ARM: dma-api: fix max_pfn off-by-one error in __dma_supported()
[linux/fpc-iii.git] / arch / x86 / kvm / mmu / paging_tmpl.h
blob4e1ef047366344c8704651e0b1f3eeddbda74b51
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Kernel-based Virtual Machine driver for Linux
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
8 * MMU support
10 * Copyright (C) 2006 Qumranet, Inc.
11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
19 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
20 * so the code in this file is compiled twice, once per pte size.
23 #if PTTYPE == 64
24 #define pt_element_t u64
25 #define guest_walker guest_walker64
26 #define FNAME(name) paging##64_##name
27 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
28 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
29 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
30 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
31 #define PT_LEVEL_BITS PT64_LEVEL_BITS
32 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
33 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
34 #define PT_HAVE_ACCESSED_DIRTY(mmu) true
35 #ifdef CONFIG_X86_64
36 #define PT_MAX_FULL_LEVELS 4
37 #define CMPXCHG cmpxchg
38 #else
39 #define CMPXCHG cmpxchg64
40 #define PT_MAX_FULL_LEVELS 2
41 #endif
42 #elif PTTYPE == 32
43 #define pt_element_t u32
44 #define guest_walker guest_walker32
45 #define FNAME(name) paging##32_##name
46 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
47 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
48 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
49 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
50 #define PT_LEVEL_BITS PT32_LEVEL_BITS
51 #define PT_MAX_FULL_LEVELS 2
52 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
53 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
54 #define PT_HAVE_ACCESSED_DIRTY(mmu) true
55 #define CMPXCHG cmpxchg
56 #elif PTTYPE == PTTYPE_EPT
57 #define pt_element_t u64
58 #define guest_walker guest_walkerEPT
59 #define FNAME(name) ept_##name
60 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
61 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
62 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
63 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
64 #define PT_LEVEL_BITS PT64_LEVEL_BITS
65 #define PT_GUEST_DIRTY_SHIFT 9
66 #define PT_GUEST_ACCESSED_SHIFT 8
67 #define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad)
68 #define CMPXCHG cmpxchg64
69 #define PT_MAX_FULL_LEVELS 4
70 #else
71 #error Invalid PTTYPE value
72 #endif
74 #define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT)
75 #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
77 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
78 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
81 * The guest_walker structure emulates the behavior of the hardware page
82 * table walker.
84 struct guest_walker {
85 int level;
86 unsigned max_level;
87 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
88 pt_element_t ptes[PT_MAX_FULL_LEVELS];
89 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
90 gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
91 pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
92 bool pte_writable[PT_MAX_FULL_LEVELS];
93 unsigned pt_access;
94 unsigned pte_access;
95 gfn_t gfn;
96 struct x86_exception fault;
99 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
101 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
104 static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
105 unsigned gpte)
107 unsigned mask;
109 /* dirty bit is not supported, so no need to track it */
110 if (!PT_HAVE_ACCESSED_DIRTY(mmu))
111 return;
113 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
115 mask = (unsigned)~ACC_WRITE_MASK;
116 /* Allow write access to dirty gptes */
117 mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
118 PT_WRITABLE_MASK;
119 *access &= mask;
122 static inline int FNAME(is_present_gpte)(unsigned long pte)
124 #if PTTYPE != PTTYPE_EPT
125 return pte & PT_PRESENT_MASK;
126 #else
127 return pte & 7;
128 #endif
131 static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte)
133 #if PTTYPE != PTTYPE_EPT
134 return false;
135 #else
136 return __is_bad_mt_xwr(rsvd_check, gpte);
137 #endif
140 static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level)
142 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) ||
143 FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte);
146 static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
147 pt_element_t __user *ptep_user, unsigned index,
148 pt_element_t orig_pte, pt_element_t new_pte)
150 int npages;
151 pt_element_t ret;
152 pt_element_t *table;
153 struct page *page;
155 npages = get_user_pages_fast((unsigned long)ptep_user, 1, FOLL_WRITE, &page);
156 if (likely(npages == 1)) {
157 table = kmap_atomic(page);
158 ret = CMPXCHG(&table[index], orig_pte, new_pte);
159 kunmap_atomic(table);
161 kvm_release_page_dirty(page);
162 } else {
163 struct vm_area_struct *vma;
164 unsigned long vaddr = (unsigned long)ptep_user & PAGE_MASK;
165 unsigned long pfn;
166 unsigned long paddr;
168 down_read(&current->mm->mmap_sem);
169 vma = find_vma_intersection(current->mm, vaddr, vaddr + PAGE_SIZE);
170 if (!vma || !(vma->vm_flags & VM_PFNMAP)) {
171 up_read(&current->mm->mmap_sem);
172 return -EFAULT;
174 pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
175 paddr = pfn << PAGE_SHIFT;
176 table = memremap(paddr, PAGE_SIZE, MEMREMAP_WB);
177 if (!table) {
178 up_read(&current->mm->mmap_sem);
179 return -EFAULT;
181 ret = CMPXCHG(&table[index], orig_pte, new_pte);
182 memunmap(table);
183 up_read(&current->mm->mmap_sem);
186 return (ret != orig_pte);
189 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
190 struct kvm_mmu_page *sp, u64 *spte,
191 u64 gpte)
193 if (!FNAME(is_present_gpte)(gpte))
194 goto no_present;
196 /* if accessed bit is not supported prefetch non accessed gpte */
197 if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
198 !(gpte & PT_GUEST_ACCESSED_MASK))
199 goto no_present;
201 if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
202 goto no_present;
204 return false;
206 no_present:
207 drop_spte(vcpu->kvm, spte);
208 return true;
212 * For PTTYPE_EPT, a page table can be executable but not readable
213 * on supported processors. Therefore, set_spte does not automatically
214 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
215 * to signify readability since it isn't used in the EPT case
217 static inline unsigned FNAME(gpte_access)(u64 gpte)
219 unsigned access;
220 #if PTTYPE == PTTYPE_EPT
221 access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
222 ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
223 ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
224 #else
225 BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
226 BUILD_BUG_ON(ACC_EXEC_MASK != 1);
227 access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
228 /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */
229 access ^= (gpte >> PT64_NX_SHIFT);
230 #endif
232 return access;
235 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
236 struct kvm_mmu *mmu,
237 struct guest_walker *walker,
238 int write_fault)
240 unsigned level, index;
241 pt_element_t pte, orig_pte;
242 pt_element_t __user *ptep_user;
243 gfn_t table_gfn;
244 int ret;
246 /* dirty/accessed bits are not supported, so no need to update them */
247 if (!PT_HAVE_ACCESSED_DIRTY(mmu))
248 return 0;
250 for (level = walker->max_level; level >= walker->level; --level) {
251 pte = orig_pte = walker->ptes[level - 1];
252 table_gfn = walker->table_gfn[level - 1];
253 ptep_user = walker->ptep_user[level - 1];
254 index = offset_in_page(ptep_user) / sizeof(pt_element_t);
255 if (!(pte & PT_GUEST_ACCESSED_MASK)) {
256 trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
257 pte |= PT_GUEST_ACCESSED_MASK;
259 if (level == walker->level && write_fault &&
260 !(pte & PT_GUEST_DIRTY_MASK)) {
261 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
262 #if PTTYPE == PTTYPE_EPT
263 if (kvm_arch_write_log_dirty(vcpu))
264 return -EINVAL;
265 #endif
266 pte |= PT_GUEST_DIRTY_MASK;
268 if (pte == orig_pte)
269 continue;
272 * If the slot is read-only, simply do not process the accessed
273 * and dirty bits. This is the correct thing to do if the slot
274 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
275 * are only supported if the accessed and dirty bits are already
276 * set in the ROM (so that MMIO writes are never needed).
278 * Note that NPT does not allow this at all and faults, since
279 * it always wants nested page table entries for the guest
280 * page tables to be writable. And EPT works but will simply
281 * overwrite the read-only memory to set the accessed and dirty
282 * bits.
284 if (unlikely(!walker->pte_writable[level - 1]))
285 continue;
287 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
288 if (ret)
289 return ret;
291 kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
292 walker->ptes[level - 1] = pte;
294 return 0;
297 static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
299 unsigned pkeys = 0;
300 #if PTTYPE == 64
301 pte_t pte = {.pte = gpte};
303 pkeys = pte_flags_pkey(pte_flags(pte));
304 #endif
305 return pkeys;
309 * Fetch a guest pte for a guest virtual address, or for an L2's GPA.
311 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
312 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
313 gpa_t addr, u32 access)
315 int ret;
316 pt_element_t pte;
317 pt_element_t __user *uninitialized_var(ptep_user);
318 gfn_t table_gfn;
319 u64 pt_access, pte_access;
320 unsigned index, accessed_dirty, pte_pkey;
321 unsigned nested_access;
322 gpa_t pte_gpa;
323 bool have_ad;
324 int offset;
325 u64 walk_nx_mask = 0;
326 const int write_fault = access & PFERR_WRITE_MASK;
327 const int user_fault = access & PFERR_USER_MASK;
328 const int fetch_fault = access & PFERR_FETCH_MASK;
329 u16 errcode = 0;
330 gpa_t real_gpa;
331 gfn_t gfn;
333 trace_kvm_mmu_pagetable_walk(addr, access);
334 retry_walk:
335 walker->level = mmu->root_level;
336 pte = mmu->get_cr3(vcpu);
337 have_ad = PT_HAVE_ACCESSED_DIRTY(mmu);
339 #if PTTYPE == 64
340 walk_nx_mask = 1ULL << PT64_NX_SHIFT;
341 if (walker->level == PT32E_ROOT_LEVEL) {
342 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
343 trace_kvm_mmu_paging_element(pte, walker->level);
344 if (!FNAME(is_present_gpte)(pte))
345 goto error;
346 --walker->level;
348 #endif
349 walker->max_level = walker->level;
350 ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
353 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
354 * by the MOV to CR instruction are treated as reads and do not cause the
355 * processor to set the dirty flag in any EPT paging-structure entry.
357 nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
359 pte_access = ~0;
360 ++walker->level;
362 do {
363 gfn_t real_gfn;
364 unsigned long host_addr;
366 pt_access = pte_access;
367 --walker->level;
369 index = PT_INDEX(addr, walker->level);
370 table_gfn = gpte_to_gfn(pte);
371 offset = index * sizeof(pt_element_t);
372 pte_gpa = gfn_to_gpa(table_gfn) + offset;
374 BUG_ON(walker->level < 1);
375 walker->table_gfn[walker->level - 1] = table_gfn;
376 walker->pte_gpa[walker->level - 1] = pte_gpa;
378 real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
379 nested_access,
380 &walker->fault);
383 * FIXME: This can happen if emulation (for of an INS/OUTS
384 * instruction) triggers a nested page fault. The exit
385 * qualification / exit info field will incorrectly have
386 * "guest page access" as the nested page fault's cause,
387 * instead of "guest page structure access". To fix this,
388 * the x86_exception struct should be augmented with enough
389 * information to fix the exit_qualification or exit_info_1
390 * fields.
392 if (unlikely(real_gfn == UNMAPPED_GVA))
393 return 0;
395 real_gfn = gpa_to_gfn(real_gfn);
397 host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn,
398 &walker->pte_writable[walker->level - 1]);
399 if (unlikely(kvm_is_error_hva(host_addr)))
400 goto error;
402 ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
403 if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
404 goto error;
405 walker->ptep_user[walker->level - 1] = ptep_user;
407 trace_kvm_mmu_paging_element(pte, walker->level);
410 * Inverting the NX it lets us AND it like other
411 * permission bits.
413 pte_access = pt_access & (pte ^ walk_nx_mask);
415 if (unlikely(!FNAME(is_present_gpte)(pte)))
416 goto error;
418 if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) {
419 errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
420 goto error;
423 walker->ptes[walker->level - 1] = pte;
424 } while (!is_last_gpte(mmu, walker->level, pte));
426 pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
427 accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
429 /* Convert to ACC_*_MASK flags for struct guest_walker. */
430 walker->pt_access = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
431 walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
432 errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
433 if (unlikely(errcode))
434 goto error;
436 gfn = gpte_to_gfn_lvl(pte, walker->level);
437 gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
439 if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
440 gfn += pse36_gfn_delta(pte);
442 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
443 if (real_gpa == UNMAPPED_GVA)
444 return 0;
446 walker->gfn = real_gpa >> PAGE_SHIFT;
448 if (!write_fault)
449 FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
450 else
452 * On a write fault, fold the dirty bit into accessed_dirty.
453 * For modes without A/D bits support accessed_dirty will be
454 * always clear.
456 accessed_dirty &= pte >>
457 (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
459 if (unlikely(!accessed_dirty)) {
460 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
461 if (unlikely(ret < 0))
462 goto error;
463 else if (ret)
464 goto retry_walk;
467 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
468 __func__, (u64)pte, walker->pte_access, walker->pt_access);
469 return 1;
471 error:
472 errcode |= write_fault | user_fault;
473 if (fetch_fault && (mmu->nx ||
474 kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
475 errcode |= PFERR_FETCH_MASK;
477 walker->fault.vector = PF_VECTOR;
478 walker->fault.error_code_valid = true;
479 walker->fault.error_code = errcode;
481 #if PTTYPE == PTTYPE_EPT
483 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
484 * misconfiguration requires to be injected. The detection is
485 * done by is_rsvd_bits_set() above.
487 * We set up the value of exit_qualification to inject:
488 * [2:0] - Derive from the access bits. The exit_qualification might be
489 * out of date if it is serving an EPT misconfiguration.
490 * [5:3] - Calculated by the page walk of the guest EPT page tables
491 * [7:8] - Derived from [7:8] of real exit_qualification
493 * The other bits are set to 0.
495 if (!(errcode & PFERR_RSVD_MASK)) {
496 vcpu->arch.exit_qualification &= 0x180;
497 if (write_fault)
498 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
499 if (user_fault)
500 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
501 if (fetch_fault)
502 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
503 vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3;
505 #endif
506 walker->fault.address = addr;
507 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
509 trace_kvm_mmu_walker_error(walker->fault.error_code);
510 return 0;
513 static int FNAME(walk_addr)(struct guest_walker *walker,
514 struct kvm_vcpu *vcpu, gpa_t addr, u32 access)
516 return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
517 access);
520 #if PTTYPE != PTTYPE_EPT
521 static int FNAME(walk_addr_nested)(struct guest_walker *walker,
522 struct kvm_vcpu *vcpu, gva_t addr,
523 u32 access)
525 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
526 addr, access);
528 #endif
530 static bool
531 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
532 u64 *spte, pt_element_t gpte, bool no_dirty_log)
534 unsigned pte_access;
535 gfn_t gfn;
536 kvm_pfn_t pfn;
538 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
539 return false;
541 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
543 gfn = gpte_to_gfn(gpte);
544 pte_access = sp->role.access & FNAME(gpte_access)(gpte);
545 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
546 pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
547 no_dirty_log && (pte_access & ACC_WRITE_MASK));
548 if (is_error_pfn(pfn))
549 return false;
552 * we call mmu_set_spte() with host_writable = true because
553 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
555 mmu_set_spte(vcpu, spte, pte_access, 0, PT_PAGE_TABLE_LEVEL, gfn, pfn,
556 true, true);
558 kvm_release_pfn_clean(pfn);
559 return true;
562 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
563 u64 *spte, const void *pte)
565 pt_element_t gpte = *(const pt_element_t *)pte;
567 FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
570 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
571 struct guest_walker *gw, int level)
573 pt_element_t curr_pte;
574 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
575 u64 mask;
576 int r, index;
578 if (level == PT_PAGE_TABLE_LEVEL) {
579 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
580 base_gpa = pte_gpa & ~mask;
581 index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
583 r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
584 gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
585 curr_pte = gw->prefetch_ptes[index];
586 } else
587 r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
588 &curr_pte, sizeof(curr_pte));
590 return r || curr_pte != gw->ptes[level - 1];
593 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
594 u64 *sptep)
596 struct kvm_mmu_page *sp;
597 pt_element_t *gptep = gw->prefetch_ptes;
598 u64 *spte;
599 int i;
601 sp = page_header(__pa(sptep));
603 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
604 return;
606 if (sp->role.direct)
607 return __direct_pte_prefetch(vcpu, sp, sptep);
609 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
610 spte = sp->spt + i;
612 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
613 if (spte == sptep)
614 continue;
616 if (is_shadow_present_pte(*spte))
617 continue;
619 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
620 break;
625 * Fetch a shadow pte for a specific level in the paging hierarchy.
626 * If the guest tries to write a write-protected page, we need to
627 * emulate this operation, return 1 to indicate this case.
629 static int FNAME(fetch)(struct kvm_vcpu *vcpu, gpa_t addr,
630 struct guest_walker *gw,
631 int write_fault, int max_level,
632 kvm_pfn_t pfn, bool map_writable, bool prefault,
633 bool lpage_disallowed)
635 struct kvm_mmu_page *sp = NULL;
636 struct kvm_shadow_walk_iterator it;
637 unsigned direct_access, access = gw->pt_access;
638 int top_level, hlevel, ret;
639 gfn_t base_gfn = gw->gfn;
641 direct_access = gw->pte_access;
643 top_level = vcpu->arch.mmu->root_level;
644 if (top_level == PT32E_ROOT_LEVEL)
645 top_level = PT32_ROOT_LEVEL;
647 * Verify that the top-level gpte is still there. Since the page
648 * is a root page, it is either write protected (and cannot be
649 * changed from now on) or it is invalid (in which case, we don't
650 * really care if it changes underneath us after this point).
652 if (FNAME(gpte_changed)(vcpu, gw, top_level))
653 goto out_gpte_changed;
655 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
656 goto out_gpte_changed;
658 for (shadow_walk_init(&it, vcpu, addr);
659 shadow_walk_okay(&it) && it.level > gw->level;
660 shadow_walk_next(&it)) {
661 gfn_t table_gfn;
663 clear_sp_write_flooding_count(it.sptep);
664 drop_large_spte(vcpu, it.sptep);
666 sp = NULL;
667 if (!is_shadow_present_pte(*it.sptep)) {
668 table_gfn = gw->table_gfn[it.level - 2];
669 sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
670 false, access);
674 * Verify that the gpte in the page we've just write
675 * protected is still there.
677 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
678 goto out_gpte_changed;
680 if (sp)
681 link_shadow_page(vcpu, it.sptep, sp);
684 hlevel = kvm_mmu_hugepage_adjust(vcpu, gw->gfn, max_level, &pfn);
686 trace_kvm_mmu_spte_requested(addr, gw->level, pfn);
688 for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
689 clear_sp_write_flooding_count(it.sptep);
692 * We cannot overwrite existing page tables with an NX
693 * large page, as the leaf could be executable.
695 disallowed_hugepage_adjust(it, gw->gfn, &pfn, &hlevel);
697 base_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
698 if (it.level == hlevel)
699 break;
701 validate_direct_spte(vcpu, it.sptep, direct_access);
703 drop_large_spte(vcpu, it.sptep);
705 if (!is_shadow_present_pte(*it.sptep)) {
706 sp = kvm_mmu_get_page(vcpu, base_gfn, addr,
707 it.level - 1, true, direct_access);
708 link_shadow_page(vcpu, it.sptep, sp);
709 if (lpage_disallowed)
710 account_huge_nx_page(vcpu->kvm, sp);
714 ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
715 it.level, base_gfn, pfn, prefault, map_writable);
716 FNAME(pte_prefetch)(vcpu, gw, it.sptep);
717 ++vcpu->stat.pf_fixed;
718 return ret;
720 out_gpte_changed:
721 return RET_PF_RETRY;
725 * To see whether the mapped gfn can write its page table in the current
726 * mapping.
728 * It is the helper function of FNAME(page_fault). When guest uses large page
729 * size to map the writable gfn which is used as current page table, we should
730 * force kvm to use small page size to map it because new shadow page will be
731 * created when kvm establishes shadow page table that stop kvm using large
732 * page size. Do it early can avoid unnecessary #PF and emulation.
734 * @write_fault_to_shadow_pgtable will return true if the fault gfn is
735 * currently used as its page table.
737 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
738 * since the PDPT is always shadowed, that means, we can not use large page
739 * size to map the gfn which is used as PDPT.
741 static bool
742 FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
743 struct guest_walker *walker, int user_fault,
744 bool *write_fault_to_shadow_pgtable)
746 int level;
747 gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
748 bool self_changed = false;
750 if (!(walker->pte_access & ACC_WRITE_MASK ||
751 (!is_write_protection(vcpu) && !user_fault)))
752 return false;
754 for (level = walker->level; level <= walker->max_level; level++) {
755 gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
757 self_changed |= !(gfn & mask);
758 *write_fault_to_shadow_pgtable |= !gfn;
761 return self_changed;
765 * Page fault handler. There are several causes for a page fault:
766 * - there is no shadow pte for the guest pte
767 * - write access through a shadow pte marked read only so that we can set
768 * the dirty bit
769 * - write access to a shadow pte marked read only so we can update the page
770 * dirty bitmap, when userspace requests it
771 * - mmio access; in this case we will never install a present shadow pte
772 * - normal guest page fault due to the guest pte marked not present, not
773 * writable, or not executable
775 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
776 * a negative value on error.
778 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gpa_t addr, u32 error_code,
779 bool prefault)
781 int write_fault = error_code & PFERR_WRITE_MASK;
782 int user_fault = error_code & PFERR_USER_MASK;
783 struct guest_walker walker;
784 int r;
785 kvm_pfn_t pfn;
786 unsigned long mmu_seq;
787 bool map_writable, is_self_change_mapping;
788 bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
789 is_nx_huge_page_enabled();
790 int max_level;
792 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
794 r = mmu_topup_memory_caches(vcpu);
795 if (r)
796 return r;
799 * If PFEC.RSVD is set, this is a shadow page fault.
800 * The bit needs to be cleared before walking guest page tables.
802 error_code &= ~PFERR_RSVD_MASK;
805 * Look up the guest pte for the faulting address.
807 r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
810 * The page is not mapped by the guest. Let the guest handle it.
812 if (!r) {
813 pgprintk("%s: guest page fault\n", __func__);
814 if (!prefault)
815 inject_page_fault(vcpu, &walker.fault);
817 return RET_PF_RETRY;
820 if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) {
821 shadow_page_table_clear_flood(vcpu, addr);
822 return RET_PF_EMULATE;
825 vcpu->arch.write_fault_to_shadow_pgtable = false;
827 is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
828 &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
830 if (lpage_disallowed || is_self_change_mapping)
831 max_level = PT_PAGE_TABLE_LEVEL;
832 else
833 max_level = walker.level;
835 mmu_seq = vcpu->kvm->mmu_notifier_seq;
836 smp_rmb();
838 if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
839 &map_writable))
840 return RET_PF_RETRY;
842 if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r))
843 return r;
846 * Do not change pte_access if the pfn is a mmio page, otherwise
847 * we will cache the incorrect access into mmio spte.
849 if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
850 !is_write_protection(vcpu) && !user_fault &&
851 !is_noslot_pfn(pfn)) {
852 walker.pte_access |= ACC_WRITE_MASK;
853 walker.pte_access &= ~ACC_USER_MASK;
856 * If we converted a user page to a kernel page,
857 * so that the kernel can write to it when cr0.wp=0,
858 * then we should prevent the kernel from executing it
859 * if SMEP is enabled.
861 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
862 walker.pte_access &= ~ACC_EXEC_MASK;
865 r = RET_PF_RETRY;
866 spin_lock(&vcpu->kvm->mmu_lock);
867 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
868 goto out_unlock;
870 kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
871 if (make_mmu_pages_available(vcpu) < 0)
872 goto out_unlock;
873 r = FNAME(fetch)(vcpu, addr, &walker, write_fault, max_level, pfn,
874 map_writable, prefault, lpage_disallowed);
875 kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
877 out_unlock:
878 spin_unlock(&vcpu->kvm->mmu_lock);
879 kvm_release_pfn_clean(pfn);
880 return r;
883 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
885 int offset = 0;
887 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
889 if (PTTYPE == 32)
890 offset = sp->role.quadrant << PT64_LEVEL_BITS;
892 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
895 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
897 struct kvm_shadow_walk_iterator iterator;
898 struct kvm_mmu_page *sp;
899 int level;
900 u64 *sptep;
902 vcpu_clear_mmio_info(vcpu, gva);
905 * No need to check return value here, rmap_can_add() can
906 * help us to skip pte prefetch later.
908 mmu_topup_memory_caches(vcpu);
910 if (!VALID_PAGE(root_hpa)) {
911 WARN_ON(1);
912 return;
915 spin_lock(&vcpu->kvm->mmu_lock);
916 for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
917 level = iterator.level;
918 sptep = iterator.sptep;
920 sp = page_header(__pa(sptep));
921 if (is_last_spte(*sptep, level)) {
922 pt_element_t gpte;
923 gpa_t pte_gpa;
925 if (!sp->unsync)
926 break;
928 pte_gpa = FNAME(get_level1_sp_gpa)(sp);
929 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
931 if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
932 kvm_flush_remote_tlbs_with_address(vcpu->kvm,
933 sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
935 if (!rmap_can_add(vcpu))
936 break;
938 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
939 sizeof(pt_element_t)))
940 break;
942 FNAME(update_pte)(vcpu, sp, sptep, &gpte);
945 if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
946 break;
948 spin_unlock(&vcpu->kvm->mmu_lock);
951 /* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */
952 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t addr, u32 access,
953 struct x86_exception *exception)
955 struct guest_walker walker;
956 gpa_t gpa = UNMAPPED_GVA;
957 int r;
959 r = FNAME(walk_addr)(&walker, vcpu, addr, access);
961 if (r) {
962 gpa = gfn_to_gpa(walker.gfn);
963 gpa |= addr & ~PAGE_MASK;
964 } else if (exception)
965 *exception = walker.fault;
967 return gpa;
970 #if PTTYPE != PTTYPE_EPT
971 /* Note, gva_to_gpa_nested() is only used to translate L2 GVAs. */
972 static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gpa_t vaddr,
973 u32 access,
974 struct x86_exception *exception)
976 struct guest_walker walker;
977 gpa_t gpa = UNMAPPED_GVA;
978 int r;
980 #ifndef CONFIG_X86_64
981 /* A 64-bit GVA should be impossible on 32-bit KVM. */
982 WARN_ON_ONCE(vaddr >> 32);
983 #endif
985 r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
987 if (r) {
988 gpa = gfn_to_gpa(walker.gfn);
989 gpa |= vaddr & ~PAGE_MASK;
990 } else if (exception)
991 *exception = walker.fault;
993 return gpa;
995 #endif
998 * Using the cached information from sp->gfns is safe because:
999 * - The spte has a reference to the struct page, so the pfn for a given gfn
1000 * can't change unless all sptes pointing to it are nuked first.
1002 * Note:
1003 * We should flush all tlbs if spte is dropped even though guest is
1004 * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
1005 * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
1006 * used by guest then tlbs are not flushed, so guest is allowed to access the
1007 * freed pages.
1008 * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
1010 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1012 int i, nr_present = 0;
1013 bool host_writable;
1014 gpa_t first_pte_gpa;
1015 int set_spte_ret = 0;
1017 /* direct kvm_mmu_page can not be unsync. */
1018 BUG_ON(sp->role.direct);
1020 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
1022 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
1023 unsigned pte_access;
1024 pt_element_t gpte;
1025 gpa_t pte_gpa;
1026 gfn_t gfn;
1028 if (!sp->spt[i])
1029 continue;
1031 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
1033 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
1034 sizeof(pt_element_t)))
1035 return 0;
1037 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
1039 * Update spte before increasing tlbs_dirty to make
1040 * sure no tlb flush is lost after spte is zapped; see
1041 * the comments in kvm_flush_remote_tlbs().
1043 smp_wmb();
1044 vcpu->kvm->tlbs_dirty++;
1045 continue;
1048 gfn = gpte_to_gfn(gpte);
1049 pte_access = sp->role.access;
1050 pte_access &= FNAME(gpte_access)(gpte);
1051 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
1053 if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
1054 &nr_present))
1055 continue;
1057 if (gfn != sp->gfns[i]) {
1058 drop_spte(vcpu->kvm, &sp->spt[i]);
1060 * The same as above where we are doing
1061 * prefetch_invalid_gpte().
1063 smp_wmb();
1064 vcpu->kvm->tlbs_dirty++;
1065 continue;
1068 nr_present++;
1070 host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
1072 set_spte_ret |= set_spte(vcpu, &sp->spt[i],
1073 pte_access, PT_PAGE_TABLE_LEVEL,
1074 gfn, spte_to_pfn(sp->spt[i]),
1075 true, false, host_writable);
1078 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH)
1079 kvm_flush_remote_tlbs(vcpu->kvm);
1081 return nr_present;
1084 #undef pt_element_t
1085 #undef guest_walker
1086 #undef FNAME
1087 #undef PT_BASE_ADDR_MASK
1088 #undef PT_INDEX
1089 #undef PT_LVL_ADDR_MASK
1090 #undef PT_LVL_OFFSET_MASK
1091 #undef PT_LEVEL_BITS
1092 #undef PT_MAX_FULL_LEVELS
1093 #undef gpte_to_gfn
1094 #undef gpte_to_gfn_lvl
1095 #undef CMPXCHG
1096 #undef PT_GUEST_ACCESSED_MASK
1097 #undef PT_GUEST_DIRTY_MASK
1098 #undef PT_GUEST_DIRTY_SHIFT
1099 #undef PT_GUEST_ACCESSED_SHIFT
1100 #undef PT_HAVE_ACCESSED_DIRTY