_regs *regs)
2630 int misc = 0;
2632 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2633 if (perf_guest_cbs->is_user_mode())
2634 misc |= PERF_RECORD_MISC_GUEST_USER;
2635 else
2636 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2637 } else {
2638 if (user_mode(regs))
2639 misc |= PERF_RECORD_MISC_USER;
2640 else
2641 misc |= PERF_RECORD_MISC_KERNEL;
2644 if (regs->flags & PERF_EFLAGS_EXACT)
2645 misc |= PERF_RECORD_MISC_EXACT_IP;
2647 return misc;
2650 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2652 cap->version = x86_pmu.version;
2653 cap->num_counters_gp = x86_pmu.num_counters;
2654 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2655 cap->bit_width_gp = x86_pmu.cntval_bits;
2656 cap->bit_width_fixed = x86_pmu.cntval_bits;
2657 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2658 cap->events_mask_len = x86_pmu.events_mask_len;
2660 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);