1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_MMU_H
3 #define __KVM_X86_MMU_H
5 #include <linux/kvm_host.h>
6 #include "kvm_cache_regs.h"
9 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
10 #define PT32_PT_BITS 10
11 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
13 #define PT_WRITABLE_SHIFT 1
14 #define PT_USER_SHIFT 2
16 #define PT_PRESENT_MASK (1ULL << 0)
17 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
18 #define PT_USER_MASK (1ULL << PT_USER_SHIFT)
19 #define PT_PWT_MASK (1ULL << 3)
20 #define PT_PCD_MASK (1ULL << 4)
21 #define PT_ACCESSED_SHIFT 5
22 #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
23 #define PT_DIRTY_SHIFT 6
24 #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
25 #define PT_PAGE_SIZE_SHIFT 7
26 #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
27 #define PT_PAT_MASK (1ULL << 7)
28 #define PT_GLOBAL_MASK (1ULL << 8)
29 #define PT64_NX_SHIFT 63
30 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
32 #define PT_PAT_SHIFT 7
33 #define PT_DIR_PAT_SHIFT 12
34 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
36 #define PT32_DIR_PSE36_SIZE 4
37 #define PT32_DIR_PSE36_SHIFT 13
38 #define PT32_DIR_PSE36_MASK \
39 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
41 #define PT64_ROOT_5LEVEL 5
42 #define PT64_ROOT_4LEVEL 4
43 #define PT32_ROOT_LEVEL 2
44 #define PT32E_ROOT_LEVEL 3
46 static inline u64
rsvd_bits(int s
, int e
)
51 return ((1ULL << (e
- s
+ 1)) - 1) << s
;
54 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask
, u64 mmio_value
, u64 access_mask
);
57 reset_shadow_zero_bits_mask(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*context
);
59 void kvm_init_mmu(struct kvm_vcpu
*vcpu
, bool reset_roots
);
60 void kvm_init_shadow_mmu(struct kvm_vcpu
*vcpu
);
61 void kvm_init_shadow_ept_mmu(struct kvm_vcpu
*vcpu
, bool execonly
,
62 bool accessed_dirty
, gpa_t new_eptp
);
63 bool kvm_can_do_async_pf(struct kvm_vcpu
*vcpu
);
64 int kvm_handle_page_fault(struct kvm_vcpu
*vcpu
, u64 error_code
,
65 u64 fault_address
, char *insn
, int insn_len
);
67 static inline unsigned long kvm_mmu_available_pages(struct kvm
*kvm
)
69 if (kvm
->arch
.n_max_mmu_pages
> kvm
->arch
.n_used_mmu_pages
)
70 return kvm
->arch
.n_max_mmu_pages
-
71 kvm
->arch
.n_used_mmu_pages
;
76 static inline int kvm_mmu_reload(struct kvm_vcpu
*vcpu
)
78 if (likely(vcpu
->arch
.mmu
->root_hpa
!= INVALID_PAGE
))
81 return kvm_mmu_load(vcpu
);
84 static inline unsigned long kvm_get_pcid(struct kvm_vcpu
*vcpu
, gpa_t cr3
)
86 BUILD_BUG_ON((X86_CR3_PCID_MASK
& PAGE_MASK
) != 0);
88 return kvm_read_cr4_bits(vcpu
, X86_CR4_PCIDE
)
89 ? cr3
& X86_CR3_PCID_MASK
93 static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu
*vcpu
)
95 return kvm_get_pcid(vcpu
, kvm_read_cr3(vcpu
));
98 static inline void kvm_mmu_load_cr3(struct kvm_vcpu
*vcpu
)
100 if (VALID_PAGE(vcpu
->arch
.mmu
->root_hpa
))
101 vcpu
->arch
.mmu
->set_cr3(vcpu
, vcpu
->arch
.mmu
->root_hpa
|
102 kvm_get_active_pcid(vcpu
));
106 * Currently, we have two sorts of write-protection, a) the first one
107 * write-protects guest page to sync the guest modification, b) another one is
108 * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
109 * between these two sorts are:
110 * 1) the first case clears SPTE_MMU_WRITEABLE bit.
111 * 2) the first case requires flushing tlb immediately avoiding corrupting
112 * shadow page table between all vcpus so it should be in the protection of
113 * mmu-lock. And the another case does not need to flush tlb until returning
114 * the dirty bitmap to userspace since it only write-protects the page
115 * logged in the bitmap, that means the page in the dirty bitmap is not
116 * missed, so it can flush tlb out of mmu-lock.
118 * So, there is the problem: the first case can meet the corrupted tlb caused
119 * by another case which write-protects pages but without flush tlb
120 * immediately. In order to making the first case be aware this problem we let
121 * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
122 * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
124 * Anyway, whenever a spte is updated (only permission and status bits are
125 * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
126 * readonly, if that happens, we need to flush tlb. Fortunately,
127 * mmu_spte_update() has already handled it perfectly.
129 * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
130 * - if we want to see if it has writable tlb entry or if the spte can be
131 * writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
133 * - if we fix page fault on the spte or do write-protection by dirty logging,
134 * check PT_WRITABLE_MASK.
136 * TODO: introduce APIs to split these two cases.
138 static inline int is_writable_pte(unsigned long pte
)
140 return pte
& PT_WRITABLE_MASK
;
143 static inline bool is_write_protection(struct kvm_vcpu
*vcpu
)
145 return kvm_read_cr0_bits(vcpu
, X86_CR0_WP
);
149 * Check if a given access (described through the I/D, W/R and U/S bits of a
150 * page fault error code pfec) causes a permission fault with the given PTE
151 * access rights (in ACC_* format).
153 * Return zero if the access does not fault; return the page fault error code
154 * if the access faults.
156 static inline u8
permission_fault(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
157 unsigned pte_access
, unsigned pte_pkey
,
160 int cpl
= kvm_x86_ops
->get_cpl(vcpu
);
161 unsigned long rflags
= kvm_x86_ops
->get_rflags(vcpu
);
164 * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
166 * If CPL = 3, SMAP applies to all supervisor-mode data accesses
167 * (these are implicit supervisor accesses) regardless of the value
170 * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
171 * the result in X86_EFLAGS_AC. We then insert it in place of
172 * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
173 * but it will be one in index if SMAP checks are being overridden.
174 * It is important to keep this branchless.
176 unsigned long smap
= (cpl
- 3) & (rflags
& X86_EFLAGS_AC
);
177 int index
= (pfec
>> 1) +
178 (smap
>> (X86_EFLAGS_AC_BIT
- PFERR_RSVD_BIT
+ 1));
179 bool fault
= (mmu
->permissions
[index
] >> pte_access
) & 1;
180 u32 errcode
= PFERR_PRESENT_MASK
;
182 WARN_ON(pfec
& (PFERR_PK_MASK
| PFERR_RSVD_MASK
));
183 if (unlikely(mmu
->pkru_mask
)) {
184 u32 pkru_bits
, offset
;
187 * PKRU defines 32 bits, there are 16 domains and 2
188 * attribute bits per domain in pkru. pte_pkey is the
189 * index of the protection domain, so pte_pkey * 2 is
190 * is the index of the first bit for the domain.
192 pkru_bits
= (vcpu
->arch
.pkru
>> (pte_pkey
* 2)) & 3;
194 /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
195 offset
= (pfec
& ~1) +
196 ((pte_access
& PT_USER_MASK
) << (PFERR_RSVD_BIT
- PT_USER_SHIFT
));
198 pkru_bits
&= mmu
->pkru_mask
>> offset
;
199 errcode
|= -pkru_bits
& PFERR_PK_MASK
;
200 fault
|= (pkru_bits
!= 0);
203 return -(u32
)fault
& errcode
;
206 void kvm_zap_gfn_range(struct kvm
*kvm
, gfn_t gfn_start
, gfn_t gfn_end
);
208 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot
*slot
, gfn_t gfn
);
209 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot
*slot
, gfn_t gfn
);
210 bool kvm_mmu_slot_gfn_write_protect(struct kvm
*kvm
,
211 struct kvm_memory_slot
*slot
, u64 gfn
);
212 int kvm_arch_write_log_dirty(struct kvm_vcpu
*vcpu
);
214 int kvm_mmu_post_init_vm(struct kvm
*kvm
);
215 void kvm_mmu_pre_destroy_vm(struct kvm
*kvm
);