ARM: dma-api: fix max_pfn off-by-one error in __dma_supported()
[linux/fpc-iii.git] / arch / x86 / kvm / cpuid.c
blobb1c469446b072b184954ea192a8ec5ee30e8b5f2
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 * cpuid support routines
6 * derived from arch/x86/kvm/x86.c
8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9 * Copyright IBM Corporation, 2008
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
18 #include <asm/processor.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25 #include "pmu.h"
27 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
29 int feature_bit = 0;
30 u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
32 xstate_bv &= XFEATURE_MASK_EXTEND;
33 while (xstate_bv) {
34 if (xstate_bv & 0x1) {
35 u32 eax, ebx, ecx, edx, offset;
36 cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
37 offset = compacted ? ret : ebx;
38 ret = max(ret, offset + eax);
41 xstate_bv >>= 1;
42 feature_bit++;
45 return ret;
48 bool kvm_mpx_supported(void)
50 return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
51 && kvm_x86_ops->mpx_supported());
53 EXPORT_SYMBOL_GPL(kvm_mpx_supported);
55 u64 kvm_supported_xcr0(void)
57 u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
59 if (!kvm_mpx_supported())
60 xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
62 return xcr0;
65 #define F feature_bit
67 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
69 struct kvm_cpuid_entry2 *best;
70 struct kvm_lapic *apic = vcpu->arch.apic;
72 best = kvm_find_cpuid_entry(vcpu, 1, 0);
73 if (!best)
74 return 0;
76 /* Update OSXSAVE bit */
77 if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
78 best->ecx &= ~F(OSXSAVE);
79 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
80 best->ecx |= F(OSXSAVE);
83 best->edx &= ~F(APIC);
84 if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
85 best->edx |= F(APIC);
87 if (apic) {
88 if (best->ecx & F(TSC_DEADLINE_TIMER))
89 apic->lapic_timer.timer_mode_mask = 3 << 17;
90 else
91 apic->lapic_timer.timer_mode_mask = 1 << 17;
94 best = kvm_find_cpuid_entry(vcpu, 7, 0);
95 if (best) {
96 /* Update OSPKE bit */
97 if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
98 best->ecx &= ~F(OSPKE);
99 if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
100 best->ecx |= F(OSPKE);
104 best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
105 if (!best) {
106 vcpu->arch.guest_supported_xcr0 = 0;
107 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
108 } else {
109 vcpu->arch.guest_supported_xcr0 =
110 (best->eax | ((u64)best->edx << 32)) &
111 kvm_supported_xcr0();
112 vcpu->arch.guest_xstate_size = best->ebx =
113 xstate_required_size(vcpu->arch.xcr0, false);
116 best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
117 if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
118 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
121 * The existing code assumes virtual address is 48-bit or 57-bit in the
122 * canonical address checks; exit if it is ever changed.
124 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
125 if (best) {
126 int vaddr_bits = (best->eax & 0xff00) >> 8;
128 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
129 return -EINVAL;
132 best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
133 if (kvm_hlt_in_guest(vcpu->kvm) && best &&
134 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
135 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
137 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
138 best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
139 if (best) {
140 if (vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT)
141 best->ecx |= F(MWAIT);
142 else
143 best->ecx &= ~F(MWAIT);
147 /* Update physical-address width */
148 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
149 kvm_mmu_reset_context(vcpu);
151 kvm_pmu_refresh(vcpu);
152 return 0;
155 static int is_efer_nx(void)
157 unsigned long long efer = 0;
159 rdmsrl_safe(MSR_EFER, &efer);
160 return efer & EFER_NX;
163 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
165 int i;
166 struct kvm_cpuid_entry2 *e, *entry;
168 entry = NULL;
169 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
170 e = &vcpu->arch.cpuid_entries[i];
171 if (e->function == 0x80000001) {
172 entry = e;
173 break;
176 if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
177 entry->edx &= ~F(NX);
178 printk(KERN_INFO "kvm: guest NX capability removed\n");
182 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
184 struct kvm_cpuid_entry2 *best;
186 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
187 if (!best || best->eax < 0x80000008)
188 goto not_found;
189 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
190 if (best)
191 return best->eax & 0xff;
192 not_found:
193 return 36;
195 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
197 /* when an old userspace process fills a new kernel module */
198 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
199 struct kvm_cpuid *cpuid,
200 struct kvm_cpuid_entry __user *entries)
202 int r, i;
203 struct kvm_cpuid_entry *cpuid_entries = NULL;
205 r = -E2BIG;
206 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
207 goto out;
208 r = -ENOMEM;
209 if (cpuid->nent) {
210 cpuid_entries =
211 vmalloc(array_size(sizeof(struct kvm_cpuid_entry),
212 cpuid->nent));
213 if (!cpuid_entries)
214 goto out;
215 r = -EFAULT;
216 if (copy_from_user(cpuid_entries, entries,
217 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
218 goto out;
220 for (i = 0; i < cpuid->nent; i++) {
221 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
222 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
223 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
224 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
225 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
226 vcpu->arch.cpuid_entries[i].index = 0;
227 vcpu->arch.cpuid_entries[i].flags = 0;
228 vcpu->arch.cpuid_entries[i].padding[0] = 0;
229 vcpu->arch.cpuid_entries[i].padding[1] = 0;
230 vcpu->arch.cpuid_entries[i].padding[2] = 0;
232 vcpu->arch.cpuid_nent = cpuid->nent;
233 cpuid_fix_nx_cap(vcpu);
234 kvm_apic_set_version(vcpu);
235 kvm_x86_ops->cpuid_update(vcpu);
236 r = kvm_update_cpuid(vcpu);
238 out:
239 vfree(cpuid_entries);
240 return r;
243 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
244 struct kvm_cpuid2 *cpuid,
245 struct kvm_cpuid_entry2 __user *entries)
247 int r;
249 r = -E2BIG;
250 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
251 goto out;
252 r = -EFAULT;
253 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
254 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
255 goto out;
256 vcpu->arch.cpuid_nent = cpuid->nent;
257 kvm_apic_set_version(vcpu);
258 kvm_x86_ops->cpuid_update(vcpu);
259 r = kvm_update_cpuid(vcpu);
260 out:
261 return r;
264 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
265 struct kvm_cpuid2 *cpuid,
266 struct kvm_cpuid_entry2 __user *entries)
268 int r;
270 r = -E2BIG;
271 if (cpuid->nent < vcpu->arch.cpuid_nent)
272 goto out;
273 r = -EFAULT;
274 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
275 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
276 goto out;
277 return 0;
279 out:
280 cpuid->nent = vcpu->arch.cpuid_nent;
281 return r;
284 static __always_inline void cpuid_mask(u32 *word, int wordnum)
286 reverse_cpuid_check(wordnum);
287 *word &= boot_cpu_data.x86_capability[wordnum];
290 static void do_host_cpuid(struct kvm_cpuid_entry2 *entry, u32 function,
291 u32 index)
293 entry->function = function;
294 entry->index = index;
295 entry->flags = 0;
297 cpuid_count(entry->function, entry->index,
298 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
300 switch (function) {
301 case 2:
302 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
303 break;
304 case 4:
305 case 7:
306 case 0xb:
307 case 0xd:
308 case 0xf:
309 case 0x10:
310 case 0x12:
311 case 0x14:
312 case 0x17:
313 case 0x18:
314 case 0x1f:
315 case 0x8000001d:
316 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
317 break;
321 static int __do_cpuid_func_emulated(struct kvm_cpuid_entry2 *entry,
322 u32 func, int *nent, int maxnent)
324 entry->function = func;
325 entry->index = 0;
326 entry->flags = 0;
328 switch (func) {
329 case 0:
330 entry->eax = 7;
331 ++*nent;
332 break;
333 case 1:
334 entry->ecx = F(MOVBE);
335 ++*nent;
336 break;
337 case 7:
338 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
339 entry->eax = 0;
340 entry->ecx = F(RDPID);
341 ++*nent;
342 default:
343 break;
346 return 0;
349 static inline void do_cpuid_7_mask(struct kvm_cpuid_entry2 *entry, int index)
351 unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
352 unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
353 unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0;
354 unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
355 unsigned f_la57;
356 unsigned f_pku = kvm_x86_ops->pku_supported() ? F(PKU) : 0;
358 /* cpuid 7.0.ebx */
359 const u32 kvm_cpuid_7_0_ebx_x86_features =
360 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
361 F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
362 F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
363 F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
364 F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | f_intel_pt;
366 /* cpuid 7.0.ecx*/
367 const u32 kvm_cpuid_7_0_ecx_x86_features =
368 F(AVX512VBMI) | F(LA57) | 0 /*PKU*/ | 0 /*OSPKE*/ | F(RDPID) |
369 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
370 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
371 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/;
373 /* cpuid 7.0.edx*/
374 const u32 kvm_cpuid_7_0_edx_x86_features =
375 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
376 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
377 F(MD_CLEAR);
379 /* cpuid 7.1.eax */
380 const u32 kvm_cpuid_7_1_eax_x86_features =
381 F(AVX512_BF16);
383 switch (index) {
384 case 0:
385 entry->eax = min(entry->eax, 1u);
386 entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
387 cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
388 /* TSC_ADJUST is emulated */
389 entry->ebx |= F(TSC_ADJUST);
391 entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
392 f_la57 = entry->ecx & F(LA57);
393 cpuid_mask(&entry->ecx, CPUID_7_ECX);
394 /* Set LA57 based on hardware capability. */
395 entry->ecx |= f_la57;
396 entry->ecx |= f_umip;
397 entry->ecx |= f_pku;
398 /* PKU is not yet implemented for shadow paging. */
399 if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
400 entry->ecx &= ~F(PKU);
402 entry->edx &= kvm_cpuid_7_0_edx_x86_features;
403 cpuid_mask(&entry->edx, CPUID_7_EDX);
404 if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
405 entry->edx |= F(SPEC_CTRL);
406 if (boot_cpu_has(X86_FEATURE_STIBP))
407 entry->edx |= F(INTEL_STIBP);
408 if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
409 boot_cpu_has(X86_FEATURE_AMD_SSBD))
410 entry->edx |= F(SPEC_CTRL_SSBD);
412 * We emulate ARCH_CAPABILITIES in software even
413 * if the host doesn't support it.
415 entry->edx |= F(ARCH_CAPABILITIES);
416 break;
417 case 1:
418 entry->eax &= kvm_cpuid_7_1_eax_x86_features;
419 entry->ebx = 0;
420 entry->ecx = 0;
421 entry->edx = 0;
422 break;
423 default:
424 WARN_ON_ONCE(1);
425 entry->eax = 0;
426 entry->ebx = 0;
427 entry->ecx = 0;
428 entry->edx = 0;
429 break;
433 static inline int __do_cpuid_func(struct kvm_cpuid_entry2 *entry, u32 function,
434 int *nent, int maxnent)
436 int r;
437 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
438 #ifdef CONFIG_X86_64
439 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
440 ? F(GBPAGES) : 0;
441 unsigned f_lm = F(LM);
442 #else
443 unsigned f_gbpages = 0;
444 unsigned f_lm = 0;
445 #endif
446 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
447 unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
448 unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
450 /* cpuid 1.edx */
451 const u32 kvm_cpuid_1_edx_x86_features =
452 F(FPU) | F(VME) | F(DE) | F(PSE) |
453 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
454 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
455 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
456 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
457 0 /* Reserved, DS, ACPI */ | F(MMX) |
458 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
459 0 /* HTT, TM, Reserved, PBE */;
460 /* cpuid 0x80000001.edx */
461 const u32 kvm_cpuid_8000_0001_edx_x86_features =
462 F(FPU) | F(VME) | F(DE) | F(PSE) |
463 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
464 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
465 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
466 F(PAT) | F(PSE36) | 0 /* Reserved */ |
467 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
468 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
469 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
470 /* cpuid 1.ecx */
471 const u32 kvm_cpuid_1_ecx_x86_features =
472 /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
473 * but *not* advertised to guests via CPUID ! */
474 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
475 0 /* DS-CPL, VMX, SMX, EST */ |
476 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
477 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
478 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
479 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
480 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
481 F(F16C) | F(RDRAND);
482 /* cpuid 0x80000001.ecx */
483 const u32 kvm_cpuid_8000_0001_ecx_x86_features =
484 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
485 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
486 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
487 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
488 F(TOPOEXT) | F(PERFCTR_CORE);
490 /* cpuid 0x80000008.ebx */
491 const u32 kvm_cpuid_8000_0008_ebx_x86_features =
492 F(CLZERO) | F(XSAVEERPTR) |
493 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
494 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON);
496 /* cpuid 0xC0000001.edx */
497 const u32 kvm_cpuid_C000_0001_edx_x86_features =
498 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
499 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
500 F(PMM) | F(PMM_EN);
502 /* cpuid 0xD.1.eax */
503 const u32 kvm_cpuid_D_1_eax_x86_features =
504 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
506 /* all calls to cpuid_count() should be made on the same cpu */
507 get_cpu();
509 r = -E2BIG;
511 if (WARN_ON(*nent >= maxnent))
512 goto out;
514 do_host_cpuid(entry, function, 0);
515 ++*nent;
517 switch (function) {
518 case 0:
519 /* Limited to the highest leaf implemented in KVM. */
520 entry->eax = min(entry->eax, 0x1fU);
521 break;
522 case 1:
523 entry->edx &= kvm_cpuid_1_edx_x86_features;
524 cpuid_mask(&entry->edx, CPUID_1_EDX);
525 entry->ecx &= kvm_cpuid_1_ecx_x86_features;
526 cpuid_mask(&entry->ecx, CPUID_1_ECX);
527 /* we support x2apic emulation even if host does not support
528 * it since we emulate x2apic in software */
529 entry->ecx |= F(X2APIC);
530 break;
531 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
532 * may return different values. This forces us to get_cpu() before
533 * issuing the first command, and also to emulate this annoying behavior
534 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
535 case 2: {
536 int t, times = entry->eax & 0xff;
538 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
539 for (t = 1; t < times; ++t) {
540 if (*nent >= maxnent)
541 goto out;
543 do_host_cpuid(&entry[t], function, 0);
544 ++*nent;
546 break;
548 /* functions 4 and 0x8000001d have additional index. */
549 case 4:
550 case 0x8000001d: {
551 int i, cache_type;
553 /* read more entries until cache_type is zero */
554 for (i = 1; ; ++i) {
555 if (*nent >= maxnent)
556 goto out;
558 cache_type = entry[i - 1].eax & 0x1f;
559 if (!cache_type)
560 break;
561 do_host_cpuid(&entry[i], function, i);
562 ++*nent;
564 break;
566 case 6: /* Thermal management */
567 entry->eax = 0x4; /* allow ARAT */
568 entry->ebx = 0;
569 entry->ecx = 0;
570 entry->edx = 0;
571 break;
572 /* function 7 has additional index. */
573 case 7: {
574 int i;
576 for (i = 0; ; ) {
577 do_cpuid_7_mask(&entry[i], i);
578 if (i == entry->eax)
579 break;
580 if (*nent >= maxnent)
581 goto out;
583 ++i;
584 do_host_cpuid(&entry[i], function, i);
585 ++*nent;
587 break;
589 case 9:
590 break;
591 case 0xa: { /* Architectural Performance Monitoring */
592 struct x86_pmu_capability cap;
593 union cpuid10_eax eax;
594 union cpuid10_edx edx;
596 perf_get_x86_pmu_capability(&cap);
599 * Only support guest architectural pmu on a host
600 * with architectural pmu.
602 if (!cap.version)
603 memset(&cap, 0, sizeof(cap));
605 eax.split.version_id = min(cap.version, 2);
606 eax.split.num_counters = cap.num_counters_gp;
607 eax.split.bit_width = cap.bit_width_gp;
608 eax.split.mask_length = cap.events_mask_len;
610 edx.split.num_counters_fixed = cap.num_counters_fixed;
611 edx.split.bit_width_fixed = cap.bit_width_fixed;
612 edx.split.reserved = 0;
614 entry->eax = eax.full;
615 entry->ebx = cap.events_mask;
616 entry->ecx = 0;
617 entry->edx = edx.full;
618 break;
621 * Per Intel's SDM, the 0x1f is a superset of 0xb,
622 * thus they can be handled by common code.
624 case 0x1f:
625 case 0xb: {
626 int i;
629 * We filled in entry[0] for CPUID(EAX=<function>,
630 * ECX=00H) above. If its level type (ECX[15:8]) is
631 * zero, then the leaf is unimplemented, and we're
632 * done. Otherwise, continue to populate entries
633 * until the level type (ECX[15:8]) of the previously
634 * added entry is zero.
636 for (i = 1; entry[i - 1].ecx & 0xff00; ++i) {
637 if (*nent >= maxnent)
638 goto out;
640 do_host_cpuid(&entry[i], function, i);
641 ++*nent;
643 break;
645 case 0xd: {
646 int idx, i;
647 u64 supported = kvm_supported_xcr0();
649 entry->eax &= supported;
650 entry->ebx = xstate_required_size(supported, false);
651 entry->ecx = entry->ebx;
652 entry->edx &= supported >> 32;
653 if (!supported)
654 break;
656 for (idx = 1, i = 1; idx < 64; ++idx) {
657 u64 mask = ((u64)1 << idx);
658 if (*nent >= maxnent)
659 goto out;
661 do_host_cpuid(&entry[i], function, idx);
662 if (idx == 1) {
663 entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
664 cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
665 entry[i].ebx = 0;
666 if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
667 entry[i].ebx =
668 xstate_required_size(supported,
669 true);
670 } else {
671 if (entry[i].eax == 0 || !(supported & mask))
672 continue;
673 if (WARN_ON_ONCE(entry[i].ecx & 1))
674 continue;
676 entry[i].ecx = 0;
677 entry[i].edx = 0;
678 ++*nent;
679 ++i;
681 break;
683 /* Intel PT */
684 case 0x14: {
685 int t, times = entry->eax;
687 if (!f_intel_pt)
688 break;
690 for (t = 1; t <= times; ++t) {
691 if (*nent >= maxnent)
692 goto out;
693 do_host_cpuid(&entry[t], function, t);
694 ++*nent;
696 break;
698 case KVM_CPUID_SIGNATURE: {
699 static const char signature[12] = "KVMKVMKVM\0\0";
700 const u32 *sigptr = (const u32 *)signature;
701 entry->eax = KVM_CPUID_FEATURES;
702 entry->ebx = sigptr[0];
703 entry->ecx = sigptr[1];
704 entry->edx = sigptr[2];
705 break;
707 case KVM_CPUID_FEATURES:
708 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
709 (1 << KVM_FEATURE_NOP_IO_DELAY) |
710 (1 << KVM_FEATURE_CLOCKSOURCE2) |
711 (1 << KVM_FEATURE_ASYNC_PF) |
712 (1 << KVM_FEATURE_PV_EOI) |
713 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
714 (1 << KVM_FEATURE_PV_UNHALT) |
715 (1 << KVM_FEATURE_PV_TLB_FLUSH) |
716 (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
717 (1 << KVM_FEATURE_PV_SEND_IPI) |
718 (1 << KVM_FEATURE_POLL_CONTROL) |
719 (1 << KVM_FEATURE_PV_SCHED_YIELD);
721 if (sched_info_on())
722 entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
724 entry->ebx = 0;
725 entry->ecx = 0;
726 entry->edx = 0;
727 break;
728 case 0x80000000:
729 entry->eax = min(entry->eax, 0x8000001f);
730 break;
731 case 0x80000001:
732 entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
733 cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
734 entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
735 cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
736 break;
737 case 0x80000007: /* Advanced power management */
738 /* invariant TSC is CPUID.80000007H:EDX[8] */
739 entry->edx &= (1 << 8);
740 /* mask against host */
741 entry->edx &= boot_cpu_data.x86_power;
742 entry->eax = entry->ebx = entry->ecx = 0;
743 break;
744 case 0x80000008: {
745 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
746 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
747 unsigned phys_as = entry->eax & 0xff;
749 if (!g_phys_as)
750 g_phys_as = phys_as;
751 entry->eax = g_phys_as | (virt_as << 8);
752 entry->edx = 0;
753 entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
754 cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
756 * AMD has separate bits for each SPEC_CTRL bit.
757 * arch/x86/kernel/cpu/bugs.c is kind enough to
758 * record that in cpufeatures so use them.
760 if (boot_cpu_has(X86_FEATURE_IBPB))
761 entry->ebx |= F(AMD_IBPB);
762 if (boot_cpu_has(X86_FEATURE_IBRS))
763 entry->ebx |= F(AMD_IBRS);
764 if (boot_cpu_has(X86_FEATURE_STIBP))
765 entry->ebx |= F(AMD_STIBP);
766 if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
767 boot_cpu_has(X86_FEATURE_AMD_SSBD))
768 entry->ebx |= F(AMD_SSBD);
769 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
770 entry->ebx |= F(AMD_SSB_NO);
772 * The preference is to use SPEC CTRL MSR instead of the
773 * VIRT_SPEC MSR.
775 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
776 !boot_cpu_has(X86_FEATURE_AMD_SSBD))
777 entry->ebx |= F(VIRT_SSBD);
778 break;
780 case 0x80000019:
781 entry->ecx = entry->edx = 0;
782 break;
783 case 0x8000001a:
784 case 0x8000001e:
785 break;
786 /* Support memory encryption cpuid if host supports it */
787 case 0x8000001F:
788 if (!boot_cpu_has(X86_FEATURE_SEV))
789 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
790 break;
791 /*Add support for Centaur's CPUID instruction*/
792 case 0xC0000000:
793 /*Just support up to 0xC0000004 now*/
794 entry->eax = min(entry->eax, 0xC0000004);
795 break;
796 case 0xC0000001:
797 entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
798 cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
799 break;
800 case 3: /* Processor serial number */
801 case 5: /* MONITOR/MWAIT */
802 case 0xC0000002:
803 case 0xC0000003:
804 case 0xC0000004:
805 default:
806 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
807 break;
810 kvm_x86_ops->set_supported_cpuid(function, entry);
812 r = 0;
814 out:
815 put_cpu();
817 return r;
820 static int do_cpuid_func(struct kvm_cpuid_entry2 *entry, u32 func,
821 int *nent, int maxnent, unsigned int type)
823 if (*nent >= maxnent)
824 return -E2BIG;
826 if (type == KVM_GET_EMULATED_CPUID)
827 return __do_cpuid_func_emulated(entry, func, nent, maxnent);
829 return __do_cpuid_func(entry, func, nent, maxnent);
832 struct kvm_cpuid_param {
833 u32 func;
834 bool (*qualifier)(const struct kvm_cpuid_param *param);
837 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
839 return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
842 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
843 __u32 num_entries, unsigned int ioctl_type)
845 int i;
846 __u32 pad[3];
848 if (ioctl_type != KVM_GET_EMULATED_CPUID)
849 return false;
852 * We want to make sure that ->padding is being passed clean from
853 * userspace in case we want to use it for something in the future.
855 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
856 * have to give ourselves satisfied only with the emulated side. /me
857 * sheds a tear.
859 for (i = 0; i < num_entries; i++) {
860 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
861 return true;
863 if (pad[0] || pad[1] || pad[2])
864 return true;
866 return false;
869 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
870 struct kvm_cpuid_entry2 __user *entries,
871 unsigned int type)
873 struct kvm_cpuid_entry2 *cpuid_entries;
874 int limit, nent = 0, r = -E2BIG, i;
875 u32 func;
876 static const struct kvm_cpuid_param param[] = {
877 { .func = 0 },
878 { .func = 0x80000000 },
879 { .func = 0xC0000000, .qualifier = is_centaur_cpu },
880 { .func = KVM_CPUID_SIGNATURE },
883 if (cpuid->nent < 1)
884 goto out;
885 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
886 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
888 if (sanity_check_entries(entries, cpuid->nent, type))
889 return -EINVAL;
891 r = -ENOMEM;
892 cpuid_entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
893 cpuid->nent));
894 if (!cpuid_entries)
895 goto out;
897 r = 0;
898 for (i = 0; i < ARRAY_SIZE(param); i++) {
899 const struct kvm_cpuid_param *ent = &param[i];
901 if (ent->qualifier && !ent->qualifier(ent))
902 continue;
904 r = do_cpuid_func(&cpuid_entries[nent], ent->func,
905 &nent, cpuid->nent, type);
907 if (r)
908 goto out_free;
910 limit = cpuid_entries[nent - 1].eax;
911 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
912 r = do_cpuid_func(&cpuid_entries[nent], func,
913 &nent, cpuid->nent, type);
915 if (r)
916 goto out_free;
919 r = -EFAULT;
920 if (copy_to_user(entries, cpuid_entries,
921 nent * sizeof(struct kvm_cpuid_entry2)))
922 goto out_free;
923 cpuid->nent = nent;
924 r = 0;
926 out_free:
927 vfree(cpuid_entries);
928 out:
929 return r;
932 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
934 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
935 struct kvm_cpuid_entry2 *ej;
936 int j = i;
937 int nent = vcpu->arch.cpuid_nent;
939 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
940 /* when no next entry is found, the current entry[i] is reselected */
941 do {
942 j = (j + 1) % nent;
943 ej = &vcpu->arch.cpuid_entries[j];
944 } while (ej->function != e->function);
946 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
948 return j;
951 /* find an entry with matching function, matching index (if needed), and that
952 * should be read next (if it's stateful) */
953 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
954 u32 function, u32 index)
956 if (e->function != function)
957 return 0;
958 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
959 return 0;
960 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
961 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
962 return 0;
963 return 1;
966 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
967 u32 function, u32 index)
969 int i;
970 struct kvm_cpuid_entry2 *best = NULL;
972 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
973 struct kvm_cpuid_entry2 *e;
975 e = &vcpu->arch.cpuid_entries[i];
976 if (is_matching_cpuid_entry(e, function, index)) {
977 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
978 move_to_next_stateful_cpuid_entry(vcpu, i);
979 best = e;
980 break;
983 return best;
985 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
988 * If the basic or extended CPUID leaf requested is higher than the
989 * maximum supported basic or extended leaf, respectively, then it is
990 * out of range.
992 static bool cpuid_function_in_range(struct kvm_vcpu *vcpu, u32 function)
994 struct kvm_cpuid_entry2 *max;
996 max = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
997 return max && function <= max->eax;
1000 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1001 u32 *ecx, u32 *edx, bool check_limit)
1003 u32 function = *eax, index = *ecx;
1004 struct kvm_cpuid_entry2 *entry;
1005 struct kvm_cpuid_entry2 *max;
1006 bool found;
1008 entry = kvm_find_cpuid_entry(vcpu, function, index);
1009 found = entry;
1011 * Intel CPUID semantics treats any query for an out-of-range
1012 * leaf as if the highest basic leaf (i.e. CPUID.0H:EAX) were
1013 * requested. AMD CPUID semantics returns all zeroes for any
1014 * undefined leaf, whether or not the leaf is in range.
1016 if (!entry && check_limit && !guest_cpuid_is_amd(vcpu) &&
1017 !cpuid_function_in_range(vcpu, function)) {
1018 max = kvm_find_cpuid_entry(vcpu, 0, 0);
1019 if (max) {
1020 function = max->eax;
1021 entry = kvm_find_cpuid_entry(vcpu, function, index);
1024 if (entry) {
1025 *eax = entry->eax;
1026 *ebx = entry->ebx;
1027 *ecx = entry->ecx;
1028 *edx = entry->edx;
1029 if (function == 7 && index == 0) {
1030 u64 data;
1031 if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1032 (data & TSX_CTRL_CPUID_CLEAR))
1033 *ebx &= ~(F(RTM) | F(HLE));
1035 } else {
1036 *eax = *ebx = *ecx = *edx = 0;
1038 * When leaf 0BH or 1FH is defined, CL is pass-through
1039 * and EDX is always the x2APIC ID, even for undefined
1040 * subleaves. Index 1 will exist iff the leaf is
1041 * implemented, so we pass through CL iff leaf 1
1042 * exists. EDX can be copied from any existing index.
1044 if (function == 0xb || function == 0x1f) {
1045 entry = kvm_find_cpuid_entry(vcpu, function, 1);
1046 if (entry) {
1047 *ecx = index & 0xff;
1048 *edx = entry->edx;
1052 trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, found);
1053 return found;
1055 EXPORT_SYMBOL_GPL(kvm_cpuid);
1057 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1059 u32 eax, ebx, ecx, edx;
1061 if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1062 return 1;
1064 eax = kvm_rax_read(vcpu);
1065 ecx = kvm_rcx_read(vcpu);
1066 kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
1067 kvm_rax_write(vcpu, eax);
1068 kvm_rbx_write(vcpu, ebx);
1069 kvm_rcx_write(vcpu, ecx);
1070 kvm_rdx_write(vcpu, edx);
1071 return kvm_skip_emulated_instruction(vcpu);
1073 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);