ARM: dma-api: fix max_pfn off-by-one error in __dma_supported()
[linux/fpc-iii.git] / arch / x86 / kvm / svm.c
blob9dbb990c319a7abfa32752a7506a55e681c02290
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
5 * AMD SVM support
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 * Authors:
11 * Yaniv Kamay <yaniv@qumranet.com>
12 * Avi Kivity <avi@qumranet.com>
15 #define pr_fmt(fmt) "SVM: " fmt
17 #include <linux/kvm_host.h>
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24 #include "pmu.h"
26 #include <linux/module.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/kernel.h>
29 #include <linux/vmalloc.h>
30 #include <linux/highmem.h>
31 #include <linux/sched.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/amd-iommu.h>
35 #include <linux/hashtable.h>
36 #include <linux/frame.h>
37 #include <linux/psp-sev.h>
38 #include <linux/file.h>
39 #include <linux/pagemap.h>
40 #include <linux/swap.h>
41 #include <linux/rwsem.h>
43 #include <asm/apic.h>
44 #include <asm/perf_event.h>
45 #include <asm/tlbflush.h>
46 #include <asm/desc.h>
47 #include <asm/debugreg.h>
48 #include <asm/kvm_para.h>
49 #include <asm/irq_remapping.h>
50 #include <asm/spec-ctrl.h>
52 #include <asm/virtext.h>
53 #include "trace.h"
55 #define __ex(x) __kvm_handle_fault_on_reboot(x)
57 MODULE_AUTHOR("Qumranet");
58 MODULE_LICENSE("GPL");
60 static const struct x86_cpu_id svm_cpu_id[] = {
61 X86_FEATURE_MATCH(X86_FEATURE_SVM),
64 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
66 #define IOPM_ALLOC_ORDER 2
67 #define MSRPM_ALLOC_ORDER 1
69 #define SEG_TYPE_LDT 2
70 #define SEG_TYPE_BUSY_TSS16 3
72 #define SVM_FEATURE_LBRV (1 << 1)
73 #define SVM_FEATURE_SVML (1 << 2)
74 #define SVM_FEATURE_TSC_RATE (1 << 4)
75 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
76 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
77 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
78 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
80 #define SVM_AVIC_DOORBELL 0xc001011b
82 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
83 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
84 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
86 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
88 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
89 #define TSC_RATIO_MIN 0x0000000000000001ULL
90 #define TSC_RATIO_MAX 0x000000ffffffffffULL
92 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
95 * 0xff is broadcast, so the max index allowed for physical APIC ID
96 * table is 0xfe. APIC IDs above 0xff are reserved.
98 #define AVIC_MAX_PHYSICAL_ID_COUNT 255
100 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
101 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
102 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
104 /* AVIC GATAG is encoded using VM and VCPU IDs */
105 #define AVIC_VCPU_ID_BITS 8
106 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
108 #define AVIC_VM_ID_BITS 24
109 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
110 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
112 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
113 (y & AVIC_VCPU_ID_MASK))
114 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
115 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
117 static bool erratum_383_found __read_mostly;
119 static const u32 host_save_user_msrs[] = {
120 #ifdef CONFIG_X86_64
121 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
122 MSR_FS_BASE,
123 #endif
124 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
125 MSR_TSC_AUX,
128 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
130 struct kvm_sev_info {
131 bool active; /* SEV enabled guest */
132 unsigned int asid; /* ASID used for this guest */
133 unsigned int handle; /* SEV firmware handle */
134 int fd; /* SEV device fd */
135 unsigned long pages_locked; /* Number of pages locked */
136 struct list_head regions_list; /* List of registered regions */
139 struct kvm_svm {
140 struct kvm kvm;
142 /* Struct members for AVIC */
143 u32 avic_vm_id;
144 struct page *avic_logical_id_table_page;
145 struct page *avic_physical_id_table_page;
146 struct hlist_node hnode;
148 struct kvm_sev_info sev_info;
151 struct kvm_vcpu;
153 struct nested_state {
154 struct vmcb *hsave;
155 u64 hsave_msr;
156 u64 vm_cr_msr;
157 u64 vmcb;
159 /* These are the merged vectors */
160 u32 *msrpm;
162 /* gpa pointers to the real vectors */
163 u64 vmcb_msrpm;
164 u64 vmcb_iopm;
166 /* A VMEXIT is required but not yet emulated */
167 bool exit_required;
169 /* cache for intercepts of the guest */
170 u32 intercept_cr;
171 u32 intercept_dr;
172 u32 intercept_exceptions;
173 u64 intercept;
175 /* Nested Paging related state */
176 u64 nested_cr3;
179 #define MSRPM_OFFSETS 16
180 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
183 * Set osvw_len to higher value when updated Revision Guides
184 * are published and we know what the new status bits are
186 static uint64_t osvw_len = 4, osvw_status;
188 struct vcpu_svm {
189 struct kvm_vcpu vcpu;
190 struct vmcb *vmcb;
191 unsigned long vmcb_pa;
192 struct svm_cpu_data *svm_data;
193 uint64_t asid_generation;
194 uint64_t sysenter_esp;
195 uint64_t sysenter_eip;
196 uint64_t tsc_aux;
198 u64 msr_decfg;
200 u64 next_rip;
202 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
203 struct {
204 u16 fs;
205 u16 gs;
206 u16 ldt;
207 u64 gs_base;
208 } host;
210 u64 spec_ctrl;
212 * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
213 * translated into the appropriate L2_CFG bits on the host to
214 * perform speculative control.
216 u64 virt_spec_ctrl;
218 u32 *msrpm;
220 ulong nmi_iret_rip;
222 struct nested_state nested;
224 bool nmi_singlestep;
225 u64 nmi_singlestep_guest_rflags;
227 unsigned int3_injected;
228 unsigned long int3_rip;
230 /* cached guest cpuid flags for faster access */
231 bool nrips_enabled : 1;
233 u32 ldr_reg;
234 u32 dfr_reg;
235 struct page *avic_backing_page;
236 u64 *avic_physical_id_cache;
237 bool avic_is_running;
240 * Per-vcpu list of struct amd_svm_iommu_ir:
241 * This is used mainly to store interrupt remapping information used
242 * when update the vcpu affinity. This avoids the need to scan for
243 * IRTE and try to match ga_tag in the IOMMU driver.
245 struct list_head ir_list;
246 spinlock_t ir_list_lock;
248 /* which host CPU was used for running this vcpu */
249 unsigned int last_cpu;
253 * This is a wrapper of struct amd_iommu_ir_data.
255 struct amd_svm_iommu_ir {
256 struct list_head node; /* Used by SVM for per-vcpu ir_list */
257 void *data; /* Storing pointer to struct amd_ir_data */
260 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
261 #define AVIC_LOGICAL_ID_ENTRY_VALID_BIT 31
262 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
264 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
265 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
266 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
267 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
269 static DEFINE_PER_CPU(u64, current_tsc_ratio);
270 #define TSC_RATIO_DEFAULT 0x0100000000ULL
272 #define MSR_INVALID 0xffffffffU
274 static const struct svm_direct_access_msrs {
275 u32 index; /* Index of the MSR */
276 bool always; /* True if intercept is always on */
277 } direct_access_msrs[] = {
278 { .index = MSR_STAR, .always = true },
279 { .index = MSR_IA32_SYSENTER_CS, .always = true },
280 #ifdef CONFIG_X86_64
281 { .index = MSR_GS_BASE, .always = true },
282 { .index = MSR_FS_BASE, .always = true },
283 { .index = MSR_KERNEL_GS_BASE, .always = true },
284 { .index = MSR_LSTAR, .always = true },
285 { .index = MSR_CSTAR, .always = true },
286 { .index = MSR_SYSCALL_MASK, .always = true },
287 #endif
288 { .index = MSR_IA32_SPEC_CTRL, .always = false },
289 { .index = MSR_IA32_PRED_CMD, .always = false },
290 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
291 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
292 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
293 { .index = MSR_IA32_LASTINTTOIP, .always = false },
294 { .index = MSR_INVALID, .always = false },
297 /* enable NPT for AMD64 and X86 with PAE */
298 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
299 static bool npt_enabled = true;
300 #else
301 static bool npt_enabled;
302 #endif
305 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
306 * pause_filter_count: On processors that support Pause filtering(indicated
307 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
308 * count value. On VMRUN this value is loaded into an internal counter.
309 * Each time a pause instruction is executed, this counter is decremented
310 * until it reaches zero at which time a #VMEXIT is generated if pause
311 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
312 * Intercept Filtering for more details.
313 * This also indicate if ple logic enabled.
315 * pause_filter_thresh: In addition, some processor families support advanced
316 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
317 * the amount of time a guest is allowed to execute in a pause loop.
318 * In this mode, a 16-bit pause filter threshold field is added in the
319 * VMCB. The threshold value is a cycle count that is used to reset the
320 * pause counter. As with simple pause filtering, VMRUN loads the pause
321 * count value from VMCB into an internal counter. Then, on each pause
322 * instruction the hardware checks the elapsed number of cycles since
323 * the most recent pause instruction against the pause filter threshold.
324 * If the elapsed cycle count is greater than the pause filter threshold,
325 * then the internal pause count is reloaded from the VMCB and execution
326 * continues. If the elapsed cycle count is less than the pause filter
327 * threshold, then the internal pause count is decremented. If the count
328 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
329 * triggered. If advanced pause filtering is supported and pause filter
330 * threshold field is set to zero, the filter will operate in the simpler,
331 * count only mode.
334 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
335 module_param(pause_filter_thresh, ushort, 0444);
337 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
338 module_param(pause_filter_count, ushort, 0444);
340 /* Default doubles per-vcpu window every exit. */
341 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
342 module_param(pause_filter_count_grow, ushort, 0444);
344 /* Default resets per-vcpu window every exit to pause_filter_count. */
345 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
346 module_param(pause_filter_count_shrink, ushort, 0444);
348 /* Default is to compute the maximum so we can never overflow. */
349 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
350 module_param(pause_filter_count_max, ushort, 0444);
352 /* allow nested paging (virtualized MMU) for all guests */
353 static int npt = true;
354 module_param(npt, int, S_IRUGO);
356 /* allow nested virtualization in KVM/SVM */
357 static int nested = true;
358 module_param(nested, int, S_IRUGO);
360 /* enable / disable AVIC */
361 static int avic;
362 #ifdef CONFIG_X86_LOCAL_APIC
363 module_param(avic, int, S_IRUGO);
364 #endif
366 /* enable/disable Next RIP Save */
367 static int nrips = true;
368 module_param(nrips, int, 0444);
370 /* enable/disable Virtual VMLOAD VMSAVE */
371 static int vls = true;
372 module_param(vls, int, 0444);
374 /* enable/disable Virtual GIF */
375 static int vgif = true;
376 module_param(vgif, int, 0444);
378 /* enable/disable SEV support */
379 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
380 module_param(sev, int, 0444);
382 static bool __read_mostly dump_invalid_vmcb = 0;
383 module_param(dump_invalid_vmcb, bool, 0644);
385 static u8 rsm_ins_bytes[] = "\x0f\xaa";
387 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
388 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
389 static void svm_complete_interrupts(struct vcpu_svm *svm);
391 static int nested_svm_exit_handled(struct vcpu_svm *svm);
392 static int nested_svm_intercept(struct vcpu_svm *svm);
393 static int nested_svm_vmexit(struct vcpu_svm *svm);
394 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
395 bool has_error_code, u32 error_code);
397 enum {
398 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
399 pause filter count */
400 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
401 VMCB_ASID, /* ASID */
402 VMCB_INTR, /* int_ctl, int_vector */
403 VMCB_NPT, /* npt_en, nCR3, gPAT */
404 VMCB_CR, /* CR0, CR3, CR4, EFER */
405 VMCB_DR, /* DR6, DR7 */
406 VMCB_DT, /* GDT, IDT */
407 VMCB_SEG, /* CS, DS, SS, ES, CPL */
408 VMCB_CR2, /* CR2 only */
409 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
410 VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
411 * AVIC PHYSICAL_TABLE pointer,
412 * AVIC LOGICAL_TABLE pointer
414 VMCB_DIRTY_MAX,
417 /* TPR and CR2 are always written before VMRUN */
418 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
420 #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
422 static int sev_flush_asids(void);
423 static DECLARE_RWSEM(sev_deactivate_lock);
424 static DEFINE_MUTEX(sev_bitmap_lock);
425 static unsigned int max_sev_asid;
426 static unsigned int min_sev_asid;
427 static unsigned long *sev_asid_bitmap;
428 static unsigned long *sev_reclaim_asid_bitmap;
429 #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
431 struct enc_region {
432 struct list_head list;
433 unsigned long npages;
434 struct page **pages;
435 unsigned long uaddr;
436 unsigned long size;
440 static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
442 return container_of(kvm, struct kvm_svm, kvm);
445 static inline bool svm_sev_enabled(void)
447 return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0;
450 static inline bool sev_guest(struct kvm *kvm)
452 #ifdef CONFIG_KVM_AMD_SEV
453 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
455 return sev->active;
456 #else
457 return false;
458 #endif
461 static inline int sev_get_asid(struct kvm *kvm)
463 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
465 return sev->asid;
468 static inline void mark_all_dirty(struct vmcb *vmcb)
470 vmcb->control.clean = 0;
473 static inline void mark_all_clean(struct vmcb *vmcb)
475 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
476 & ~VMCB_ALWAYS_DIRTY_MASK;
479 static inline void mark_dirty(struct vmcb *vmcb, int bit)
481 vmcb->control.clean &= ~(1 << bit);
484 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
486 return container_of(vcpu, struct vcpu_svm, vcpu);
489 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
491 svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
492 mark_dirty(svm->vmcb, VMCB_AVIC);
495 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
497 struct vcpu_svm *svm = to_svm(vcpu);
498 u64 *entry = svm->avic_physical_id_cache;
500 if (!entry)
501 return false;
503 return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
506 static void recalc_intercepts(struct vcpu_svm *svm)
508 struct vmcb_control_area *c, *h;
509 struct nested_state *g;
511 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
513 if (!is_guest_mode(&svm->vcpu))
514 return;
516 c = &svm->vmcb->control;
517 h = &svm->nested.hsave->control;
518 g = &svm->nested;
520 c->intercept_cr = h->intercept_cr | g->intercept_cr;
521 c->intercept_dr = h->intercept_dr | g->intercept_dr;
522 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
523 c->intercept = h->intercept | g->intercept;
526 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
528 if (is_guest_mode(&svm->vcpu))
529 return svm->nested.hsave;
530 else
531 return svm->vmcb;
534 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
536 struct vmcb *vmcb = get_host_vmcb(svm);
538 vmcb->control.intercept_cr |= (1U << bit);
540 recalc_intercepts(svm);
543 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
545 struct vmcb *vmcb = get_host_vmcb(svm);
547 vmcb->control.intercept_cr &= ~(1U << bit);
549 recalc_intercepts(svm);
552 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
554 struct vmcb *vmcb = get_host_vmcb(svm);
556 return vmcb->control.intercept_cr & (1U << bit);
559 static inline void set_dr_intercepts(struct vcpu_svm *svm)
561 struct vmcb *vmcb = get_host_vmcb(svm);
563 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
564 | (1 << INTERCEPT_DR1_READ)
565 | (1 << INTERCEPT_DR2_READ)
566 | (1 << INTERCEPT_DR3_READ)
567 | (1 << INTERCEPT_DR4_READ)
568 | (1 << INTERCEPT_DR5_READ)
569 | (1 << INTERCEPT_DR6_READ)
570 | (1 << INTERCEPT_DR7_READ)
571 | (1 << INTERCEPT_DR0_WRITE)
572 | (1 << INTERCEPT_DR1_WRITE)
573 | (1 << INTERCEPT_DR2_WRITE)
574 | (1 << INTERCEPT_DR3_WRITE)
575 | (1 << INTERCEPT_DR4_WRITE)
576 | (1 << INTERCEPT_DR5_WRITE)
577 | (1 << INTERCEPT_DR6_WRITE)
578 | (1 << INTERCEPT_DR7_WRITE);
580 recalc_intercepts(svm);
583 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
585 struct vmcb *vmcb = get_host_vmcb(svm);
587 vmcb->control.intercept_dr = 0;
589 recalc_intercepts(svm);
592 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
594 struct vmcb *vmcb = get_host_vmcb(svm);
596 vmcb->control.intercept_exceptions |= (1U << bit);
598 recalc_intercepts(svm);
601 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
603 struct vmcb *vmcb = get_host_vmcb(svm);
605 vmcb->control.intercept_exceptions &= ~(1U << bit);
607 recalc_intercepts(svm);
610 static inline void set_intercept(struct vcpu_svm *svm, int bit)
612 struct vmcb *vmcb = get_host_vmcb(svm);
614 vmcb->control.intercept |= (1ULL << bit);
616 recalc_intercepts(svm);
619 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
621 struct vmcb *vmcb = get_host_vmcb(svm);
623 vmcb->control.intercept &= ~(1ULL << bit);
625 recalc_intercepts(svm);
628 static inline bool vgif_enabled(struct vcpu_svm *svm)
630 return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
633 static inline void enable_gif(struct vcpu_svm *svm)
635 if (vgif_enabled(svm))
636 svm->vmcb->control.int_ctl |= V_GIF_MASK;
637 else
638 svm->vcpu.arch.hflags |= HF_GIF_MASK;
641 static inline void disable_gif(struct vcpu_svm *svm)
643 if (vgif_enabled(svm))
644 svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
645 else
646 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
649 static inline bool gif_set(struct vcpu_svm *svm)
651 if (vgif_enabled(svm))
652 return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
653 else
654 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
657 static unsigned long iopm_base;
659 struct kvm_ldttss_desc {
660 u16 limit0;
661 u16 base0;
662 unsigned base1:8, type:5, dpl:2, p:1;
663 unsigned limit1:4, zero0:3, g:1, base2:8;
664 u32 base3;
665 u32 zero1;
666 } __attribute__((packed));
668 struct svm_cpu_data {
669 int cpu;
671 u64 asid_generation;
672 u32 max_asid;
673 u32 next_asid;
674 u32 min_asid;
675 struct kvm_ldttss_desc *tss_desc;
677 struct page *save_area;
678 struct vmcb *current_vmcb;
680 /* index = sev_asid, value = vmcb pointer */
681 struct vmcb **sev_vmcbs;
684 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
686 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
688 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
689 #define MSRS_RANGE_SIZE 2048
690 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
692 static u32 svm_msrpm_offset(u32 msr)
694 u32 offset;
695 int i;
697 for (i = 0; i < NUM_MSR_MAPS; i++) {
698 if (msr < msrpm_ranges[i] ||
699 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
700 continue;
702 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
703 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
705 /* Now we have the u8 offset - but need the u32 offset */
706 return offset / 4;
709 /* MSR not in any range */
710 return MSR_INVALID;
713 #define MAX_INST_SIZE 15
715 static inline void clgi(void)
717 asm volatile (__ex("clgi"));
720 static inline void stgi(void)
722 asm volatile (__ex("stgi"));
725 static inline void invlpga(unsigned long addr, u32 asid)
727 asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
730 static int get_npt_level(struct kvm_vcpu *vcpu)
732 #ifdef CONFIG_X86_64
733 return PT64_ROOT_4LEVEL;
734 #else
735 return PT32E_ROOT_LEVEL;
736 #endif
739 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
741 vcpu->arch.efer = efer;
743 if (!npt_enabled) {
744 /* Shadow paging assumes NX to be available. */
745 efer |= EFER_NX;
747 if (!(efer & EFER_LMA))
748 efer &= ~EFER_LME;
751 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
752 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
755 static int is_external_interrupt(u32 info)
757 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
758 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
761 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
763 struct vcpu_svm *svm = to_svm(vcpu);
764 u32 ret = 0;
766 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
767 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
768 return ret;
771 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
773 struct vcpu_svm *svm = to_svm(vcpu);
775 if (mask == 0)
776 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
777 else
778 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
782 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
784 struct vcpu_svm *svm = to_svm(vcpu);
786 if (nrips && svm->vmcb->control.next_rip != 0) {
787 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
788 svm->next_rip = svm->vmcb->control.next_rip;
791 if (!svm->next_rip) {
792 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
793 return 0;
794 } else {
795 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
796 pr_err("%s: ip 0x%lx next 0x%llx\n",
797 __func__, kvm_rip_read(vcpu), svm->next_rip);
798 kvm_rip_write(vcpu, svm->next_rip);
800 svm_set_interrupt_shadow(vcpu, 0);
802 return 1;
805 static void svm_queue_exception(struct kvm_vcpu *vcpu)
807 struct vcpu_svm *svm = to_svm(vcpu);
808 unsigned nr = vcpu->arch.exception.nr;
809 bool has_error_code = vcpu->arch.exception.has_error_code;
810 bool reinject = vcpu->arch.exception.injected;
811 u32 error_code = vcpu->arch.exception.error_code;
814 * If we are within a nested VM we'd better #VMEXIT and let the guest
815 * handle the exception
817 if (!reinject &&
818 nested_svm_check_exception(svm, nr, has_error_code, error_code))
819 return;
821 kvm_deliver_exception_payload(&svm->vcpu);
823 if (nr == BP_VECTOR && !nrips) {
824 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
827 * For guest debugging where we have to reinject #BP if some
828 * INT3 is guest-owned:
829 * Emulate nRIP by moving RIP forward. Will fail if injection
830 * raises a fault that is not intercepted. Still better than
831 * failing in all cases.
833 (void)skip_emulated_instruction(&svm->vcpu);
834 rip = kvm_rip_read(&svm->vcpu);
835 svm->int3_rip = rip + svm->vmcb->save.cs.base;
836 svm->int3_injected = rip - old_rip;
839 svm->vmcb->control.event_inj = nr
840 | SVM_EVTINJ_VALID
841 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
842 | SVM_EVTINJ_TYPE_EXEPT;
843 svm->vmcb->control.event_inj_err = error_code;
846 static void svm_init_erratum_383(void)
848 u32 low, high;
849 int err;
850 u64 val;
852 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
853 return;
855 /* Use _safe variants to not break nested virtualization */
856 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
857 if (err)
858 return;
860 val |= (1ULL << 47);
862 low = lower_32_bits(val);
863 high = upper_32_bits(val);
865 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
867 erratum_383_found = true;
870 static void svm_init_osvw(struct kvm_vcpu *vcpu)
873 * Guests should see errata 400 and 415 as fixed (assuming that
874 * HLT and IO instructions are intercepted).
876 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
877 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
880 * By increasing VCPU's osvw.length to 3 we are telling the guest that
881 * all osvw.status bits inside that length, including bit 0 (which is
882 * reserved for erratum 298), are valid. However, if host processor's
883 * osvw_len is 0 then osvw_status[0] carries no information. We need to
884 * be conservative here and therefore we tell the guest that erratum 298
885 * is present (because we really don't know).
887 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
888 vcpu->arch.osvw.status |= 1;
891 static int has_svm(void)
893 const char *msg;
895 if (!cpu_has_svm(&msg)) {
896 printk(KERN_INFO "has_svm: %s\n", msg);
897 return 0;
900 return 1;
903 static void svm_hardware_disable(void)
905 /* Make sure we clean up behind us */
906 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
907 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
909 cpu_svm_disable();
911 amd_pmu_disable_virt();
914 static int svm_hardware_enable(void)
917 struct svm_cpu_data *sd;
918 uint64_t efer;
919 struct desc_struct *gdt;
920 int me = raw_smp_processor_id();
922 rdmsrl(MSR_EFER, efer);
923 if (efer & EFER_SVME)
924 return -EBUSY;
926 if (!has_svm()) {
927 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
928 return -EINVAL;
930 sd = per_cpu(svm_data, me);
931 if (!sd) {
932 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
933 return -EINVAL;
936 sd->asid_generation = 1;
937 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
938 sd->next_asid = sd->max_asid + 1;
939 sd->min_asid = max_sev_asid + 1;
941 gdt = get_current_gdt_rw();
942 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
944 wrmsrl(MSR_EFER, efer | EFER_SVME);
946 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
948 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
949 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
950 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
955 * Get OSVW bits.
957 * Note that it is possible to have a system with mixed processor
958 * revisions and therefore different OSVW bits. If bits are not the same
959 * on different processors then choose the worst case (i.e. if erratum
960 * is present on one processor and not on another then assume that the
961 * erratum is present everywhere).
963 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
964 uint64_t len, status = 0;
965 int err;
967 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
968 if (!err)
969 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
970 &err);
972 if (err)
973 osvw_status = osvw_len = 0;
974 else {
975 if (len < osvw_len)
976 osvw_len = len;
977 osvw_status |= status;
978 osvw_status &= (1ULL << osvw_len) - 1;
980 } else
981 osvw_status = osvw_len = 0;
983 svm_init_erratum_383();
985 amd_pmu_enable_virt();
987 return 0;
990 static void svm_cpu_uninit(int cpu)
992 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
994 if (!sd)
995 return;
997 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
998 kfree(sd->sev_vmcbs);
999 __free_page(sd->save_area);
1000 kfree(sd);
1003 static int svm_cpu_init(int cpu)
1005 struct svm_cpu_data *sd;
1006 int r;
1008 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
1009 if (!sd)
1010 return -ENOMEM;
1011 sd->cpu = cpu;
1012 r = -ENOMEM;
1013 sd->save_area = alloc_page(GFP_KERNEL);
1014 if (!sd->save_area)
1015 goto err_1;
1017 if (svm_sev_enabled()) {
1018 r = -ENOMEM;
1019 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
1020 sizeof(void *),
1021 GFP_KERNEL);
1022 if (!sd->sev_vmcbs)
1023 goto err_1;
1026 per_cpu(svm_data, cpu) = sd;
1028 return 0;
1030 err_1:
1031 kfree(sd);
1032 return r;
1036 static bool valid_msr_intercept(u32 index)
1038 int i;
1040 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
1041 if (direct_access_msrs[i].index == index)
1042 return true;
1044 return false;
1047 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
1049 u8 bit_write;
1050 unsigned long tmp;
1051 u32 offset;
1052 u32 *msrpm;
1054 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
1055 to_svm(vcpu)->msrpm;
1057 offset = svm_msrpm_offset(msr);
1058 bit_write = 2 * (msr & 0x0f) + 1;
1059 tmp = msrpm[offset];
1061 BUG_ON(offset == MSR_INVALID);
1063 return !!test_bit(bit_write, &tmp);
1066 static void set_msr_interception(u32 *msrpm, unsigned msr,
1067 int read, int write)
1069 u8 bit_read, bit_write;
1070 unsigned long tmp;
1071 u32 offset;
1074 * If this warning triggers extend the direct_access_msrs list at the
1075 * beginning of the file
1077 WARN_ON(!valid_msr_intercept(msr));
1079 offset = svm_msrpm_offset(msr);
1080 bit_read = 2 * (msr & 0x0f);
1081 bit_write = 2 * (msr & 0x0f) + 1;
1082 tmp = msrpm[offset];
1084 BUG_ON(offset == MSR_INVALID);
1086 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
1087 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
1089 msrpm[offset] = tmp;
1092 static void svm_vcpu_init_msrpm(u32 *msrpm)
1094 int i;
1096 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
1098 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1099 if (!direct_access_msrs[i].always)
1100 continue;
1102 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
1106 static void add_msr_offset(u32 offset)
1108 int i;
1110 for (i = 0; i < MSRPM_OFFSETS; ++i) {
1112 /* Offset already in list? */
1113 if (msrpm_offsets[i] == offset)
1114 return;
1116 /* Slot used by another offset? */
1117 if (msrpm_offsets[i] != MSR_INVALID)
1118 continue;
1120 /* Add offset to list */
1121 msrpm_offsets[i] = offset;
1123 return;
1127 * If this BUG triggers the msrpm_offsets table has an overflow. Just
1128 * increase MSRPM_OFFSETS in this case.
1130 BUG();
1133 static void init_msrpm_offsets(void)
1135 int i;
1137 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
1139 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1140 u32 offset;
1142 offset = svm_msrpm_offset(direct_access_msrs[i].index);
1143 BUG_ON(offset == MSR_INVALID);
1145 add_msr_offset(offset);
1149 static void svm_enable_lbrv(struct vcpu_svm *svm)
1151 u32 *msrpm = svm->msrpm;
1153 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1154 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1155 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1156 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1157 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1160 static void svm_disable_lbrv(struct vcpu_svm *svm)
1162 u32 *msrpm = svm->msrpm;
1164 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1165 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1166 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1167 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1168 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1171 static void disable_nmi_singlestep(struct vcpu_svm *svm)
1173 svm->nmi_singlestep = false;
1175 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1176 /* Clear our flags if they were not set by the guest */
1177 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1178 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1179 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1180 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1184 /* Note:
1185 * This hash table is used to map VM_ID to a struct kvm_svm,
1186 * when handling AMD IOMMU GALOG notification to schedule in
1187 * a particular vCPU.
1189 #define SVM_VM_DATA_HASH_BITS 8
1190 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1191 static u32 next_vm_id = 0;
1192 static bool next_vm_id_wrapped = 0;
1193 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1195 /* Note:
1196 * This function is called from IOMMU driver to notify
1197 * SVM to schedule in a particular vCPU of a particular VM.
1199 static int avic_ga_log_notifier(u32 ga_tag)
1201 unsigned long flags;
1202 struct kvm_svm *kvm_svm;
1203 struct kvm_vcpu *vcpu = NULL;
1204 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1205 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1207 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1209 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1210 hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
1211 if (kvm_svm->avic_vm_id != vm_id)
1212 continue;
1213 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
1214 break;
1216 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1218 /* Note:
1219 * At this point, the IOMMU should have already set the pending
1220 * bit in the vAPIC backing page. So, we just need to schedule
1221 * in the vcpu.
1223 if (vcpu)
1224 kvm_vcpu_wake_up(vcpu);
1226 return 0;
1229 static __init int sev_hardware_setup(void)
1231 struct sev_user_data_status *status;
1232 int rc;
1234 /* Maximum number of encrypted guests supported simultaneously */
1235 max_sev_asid = cpuid_ecx(0x8000001F);
1237 if (!max_sev_asid)
1238 return 1;
1240 /* Minimum ASID value that should be used for SEV guest */
1241 min_sev_asid = cpuid_edx(0x8000001F);
1243 /* Initialize SEV ASID bitmaps */
1244 sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1245 if (!sev_asid_bitmap)
1246 return 1;
1248 sev_reclaim_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1249 if (!sev_reclaim_asid_bitmap)
1250 return 1;
1252 status = kmalloc(sizeof(*status), GFP_KERNEL);
1253 if (!status)
1254 return 1;
1257 * Check SEV platform status.
1259 * PLATFORM_STATUS can be called in any state, if we failed to query
1260 * the PLATFORM status then either PSP firmware does not support SEV
1261 * feature or SEV firmware is dead.
1263 rc = sev_platform_status(status, NULL);
1264 if (rc)
1265 goto err;
1267 pr_info("SEV supported\n");
1269 err:
1270 kfree(status);
1271 return rc;
1274 static void grow_ple_window(struct kvm_vcpu *vcpu)
1276 struct vcpu_svm *svm = to_svm(vcpu);
1277 struct vmcb_control_area *control = &svm->vmcb->control;
1278 int old = control->pause_filter_count;
1280 control->pause_filter_count = __grow_ple_window(old,
1281 pause_filter_count,
1282 pause_filter_count_grow,
1283 pause_filter_count_max);
1285 if (control->pause_filter_count != old) {
1286 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1287 trace_kvm_ple_window_update(vcpu->vcpu_id,
1288 control->pause_filter_count, old);
1292 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1294 struct vcpu_svm *svm = to_svm(vcpu);
1295 struct vmcb_control_area *control = &svm->vmcb->control;
1296 int old = control->pause_filter_count;
1298 control->pause_filter_count =
1299 __shrink_ple_window(old,
1300 pause_filter_count,
1301 pause_filter_count_shrink,
1302 pause_filter_count);
1303 if (control->pause_filter_count != old) {
1304 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1305 trace_kvm_ple_window_update(vcpu->vcpu_id,
1306 control->pause_filter_count, old);
1311 * The default MMIO mask is a single bit (excluding the present bit),
1312 * which could conflict with the memory encryption bit. Check for
1313 * memory encryption support and override the default MMIO mask if
1314 * memory encryption is enabled.
1316 static __init void svm_adjust_mmio_mask(void)
1318 unsigned int enc_bit, mask_bit;
1319 u64 msr, mask;
1321 /* If there is no memory encryption support, use existing mask */
1322 if (cpuid_eax(0x80000000) < 0x8000001f)
1323 return;
1325 /* If memory encryption is not enabled, use existing mask */
1326 rdmsrl(MSR_K8_SYSCFG, msr);
1327 if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
1328 return;
1330 enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
1331 mask_bit = boot_cpu_data.x86_phys_bits;
1333 /* Increment the mask bit if it is the same as the encryption bit */
1334 if (enc_bit == mask_bit)
1335 mask_bit++;
1338 * If the mask bit location is below 52, then some bits above the
1339 * physical addressing limit will always be reserved, so use the
1340 * rsvd_bits() function to generate the mask. This mask, along with
1341 * the present bit, will be used to generate a page fault with
1342 * PFER.RSV = 1.
1344 * If the mask bit location is 52 (or above), then clear the mask.
1346 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
1348 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
1351 static __init int svm_hardware_setup(void)
1353 int cpu;
1354 struct page *iopm_pages;
1355 void *iopm_va;
1356 int r;
1358 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1360 if (!iopm_pages)
1361 return -ENOMEM;
1363 iopm_va = page_address(iopm_pages);
1364 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1365 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1367 init_msrpm_offsets();
1369 if (boot_cpu_has(X86_FEATURE_NX))
1370 kvm_enable_efer_bits(EFER_NX);
1372 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1373 kvm_enable_efer_bits(EFER_FFXSR);
1375 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1376 kvm_has_tsc_control = true;
1377 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1378 kvm_tsc_scaling_ratio_frac_bits = 32;
1381 /* Check for pause filtering support */
1382 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1383 pause_filter_count = 0;
1384 pause_filter_thresh = 0;
1385 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
1386 pause_filter_thresh = 0;
1389 if (nested) {
1390 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1391 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1394 if (sev) {
1395 if (boot_cpu_has(X86_FEATURE_SEV) &&
1396 IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
1397 r = sev_hardware_setup();
1398 if (r)
1399 sev = false;
1400 } else {
1401 sev = false;
1405 svm_adjust_mmio_mask();
1407 for_each_possible_cpu(cpu) {
1408 r = svm_cpu_init(cpu);
1409 if (r)
1410 goto err;
1413 if (!boot_cpu_has(X86_FEATURE_NPT))
1414 npt_enabled = false;
1416 if (npt_enabled && !npt) {
1417 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1418 npt_enabled = false;
1421 if (npt_enabled) {
1422 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1423 kvm_enable_tdp();
1424 } else
1425 kvm_disable_tdp();
1427 if (nrips) {
1428 if (!boot_cpu_has(X86_FEATURE_NRIPS))
1429 nrips = false;
1432 if (avic) {
1433 if (!npt_enabled ||
1434 !boot_cpu_has(X86_FEATURE_AVIC) ||
1435 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1436 avic = false;
1437 } else {
1438 pr_info("AVIC enabled\n");
1440 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1444 if (vls) {
1445 if (!npt_enabled ||
1446 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1447 !IS_ENABLED(CONFIG_X86_64)) {
1448 vls = false;
1449 } else {
1450 pr_info("Virtual VMLOAD VMSAVE supported\n");
1454 if (vgif) {
1455 if (!boot_cpu_has(X86_FEATURE_VGIF))
1456 vgif = false;
1457 else
1458 pr_info("Virtual GIF supported\n");
1461 return 0;
1463 err:
1464 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1465 iopm_base = 0;
1466 return r;
1469 static __exit void svm_hardware_unsetup(void)
1471 int cpu;
1473 if (svm_sev_enabled()) {
1474 bitmap_free(sev_asid_bitmap);
1475 bitmap_free(sev_reclaim_asid_bitmap);
1477 sev_flush_asids();
1480 for_each_possible_cpu(cpu)
1481 svm_cpu_uninit(cpu);
1483 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1484 iopm_base = 0;
1487 static void init_seg(struct vmcb_seg *seg)
1489 seg->selector = 0;
1490 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1491 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1492 seg->limit = 0xffff;
1493 seg->base = 0;
1496 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1498 seg->selector = 0;
1499 seg->attrib = SVM_SELECTOR_P_MASK | type;
1500 seg->limit = 0xffff;
1501 seg->base = 0;
1504 static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1506 struct vcpu_svm *svm = to_svm(vcpu);
1508 if (is_guest_mode(vcpu))
1509 return svm->nested.hsave->control.tsc_offset;
1511 return vcpu->arch.tsc_offset;
1514 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1516 struct vcpu_svm *svm = to_svm(vcpu);
1517 u64 g_tsc_offset = 0;
1519 if (is_guest_mode(vcpu)) {
1520 /* Write L1's TSC offset. */
1521 g_tsc_offset = svm->vmcb->control.tsc_offset -
1522 svm->nested.hsave->control.tsc_offset;
1523 svm->nested.hsave->control.tsc_offset = offset;
1526 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1527 svm->vmcb->control.tsc_offset - g_tsc_offset,
1528 offset);
1530 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1532 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1533 return svm->vmcb->control.tsc_offset;
1536 static void avic_init_vmcb(struct vcpu_svm *svm)
1538 struct vmcb *vmcb = svm->vmcb;
1539 struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
1540 phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1541 phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
1542 phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
1544 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1545 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1546 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1547 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1548 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1551 static void init_vmcb(struct vcpu_svm *svm)
1553 struct vmcb_control_area *control = &svm->vmcb->control;
1554 struct vmcb_save_area *save = &svm->vmcb->save;
1556 svm->vcpu.arch.hflags = 0;
1558 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1559 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1560 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1561 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1562 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1563 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1564 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1565 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1567 set_dr_intercepts(svm);
1569 set_exception_intercept(svm, PF_VECTOR);
1570 set_exception_intercept(svm, UD_VECTOR);
1571 set_exception_intercept(svm, MC_VECTOR);
1572 set_exception_intercept(svm, AC_VECTOR);
1573 set_exception_intercept(svm, DB_VECTOR);
1575 * Guest access to VMware backdoor ports could legitimately
1576 * trigger #GP because of TSS I/O permission bitmap.
1577 * We intercept those #GP and allow access to them anyway
1578 * as VMware does.
1580 if (enable_vmware_backdoor)
1581 set_exception_intercept(svm, GP_VECTOR);
1583 set_intercept(svm, INTERCEPT_INTR);
1584 set_intercept(svm, INTERCEPT_NMI);
1585 set_intercept(svm, INTERCEPT_SMI);
1586 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1587 set_intercept(svm, INTERCEPT_RDPMC);
1588 set_intercept(svm, INTERCEPT_CPUID);
1589 set_intercept(svm, INTERCEPT_INVD);
1590 set_intercept(svm, INTERCEPT_INVLPG);
1591 set_intercept(svm, INTERCEPT_INVLPGA);
1592 set_intercept(svm, INTERCEPT_IOIO_PROT);
1593 set_intercept(svm, INTERCEPT_MSR_PROT);
1594 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1595 set_intercept(svm, INTERCEPT_SHUTDOWN);
1596 set_intercept(svm, INTERCEPT_VMRUN);
1597 set_intercept(svm, INTERCEPT_VMMCALL);
1598 set_intercept(svm, INTERCEPT_VMLOAD);
1599 set_intercept(svm, INTERCEPT_VMSAVE);
1600 set_intercept(svm, INTERCEPT_STGI);
1601 set_intercept(svm, INTERCEPT_CLGI);
1602 set_intercept(svm, INTERCEPT_SKINIT);
1603 set_intercept(svm, INTERCEPT_WBINVD);
1604 set_intercept(svm, INTERCEPT_XSETBV);
1605 set_intercept(svm, INTERCEPT_RDPRU);
1606 set_intercept(svm, INTERCEPT_RSM);
1608 if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1609 set_intercept(svm, INTERCEPT_MONITOR);
1610 set_intercept(svm, INTERCEPT_MWAIT);
1613 if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1614 set_intercept(svm, INTERCEPT_HLT);
1616 control->iopm_base_pa = __sme_set(iopm_base);
1617 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1618 control->int_ctl = V_INTR_MASKING_MASK;
1620 init_seg(&save->es);
1621 init_seg(&save->ss);
1622 init_seg(&save->ds);
1623 init_seg(&save->fs);
1624 init_seg(&save->gs);
1626 save->cs.selector = 0xf000;
1627 save->cs.base = 0xffff0000;
1628 /* Executable/Readable Code Segment */
1629 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1630 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1631 save->cs.limit = 0xffff;
1633 save->gdtr.limit = 0xffff;
1634 save->idtr.limit = 0xffff;
1636 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1637 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1639 svm_set_efer(&svm->vcpu, 0);
1640 save->dr6 = 0xffff0ff0;
1641 kvm_set_rflags(&svm->vcpu, 2);
1642 save->rip = 0x0000fff0;
1643 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1646 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1647 * It also updates the guest-visible cr0 value.
1649 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1650 kvm_mmu_reset_context(&svm->vcpu);
1652 save->cr4 = X86_CR4_PAE;
1653 /* rdx = ?? */
1655 if (npt_enabled) {
1656 /* Setup VMCB for Nested Paging */
1657 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1658 clr_intercept(svm, INTERCEPT_INVLPG);
1659 clr_exception_intercept(svm, PF_VECTOR);
1660 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1661 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1662 save->g_pat = svm->vcpu.arch.pat;
1663 save->cr3 = 0;
1664 save->cr4 = 0;
1666 svm->asid_generation = 0;
1668 svm->nested.vmcb = 0;
1669 svm->vcpu.arch.hflags = 0;
1671 if (pause_filter_count) {
1672 control->pause_filter_count = pause_filter_count;
1673 if (pause_filter_thresh)
1674 control->pause_filter_thresh = pause_filter_thresh;
1675 set_intercept(svm, INTERCEPT_PAUSE);
1676 } else {
1677 clr_intercept(svm, INTERCEPT_PAUSE);
1680 if (kvm_vcpu_apicv_active(&svm->vcpu))
1681 avic_init_vmcb(svm);
1684 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1685 * in VMCB and clear intercepts to avoid #VMEXIT.
1687 if (vls) {
1688 clr_intercept(svm, INTERCEPT_VMLOAD);
1689 clr_intercept(svm, INTERCEPT_VMSAVE);
1690 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1693 if (vgif) {
1694 clr_intercept(svm, INTERCEPT_STGI);
1695 clr_intercept(svm, INTERCEPT_CLGI);
1696 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1699 if (sev_guest(svm->vcpu.kvm)) {
1700 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1701 clr_exception_intercept(svm, UD_VECTOR);
1704 mark_all_dirty(svm->vmcb);
1706 enable_gif(svm);
1710 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1711 unsigned int index)
1713 u64 *avic_physical_id_table;
1714 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
1716 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1717 return NULL;
1719 avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
1721 return &avic_physical_id_table[index];
1725 * Note:
1726 * AVIC hardware walks the nested page table to check permissions,
1727 * but does not use the SPA address specified in the leaf page
1728 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
1729 * field of the VMCB. Therefore, we set up the
1730 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1732 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1734 struct kvm *kvm = vcpu->kvm;
1735 int ret = 0;
1737 mutex_lock(&kvm->slots_lock);
1738 if (kvm->arch.apic_access_page_done)
1739 goto out;
1741 ret = __x86_set_memory_region(kvm,
1742 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1743 APIC_DEFAULT_PHYS_BASE,
1744 PAGE_SIZE);
1745 if (ret)
1746 goto out;
1748 kvm->arch.apic_access_page_done = true;
1749 out:
1750 mutex_unlock(&kvm->slots_lock);
1751 return ret;
1754 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1756 int ret;
1757 u64 *entry, new_entry;
1758 int id = vcpu->vcpu_id;
1759 struct vcpu_svm *svm = to_svm(vcpu);
1761 ret = avic_init_access_page(vcpu);
1762 if (ret)
1763 return ret;
1765 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1766 return -EINVAL;
1768 if (!svm->vcpu.arch.apic->regs)
1769 return -EINVAL;
1771 svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1773 /* Setting AVIC backing page address in the phy APIC ID table */
1774 entry = avic_get_physical_id_entry(vcpu, id);
1775 if (!entry)
1776 return -EINVAL;
1778 new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1779 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1780 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1781 WRITE_ONCE(*entry, new_entry);
1783 svm->avic_physical_id_cache = entry;
1785 return 0;
1788 static void sev_asid_free(int asid)
1790 struct svm_cpu_data *sd;
1791 int cpu, pos;
1793 mutex_lock(&sev_bitmap_lock);
1795 pos = asid - 1;
1796 __set_bit(pos, sev_reclaim_asid_bitmap);
1798 for_each_possible_cpu(cpu) {
1799 sd = per_cpu(svm_data, cpu);
1800 sd->sev_vmcbs[pos] = NULL;
1803 mutex_unlock(&sev_bitmap_lock);
1806 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
1808 struct sev_data_decommission *decommission;
1809 struct sev_data_deactivate *data;
1811 if (!handle)
1812 return;
1814 data = kzalloc(sizeof(*data), GFP_KERNEL);
1815 if (!data)
1816 return;
1818 /* deactivate handle */
1819 data->handle = handle;
1821 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
1822 down_read(&sev_deactivate_lock);
1823 sev_guest_deactivate(data, NULL);
1824 up_read(&sev_deactivate_lock);
1826 kfree(data);
1828 decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
1829 if (!decommission)
1830 return;
1832 /* decommission handle */
1833 decommission->handle = handle;
1834 sev_guest_decommission(decommission, NULL);
1836 kfree(decommission);
1839 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
1840 unsigned long ulen, unsigned long *n,
1841 int write)
1843 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1844 unsigned long npages, npinned, size;
1845 unsigned long locked, lock_limit;
1846 struct page **pages;
1847 unsigned long first, last;
1849 if (ulen == 0 || uaddr + ulen < uaddr)
1850 return NULL;
1852 /* Calculate number of pages. */
1853 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
1854 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
1855 npages = (last - first + 1);
1857 locked = sev->pages_locked + npages;
1858 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1859 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
1860 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
1861 return NULL;
1864 /* Avoid using vmalloc for smaller buffers. */
1865 size = npages * sizeof(struct page *);
1866 if (size > PAGE_SIZE)
1867 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO,
1868 PAGE_KERNEL);
1869 else
1870 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
1872 if (!pages)
1873 return NULL;
1875 /* Pin the user virtual address. */
1876 npinned = get_user_pages_fast(uaddr, npages, FOLL_WRITE, pages);
1877 if (npinned != npages) {
1878 pr_err("SEV: Failure locking %lu pages.\n", npages);
1879 goto err;
1882 *n = npages;
1883 sev->pages_locked = locked;
1885 return pages;
1887 err:
1888 if (npinned > 0)
1889 release_pages(pages, npinned);
1891 kvfree(pages);
1892 return NULL;
1895 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
1896 unsigned long npages)
1898 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1900 release_pages(pages, npages);
1901 kvfree(pages);
1902 sev->pages_locked -= npages;
1905 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
1907 uint8_t *page_virtual;
1908 unsigned long i;
1910 if (npages == 0 || pages == NULL)
1911 return;
1913 for (i = 0; i < npages; i++) {
1914 page_virtual = kmap_atomic(pages[i]);
1915 clflush_cache_range(page_virtual, PAGE_SIZE);
1916 kunmap_atomic(page_virtual);
1920 static void __unregister_enc_region_locked(struct kvm *kvm,
1921 struct enc_region *region)
1924 * The guest may change the memory encryption attribute from C=0 -> C=1
1925 * or vice versa for this memory range. Lets make sure caches are
1926 * flushed to ensure that guest data gets written into memory with
1927 * correct C-bit.
1929 sev_clflush_pages(region->pages, region->npages);
1931 sev_unpin_memory(kvm, region->pages, region->npages);
1932 list_del(&region->list);
1933 kfree(region);
1936 static struct kvm *svm_vm_alloc(void)
1938 struct kvm_svm *kvm_svm = __vmalloc(sizeof(struct kvm_svm),
1939 GFP_KERNEL_ACCOUNT | __GFP_ZERO,
1940 PAGE_KERNEL);
1941 return &kvm_svm->kvm;
1944 static void svm_vm_free(struct kvm *kvm)
1946 vfree(to_kvm_svm(kvm));
1949 static void sev_vm_destroy(struct kvm *kvm)
1951 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1952 struct list_head *head = &sev->regions_list;
1953 struct list_head *pos, *q;
1955 if (!sev_guest(kvm))
1956 return;
1958 mutex_lock(&kvm->lock);
1961 * if userspace was terminated before unregistering the memory regions
1962 * then lets unpin all the registered memory.
1964 if (!list_empty(head)) {
1965 list_for_each_safe(pos, q, head) {
1966 __unregister_enc_region_locked(kvm,
1967 list_entry(pos, struct enc_region, list));
1971 mutex_unlock(&kvm->lock);
1973 sev_unbind_asid(kvm, sev->handle);
1974 sev_asid_free(sev->asid);
1977 static void avic_vm_destroy(struct kvm *kvm)
1979 unsigned long flags;
1980 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1982 if (!avic)
1983 return;
1985 if (kvm_svm->avic_logical_id_table_page)
1986 __free_page(kvm_svm->avic_logical_id_table_page);
1987 if (kvm_svm->avic_physical_id_table_page)
1988 __free_page(kvm_svm->avic_physical_id_table_page);
1990 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1991 hash_del(&kvm_svm->hnode);
1992 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1995 static void svm_vm_destroy(struct kvm *kvm)
1997 avic_vm_destroy(kvm);
1998 sev_vm_destroy(kvm);
2001 static int avic_vm_init(struct kvm *kvm)
2003 unsigned long flags;
2004 int err = -ENOMEM;
2005 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
2006 struct kvm_svm *k2;
2007 struct page *p_page;
2008 struct page *l_page;
2009 u32 vm_id;
2011 if (!avic)
2012 return 0;
2014 /* Allocating physical APIC ID table (4KB) */
2015 p_page = alloc_page(GFP_KERNEL_ACCOUNT);
2016 if (!p_page)
2017 goto free_avic;
2019 kvm_svm->avic_physical_id_table_page = p_page;
2020 clear_page(page_address(p_page));
2022 /* Allocating logical APIC ID table (4KB) */
2023 l_page = alloc_page(GFP_KERNEL_ACCOUNT);
2024 if (!l_page)
2025 goto free_avic;
2027 kvm_svm->avic_logical_id_table_page = l_page;
2028 clear_page(page_address(l_page));
2030 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
2031 again:
2032 vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
2033 if (vm_id == 0) { /* id is 1-based, zero is not okay */
2034 next_vm_id_wrapped = 1;
2035 goto again;
2037 /* Is it still in use? Only possible if wrapped at least once */
2038 if (next_vm_id_wrapped) {
2039 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
2040 if (k2->avic_vm_id == vm_id)
2041 goto again;
2044 kvm_svm->avic_vm_id = vm_id;
2045 hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
2046 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
2048 return 0;
2050 free_avic:
2051 avic_vm_destroy(kvm);
2052 return err;
2055 static inline int
2056 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
2058 int ret = 0;
2059 unsigned long flags;
2060 struct amd_svm_iommu_ir *ir;
2061 struct vcpu_svm *svm = to_svm(vcpu);
2063 if (!kvm_arch_has_assigned_device(vcpu->kvm))
2064 return 0;
2067 * Here, we go through the per-vcpu ir_list to update all existing
2068 * interrupt remapping table entry targeting this vcpu.
2070 spin_lock_irqsave(&svm->ir_list_lock, flags);
2072 if (list_empty(&svm->ir_list))
2073 goto out;
2075 list_for_each_entry(ir, &svm->ir_list, node) {
2076 ret = amd_iommu_update_ga(cpu, r, ir->data);
2077 if (ret)
2078 break;
2080 out:
2081 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
2082 return ret;
2085 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2087 u64 entry;
2088 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
2089 int h_physical_id = kvm_cpu_get_apicid(cpu);
2090 struct vcpu_svm *svm = to_svm(vcpu);
2092 if (!kvm_vcpu_apicv_active(vcpu))
2093 return;
2096 * Since the host physical APIC id is 8 bits,
2097 * we can support host APIC ID upto 255.
2099 if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
2100 return;
2102 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2103 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
2105 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
2106 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
2108 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2109 if (svm->avic_is_running)
2110 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2112 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2113 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
2114 svm->avic_is_running);
2117 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
2119 u64 entry;
2120 struct vcpu_svm *svm = to_svm(vcpu);
2122 if (!kvm_vcpu_apicv_active(vcpu))
2123 return;
2125 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2126 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
2127 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
2129 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2130 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2134 * This function is called during VCPU halt/unhalt.
2136 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
2138 struct vcpu_svm *svm = to_svm(vcpu);
2140 svm->avic_is_running = is_run;
2141 if (is_run)
2142 avic_vcpu_load(vcpu, vcpu->cpu);
2143 else
2144 avic_vcpu_put(vcpu);
2147 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
2149 struct vcpu_svm *svm = to_svm(vcpu);
2150 u32 dummy;
2151 u32 eax = 1;
2153 vcpu->arch.microcode_version = 0x01000065;
2154 svm->spec_ctrl = 0;
2155 svm->virt_spec_ctrl = 0;
2157 if (!init_event) {
2158 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
2159 MSR_IA32_APICBASE_ENABLE;
2160 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
2161 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
2163 init_vmcb(svm);
2165 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
2166 kvm_rdx_write(vcpu, eax);
2168 if (kvm_vcpu_apicv_active(vcpu) && !init_event)
2169 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
2172 static int avic_init_vcpu(struct vcpu_svm *svm)
2174 int ret;
2176 if (!kvm_vcpu_apicv_active(&svm->vcpu))
2177 return 0;
2179 ret = avic_init_backing_page(&svm->vcpu);
2180 if (ret)
2181 return ret;
2183 INIT_LIST_HEAD(&svm->ir_list);
2184 spin_lock_init(&svm->ir_list_lock);
2185 svm->dfr_reg = APIC_DFR_FLAT;
2187 return ret;
2190 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
2192 struct vcpu_svm *svm;
2193 struct page *page;
2194 struct page *msrpm_pages;
2195 struct page *hsave_page;
2196 struct page *nested_msrpm_pages;
2197 int err;
2199 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
2200 svm = to_svm(vcpu);
2202 err = -ENOMEM;
2203 page = alloc_page(GFP_KERNEL_ACCOUNT);
2204 if (!page)
2205 goto out;
2207 msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
2208 if (!msrpm_pages)
2209 goto free_page1;
2211 nested_msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
2212 if (!nested_msrpm_pages)
2213 goto free_page2;
2215 hsave_page = alloc_page(GFP_KERNEL_ACCOUNT);
2216 if (!hsave_page)
2217 goto free_page3;
2219 err = avic_init_vcpu(svm);
2220 if (err)
2221 goto free_page4;
2223 /* We initialize this flag to true to make sure that the is_running
2224 * bit would be set the first time the vcpu is loaded.
2226 svm->avic_is_running = true;
2228 svm->nested.hsave = page_address(hsave_page);
2230 svm->msrpm = page_address(msrpm_pages);
2231 svm_vcpu_init_msrpm(svm->msrpm);
2233 svm->nested.msrpm = page_address(nested_msrpm_pages);
2234 svm_vcpu_init_msrpm(svm->nested.msrpm);
2236 svm->vmcb = page_address(page);
2237 clear_page(svm->vmcb);
2238 svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
2239 svm->asid_generation = 0;
2240 init_vmcb(svm);
2242 svm_init_osvw(vcpu);
2244 return 0;
2246 free_page4:
2247 __free_page(hsave_page);
2248 free_page3:
2249 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
2250 free_page2:
2251 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
2252 free_page1:
2253 __free_page(page);
2254 out:
2255 return err;
2258 static void svm_clear_current_vmcb(struct vmcb *vmcb)
2260 int i;
2262 for_each_online_cpu(i)
2263 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
2266 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
2268 struct vcpu_svm *svm = to_svm(vcpu);
2271 * The vmcb page can be recycled, causing a false negative in
2272 * svm_vcpu_load(). So, ensure that no logical CPU has this
2273 * vmcb page recorded as its current vmcb.
2275 svm_clear_current_vmcb(svm->vmcb);
2277 __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
2278 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
2279 __free_page(virt_to_page(svm->nested.hsave));
2280 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
2283 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2285 struct vcpu_svm *svm = to_svm(vcpu);
2286 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2287 int i;
2289 if (unlikely(cpu != vcpu->cpu)) {
2290 svm->asid_generation = 0;
2291 mark_all_dirty(svm->vmcb);
2294 #ifdef CONFIG_X86_64
2295 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
2296 #endif
2297 savesegment(fs, svm->host.fs);
2298 savesegment(gs, svm->host.gs);
2299 svm->host.ldt = kvm_read_ldt();
2301 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2302 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2304 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
2305 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2306 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
2307 __this_cpu_write(current_tsc_ratio, tsc_ratio);
2308 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
2311 /* This assumes that the kernel never uses MSR_TSC_AUX */
2312 if (static_cpu_has(X86_FEATURE_RDTSCP))
2313 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2315 if (sd->current_vmcb != svm->vmcb) {
2316 sd->current_vmcb = svm->vmcb;
2317 indirect_branch_prediction_barrier();
2319 avic_vcpu_load(vcpu, cpu);
2322 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
2324 struct vcpu_svm *svm = to_svm(vcpu);
2325 int i;
2327 avic_vcpu_put(vcpu);
2329 ++vcpu->stat.host_state_reload;
2330 kvm_load_ldt(svm->host.ldt);
2331 #ifdef CONFIG_X86_64
2332 loadsegment(fs, svm->host.fs);
2333 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
2334 load_gs_index(svm->host.gs);
2335 #else
2336 #ifdef CONFIG_X86_32_LAZY_GS
2337 loadsegment(gs, svm->host.gs);
2338 #endif
2339 #endif
2340 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2341 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2344 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
2346 avic_set_running(vcpu, false);
2349 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
2351 avic_set_running(vcpu, true);
2354 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
2356 struct vcpu_svm *svm = to_svm(vcpu);
2357 unsigned long rflags = svm->vmcb->save.rflags;
2359 if (svm->nmi_singlestep) {
2360 /* Hide our flags if they were not set by the guest */
2361 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
2362 rflags &= ~X86_EFLAGS_TF;
2363 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
2364 rflags &= ~X86_EFLAGS_RF;
2366 return rflags;
2369 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2371 if (to_svm(vcpu)->nmi_singlestep)
2372 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2375 * Any change of EFLAGS.VM is accompanied by a reload of SS
2376 * (caused by either a task switch or an inter-privilege IRET),
2377 * so we do not need to update the CPL here.
2379 to_svm(vcpu)->vmcb->save.rflags = rflags;
2382 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2384 switch (reg) {
2385 case VCPU_EXREG_PDPTR:
2386 BUG_ON(!npt_enabled);
2387 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
2388 break;
2389 default:
2390 WARN_ON_ONCE(1);
2394 static void svm_set_vintr(struct vcpu_svm *svm)
2396 set_intercept(svm, INTERCEPT_VINTR);
2399 static void svm_clear_vintr(struct vcpu_svm *svm)
2401 clr_intercept(svm, INTERCEPT_VINTR);
2404 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
2406 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2408 switch (seg) {
2409 case VCPU_SREG_CS: return &save->cs;
2410 case VCPU_SREG_DS: return &save->ds;
2411 case VCPU_SREG_ES: return &save->es;
2412 case VCPU_SREG_FS: return &save->fs;
2413 case VCPU_SREG_GS: return &save->gs;
2414 case VCPU_SREG_SS: return &save->ss;
2415 case VCPU_SREG_TR: return &save->tr;
2416 case VCPU_SREG_LDTR: return &save->ldtr;
2418 BUG();
2419 return NULL;
2422 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2424 struct vmcb_seg *s = svm_seg(vcpu, seg);
2426 return s->base;
2429 static void svm_get_segment(struct kvm_vcpu *vcpu,
2430 struct kvm_segment *var, int seg)
2432 struct vmcb_seg *s = svm_seg(vcpu, seg);
2434 var->base = s->base;
2435 var->limit = s->limit;
2436 var->selector = s->selector;
2437 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
2438 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
2439 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2440 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
2441 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
2442 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
2443 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
2446 * AMD CPUs circa 2014 track the G bit for all segments except CS.
2447 * However, the SVM spec states that the G bit is not observed by the
2448 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2449 * So let's synthesize a legal G bit for all segments, this helps
2450 * running KVM nested. It also helps cross-vendor migration, because
2451 * Intel's vmentry has a check on the 'G' bit.
2453 var->g = s->limit > 0xfffff;
2456 * AMD's VMCB does not have an explicit unusable field, so emulate it
2457 * for cross vendor migration purposes by "not present"
2459 var->unusable = !var->present;
2461 switch (seg) {
2462 case VCPU_SREG_TR:
2464 * Work around a bug where the busy flag in the tr selector
2465 * isn't exposed
2467 var->type |= 0x2;
2468 break;
2469 case VCPU_SREG_DS:
2470 case VCPU_SREG_ES:
2471 case VCPU_SREG_FS:
2472 case VCPU_SREG_GS:
2474 * The accessed bit must always be set in the segment
2475 * descriptor cache, although it can be cleared in the
2476 * descriptor, the cached bit always remains at 1. Since
2477 * Intel has a check on this, set it here to support
2478 * cross-vendor migration.
2480 if (!var->unusable)
2481 var->type |= 0x1;
2482 break;
2483 case VCPU_SREG_SS:
2485 * On AMD CPUs sometimes the DB bit in the segment
2486 * descriptor is left as 1, although the whole segment has
2487 * been made unusable. Clear it here to pass an Intel VMX
2488 * entry check when cross vendor migrating.
2490 if (var->unusable)
2491 var->db = 0;
2492 /* This is symmetric with svm_set_segment() */
2493 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
2494 break;
2498 static int svm_get_cpl(struct kvm_vcpu *vcpu)
2500 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2502 return save->cpl;
2505 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2507 struct vcpu_svm *svm = to_svm(vcpu);
2509 dt->size = svm->vmcb->save.idtr.limit;
2510 dt->address = svm->vmcb->save.idtr.base;
2513 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2515 struct vcpu_svm *svm = to_svm(vcpu);
2517 svm->vmcb->save.idtr.limit = dt->size;
2518 svm->vmcb->save.idtr.base = dt->address ;
2519 mark_dirty(svm->vmcb, VMCB_DT);
2522 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2524 struct vcpu_svm *svm = to_svm(vcpu);
2526 dt->size = svm->vmcb->save.gdtr.limit;
2527 dt->address = svm->vmcb->save.gdtr.base;
2530 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2532 struct vcpu_svm *svm = to_svm(vcpu);
2534 svm->vmcb->save.gdtr.limit = dt->size;
2535 svm->vmcb->save.gdtr.base = dt->address ;
2536 mark_dirty(svm->vmcb, VMCB_DT);
2539 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2543 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2547 static void update_cr0_intercept(struct vcpu_svm *svm)
2549 ulong gcr0 = svm->vcpu.arch.cr0;
2550 u64 *hcr0 = &svm->vmcb->save.cr0;
2552 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
2553 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
2555 mark_dirty(svm->vmcb, VMCB_CR);
2557 if (gcr0 == *hcr0) {
2558 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
2559 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2560 } else {
2561 set_cr_intercept(svm, INTERCEPT_CR0_READ);
2562 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2566 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2568 struct vcpu_svm *svm = to_svm(vcpu);
2570 #ifdef CONFIG_X86_64
2571 if (vcpu->arch.efer & EFER_LME) {
2572 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2573 vcpu->arch.efer |= EFER_LMA;
2574 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2577 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2578 vcpu->arch.efer &= ~EFER_LMA;
2579 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2582 #endif
2583 vcpu->arch.cr0 = cr0;
2585 if (!npt_enabled)
2586 cr0 |= X86_CR0_PG | X86_CR0_WP;
2589 * re-enable caching here because the QEMU bios
2590 * does not do it - this results in some delay at
2591 * reboot
2593 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2594 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2595 svm->vmcb->save.cr0 = cr0;
2596 mark_dirty(svm->vmcb, VMCB_CR);
2597 update_cr0_intercept(svm);
2600 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2602 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2603 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2605 if (cr4 & X86_CR4_VMXE)
2606 return 1;
2608 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2609 svm_flush_tlb(vcpu, true);
2611 vcpu->arch.cr4 = cr4;
2612 if (!npt_enabled)
2613 cr4 |= X86_CR4_PAE;
2614 cr4 |= host_cr4_mce;
2615 to_svm(vcpu)->vmcb->save.cr4 = cr4;
2616 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2617 return 0;
2620 static void svm_set_segment(struct kvm_vcpu *vcpu,
2621 struct kvm_segment *var, int seg)
2623 struct vcpu_svm *svm = to_svm(vcpu);
2624 struct vmcb_seg *s = svm_seg(vcpu, seg);
2626 s->base = var->base;
2627 s->limit = var->limit;
2628 s->selector = var->selector;
2629 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2630 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2631 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2632 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2633 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2634 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2635 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2636 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2639 * This is always accurate, except if SYSRET returned to a segment
2640 * with SS.DPL != 3. Intel does not have this quirk, and always
2641 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2642 * would entail passing the CPL to userspace and back.
2644 if (seg == VCPU_SREG_SS)
2645 /* This is symmetric with svm_get_segment() */
2646 svm->vmcb->save.cpl = (var->dpl & 3);
2648 mark_dirty(svm->vmcb, VMCB_SEG);
2651 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2653 struct vcpu_svm *svm = to_svm(vcpu);
2655 clr_exception_intercept(svm, BP_VECTOR);
2657 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2658 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2659 set_exception_intercept(svm, BP_VECTOR);
2660 } else
2661 vcpu->guest_debug = 0;
2664 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2666 if (sd->next_asid > sd->max_asid) {
2667 ++sd->asid_generation;
2668 sd->next_asid = sd->min_asid;
2669 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2672 svm->asid_generation = sd->asid_generation;
2673 svm->vmcb->control.asid = sd->next_asid++;
2675 mark_dirty(svm->vmcb, VMCB_ASID);
2678 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2680 return to_svm(vcpu)->vmcb->save.dr6;
2683 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2685 struct vcpu_svm *svm = to_svm(vcpu);
2687 svm->vmcb->save.dr6 = value;
2688 mark_dirty(svm->vmcb, VMCB_DR);
2691 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2693 struct vcpu_svm *svm = to_svm(vcpu);
2695 get_debugreg(vcpu->arch.db[0], 0);
2696 get_debugreg(vcpu->arch.db[1], 1);
2697 get_debugreg(vcpu->arch.db[2], 2);
2698 get_debugreg(vcpu->arch.db[3], 3);
2699 vcpu->arch.dr6 = svm_get_dr6(vcpu);
2700 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2702 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2703 set_dr_intercepts(svm);
2706 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2708 struct vcpu_svm *svm = to_svm(vcpu);
2710 svm->vmcb->save.dr7 = value;
2711 mark_dirty(svm->vmcb, VMCB_DR);
2714 static int pf_interception(struct vcpu_svm *svm)
2716 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2717 u64 error_code = svm->vmcb->control.exit_info_1;
2719 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2720 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2721 svm->vmcb->control.insn_bytes : NULL,
2722 svm->vmcb->control.insn_len);
2725 static int npf_interception(struct vcpu_svm *svm)
2727 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2728 u64 error_code = svm->vmcb->control.exit_info_1;
2730 trace_kvm_page_fault(fault_address, error_code);
2731 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2732 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2733 svm->vmcb->control.insn_bytes : NULL,
2734 svm->vmcb->control.insn_len);
2737 static int db_interception(struct vcpu_svm *svm)
2739 struct kvm_run *kvm_run = svm->vcpu.run;
2740 struct kvm_vcpu *vcpu = &svm->vcpu;
2742 if (!(svm->vcpu.guest_debug &
2743 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2744 !svm->nmi_singlestep) {
2745 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2746 return 1;
2749 if (svm->nmi_singlestep) {
2750 disable_nmi_singlestep(svm);
2751 /* Make sure we check for pending NMIs upon entry */
2752 kvm_make_request(KVM_REQ_EVENT, vcpu);
2755 if (svm->vcpu.guest_debug &
2756 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2757 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2758 kvm_run->debug.arch.pc =
2759 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2760 kvm_run->debug.arch.exception = DB_VECTOR;
2761 return 0;
2764 return 1;
2767 static int bp_interception(struct vcpu_svm *svm)
2769 struct kvm_run *kvm_run = svm->vcpu.run;
2771 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2772 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2773 kvm_run->debug.arch.exception = BP_VECTOR;
2774 return 0;
2777 static int ud_interception(struct vcpu_svm *svm)
2779 return handle_ud(&svm->vcpu);
2782 static int ac_interception(struct vcpu_svm *svm)
2784 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2785 return 1;
2788 static int gp_interception(struct vcpu_svm *svm)
2790 struct kvm_vcpu *vcpu = &svm->vcpu;
2791 u32 error_code = svm->vmcb->control.exit_info_1;
2793 WARN_ON_ONCE(!enable_vmware_backdoor);
2796 * VMware backdoor emulation on #GP interception only handles IN{S},
2797 * OUT{S}, and RDPMC, none of which generate a non-zero error code.
2799 if (error_code) {
2800 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2801 return 1;
2803 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
2806 static bool is_erratum_383(void)
2808 int err, i;
2809 u64 value;
2811 if (!erratum_383_found)
2812 return false;
2814 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2815 if (err)
2816 return false;
2818 /* Bit 62 may or may not be set for this mce */
2819 value &= ~(1ULL << 62);
2821 if (value != 0xb600000000010015ULL)
2822 return false;
2824 /* Clear MCi_STATUS registers */
2825 for (i = 0; i < 6; ++i)
2826 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2828 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2829 if (!err) {
2830 u32 low, high;
2832 value &= ~(1ULL << 2);
2833 low = lower_32_bits(value);
2834 high = upper_32_bits(value);
2836 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2839 /* Flush tlb to evict multi-match entries */
2840 __flush_tlb_all();
2842 return true;
2845 static void svm_handle_mce(struct vcpu_svm *svm)
2847 if (is_erratum_383()) {
2849 * Erratum 383 triggered. Guest state is corrupt so kill the
2850 * guest.
2852 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2854 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2856 return;
2860 * On an #MC intercept the MCE handler is not called automatically in
2861 * the host. So do it by hand here.
2863 asm volatile (
2864 "int $0x12\n");
2865 /* not sure if we ever come back to this point */
2867 return;
2870 static int mc_interception(struct vcpu_svm *svm)
2872 return 1;
2875 static int shutdown_interception(struct vcpu_svm *svm)
2877 struct kvm_run *kvm_run = svm->vcpu.run;
2880 * VMCB is undefined after a SHUTDOWN intercept
2881 * so reinitialize it.
2883 clear_page(svm->vmcb);
2884 init_vmcb(svm);
2886 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2887 return 0;
2890 static int io_interception(struct vcpu_svm *svm)
2892 struct kvm_vcpu *vcpu = &svm->vcpu;
2893 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2894 int size, in, string;
2895 unsigned port;
2897 ++svm->vcpu.stat.io_exits;
2898 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2899 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2900 if (string)
2901 return kvm_emulate_instruction(vcpu, 0);
2903 port = io_info >> 16;
2904 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2905 svm->next_rip = svm->vmcb->control.exit_info_2;
2907 return kvm_fast_pio(&svm->vcpu, size, port, in);
2910 static int nmi_interception(struct vcpu_svm *svm)
2912 return 1;
2915 static int intr_interception(struct vcpu_svm *svm)
2917 ++svm->vcpu.stat.irq_exits;
2918 return 1;
2921 static int nop_on_interception(struct vcpu_svm *svm)
2923 return 1;
2926 static int halt_interception(struct vcpu_svm *svm)
2928 return kvm_emulate_halt(&svm->vcpu);
2931 static int vmmcall_interception(struct vcpu_svm *svm)
2933 return kvm_emulate_hypercall(&svm->vcpu);
2936 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2938 struct vcpu_svm *svm = to_svm(vcpu);
2940 return svm->nested.nested_cr3;
2943 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2945 struct vcpu_svm *svm = to_svm(vcpu);
2946 u64 cr3 = svm->nested.nested_cr3;
2947 u64 pdpte;
2948 int ret;
2950 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2951 offset_in_page(cr3) + index * 8, 8);
2952 if (ret)
2953 return 0;
2954 return pdpte;
2957 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2958 unsigned long root)
2960 struct vcpu_svm *svm = to_svm(vcpu);
2962 svm->vmcb->control.nested_cr3 = __sme_set(root);
2963 mark_dirty(svm->vmcb, VMCB_NPT);
2966 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2967 struct x86_exception *fault)
2969 struct vcpu_svm *svm = to_svm(vcpu);
2971 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2973 * TODO: track the cause of the nested page fault, and
2974 * correctly fill in the high bits of exit_info_1.
2976 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2977 svm->vmcb->control.exit_code_hi = 0;
2978 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2979 svm->vmcb->control.exit_info_2 = fault->address;
2982 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2983 svm->vmcb->control.exit_info_1 |= fault->error_code;
2986 * The present bit is always zero for page structure faults on real
2987 * hardware.
2989 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2990 svm->vmcb->control.exit_info_1 &= ~1;
2992 nested_svm_vmexit(svm);
2995 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2997 WARN_ON(mmu_is_nested(vcpu));
2999 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
3000 kvm_init_shadow_mmu(vcpu);
3001 vcpu->arch.mmu->set_cr3 = nested_svm_set_tdp_cr3;
3002 vcpu->arch.mmu->get_cr3 = nested_svm_get_tdp_cr3;
3003 vcpu->arch.mmu->get_pdptr = nested_svm_get_tdp_pdptr;
3004 vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
3005 vcpu->arch.mmu->shadow_root_level = get_npt_level(vcpu);
3006 reset_shadow_zero_bits_mask(vcpu, vcpu->arch.mmu);
3007 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
3010 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
3012 vcpu->arch.mmu = &vcpu->arch.root_mmu;
3013 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
3016 static int nested_svm_check_permissions(struct vcpu_svm *svm)
3018 if (!(svm->vcpu.arch.efer & EFER_SVME) ||
3019 !is_paging(&svm->vcpu)) {
3020 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3021 return 1;
3024 if (svm->vmcb->save.cpl) {
3025 kvm_inject_gp(&svm->vcpu, 0);
3026 return 1;
3029 return 0;
3032 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
3033 bool has_error_code, u32 error_code)
3035 int vmexit;
3037 if (!is_guest_mode(&svm->vcpu))
3038 return 0;
3040 vmexit = nested_svm_intercept(svm);
3041 if (vmexit != NESTED_EXIT_DONE)
3042 return 0;
3044 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
3045 svm->vmcb->control.exit_code_hi = 0;
3046 svm->vmcb->control.exit_info_1 = error_code;
3049 * EXITINFO2 is undefined for all exception intercepts other
3050 * than #PF.
3052 if (svm->vcpu.arch.exception.nested_apf)
3053 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
3054 else if (svm->vcpu.arch.exception.has_payload)
3055 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.exception.payload;
3056 else
3057 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
3059 svm->nested.exit_required = true;
3060 return vmexit;
3063 /* This function returns true if it is save to enable the irq window */
3064 static inline bool nested_svm_intr(struct vcpu_svm *svm)
3066 if (!is_guest_mode(&svm->vcpu))
3067 return true;
3069 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3070 return true;
3072 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
3073 return false;
3076 * if vmexit was already requested (by intercepted exception
3077 * for instance) do not overwrite it with "external interrupt"
3078 * vmexit.
3080 if (svm->nested.exit_required)
3081 return false;
3083 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
3084 svm->vmcb->control.exit_info_1 = 0;
3085 svm->vmcb->control.exit_info_2 = 0;
3087 if (svm->nested.intercept & 1ULL) {
3089 * The #vmexit can't be emulated here directly because this
3090 * code path runs with irqs and preemption disabled. A
3091 * #vmexit emulation might sleep. Only signal request for
3092 * the #vmexit here.
3094 svm->nested.exit_required = true;
3095 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
3096 return false;
3099 return true;
3102 /* This function returns true if it is save to enable the nmi window */
3103 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
3105 if (!is_guest_mode(&svm->vcpu))
3106 return true;
3108 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
3109 return true;
3111 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
3112 svm->nested.exit_required = true;
3114 return false;
3117 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
3119 unsigned port, size, iopm_len;
3120 u16 val, mask;
3121 u8 start_bit;
3122 u64 gpa;
3124 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
3125 return NESTED_EXIT_HOST;
3127 port = svm->vmcb->control.exit_info_1 >> 16;
3128 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
3129 SVM_IOIO_SIZE_SHIFT;
3130 gpa = svm->nested.vmcb_iopm + (port / 8);
3131 start_bit = port % 8;
3132 iopm_len = (start_bit + size > 8) ? 2 : 1;
3133 mask = (0xf >> (4 - size)) << start_bit;
3134 val = 0;
3136 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
3137 return NESTED_EXIT_DONE;
3139 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3142 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
3144 u32 offset, msr, value;
3145 int write, mask;
3147 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3148 return NESTED_EXIT_HOST;
3150 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3151 offset = svm_msrpm_offset(msr);
3152 write = svm->vmcb->control.exit_info_1 & 1;
3153 mask = 1 << ((2 * (msr & 0xf)) + write);
3155 if (offset == MSR_INVALID)
3156 return NESTED_EXIT_DONE;
3158 /* Offset is in 32 bit units but need in 8 bit units */
3159 offset *= 4;
3161 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
3162 return NESTED_EXIT_DONE;
3164 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3167 /* DB exceptions for our internal use must not cause vmexit */
3168 static int nested_svm_intercept_db(struct vcpu_svm *svm)
3170 unsigned long dr6;
3172 /* if we're not singlestepping, it's not ours */
3173 if (!svm->nmi_singlestep)
3174 return NESTED_EXIT_DONE;
3176 /* if it's not a singlestep exception, it's not ours */
3177 if (kvm_get_dr(&svm->vcpu, 6, &dr6))
3178 return NESTED_EXIT_DONE;
3179 if (!(dr6 & DR6_BS))
3180 return NESTED_EXIT_DONE;
3182 /* if the guest is singlestepping, it should get the vmexit */
3183 if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
3184 disable_nmi_singlestep(svm);
3185 return NESTED_EXIT_DONE;
3188 /* it's ours, the nested hypervisor must not see this one */
3189 return NESTED_EXIT_HOST;
3192 static int nested_svm_exit_special(struct vcpu_svm *svm)
3194 u32 exit_code = svm->vmcb->control.exit_code;
3196 switch (exit_code) {
3197 case SVM_EXIT_INTR:
3198 case SVM_EXIT_NMI:
3199 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
3200 return NESTED_EXIT_HOST;
3201 case SVM_EXIT_NPF:
3202 /* For now we are always handling NPFs when using them */
3203 if (npt_enabled)
3204 return NESTED_EXIT_HOST;
3205 break;
3206 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
3207 /* When we're shadowing, trap PFs, but not async PF */
3208 if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
3209 return NESTED_EXIT_HOST;
3210 break;
3211 default:
3212 break;
3215 return NESTED_EXIT_CONTINUE;
3219 * If this function returns true, this #vmexit was already handled
3221 static int nested_svm_intercept(struct vcpu_svm *svm)
3223 u32 exit_code = svm->vmcb->control.exit_code;
3224 int vmexit = NESTED_EXIT_HOST;
3226 switch (exit_code) {
3227 case SVM_EXIT_MSR:
3228 vmexit = nested_svm_exit_handled_msr(svm);
3229 break;
3230 case SVM_EXIT_IOIO:
3231 vmexit = nested_svm_intercept_ioio(svm);
3232 break;
3233 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
3234 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
3235 if (svm->nested.intercept_cr & bit)
3236 vmexit = NESTED_EXIT_DONE;
3237 break;
3239 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
3240 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
3241 if (svm->nested.intercept_dr & bit)
3242 vmexit = NESTED_EXIT_DONE;
3243 break;
3245 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
3246 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
3247 if (svm->nested.intercept_exceptions & excp_bits) {
3248 if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
3249 vmexit = nested_svm_intercept_db(svm);
3250 else
3251 vmexit = NESTED_EXIT_DONE;
3253 /* async page fault always cause vmexit */
3254 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
3255 svm->vcpu.arch.exception.nested_apf != 0)
3256 vmexit = NESTED_EXIT_DONE;
3257 break;
3259 case SVM_EXIT_ERR: {
3260 vmexit = NESTED_EXIT_DONE;
3261 break;
3263 default: {
3264 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
3265 if (svm->nested.intercept & exit_bits)
3266 vmexit = NESTED_EXIT_DONE;
3270 return vmexit;
3273 static int nested_svm_exit_handled(struct vcpu_svm *svm)
3275 int vmexit;
3277 vmexit = nested_svm_intercept(svm);
3279 if (vmexit == NESTED_EXIT_DONE)
3280 nested_svm_vmexit(svm);
3282 return vmexit;
3285 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
3287 struct vmcb_control_area *dst = &dst_vmcb->control;
3288 struct vmcb_control_area *from = &from_vmcb->control;
3290 dst->intercept_cr = from->intercept_cr;
3291 dst->intercept_dr = from->intercept_dr;
3292 dst->intercept_exceptions = from->intercept_exceptions;
3293 dst->intercept = from->intercept;
3294 dst->iopm_base_pa = from->iopm_base_pa;
3295 dst->msrpm_base_pa = from->msrpm_base_pa;
3296 dst->tsc_offset = from->tsc_offset;
3297 dst->asid = from->asid;
3298 dst->tlb_ctl = from->tlb_ctl;
3299 dst->int_ctl = from->int_ctl;
3300 dst->int_vector = from->int_vector;
3301 dst->int_state = from->int_state;
3302 dst->exit_code = from->exit_code;
3303 dst->exit_code_hi = from->exit_code_hi;
3304 dst->exit_info_1 = from->exit_info_1;
3305 dst->exit_info_2 = from->exit_info_2;
3306 dst->exit_int_info = from->exit_int_info;
3307 dst->exit_int_info_err = from->exit_int_info_err;
3308 dst->nested_ctl = from->nested_ctl;
3309 dst->event_inj = from->event_inj;
3310 dst->event_inj_err = from->event_inj_err;
3311 dst->nested_cr3 = from->nested_cr3;
3312 dst->virt_ext = from->virt_ext;
3313 dst->pause_filter_count = from->pause_filter_count;
3314 dst->pause_filter_thresh = from->pause_filter_thresh;
3317 static int nested_svm_vmexit(struct vcpu_svm *svm)
3319 int rc;
3320 struct vmcb *nested_vmcb;
3321 struct vmcb *hsave = svm->nested.hsave;
3322 struct vmcb *vmcb = svm->vmcb;
3323 struct kvm_host_map map;
3325 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
3326 vmcb->control.exit_info_1,
3327 vmcb->control.exit_info_2,
3328 vmcb->control.exit_int_info,
3329 vmcb->control.exit_int_info_err,
3330 KVM_ISA_SVM);
3332 rc = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->nested.vmcb), &map);
3333 if (rc) {
3334 if (rc == -EINVAL)
3335 kvm_inject_gp(&svm->vcpu, 0);
3336 return 1;
3339 nested_vmcb = map.hva;
3341 /* Exit Guest-Mode */
3342 leave_guest_mode(&svm->vcpu);
3343 svm->nested.vmcb = 0;
3345 /* Give the current vmcb to the guest */
3346 disable_gif(svm);
3348 nested_vmcb->save.es = vmcb->save.es;
3349 nested_vmcb->save.cs = vmcb->save.cs;
3350 nested_vmcb->save.ss = vmcb->save.ss;
3351 nested_vmcb->save.ds = vmcb->save.ds;
3352 nested_vmcb->save.gdtr = vmcb->save.gdtr;
3353 nested_vmcb->save.idtr = vmcb->save.idtr;
3354 nested_vmcb->save.efer = svm->vcpu.arch.efer;
3355 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
3356 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
3357 nested_vmcb->save.cr2 = vmcb->save.cr2;
3358 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
3359 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
3360 nested_vmcb->save.rip = vmcb->save.rip;
3361 nested_vmcb->save.rsp = vmcb->save.rsp;
3362 nested_vmcb->save.rax = vmcb->save.rax;
3363 nested_vmcb->save.dr7 = vmcb->save.dr7;
3364 nested_vmcb->save.dr6 = vmcb->save.dr6;
3365 nested_vmcb->save.cpl = vmcb->save.cpl;
3367 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
3368 nested_vmcb->control.int_vector = vmcb->control.int_vector;
3369 nested_vmcb->control.int_state = vmcb->control.int_state;
3370 nested_vmcb->control.exit_code = vmcb->control.exit_code;
3371 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
3372 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
3373 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
3374 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
3375 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
3377 if (svm->nrips_enabled)
3378 nested_vmcb->control.next_rip = vmcb->control.next_rip;
3381 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3382 * to make sure that we do not lose injected events. So check event_inj
3383 * here and copy it to exit_int_info if it is valid.
3384 * Exit_int_info and event_inj can't be both valid because the case
3385 * below only happens on a VMRUN instruction intercept which has
3386 * no valid exit_int_info set.
3388 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
3389 struct vmcb_control_area *nc = &nested_vmcb->control;
3391 nc->exit_int_info = vmcb->control.event_inj;
3392 nc->exit_int_info_err = vmcb->control.event_inj_err;
3395 nested_vmcb->control.tlb_ctl = 0;
3396 nested_vmcb->control.event_inj = 0;
3397 nested_vmcb->control.event_inj_err = 0;
3399 nested_vmcb->control.pause_filter_count =
3400 svm->vmcb->control.pause_filter_count;
3401 nested_vmcb->control.pause_filter_thresh =
3402 svm->vmcb->control.pause_filter_thresh;
3404 /* We always set V_INTR_MASKING and remember the old value in hflags */
3405 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3406 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3408 /* Restore the original control entries */
3409 copy_vmcb_control_area(vmcb, hsave);
3411 svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
3412 kvm_clear_exception_queue(&svm->vcpu);
3413 kvm_clear_interrupt_queue(&svm->vcpu);
3415 svm->nested.nested_cr3 = 0;
3417 /* Restore selected save entries */
3418 svm->vmcb->save.es = hsave->save.es;
3419 svm->vmcb->save.cs = hsave->save.cs;
3420 svm->vmcb->save.ss = hsave->save.ss;
3421 svm->vmcb->save.ds = hsave->save.ds;
3422 svm->vmcb->save.gdtr = hsave->save.gdtr;
3423 svm->vmcb->save.idtr = hsave->save.idtr;
3424 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
3425 svm_set_efer(&svm->vcpu, hsave->save.efer);
3426 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
3427 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
3428 if (npt_enabled) {
3429 svm->vmcb->save.cr3 = hsave->save.cr3;
3430 svm->vcpu.arch.cr3 = hsave->save.cr3;
3431 } else {
3432 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
3434 kvm_rax_write(&svm->vcpu, hsave->save.rax);
3435 kvm_rsp_write(&svm->vcpu, hsave->save.rsp);
3436 kvm_rip_write(&svm->vcpu, hsave->save.rip);
3437 svm->vmcb->save.dr7 = 0;
3438 svm->vmcb->save.cpl = 0;
3439 svm->vmcb->control.exit_int_info = 0;
3441 mark_all_dirty(svm->vmcb);
3443 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3445 nested_svm_uninit_mmu_context(&svm->vcpu);
3446 kvm_mmu_reset_context(&svm->vcpu);
3447 kvm_mmu_load(&svm->vcpu);
3450 * Drop what we picked up for L2 via svm_complete_interrupts() so it
3451 * doesn't end up in L1.
3453 svm->vcpu.arch.nmi_injected = false;
3454 kvm_clear_exception_queue(&svm->vcpu);
3455 kvm_clear_interrupt_queue(&svm->vcpu);
3457 return 0;
3460 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
3463 * This function merges the msr permission bitmaps of kvm and the
3464 * nested vmcb. It is optimized in that it only merges the parts where
3465 * the kvm msr permission bitmap may contain zero bits
3467 int i;
3469 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3470 return true;
3472 for (i = 0; i < MSRPM_OFFSETS; i++) {
3473 u32 value, p;
3474 u64 offset;
3476 if (msrpm_offsets[i] == 0xffffffff)
3477 break;
3479 p = msrpm_offsets[i];
3480 offset = svm->nested.vmcb_msrpm + (p * 4);
3482 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
3483 return false;
3485 svm->nested.msrpm[p] = svm->msrpm[p] | value;
3488 svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
3490 return true;
3493 static bool nested_vmcb_checks(struct vmcb *vmcb)
3495 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
3496 return false;
3498 if (vmcb->control.asid == 0)
3499 return false;
3501 if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
3502 !npt_enabled)
3503 return false;
3505 return true;
3508 static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
3509 struct vmcb *nested_vmcb, struct kvm_host_map *map)
3511 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
3512 svm->vcpu.arch.hflags |= HF_HIF_MASK;
3513 else
3514 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
3516 if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
3517 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
3518 nested_svm_init_mmu_context(&svm->vcpu);
3521 /* Load the nested guest state */
3522 svm->vmcb->save.es = nested_vmcb->save.es;
3523 svm->vmcb->save.cs = nested_vmcb->save.cs;
3524 svm->vmcb->save.ss = nested_vmcb->save.ss;
3525 svm->vmcb->save.ds = nested_vmcb->save.ds;
3526 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3527 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3528 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3529 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3530 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3531 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3532 if (npt_enabled) {
3533 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3534 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3535 } else
3536 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3538 /* Guest paging mode is active - reset mmu */
3539 kvm_mmu_reset_context(&svm->vcpu);
3541 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3542 kvm_rax_write(&svm->vcpu, nested_vmcb->save.rax);
3543 kvm_rsp_write(&svm->vcpu, nested_vmcb->save.rsp);
3544 kvm_rip_write(&svm->vcpu, nested_vmcb->save.rip);
3546 /* In case we don't even reach vcpu_run, the fields are not updated */
3547 svm->vmcb->save.rax = nested_vmcb->save.rax;
3548 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3549 svm->vmcb->save.rip = nested_vmcb->save.rip;
3550 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3551 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3552 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3554 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3555 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
3557 /* cache intercepts */
3558 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
3559 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
3560 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3561 svm->nested.intercept = nested_vmcb->control.intercept;
3563 svm_flush_tlb(&svm->vcpu, true);
3564 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3565 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3566 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3567 else
3568 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3570 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3571 /* We only want the cr8 intercept bits of the guest */
3572 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3573 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3576 /* We don't want to see VMMCALLs from a nested guest */
3577 clr_intercept(svm, INTERCEPT_VMMCALL);
3579 svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
3580 svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
3582 svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3583 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3584 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3585 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3586 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3588 svm->vmcb->control.pause_filter_count =
3589 nested_vmcb->control.pause_filter_count;
3590 svm->vmcb->control.pause_filter_thresh =
3591 nested_vmcb->control.pause_filter_thresh;
3593 kvm_vcpu_unmap(&svm->vcpu, map, true);
3595 /* Enter Guest-Mode */
3596 enter_guest_mode(&svm->vcpu);
3599 * Merge guest and host intercepts - must be called with vcpu in
3600 * guest-mode to take affect here
3602 recalc_intercepts(svm);
3604 svm->nested.vmcb = vmcb_gpa;
3606 enable_gif(svm);
3608 mark_all_dirty(svm->vmcb);
3611 static int nested_svm_vmrun(struct vcpu_svm *svm)
3613 int ret;
3614 struct vmcb *nested_vmcb;
3615 struct vmcb *hsave = svm->nested.hsave;
3616 struct vmcb *vmcb = svm->vmcb;
3617 struct kvm_host_map map;
3618 u64 vmcb_gpa;
3620 vmcb_gpa = svm->vmcb->save.rax;
3622 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb_gpa), &map);
3623 if (ret == -EINVAL) {
3624 kvm_inject_gp(&svm->vcpu, 0);
3625 return 1;
3626 } else if (ret) {
3627 return kvm_skip_emulated_instruction(&svm->vcpu);
3630 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3632 nested_vmcb = map.hva;
3634 if (!nested_vmcb_checks(nested_vmcb)) {
3635 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
3636 nested_vmcb->control.exit_code_hi = 0;
3637 nested_vmcb->control.exit_info_1 = 0;
3638 nested_vmcb->control.exit_info_2 = 0;
3640 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3642 return ret;
3645 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3646 nested_vmcb->save.rip,
3647 nested_vmcb->control.int_ctl,
3648 nested_vmcb->control.event_inj,
3649 nested_vmcb->control.nested_ctl);
3651 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3652 nested_vmcb->control.intercept_cr >> 16,
3653 nested_vmcb->control.intercept_exceptions,
3654 nested_vmcb->control.intercept);
3656 /* Clear internal status */
3657 kvm_clear_exception_queue(&svm->vcpu);
3658 kvm_clear_interrupt_queue(&svm->vcpu);
3661 * Save the old vmcb, so we don't need to pick what we save, but can
3662 * restore everything when a VMEXIT occurs
3664 hsave->save.es = vmcb->save.es;
3665 hsave->save.cs = vmcb->save.cs;
3666 hsave->save.ss = vmcb->save.ss;
3667 hsave->save.ds = vmcb->save.ds;
3668 hsave->save.gdtr = vmcb->save.gdtr;
3669 hsave->save.idtr = vmcb->save.idtr;
3670 hsave->save.efer = svm->vcpu.arch.efer;
3671 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
3672 hsave->save.cr4 = svm->vcpu.arch.cr4;
3673 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3674 hsave->save.rip = kvm_rip_read(&svm->vcpu);
3675 hsave->save.rsp = vmcb->save.rsp;
3676 hsave->save.rax = vmcb->save.rax;
3677 if (npt_enabled)
3678 hsave->save.cr3 = vmcb->save.cr3;
3679 else
3680 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
3682 copy_vmcb_control_area(hsave, vmcb);
3684 enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, &map);
3686 if (!nested_svm_vmrun_msrpm(svm)) {
3687 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
3688 svm->vmcb->control.exit_code_hi = 0;
3689 svm->vmcb->control.exit_info_1 = 0;
3690 svm->vmcb->control.exit_info_2 = 0;
3692 nested_svm_vmexit(svm);
3695 return ret;
3698 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3700 to_vmcb->save.fs = from_vmcb->save.fs;
3701 to_vmcb->save.gs = from_vmcb->save.gs;
3702 to_vmcb->save.tr = from_vmcb->save.tr;
3703 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3704 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3705 to_vmcb->save.star = from_vmcb->save.star;
3706 to_vmcb->save.lstar = from_vmcb->save.lstar;
3707 to_vmcb->save.cstar = from_vmcb->save.cstar;
3708 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3709 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3710 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3711 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3714 static int vmload_interception(struct vcpu_svm *svm)
3716 struct vmcb *nested_vmcb;
3717 struct kvm_host_map map;
3718 int ret;
3720 if (nested_svm_check_permissions(svm))
3721 return 1;
3723 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
3724 if (ret) {
3725 if (ret == -EINVAL)
3726 kvm_inject_gp(&svm->vcpu, 0);
3727 return 1;
3730 nested_vmcb = map.hva;
3732 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3734 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3735 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3737 return ret;
3740 static int vmsave_interception(struct vcpu_svm *svm)
3742 struct vmcb *nested_vmcb;
3743 struct kvm_host_map map;
3744 int ret;
3746 if (nested_svm_check_permissions(svm))
3747 return 1;
3749 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
3750 if (ret) {
3751 if (ret == -EINVAL)
3752 kvm_inject_gp(&svm->vcpu, 0);
3753 return 1;
3756 nested_vmcb = map.hva;
3758 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3760 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3761 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3763 return ret;
3766 static int vmrun_interception(struct vcpu_svm *svm)
3768 if (nested_svm_check_permissions(svm))
3769 return 1;
3771 return nested_svm_vmrun(svm);
3774 static int stgi_interception(struct vcpu_svm *svm)
3776 int ret;
3778 if (nested_svm_check_permissions(svm))
3779 return 1;
3782 * If VGIF is enabled, the STGI intercept is only added to
3783 * detect the opening of the SMI/NMI window; remove it now.
3785 if (vgif_enabled(svm))
3786 clr_intercept(svm, INTERCEPT_STGI);
3788 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3789 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3791 enable_gif(svm);
3793 return ret;
3796 static int clgi_interception(struct vcpu_svm *svm)
3798 int ret;
3800 if (nested_svm_check_permissions(svm))
3801 return 1;
3803 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3805 disable_gif(svm);
3807 /* After a CLGI no interrupts should come */
3808 if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3809 svm_clear_vintr(svm);
3810 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3811 mark_dirty(svm->vmcb, VMCB_INTR);
3814 return ret;
3817 static int invlpga_interception(struct vcpu_svm *svm)
3819 struct kvm_vcpu *vcpu = &svm->vcpu;
3821 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
3822 kvm_rax_read(&svm->vcpu));
3824 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3825 kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
3827 return kvm_skip_emulated_instruction(&svm->vcpu);
3830 static int skinit_interception(struct vcpu_svm *svm)
3832 trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
3834 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3835 return 1;
3838 static int wbinvd_interception(struct vcpu_svm *svm)
3840 return kvm_emulate_wbinvd(&svm->vcpu);
3843 static int xsetbv_interception(struct vcpu_svm *svm)
3845 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3846 u32 index = kvm_rcx_read(&svm->vcpu);
3848 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3849 return kvm_skip_emulated_instruction(&svm->vcpu);
3852 return 1;
3855 static int rdpru_interception(struct vcpu_svm *svm)
3857 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3858 return 1;
3861 static int task_switch_interception(struct vcpu_svm *svm)
3863 u16 tss_selector;
3864 int reason;
3865 int int_type = svm->vmcb->control.exit_int_info &
3866 SVM_EXITINTINFO_TYPE_MASK;
3867 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3868 uint32_t type =
3869 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3870 uint32_t idt_v =
3871 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3872 bool has_error_code = false;
3873 u32 error_code = 0;
3875 tss_selector = (u16)svm->vmcb->control.exit_info_1;
3877 if (svm->vmcb->control.exit_info_2 &
3878 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3879 reason = TASK_SWITCH_IRET;
3880 else if (svm->vmcb->control.exit_info_2 &
3881 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3882 reason = TASK_SWITCH_JMP;
3883 else if (idt_v)
3884 reason = TASK_SWITCH_GATE;
3885 else
3886 reason = TASK_SWITCH_CALL;
3888 if (reason == TASK_SWITCH_GATE) {
3889 switch (type) {
3890 case SVM_EXITINTINFO_TYPE_NMI:
3891 svm->vcpu.arch.nmi_injected = false;
3892 break;
3893 case SVM_EXITINTINFO_TYPE_EXEPT:
3894 if (svm->vmcb->control.exit_info_2 &
3895 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3896 has_error_code = true;
3897 error_code =
3898 (u32)svm->vmcb->control.exit_info_2;
3900 kvm_clear_exception_queue(&svm->vcpu);
3901 break;
3902 case SVM_EXITINTINFO_TYPE_INTR:
3903 kvm_clear_interrupt_queue(&svm->vcpu);
3904 break;
3905 default:
3906 break;
3910 if (reason != TASK_SWITCH_GATE ||
3911 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3912 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3913 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
3914 if (!skip_emulated_instruction(&svm->vcpu))
3915 return 0;
3918 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3919 int_vec = -1;
3921 return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3922 has_error_code, error_code);
3925 static int cpuid_interception(struct vcpu_svm *svm)
3927 return kvm_emulate_cpuid(&svm->vcpu);
3930 static int iret_interception(struct vcpu_svm *svm)
3932 ++svm->vcpu.stat.nmi_window_exits;
3933 clr_intercept(svm, INTERCEPT_IRET);
3934 svm->vcpu.arch.hflags |= HF_IRET_MASK;
3935 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3936 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3937 return 1;
3940 static int invlpg_interception(struct vcpu_svm *svm)
3942 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3943 return kvm_emulate_instruction(&svm->vcpu, 0);
3945 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3946 return kvm_skip_emulated_instruction(&svm->vcpu);
3949 static int emulate_on_interception(struct vcpu_svm *svm)
3951 return kvm_emulate_instruction(&svm->vcpu, 0);
3954 static int rsm_interception(struct vcpu_svm *svm)
3956 return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
3959 static int rdpmc_interception(struct vcpu_svm *svm)
3961 int err;
3963 if (!nrips)
3964 return emulate_on_interception(svm);
3966 err = kvm_rdpmc(&svm->vcpu);
3967 return kvm_complete_insn_gp(&svm->vcpu, err);
3970 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3971 unsigned long val)
3973 unsigned long cr0 = svm->vcpu.arch.cr0;
3974 bool ret = false;
3975 u64 intercept;
3977 intercept = svm->nested.intercept;
3979 if (!is_guest_mode(&svm->vcpu) ||
3980 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3981 return false;
3983 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3984 val &= ~SVM_CR0_SELECTIVE_MASK;
3986 if (cr0 ^ val) {
3987 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3988 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3991 return ret;
3994 #define CR_VALID (1ULL << 63)
3996 static int cr_interception(struct vcpu_svm *svm)
3998 int reg, cr;
3999 unsigned long val;
4000 int err;
4002 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
4003 return emulate_on_interception(svm);
4005 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
4006 return emulate_on_interception(svm);
4008 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4009 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
4010 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
4011 else
4012 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
4014 err = 0;
4015 if (cr >= 16) { /* mov to cr */
4016 cr -= 16;
4017 val = kvm_register_read(&svm->vcpu, reg);
4018 switch (cr) {
4019 case 0:
4020 if (!check_selective_cr0_intercepted(svm, val))
4021 err = kvm_set_cr0(&svm->vcpu, val);
4022 else
4023 return 1;
4025 break;
4026 case 3:
4027 err = kvm_set_cr3(&svm->vcpu, val);
4028 break;
4029 case 4:
4030 err = kvm_set_cr4(&svm->vcpu, val);
4031 break;
4032 case 8:
4033 err = kvm_set_cr8(&svm->vcpu, val);
4034 break;
4035 default:
4036 WARN(1, "unhandled write to CR%d", cr);
4037 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4038 return 1;
4040 } else { /* mov from cr */
4041 switch (cr) {
4042 case 0:
4043 val = kvm_read_cr0(&svm->vcpu);
4044 break;
4045 case 2:
4046 val = svm->vcpu.arch.cr2;
4047 break;
4048 case 3:
4049 val = kvm_read_cr3(&svm->vcpu);
4050 break;
4051 case 4:
4052 val = kvm_read_cr4(&svm->vcpu);
4053 break;
4054 case 8:
4055 val = kvm_get_cr8(&svm->vcpu);
4056 break;
4057 default:
4058 WARN(1, "unhandled read from CR%d", cr);
4059 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4060 return 1;
4062 kvm_register_write(&svm->vcpu, reg, val);
4064 return kvm_complete_insn_gp(&svm->vcpu, err);
4067 static int dr_interception(struct vcpu_svm *svm)
4069 int reg, dr;
4070 unsigned long val;
4072 if (svm->vcpu.guest_debug == 0) {
4074 * No more DR vmexits; force a reload of the debug registers
4075 * and reenter on this instruction. The next vmexit will
4076 * retrieve the full state of the debug registers.
4078 clr_dr_intercepts(svm);
4079 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4080 return 1;
4083 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
4084 return emulate_on_interception(svm);
4086 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4087 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
4089 if (dr >= 16) { /* mov to DRn */
4090 if (!kvm_require_dr(&svm->vcpu, dr - 16))
4091 return 1;
4092 val = kvm_register_read(&svm->vcpu, reg);
4093 kvm_set_dr(&svm->vcpu, dr - 16, val);
4094 } else {
4095 if (!kvm_require_dr(&svm->vcpu, dr))
4096 return 1;
4097 kvm_get_dr(&svm->vcpu, dr, &val);
4098 kvm_register_write(&svm->vcpu, reg, val);
4101 return kvm_skip_emulated_instruction(&svm->vcpu);
4104 static int cr8_write_interception(struct vcpu_svm *svm)
4106 struct kvm_run *kvm_run = svm->vcpu.run;
4107 int r;
4109 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
4110 /* instruction emulation calls kvm_set_cr8() */
4111 r = cr_interception(svm);
4112 if (lapic_in_kernel(&svm->vcpu))
4113 return r;
4114 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
4115 return r;
4116 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
4117 return 0;
4120 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
4122 msr->data = 0;
4124 switch (msr->index) {
4125 case MSR_F10H_DECFG:
4126 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
4127 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
4128 break;
4129 default:
4130 return 1;
4133 return 0;
4136 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4138 struct vcpu_svm *svm = to_svm(vcpu);
4140 switch (msr_info->index) {
4141 case MSR_STAR:
4142 msr_info->data = svm->vmcb->save.star;
4143 break;
4144 #ifdef CONFIG_X86_64
4145 case MSR_LSTAR:
4146 msr_info->data = svm->vmcb->save.lstar;
4147 break;
4148 case MSR_CSTAR:
4149 msr_info->data = svm->vmcb->save.cstar;
4150 break;
4151 case MSR_KERNEL_GS_BASE:
4152 msr_info->data = svm->vmcb->save.kernel_gs_base;
4153 break;
4154 case MSR_SYSCALL_MASK:
4155 msr_info->data = svm->vmcb->save.sfmask;
4156 break;
4157 #endif
4158 case MSR_IA32_SYSENTER_CS:
4159 msr_info->data = svm->vmcb->save.sysenter_cs;
4160 break;
4161 case MSR_IA32_SYSENTER_EIP:
4162 msr_info->data = svm->sysenter_eip;
4163 break;
4164 case MSR_IA32_SYSENTER_ESP:
4165 msr_info->data = svm->sysenter_esp;
4166 break;
4167 case MSR_TSC_AUX:
4168 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4169 return 1;
4170 msr_info->data = svm->tsc_aux;
4171 break;
4173 * Nobody will change the following 5 values in the VMCB so we can
4174 * safely return them on rdmsr. They will always be 0 until LBRV is
4175 * implemented.
4177 case MSR_IA32_DEBUGCTLMSR:
4178 msr_info->data = svm->vmcb->save.dbgctl;
4179 break;
4180 case MSR_IA32_LASTBRANCHFROMIP:
4181 msr_info->data = svm->vmcb->save.br_from;
4182 break;
4183 case MSR_IA32_LASTBRANCHTOIP:
4184 msr_info->data = svm->vmcb->save.br_to;
4185 break;
4186 case MSR_IA32_LASTINTFROMIP:
4187 msr_info->data = svm->vmcb->save.last_excp_from;
4188 break;
4189 case MSR_IA32_LASTINTTOIP:
4190 msr_info->data = svm->vmcb->save.last_excp_to;
4191 break;
4192 case MSR_VM_HSAVE_PA:
4193 msr_info->data = svm->nested.hsave_msr;
4194 break;
4195 case MSR_VM_CR:
4196 msr_info->data = svm->nested.vm_cr_msr;
4197 break;
4198 case MSR_IA32_SPEC_CTRL:
4199 if (!msr_info->host_initiated &&
4200 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4201 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4202 return 1;
4204 msr_info->data = svm->spec_ctrl;
4205 break;
4206 case MSR_AMD64_VIRT_SPEC_CTRL:
4207 if (!msr_info->host_initiated &&
4208 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4209 return 1;
4211 msr_info->data = svm->virt_spec_ctrl;
4212 break;
4213 case MSR_F15H_IC_CFG: {
4215 int family, model;
4217 family = guest_cpuid_family(vcpu);
4218 model = guest_cpuid_model(vcpu);
4220 if (family < 0 || model < 0)
4221 return kvm_get_msr_common(vcpu, msr_info);
4223 msr_info->data = 0;
4225 if (family == 0x15 &&
4226 (model >= 0x2 && model < 0x20))
4227 msr_info->data = 0x1E;
4229 break;
4230 case MSR_F10H_DECFG:
4231 msr_info->data = svm->msr_decfg;
4232 break;
4233 default:
4234 return kvm_get_msr_common(vcpu, msr_info);
4236 return 0;
4239 static int rdmsr_interception(struct vcpu_svm *svm)
4241 return kvm_emulate_rdmsr(&svm->vcpu);
4244 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
4246 struct vcpu_svm *svm = to_svm(vcpu);
4247 int svm_dis, chg_mask;
4249 if (data & ~SVM_VM_CR_VALID_MASK)
4250 return 1;
4252 chg_mask = SVM_VM_CR_VALID_MASK;
4254 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
4255 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
4257 svm->nested.vm_cr_msr &= ~chg_mask;
4258 svm->nested.vm_cr_msr |= (data & chg_mask);
4260 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
4262 /* check for svm_disable while efer.svme is set */
4263 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
4264 return 1;
4266 return 0;
4269 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
4271 struct vcpu_svm *svm = to_svm(vcpu);
4273 u32 ecx = msr->index;
4274 u64 data = msr->data;
4275 switch (ecx) {
4276 case MSR_IA32_CR_PAT:
4277 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
4278 return 1;
4279 vcpu->arch.pat = data;
4280 svm->vmcb->save.g_pat = data;
4281 mark_dirty(svm->vmcb, VMCB_NPT);
4282 break;
4283 case MSR_IA32_SPEC_CTRL:
4284 if (!msr->host_initiated &&
4285 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4286 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4287 return 1;
4289 if (data & ~kvm_spec_ctrl_valid_bits(vcpu))
4290 return 1;
4292 svm->spec_ctrl = data;
4293 if (!data)
4294 break;
4297 * For non-nested:
4298 * When it's written (to non-zero) for the first time, pass
4299 * it through.
4301 * For nested:
4302 * The handling of the MSR bitmap for L2 guests is done in
4303 * nested_svm_vmrun_msrpm.
4304 * We update the L1 MSR bit as well since it will end up
4305 * touching the MSR anyway now.
4307 set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
4308 break;
4309 case MSR_IA32_PRED_CMD:
4310 if (!msr->host_initiated &&
4311 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
4312 return 1;
4314 if (data & ~PRED_CMD_IBPB)
4315 return 1;
4316 if (!boot_cpu_has(X86_FEATURE_AMD_IBPB))
4317 return 1;
4318 if (!data)
4319 break;
4321 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4322 set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
4323 break;
4324 case MSR_AMD64_VIRT_SPEC_CTRL:
4325 if (!msr->host_initiated &&
4326 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4327 return 1;
4329 if (data & ~SPEC_CTRL_SSBD)
4330 return 1;
4332 svm->virt_spec_ctrl = data;
4333 break;
4334 case MSR_STAR:
4335 svm->vmcb->save.star = data;
4336 break;
4337 #ifdef CONFIG_X86_64
4338 case MSR_LSTAR:
4339 svm->vmcb->save.lstar = data;
4340 break;
4341 case MSR_CSTAR:
4342 svm->vmcb->save.cstar = data;
4343 break;
4344 case MSR_KERNEL_GS_BASE:
4345 svm->vmcb->save.kernel_gs_base = data;
4346 break;
4347 case MSR_SYSCALL_MASK:
4348 svm->vmcb->save.sfmask = data;
4349 break;
4350 #endif
4351 case MSR_IA32_SYSENTER_CS:
4352 svm->vmcb->save.sysenter_cs = data;
4353 break;
4354 case MSR_IA32_SYSENTER_EIP:
4355 svm->sysenter_eip = data;
4356 svm->vmcb->save.sysenter_eip = data;
4357 break;
4358 case MSR_IA32_SYSENTER_ESP:
4359 svm->sysenter_esp = data;
4360 svm->vmcb->save.sysenter_esp = data;
4361 break;
4362 case MSR_TSC_AUX:
4363 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4364 return 1;
4367 * This is rare, so we update the MSR here instead of using
4368 * direct_access_msrs. Doing that would require a rdmsr in
4369 * svm_vcpu_put.
4371 svm->tsc_aux = data;
4372 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
4373 break;
4374 case MSR_IA32_DEBUGCTLMSR:
4375 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
4376 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4377 __func__, data);
4378 break;
4380 if (data & DEBUGCTL_RESERVED_BITS)
4381 return 1;
4383 svm->vmcb->save.dbgctl = data;
4384 mark_dirty(svm->vmcb, VMCB_LBR);
4385 if (data & (1ULL<<0))
4386 svm_enable_lbrv(svm);
4387 else
4388 svm_disable_lbrv(svm);
4389 break;
4390 case MSR_VM_HSAVE_PA:
4391 svm->nested.hsave_msr = data;
4392 break;
4393 case MSR_VM_CR:
4394 return svm_set_vm_cr(vcpu, data);
4395 case MSR_VM_IGNNE:
4396 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
4397 break;
4398 case MSR_F10H_DECFG: {
4399 struct kvm_msr_entry msr_entry;
4401 msr_entry.index = msr->index;
4402 if (svm_get_msr_feature(&msr_entry))
4403 return 1;
4405 /* Check the supported bits */
4406 if (data & ~msr_entry.data)
4407 return 1;
4409 /* Don't allow the guest to change a bit, #GP */
4410 if (!msr->host_initiated && (data ^ msr_entry.data))
4411 return 1;
4413 svm->msr_decfg = data;
4414 break;
4416 case MSR_IA32_APICBASE:
4417 if (kvm_vcpu_apicv_active(vcpu))
4418 avic_update_vapic_bar(to_svm(vcpu), data);
4419 /* Fall through */
4420 default:
4421 return kvm_set_msr_common(vcpu, msr);
4423 return 0;
4426 static int wrmsr_interception(struct vcpu_svm *svm)
4428 return kvm_emulate_wrmsr(&svm->vcpu);
4431 static int msr_interception(struct vcpu_svm *svm)
4433 if (svm->vmcb->control.exit_info_1)
4434 return wrmsr_interception(svm);
4435 else
4436 return rdmsr_interception(svm);
4439 static int interrupt_window_interception(struct vcpu_svm *svm)
4441 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4442 svm_clear_vintr(svm);
4443 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
4444 mark_dirty(svm->vmcb, VMCB_INTR);
4445 ++svm->vcpu.stat.irq_window_exits;
4446 return 1;
4449 static int pause_interception(struct vcpu_svm *svm)
4451 struct kvm_vcpu *vcpu = &svm->vcpu;
4452 bool in_kernel = (svm_get_cpl(vcpu) == 0);
4454 if (pause_filter_thresh)
4455 grow_ple_window(vcpu);
4457 kvm_vcpu_on_spin(vcpu, in_kernel);
4458 return 1;
4461 static int nop_interception(struct vcpu_svm *svm)
4463 return kvm_skip_emulated_instruction(&(svm->vcpu));
4466 static int monitor_interception(struct vcpu_svm *svm)
4468 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
4469 return nop_interception(svm);
4472 static int mwait_interception(struct vcpu_svm *svm)
4474 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
4475 return nop_interception(svm);
4478 enum avic_ipi_failure_cause {
4479 AVIC_IPI_FAILURE_INVALID_INT_TYPE,
4480 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
4481 AVIC_IPI_FAILURE_INVALID_TARGET,
4482 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
4485 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
4487 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
4488 u32 icrl = svm->vmcb->control.exit_info_1;
4489 u32 id = svm->vmcb->control.exit_info_2 >> 32;
4490 u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
4491 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4493 trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
4495 switch (id) {
4496 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
4498 * AVIC hardware handles the generation of
4499 * IPIs when the specified Message Type is Fixed
4500 * (also known as fixed delivery mode) and
4501 * the Trigger Mode is edge-triggered. The hardware
4502 * also supports self and broadcast delivery modes
4503 * specified via the Destination Shorthand(DSH)
4504 * field of the ICRL. Logical and physical APIC ID
4505 * formats are supported. All other IPI types cause
4506 * a #VMEXIT, which needs to emulated.
4508 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4509 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4510 break;
4511 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
4512 int i;
4513 struct kvm_vcpu *vcpu;
4514 struct kvm *kvm = svm->vcpu.kvm;
4515 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4518 * At this point, we expect that the AVIC HW has already
4519 * set the appropriate IRR bits on the valid target
4520 * vcpus. So, we just need to kick the appropriate vcpu.
4522 kvm_for_each_vcpu(i, vcpu, kvm) {
4523 bool m = kvm_apic_match_dest(vcpu, apic,
4524 icrl & APIC_SHORT_MASK,
4525 GET_APIC_DEST_FIELD(icrh),
4526 icrl & APIC_DEST_MASK);
4528 if (m && !avic_vcpu_is_running(vcpu))
4529 kvm_vcpu_wake_up(vcpu);
4531 break;
4533 case AVIC_IPI_FAILURE_INVALID_TARGET:
4534 WARN_ONCE(1, "Invalid IPI target: index=%u, vcpu=%d, icr=%#0x:%#0x\n",
4535 index, svm->vcpu.vcpu_id, icrh, icrl);
4536 break;
4537 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
4538 WARN_ONCE(1, "Invalid backing page\n");
4539 break;
4540 default:
4541 pr_err("Unknown IPI interception\n");
4544 return 1;
4547 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
4549 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4550 int index;
4551 u32 *logical_apic_id_table;
4552 int dlid = GET_APIC_LOGICAL_ID(ldr);
4554 if (!dlid)
4555 return NULL;
4557 if (flat) { /* flat */
4558 index = ffs(dlid) - 1;
4559 if (index > 7)
4560 return NULL;
4561 } else { /* cluster */
4562 int cluster = (dlid & 0xf0) >> 4;
4563 int apic = ffs(dlid & 0x0f) - 1;
4565 if ((apic < 0) || (apic > 7) ||
4566 (cluster >= 0xf))
4567 return NULL;
4568 index = (cluster << 2) + apic;
4571 logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
4573 return &logical_apic_id_table[index];
4576 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
4578 bool flat;
4579 u32 *entry, new_entry;
4581 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
4582 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
4583 if (!entry)
4584 return -EINVAL;
4586 new_entry = READ_ONCE(*entry);
4587 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
4588 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
4589 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4590 WRITE_ONCE(*entry, new_entry);
4592 return 0;
4595 static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
4597 struct vcpu_svm *svm = to_svm(vcpu);
4598 bool flat = svm->dfr_reg == APIC_DFR_FLAT;
4599 u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
4601 if (entry)
4602 clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
4605 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
4607 int ret = 0;
4608 struct vcpu_svm *svm = to_svm(vcpu);
4609 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
4610 u32 id = kvm_xapic_id(vcpu->arch.apic);
4612 if (ldr == svm->ldr_reg)
4613 return 0;
4615 avic_invalidate_logical_id_entry(vcpu);
4617 if (ldr)
4618 ret = avic_ldr_write(vcpu, id, ldr);
4620 if (!ret)
4621 svm->ldr_reg = ldr;
4623 return ret;
4626 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
4628 u64 *old, *new;
4629 struct vcpu_svm *svm = to_svm(vcpu);
4630 u32 id = kvm_xapic_id(vcpu->arch.apic);
4632 if (vcpu->vcpu_id == id)
4633 return 0;
4635 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
4636 new = avic_get_physical_id_entry(vcpu, id);
4637 if (!new || !old)
4638 return 1;
4640 /* We need to move physical_id_entry to new offset */
4641 *new = *old;
4642 *old = 0ULL;
4643 to_svm(vcpu)->avic_physical_id_cache = new;
4646 * Also update the guest physical APIC ID in the logical
4647 * APIC ID table entry if already setup the LDR.
4649 if (svm->ldr_reg)
4650 avic_handle_ldr_update(vcpu);
4652 return 0;
4655 static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4657 struct vcpu_svm *svm = to_svm(vcpu);
4658 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4660 if (svm->dfr_reg == dfr)
4661 return;
4663 avic_invalidate_logical_id_entry(vcpu);
4664 svm->dfr_reg = dfr;
4667 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4669 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4670 u32 offset = svm->vmcb->control.exit_info_1 &
4671 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4673 switch (offset) {
4674 case APIC_ID:
4675 if (avic_handle_apic_id_update(&svm->vcpu))
4676 return 0;
4677 break;
4678 case APIC_LDR:
4679 if (avic_handle_ldr_update(&svm->vcpu))
4680 return 0;
4681 break;
4682 case APIC_DFR:
4683 avic_handle_dfr_update(&svm->vcpu);
4684 break;
4685 default:
4686 break;
4689 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4691 return 1;
4694 static bool is_avic_unaccelerated_access_trap(u32 offset)
4696 bool ret = false;
4698 switch (offset) {
4699 case APIC_ID:
4700 case APIC_EOI:
4701 case APIC_RRR:
4702 case APIC_LDR:
4703 case APIC_DFR:
4704 case APIC_SPIV:
4705 case APIC_ESR:
4706 case APIC_ICR:
4707 case APIC_LVTT:
4708 case APIC_LVTTHMR:
4709 case APIC_LVTPC:
4710 case APIC_LVT0:
4711 case APIC_LVT1:
4712 case APIC_LVTERR:
4713 case APIC_TMICT:
4714 case APIC_TDCR:
4715 ret = true;
4716 break;
4717 default:
4718 break;
4720 return ret;
4723 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4725 int ret = 0;
4726 u32 offset = svm->vmcb->control.exit_info_1 &
4727 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4728 u32 vector = svm->vmcb->control.exit_info_2 &
4729 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4730 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4731 AVIC_UNACCEL_ACCESS_WRITE_MASK;
4732 bool trap = is_avic_unaccelerated_access_trap(offset);
4734 trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4735 trap, write, vector);
4736 if (trap) {
4737 /* Handling Trap */
4738 WARN_ONCE(!write, "svm: Handling trap read.\n");
4739 ret = avic_unaccel_trap_write(svm);
4740 } else {
4741 /* Handling Fault */
4742 ret = kvm_emulate_instruction(&svm->vcpu, 0);
4745 return ret;
4748 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4749 [SVM_EXIT_READ_CR0] = cr_interception,
4750 [SVM_EXIT_READ_CR3] = cr_interception,
4751 [SVM_EXIT_READ_CR4] = cr_interception,
4752 [SVM_EXIT_READ_CR8] = cr_interception,
4753 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
4754 [SVM_EXIT_WRITE_CR0] = cr_interception,
4755 [SVM_EXIT_WRITE_CR3] = cr_interception,
4756 [SVM_EXIT_WRITE_CR4] = cr_interception,
4757 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
4758 [SVM_EXIT_READ_DR0] = dr_interception,
4759 [SVM_EXIT_READ_DR1] = dr_interception,
4760 [SVM_EXIT_READ_DR2] = dr_interception,
4761 [SVM_EXIT_READ_DR3] = dr_interception,
4762 [SVM_EXIT_READ_DR4] = dr_interception,
4763 [SVM_EXIT_READ_DR5] = dr_interception,
4764 [SVM_EXIT_READ_DR6] = dr_interception,
4765 [SVM_EXIT_READ_DR7] = dr_interception,
4766 [SVM_EXIT_WRITE_DR0] = dr_interception,
4767 [SVM_EXIT_WRITE_DR1] = dr_interception,
4768 [SVM_EXIT_WRITE_DR2] = dr_interception,
4769 [SVM_EXIT_WRITE_DR3] = dr_interception,
4770 [SVM_EXIT_WRITE_DR4] = dr_interception,
4771 [SVM_EXIT_WRITE_DR5] = dr_interception,
4772 [SVM_EXIT_WRITE_DR6] = dr_interception,
4773 [SVM_EXIT_WRITE_DR7] = dr_interception,
4774 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
4775 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
4776 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
4777 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
4778 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
4779 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
4780 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
4781 [SVM_EXIT_INTR] = intr_interception,
4782 [SVM_EXIT_NMI] = nmi_interception,
4783 [SVM_EXIT_SMI] = nop_on_interception,
4784 [SVM_EXIT_INIT] = nop_on_interception,
4785 [SVM_EXIT_VINTR] = interrupt_window_interception,
4786 [SVM_EXIT_RDPMC] = rdpmc_interception,
4787 [SVM_EXIT_CPUID] = cpuid_interception,
4788 [SVM_EXIT_IRET] = iret_interception,
4789 [SVM_EXIT_INVD] = emulate_on_interception,
4790 [SVM_EXIT_PAUSE] = pause_interception,
4791 [SVM_EXIT_HLT] = halt_interception,
4792 [SVM_EXIT_INVLPG] = invlpg_interception,
4793 [SVM_EXIT_INVLPGA] = invlpga_interception,
4794 [SVM_EXIT_IOIO] = io_interception,
4795 [SVM_EXIT_MSR] = msr_interception,
4796 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
4797 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
4798 [SVM_EXIT_VMRUN] = vmrun_interception,
4799 [SVM_EXIT_VMMCALL] = vmmcall_interception,
4800 [SVM_EXIT_VMLOAD] = vmload_interception,
4801 [SVM_EXIT_VMSAVE] = vmsave_interception,
4802 [SVM_EXIT_STGI] = stgi_interception,
4803 [SVM_EXIT_CLGI] = clgi_interception,
4804 [SVM_EXIT_SKINIT] = skinit_interception,
4805 [SVM_EXIT_WBINVD] = wbinvd_interception,
4806 [SVM_EXIT_MONITOR] = monitor_interception,
4807 [SVM_EXIT_MWAIT] = mwait_interception,
4808 [SVM_EXIT_XSETBV] = xsetbv_interception,
4809 [SVM_EXIT_RDPRU] = rdpru_interception,
4810 [SVM_EXIT_NPF] = npf_interception,
4811 [SVM_EXIT_RSM] = rsm_interception,
4812 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
4813 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
4816 static void dump_vmcb(struct kvm_vcpu *vcpu)
4818 struct vcpu_svm *svm = to_svm(vcpu);
4819 struct vmcb_control_area *control = &svm->vmcb->control;
4820 struct vmcb_save_area *save = &svm->vmcb->save;
4822 if (!dump_invalid_vmcb) {
4823 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
4824 return;
4827 pr_err("VMCB Control Area:\n");
4828 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4829 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4830 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4831 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4832 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4833 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4834 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4835 pr_err("%-20s%d\n", "pause filter threshold:",
4836 control->pause_filter_thresh);
4837 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4838 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4839 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4840 pr_err("%-20s%d\n", "asid:", control->asid);
4841 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4842 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4843 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4844 pr_err("%-20s%08x\n", "int_state:", control->int_state);
4845 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4846 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4847 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4848 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4849 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4850 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4851 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4852 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4853 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4854 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4855 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4856 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4857 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4858 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4859 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4860 pr_err("VMCB State Save Area:\n");
4861 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4862 "es:",
4863 save->es.selector, save->es.attrib,
4864 save->es.limit, save->es.base);
4865 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4866 "cs:",
4867 save->cs.selector, save->cs.attrib,
4868 save->cs.limit, save->cs.base);
4869 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4870 "ss:",
4871 save->ss.selector, save->ss.attrib,
4872 save->ss.limit, save->ss.base);
4873 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4874 "ds:",
4875 save->ds.selector, save->ds.attrib,
4876 save->ds.limit, save->ds.base);
4877 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4878 "fs:",
4879 save->fs.selector, save->fs.attrib,
4880 save->fs.limit, save->fs.base);
4881 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4882 "gs:",
4883 save->gs.selector, save->gs.attrib,
4884 save->gs.limit, save->gs.base);
4885 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4886 "gdtr:",
4887 save->gdtr.selector, save->gdtr.attrib,
4888 save->gdtr.limit, save->gdtr.base);
4889 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4890 "ldtr:",
4891 save->ldtr.selector, save->ldtr.attrib,
4892 save->ldtr.limit, save->ldtr.base);
4893 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4894 "idtr:",
4895 save->idtr.selector, save->idtr.attrib,
4896 save->idtr.limit, save->idtr.base);
4897 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4898 "tr:",
4899 save->tr.selector, save->tr.attrib,
4900 save->tr.limit, save->tr.base);
4901 pr_err("cpl: %d efer: %016llx\n",
4902 save->cpl, save->efer);
4903 pr_err("%-15s %016llx %-13s %016llx\n",
4904 "cr0:", save->cr0, "cr2:", save->cr2);
4905 pr_err("%-15s %016llx %-13s %016llx\n",
4906 "cr3:", save->cr3, "cr4:", save->cr4);
4907 pr_err("%-15s %016llx %-13s %016llx\n",
4908 "dr6:", save->dr6, "dr7:", save->dr7);
4909 pr_err("%-15s %016llx %-13s %016llx\n",
4910 "rip:", save->rip, "rflags:", save->rflags);
4911 pr_err("%-15s %016llx %-13s %016llx\n",
4912 "rsp:", save->rsp, "rax:", save->rax);
4913 pr_err("%-15s %016llx %-13s %016llx\n",
4914 "star:", save->star, "lstar:", save->lstar);
4915 pr_err("%-15s %016llx %-13s %016llx\n",
4916 "cstar:", save->cstar, "sfmask:", save->sfmask);
4917 pr_err("%-15s %016llx %-13s %016llx\n",
4918 "kernel_gs_base:", save->kernel_gs_base,
4919 "sysenter_cs:", save->sysenter_cs);
4920 pr_err("%-15s %016llx %-13s %016llx\n",
4921 "sysenter_esp:", save->sysenter_esp,
4922 "sysenter_eip:", save->sysenter_eip);
4923 pr_err("%-15s %016llx %-13s %016llx\n",
4924 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4925 pr_err("%-15s %016llx %-13s %016llx\n",
4926 "br_from:", save->br_from, "br_to:", save->br_to);
4927 pr_err("%-15s %016llx %-13s %016llx\n",
4928 "excp_from:", save->last_excp_from,
4929 "excp_to:", save->last_excp_to);
4932 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4934 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4936 *info1 = control->exit_info_1;
4937 *info2 = control->exit_info_2;
4940 static int handle_exit(struct kvm_vcpu *vcpu,
4941 enum exit_fastpath_completion exit_fastpath)
4943 struct vcpu_svm *svm = to_svm(vcpu);
4944 struct kvm_run *kvm_run = vcpu->run;
4945 u32 exit_code = svm->vmcb->control.exit_code;
4947 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4949 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4950 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4951 if (npt_enabled)
4952 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4954 if (unlikely(svm->nested.exit_required)) {
4955 nested_svm_vmexit(svm);
4956 svm->nested.exit_required = false;
4958 return 1;
4961 if (is_guest_mode(vcpu)) {
4962 int vmexit;
4964 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4965 svm->vmcb->control.exit_info_1,
4966 svm->vmcb->control.exit_info_2,
4967 svm->vmcb->control.exit_int_info,
4968 svm->vmcb->control.exit_int_info_err,
4969 KVM_ISA_SVM);
4971 vmexit = nested_svm_exit_special(svm);
4973 if (vmexit == NESTED_EXIT_CONTINUE)
4974 vmexit = nested_svm_exit_handled(svm);
4976 if (vmexit == NESTED_EXIT_DONE)
4977 return 1;
4980 svm_complete_interrupts(svm);
4982 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4983 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4984 kvm_run->fail_entry.hardware_entry_failure_reason
4985 = svm->vmcb->control.exit_code;
4986 dump_vmcb(vcpu);
4987 return 0;
4990 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4991 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4992 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4993 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4994 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4995 "exit_code 0x%x\n",
4996 __func__, svm->vmcb->control.exit_int_info,
4997 exit_code);
4999 if (exit_fastpath == EXIT_FASTPATH_SKIP_EMUL_INS) {
5000 kvm_skip_emulated_instruction(vcpu);
5001 return 1;
5002 } else if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
5003 || !svm_exit_handlers[exit_code]) {
5004 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code);
5005 dump_vmcb(vcpu);
5006 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5007 vcpu->run->internal.suberror =
5008 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
5009 vcpu->run->internal.ndata = 1;
5010 vcpu->run->internal.data[0] = exit_code;
5011 return 0;
5014 #ifdef CONFIG_RETPOLINE
5015 if (exit_code == SVM_EXIT_MSR)
5016 return msr_interception(svm);
5017 else if (exit_code == SVM_EXIT_VINTR)
5018 return interrupt_window_interception(svm);
5019 else if (exit_code == SVM_EXIT_INTR)
5020 return intr_interception(svm);
5021 else if (exit_code == SVM_EXIT_HLT)
5022 return halt_interception(svm);
5023 else if (exit_code == SVM_EXIT_NPF)
5024 return npf_interception(svm);
5025 #endif
5026 return svm_exit_handlers[exit_code](svm);
5029 static void reload_tss(struct kvm_vcpu *vcpu)
5031 int cpu = raw_smp_processor_id();
5033 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5034 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
5035 load_TR_desc();
5038 static void pre_sev_run(struct vcpu_svm *svm, int cpu)
5040 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5041 int asid = sev_get_asid(svm->vcpu.kvm);
5043 /* Assign the asid allocated with this SEV guest */
5044 svm->vmcb->control.asid = asid;
5047 * Flush guest TLB:
5049 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
5050 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
5052 if (sd->sev_vmcbs[asid] == svm->vmcb &&
5053 svm->last_cpu == cpu)
5054 return;
5056 svm->last_cpu = cpu;
5057 sd->sev_vmcbs[asid] = svm->vmcb;
5058 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5059 mark_dirty(svm->vmcb, VMCB_ASID);
5062 static void pre_svm_run(struct vcpu_svm *svm)
5064 int cpu = raw_smp_processor_id();
5066 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5068 if (sev_guest(svm->vcpu.kvm))
5069 return pre_sev_run(svm, cpu);
5071 /* FIXME: handle wraparound of asid_generation */
5072 if (svm->asid_generation != sd->asid_generation)
5073 new_asid(svm, sd);
5076 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
5078 struct vcpu_svm *svm = to_svm(vcpu);
5080 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
5081 vcpu->arch.hflags |= HF_NMI_MASK;
5082 set_intercept(svm, INTERCEPT_IRET);
5083 ++vcpu->stat.nmi_injections;
5086 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
5088 struct vmcb_control_area *control;
5090 /* The following fields are ignored when AVIC is enabled */
5091 control = &svm->vmcb->control;
5092 control->int_vector = irq;
5093 control->int_ctl &= ~V_INTR_PRIO_MASK;
5094 control->int_ctl |= V_IRQ_MASK |
5095 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
5096 mark_dirty(svm->vmcb, VMCB_INTR);
5099 static void svm_set_irq(struct kvm_vcpu *vcpu)
5101 struct vcpu_svm *svm = to_svm(vcpu);
5103 BUG_ON(!(gif_set(svm)));
5105 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
5106 ++vcpu->stat.irq_injections;
5108 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
5109 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
5112 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
5114 return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
5117 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5119 struct vcpu_svm *svm = to_svm(vcpu);
5121 if (svm_nested_virtualize_tpr(vcpu))
5122 return;
5124 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5126 if (irr == -1)
5127 return;
5129 if (tpr >= irr)
5130 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5133 static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5135 return;
5138 static bool svm_get_enable_apicv(struct kvm *kvm)
5140 return avic && irqchip_split(kvm);
5143 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
5147 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5151 /* Note: Currently only used by Hyper-V. */
5152 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5154 struct vcpu_svm *svm = to_svm(vcpu);
5155 struct vmcb *vmcb = svm->vmcb;
5157 if (kvm_vcpu_apicv_active(vcpu))
5158 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
5159 else
5160 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
5161 mark_dirty(vmcb, VMCB_AVIC);
5164 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
5166 return;
5169 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
5171 kvm_lapic_set_irr(vec, vcpu->arch.apic);
5172 smp_mb__after_atomic();
5174 if (avic_vcpu_is_running(vcpu)) {
5175 int cpuid = vcpu->cpu;
5177 if (cpuid != get_cpu())
5178 wrmsrl(SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpuid));
5179 put_cpu();
5180 } else
5181 kvm_vcpu_wake_up(vcpu);
5184 static bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
5186 return false;
5189 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5191 unsigned long flags;
5192 struct amd_svm_iommu_ir *cur;
5194 spin_lock_irqsave(&svm->ir_list_lock, flags);
5195 list_for_each_entry(cur, &svm->ir_list, node) {
5196 if (cur->data != pi->ir_data)
5197 continue;
5198 list_del(&cur->node);
5199 kfree(cur);
5200 break;
5202 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5205 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5207 int ret = 0;
5208 unsigned long flags;
5209 struct amd_svm_iommu_ir *ir;
5212 * In some cases, the existing irte is updaed and re-set,
5213 * so we need to check here if it's already been * added
5214 * to the ir_list.
5216 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
5217 struct kvm *kvm = svm->vcpu.kvm;
5218 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
5219 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
5220 struct vcpu_svm *prev_svm;
5222 if (!prev_vcpu) {
5223 ret = -EINVAL;
5224 goto out;
5227 prev_svm = to_svm(prev_vcpu);
5228 svm_ir_list_del(prev_svm, pi);
5232 * Allocating new amd_iommu_pi_data, which will get
5233 * add to the per-vcpu ir_list.
5235 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
5236 if (!ir) {
5237 ret = -ENOMEM;
5238 goto out;
5240 ir->data = pi->ir_data;
5242 spin_lock_irqsave(&svm->ir_list_lock, flags);
5243 list_add(&ir->node, &svm->ir_list);
5244 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5245 out:
5246 return ret;
5250 * Note:
5251 * The HW cannot support posting multicast/broadcast
5252 * interrupts to a vCPU. So, we still use legacy interrupt
5253 * remapping for these kind of interrupts.
5255 * For lowest-priority interrupts, we only support
5256 * those with single CPU as the destination, e.g. user
5257 * configures the interrupts via /proc/irq or uses
5258 * irqbalance to make the interrupts single-CPU.
5260 static int
5261 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
5262 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
5264 struct kvm_lapic_irq irq;
5265 struct kvm_vcpu *vcpu = NULL;
5267 kvm_set_msi_irq(kvm, e, &irq);
5269 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
5270 !kvm_irq_is_postable(&irq)) {
5271 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
5272 __func__, irq.vector);
5273 return -1;
5276 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
5277 irq.vector);
5278 *svm = to_svm(vcpu);
5279 vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
5280 vcpu_info->vector = irq.vector;
5282 return 0;
5286 * svm_update_pi_irte - set IRTE for Posted-Interrupts
5288 * @kvm: kvm
5289 * @host_irq: host irq of the interrupt
5290 * @guest_irq: gsi of the interrupt
5291 * @set: set or unset PI
5292 * returns 0 on success, < 0 on failure
5294 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
5295 uint32_t guest_irq, bool set)
5297 struct kvm_kernel_irq_routing_entry *e;
5298 struct kvm_irq_routing_table *irq_rt;
5299 int idx, ret = -EINVAL;
5301 if (!kvm_arch_has_assigned_device(kvm) ||
5302 !irq_remapping_cap(IRQ_POSTING_CAP))
5303 return 0;
5305 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5306 __func__, host_irq, guest_irq, set);
5308 idx = srcu_read_lock(&kvm->irq_srcu);
5309 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
5310 WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
5312 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
5313 struct vcpu_data vcpu_info;
5314 struct vcpu_svm *svm = NULL;
5316 if (e->type != KVM_IRQ_ROUTING_MSI)
5317 continue;
5320 * Here, we setup with legacy mode in the following cases:
5321 * 1. When cannot target interrupt to a specific vcpu.
5322 * 2. Unsetting posted interrupt.
5323 * 3. APIC virtialization is disabled for the vcpu.
5324 * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
5326 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
5327 kvm_vcpu_apicv_active(&svm->vcpu)) {
5328 struct amd_iommu_pi_data pi;
5330 /* Try to enable guest_mode in IRTE */
5331 pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
5332 AVIC_HPA_MASK);
5333 pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
5334 svm->vcpu.vcpu_id);
5335 pi.is_guest_mode = true;
5336 pi.vcpu_data = &vcpu_info;
5337 ret = irq_set_vcpu_affinity(host_irq, &pi);
5340 * Here, we successfully setting up vcpu affinity in
5341 * IOMMU guest mode. Now, we need to store the posted
5342 * interrupt information in a per-vcpu ir_list so that
5343 * we can reference to them directly when we update vcpu
5344 * scheduling information in IOMMU irte.
5346 if (!ret && pi.is_guest_mode)
5347 svm_ir_list_add(svm, &pi);
5348 } else {
5349 /* Use legacy mode in IRTE */
5350 struct amd_iommu_pi_data pi;
5353 * Here, pi is used to:
5354 * - Tell IOMMU to use legacy mode for this interrupt.
5355 * - Retrieve ga_tag of prior interrupt remapping data.
5357 pi.is_guest_mode = false;
5358 ret = irq_set_vcpu_affinity(host_irq, &pi);
5361 * Check if the posted interrupt was previously
5362 * setup with the guest_mode by checking if the ga_tag
5363 * was cached. If so, we need to clean up the per-vcpu
5364 * ir_list.
5366 if (!ret && pi.prev_ga_tag) {
5367 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
5368 struct kvm_vcpu *vcpu;
5370 vcpu = kvm_get_vcpu_by_id(kvm, id);
5371 if (vcpu)
5372 svm_ir_list_del(to_svm(vcpu), &pi);
5376 if (!ret && svm) {
5377 trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
5378 e->gsi, vcpu_info.vector,
5379 vcpu_info.pi_desc_addr, set);
5382 if (ret < 0) {
5383 pr_err("%s: failed to update PI IRTE\n", __func__);
5384 goto out;
5388 ret = 0;
5389 out:
5390 srcu_read_unlock(&kvm->irq_srcu, idx);
5391 return ret;
5394 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
5396 struct vcpu_svm *svm = to_svm(vcpu);
5397 struct vmcb *vmcb = svm->vmcb;
5398 int ret;
5399 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
5400 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
5401 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
5403 return ret;
5406 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
5408 struct vcpu_svm *svm = to_svm(vcpu);
5410 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
5413 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5415 struct vcpu_svm *svm = to_svm(vcpu);
5417 if (masked) {
5418 svm->vcpu.arch.hflags |= HF_NMI_MASK;
5419 set_intercept(svm, INTERCEPT_IRET);
5420 } else {
5421 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
5422 clr_intercept(svm, INTERCEPT_IRET);
5426 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
5428 struct vcpu_svm *svm = to_svm(vcpu);
5429 struct vmcb *vmcb = svm->vmcb;
5430 int ret;
5432 if (!gif_set(svm) ||
5433 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
5434 return 0;
5436 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
5438 if (is_guest_mode(vcpu))
5439 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
5441 return ret;
5444 static void enable_irq_window(struct kvm_vcpu *vcpu)
5446 struct vcpu_svm *svm = to_svm(vcpu);
5448 if (kvm_vcpu_apicv_active(vcpu))
5449 return;
5452 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5453 * 1, because that's a separate STGI/VMRUN intercept. The next time we
5454 * get that intercept, this function will be called again though and
5455 * we'll get the vintr intercept. However, if the vGIF feature is
5456 * enabled, the STGI interception will not occur. Enable the irq
5457 * window under the assumption that the hardware will set the GIF.
5459 if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
5460 svm_set_vintr(svm);
5461 svm_inject_irq(svm, 0x0);
5465 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5467 struct vcpu_svm *svm = to_svm(vcpu);
5469 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
5470 == HF_NMI_MASK)
5471 return; /* IRET will cause a vm exit */
5473 if (!gif_set(svm)) {
5474 if (vgif_enabled(svm))
5475 set_intercept(svm, INTERCEPT_STGI);
5476 return; /* STGI will cause a vm exit */
5479 if (svm->nested.exit_required)
5480 return; /* we're not going to run the guest yet */
5483 * Something prevents NMI from been injected. Single step over possible
5484 * problem (IRET or exception injection or interrupt shadow)
5486 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
5487 svm->nmi_singlestep = true;
5488 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
5491 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
5493 return 0;
5496 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5498 return 0;
5501 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5503 struct vcpu_svm *svm = to_svm(vcpu);
5505 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
5506 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5507 else
5508 svm->asid_generation--;
5511 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
5513 struct vcpu_svm *svm = to_svm(vcpu);
5515 invlpga(gva, svm->vmcb->control.asid);
5518 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
5522 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
5524 struct vcpu_svm *svm = to_svm(vcpu);
5526 if (svm_nested_virtualize_tpr(vcpu))
5527 return;
5529 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
5530 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
5531 kvm_set_cr8(vcpu, cr8);
5535 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
5537 struct vcpu_svm *svm = to_svm(vcpu);
5538 u64 cr8;
5540 if (svm_nested_virtualize_tpr(vcpu) ||
5541 kvm_vcpu_apicv_active(vcpu))
5542 return;
5544 cr8 = kvm_get_cr8(vcpu);
5545 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
5546 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
5549 static void svm_complete_interrupts(struct vcpu_svm *svm)
5551 u8 vector;
5552 int type;
5553 u32 exitintinfo = svm->vmcb->control.exit_int_info;
5554 unsigned int3_injected = svm->int3_injected;
5556 svm->int3_injected = 0;
5559 * If we've made progress since setting HF_IRET_MASK, we've
5560 * executed an IRET and can allow NMI injection.
5562 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
5563 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
5564 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
5565 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5568 svm->vcpu.arch.nmi_injected = false;
5569 kvm_clear_exception_queue(&svm->vcpu);
5570 kvm_clear_interrupt_queue(&svm->vcpu);
5572 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
5573 return;
5575 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5577 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
5578 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
5580 switch (type) {
5581 case SVM_EXITINTINFO_TYPE_NMI:
5582 svm->vcpu.arch.nmi_injected = true;
5583 break;
5584 case SVM_EXITINTINFO_TYPE_EXEPT:
5586 * In case of software exceptions, do not reinject the vector,
5587 * but re-execute the instruction instead. Rewind RIP first
5588 * if we emulated INT3 before.
5590 if (kvm_exception_is_soft(vector)) {
5591 if (vector == BP_VECTOR && int3_injected &&
5592 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
5593 kvm_rip_write(&svm->vcpu,
5594 kvm_rip_read(&svm->vcpu) -
5595 int3_injected);
5596 break;
5598 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
5599 u32 err = svm->vmcb->control.exit_int_info_err;
5600 kvm_requeue_exception_e(&svm->vcpu, vector, err);
5602 } else
5603 kvm_requeue_exception(&svm->vcpu, vector);
5604 break;
5605 case SVM_EXITINTINFO_TYPE_INTR:
5606 kvm_queue_interrupt(&svm->vcpu, vector, false);
5607 break;
5608 default:
5609 break;
5613 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
5615 struct vcpu_svm *svm = to_svm(vcpu);
5616 struct vmcb_control_area *control = &svm->vmcb->control;
5618 control->exit_int_info = control->event_inj;
5619 control->exit_int_info_err = control->event_inj_err;
5620 control->event_inj = 0;
5621 svm_complete_interrupts(svm);
5624 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
5626 struct vcpu_svm *svm = to_svm(vcpu);
5628 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5629 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5630 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5633 * A vmexit emulation is required before the vcpu can be executed
5634 * again.
5636 if (unlikely(svm->nested.exit_required))
5637 return;
5640 * Disable singlestep if we're injecting an interrupt/exception.
5641 * We don't want our modified rflags to be pushed on the stack where
5642 * we might not be able to easily reset them if we disabled NMI
5643 * singlestep later.
5645 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
5647 * Event injection happens before external interrupts cause a
5648 * vmexit and interrupts are disabled here, so smp_send_reschedule
5649 * is enough to force an immediate vmexit.
5651 disable_nmi_singlestep(svm);
5652 smp_send_reschedule(vcpu->cpu);
5655 pre_svm_run(svm);
5657 sync_lapic_to_cr8(vcpu);
5659 svm->vmcb->save.cr2 = vcpu->arch.cr2;
5661 clgi();
5662 kvm_load_guest_xsave_state(vcpu);
5664 if (lapic_in_kernel(vcpu) &&
5665 vcpu->arch.apic->lapic_timer.timer_advance_ns)
5666 kvm_wait_lapic_expire(vcpu);
5669 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5670 * it's non-zero. Since vmentry is serialising on affected CPUs, there
5671 * is no need to worry about the conditional branch over the wrmsr
5672 * being speculatively taken.
5674 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
5676 local_irq_enable();
5678 asm volatile (
5679 "push %%" _ASM_BP "; \n\t"
5680 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
5681 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
5682 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
5683 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
5684 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
5685 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
5686 #ifdef CONFIG_X86_64
5687 "mov %c[r8](%[svm]), %%r8 \n\t"
5688 "mov %c[r9](%[svm]), %%r9 \n\t"
5689 "mov %c[r10](%[svm]), %%r10 \n\t"
5690 "mov %c[r11](%[svm]), %%r11 \n\t"
5691 "mov %c[r12](%[svm]), %%r12 \n\t"
5692 "mov %c[r13](%[svm]), %%r13 \n\t"
5693 "mov %c[r14](%[svm]), %%r14 \n\t"
5694 "mov %c[r15](%[svm]), %%r15 \n\t"
5695 #endif
5697 /* Enter guest mode */
5698 "push %%" _ASM_AX " \n\t"
5699 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
5700 __ex("vmload %%" _ASM_AX) "\n\t"
5701 __ex("vmrun %%" _ASM_AX) "\n\t"
5702 __ex("vmsave %%" _ASM_AX) "\n\t"
5703 "pop %%" _ASM_AX " \n\t"
5705 /* Save guest registers, load host registers */
5706 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
5707 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
5708 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
5709 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
5710 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
5711 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
5712 #ifdef CONFIG_X86_64
5713 "mov %%r8, %c[r8](%[svm]) \n\t"
5714 "mov %%r9, %c[r9](%[svm]) \n\t"
5715 "mov %%r10, %c[r10](%[svm]) \n\t"
5716 "mov %%r11, %c[r11](%[svm]) \n\t"
5717 "mov %%r12, %c[r12](%[svm]) \n\t"
5718 "mov %%r13, %c[r13](%[svm]) \n\t"
5719 "mov %%r14, %c[r14](%[svm]) \n\t"
5720 "mov %%r15, %c[r15](%[svm]) \n\t"
5722 * Clear host registers marked as clobbered to prevent
5723 * speculative use.
5725 "xor %%r8d, %%r8d \n\t"
5726 "xor %%r9d, %%r9d \n\t"
5727 "xor %%r10d, %%r10d \n\t"
5728 "xor %%r11d, %%r11d \n\t"
5729 "xor %%r12d, %%r12d \n\t"
5730 "xor %%r13d, %%r13d \n\t"
5731 "xor %%r14d, %%r14d \n\t"
5732 "xor %%r15d, %%r15d \n\t"
5733 #endif
5734 "xor %%ebx, %%ebx \n\t"
5735 "xor %%ecx, %%ecx \n\t"
5736 "xor %%edx, %%edx \n\t"
5737 "xor %%esi, %%esi \n\t"
5738 "xor %%edi, %%edi \n\t"
5739 "pop %%" _ASM_BP
5741 : [svm]"a"(svm),
5742 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5743 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5744 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5745 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5746 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5747 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5748 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5749 #ifdef CONFIG_X86_64
5750 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5751 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5752 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5753 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5754 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5755 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5756 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5757 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5758 #endif
5759 : "cc", "memory"
5760 #ifdef CONFIG_X86_64
5761 , "rbx", "rcx", "rdx", "rsi", "rdi"
5762 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5763 #else
5764 , "ebx", "ecx", "edx", "esi", "edi"
5765 #endif
5768 /* Eliminate branch target predictions from guest mode */
5769 vmexit_fill_RSB();
5771 #ifdef CONFIG_X86_64
5772 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5773 #else
5774 loadsegment(fs, svm->host.fs);
5775 #ifndef CONFIG_X86_32_LAZY_GS
5776 loadsegment(gs, svm->host.gs);
5777 #endif
5778 #endif
5781 * We do not use IBRS in the kernel. If this vCPU has used the
5782 * SPEC_CTRL MSR it may have left it on; save the value and
5783 * turn it off. This is much more efficient than blindly adding
5784 * it to the atomic save/restore list. Especially as the former
5785 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5787 * For non-nested case:
5788 * If the L01 MSR bitmap does not intercept the MSR, then we need to
5789 * save it.
5791 * For nested case:
5792 * If the L02 MSR bitmap does not intercept the MSR, then we need to
5793 * save it.
5795 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
5796 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
5798 reload_tss(vcpu);
5800 local_irq_disable();
5802 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
5804 vcpu->arch.cr2 = svm->vmcb->save.cr2;
5805 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5806 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5807 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5809 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5810 kvm_before_interrupt(&svm->vcpu);
5812 kvm_load_host_xsave_state(vcpu);
5813 stgi();
5815 /* Any pending NMI will happen here */
5817 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5818 kvm_after_interrupt(&svm->vcpu);
5820 sync_cr8_to_lapic(vcpu);
5822 svm->next_rip = 0;
5824 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5826 /* if exit due to PF check for async PF */
5827 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5828 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5830 if (npt_enabled) {
5831 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5832 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5836 * We need to handle MC intercepts here before the vcpu has a chance to
5837 * change the physical cpu
5839 if (unlikely(svm->vmcb->control.exit_code ==
5840 SVM_EXIT_EXCP_BASE + MC_VECTOR))
5841 svm_handle_mce(svm);
5843 mark_all_clean(svm->vmcb);
5845 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5847 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5849 struct vcpu_svm *svm = to_svm(vcpu);
5851 svm->vmcb->save.cr3 = __sme_set(root);
5852 mark_dirty(svm->vmcb, VMCB_CR);
5855 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5857 struct vcpu_svm *svm = to_svm(vcpu);
5859 svm->vmcb->control.nested_cr3 = __sme_set(root);
5860 mark_dirty(svm->vmcb, VMCB_NPT);
5862 /* Also sync guest cr3 here in case we live migrate */
5863 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5864 mark_dirty(svm->vmcb, VMCB_CR);
5867 static int is_disabled(void)
5869 u64 vm_cr;
5871 rdmsrl(MSR_VM_CR, vm_cr);
5872 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5873 return 1;
5875 return 0;
5878 static void
5879 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5882 * Patch in the VMMCALL instruction:
5884 hypercall[0] = 0x0f;
5885 hypercall[1] = 0x01;
5886 hypercall[2] = 0xd9;
5889 static int __init svm_check_processor_compat(void)
5891 return 0;
5894 static bool svm_cpu_has_accelerated_tpr(void)
5896 return false;
5899 static bool svm_has_emulated_msr(int index)
5901 switch (index) {
5902 case MSR_IA32_MCG_EXT_CTL:
5903 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
5904 return false;
5905 default:
5906 break;
5909 return true;
5912 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5914 return 0;
5917 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5919 struct vcpu_svm *svm = to_svm(vcpu);
5921 vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
5922 boot_cpu_has(X86_FEATURE_XSAVE) &&
5923 boot_cpu_has(X86_FEATURE_XSAVES);
5925 /* Update nrips enabled cache */
5926 svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5928 if (!kvm_vcpu_apicv_active(vcpu))
5929 return;
5931 guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5934 #define F feature_bit
5936 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5938 switch (func) {
5939 case 0x1:
5940 if (avic)
5941 entry->ecx &= ~F(X2APIC);
5942 break;
5943 case 0x80000001:
5944 if (nested)
5945 entry->ecx |= (1 << 2); /* Set SVM bit */
5946 break;
5947 case 0x80000008:
5948 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5949 boot_cpu_has(X86_FEATURE_AMD_SSBD))
5950 entry->ebx |= F(VIRT_SSBD);
5951 break;
5952 case 0x8000000A:
5953 entry->eax = 1; /* SVM revision 1 */
5954 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5955 ASID emulation to nested SVM */
5956 entry->ecx = 0; /* Reserved */
5957 entry->edx = 0; /* Per default do not support any
5958 additional features */
5960 /* Support next_rip if host supports it */
5961 if (boot_cpu_has(X86_FEATURE_NRIPS))
5962 entry->edx |= F(NRIPS);
5964 /* Support NPT for the guest if enabled */
5965 if (npt_enabled)
5966 entry->edx |= F(NPT);
5971 static int svm_get_lpage_level(void)
5973 return PT_PDPE_LEVEL;
5976 static bool svm_rdtscp_supported(void)
5978 return boot_cpu_has(X86_FEATURE_RDTSCP);
5981 static bool svm_invpcid_supported(void)
5983 return false;
5986 static bool svm_mpx_supported(void)
5988 return false;
5991 static bool svm_xsaves_supported(void)
5993 return boot_cpu_has(X86_FEATURE_XSAVES);
5996 static bool svm_umip_emulated(void)
5998 return false;
6001 static bool svm_pt_supported(void)
6003 return false;
6006 static bool svm_has_wbinvd_exit(void)
6008 return true;
6011 static bool svm_pku_supported(void)
6013 return false;
6016 #define PRE_EX(exit) { .exit_code = (exit), \
6017 .stage = X86_ICPT_PRE_EXCEPT, }
6018 #define POST_EX(exit) { .exit_code = (exit), \
6019 .stage = X86_ICPT_POST_EXCEPT, }
6020 #define POST_MEM(exit) { .exit_code = (exit), \
6021 .stage = X86_ICPT_POST_MEMACCESS, }
6023 static const struct __x86_intercept {
6024 u32 exit_code;
6025 enum x86_intercept_stage stage;
6026 } x86_intercept_map[] = {
6027 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
6028 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
6029 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
6030 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
6031 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
6032 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
6033 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
6034 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
6035 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
6036 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
6037 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
6038 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
6039 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
6040 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
6041 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
6042 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
6043 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
6044 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
6045 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
6046 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
6047 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
6048 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
6049 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
6050 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
6051 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
6052 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
6053 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
6054 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
6055 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
6056 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
6057 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
6058 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
6059 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
6060 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
6061 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
6062 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
6063 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
6064 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
6065 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
6066 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
6067 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
6068 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
6069 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
6070 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
6071 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
6072 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
6073 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV),
6076 #undef PRE_EX
6077 #undef POST_EX
6078 #undef POST_MEM
6080 static int svm_check_intercept(struct kvm_vcpu *vcpu,
6081 struct x86_instruction_info *info,
6082 enum x86_intercept_stage stage)
6084 struct vcpu_svm *svm = to_svm(vcpu);
6085 int vmexit, ret = X86EMUL_CONTINUE;
6086 struct __x86_intercept icpt_info;
6087 struct vmcb *vmcb = svm->vmcb;
6089 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
6090 goto out;
6092 icpt_info = x86_intercept_map[info->intercept];
6094 if (stage != icpt_info.stage)
6095 goto out;
6097 switch (icpt_info.exit_code) {
6098 case SVM_EXIT_READ_CR0:
6099 if (info->intercept == x86_intercept_cr_read)
6100 icpt_info.exit_code += info->modrm_reg;
6101 break;
6102 case SVM_EXIT_WRITE_CR0: {
6103 unsigned long cr0, val;
6104 u64 intercept;
6106 if (info->intercept == x86_intercept_cr_write)
6107 icpt_info.exit_code += info->modrm_reg;
6109 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
6110 info->intercept == x86_intercept_clts)
6111 break;
6113 intercept = svm->nested.intercept;
6115 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
6116 break;
6118 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
6119 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
6121 if (info->intercept == x86_intercept_lmsw) {
6122 cr0 &= 0xfUL;
6123 val &= 0xfUL;
6124 /* lmsw can't clear PE - catch this here */
6125 if (cr0 & X86_CR0_PE)
6126 val |= X86_CR0_PE;
6129 if (cr0 ^ val)
6130 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
6132 break;
6134 case SVM_EXIT_READ_DR0:
6135 case SVM_EXIT_WRITE_DR0:
6136 icpt_info.exit_code += info->modrm_reg;
6137 break;
6138 case SVM_EXIT_MSR:
6139 if (info->intercept == x86_intercept_wrmsr)
6140 vmcb->control.exit_info_1 = 1;
6141 else
6142 vmcb->control.exit_info_1 = 0;
6143 break;
6144 case SVM_EXIT_PAUSE:
6146 * We get this for NOP only, but pause
6147 * is rep not, check this here
6149 if (info->rep_prefix != REPE_PREFIX)
6150 goto out;
6151 break;
6152 case SVM_EXIT_IOIO: {
6153 u64 exit_info;
6154 u32 bytes;
6156 if (info->intercept == x86_intercept_in ||
6157 info->intercept == x86_intercept_ins) {
6158 exit_info = ((info->src_val & 0xffff) << 16) |
6159 SVM_IOIO_TYPE_MASK;
6160 bytes = info->dst_bytes;
6161 } else {
6162 exit_info = (info->dst_val & 0xffff) << 16;
6163 bytes = info->src_bytes;
6166 if (info->intercept == x86_intercept_outs ||
6167 info->intercept == x86_intercept_ins)
6168 exit_info |= SVM_IOIO_STR_MASK;
6170 if (info->rep_prefix)
6171 exit_info |= SVM_IOIO_REP_MASK;
6173 bytes = min(bytes, 4u);
6175 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
6177 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
6179 vmcb->control.exit_info_1 = exit_info;
6180 vmcb->control.exit_info_2 = info->next_rip;
6182 break;
6184 default:
6185 break;
6188 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
6189 if (static_cpu_has(X86_FEATURE_NRIPS))
6190 vmcb->control.next_rip = info->next_rip;
6191 vmcb->control.exit_code = icpt_info.exit_code;
6192 vmexit = nested_svm_exit_handled(svm);
6194 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
6195 : X86EMUL_CONTINUE;
6197 out:
6198 return ret;
6201 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu,
6202 enum exit_fastpath_completion *exit_fastpath)
6204 if (!is_guest_mode(vcpu) &&
6205 to_svm(vcpu)->vmcb->control.exit_code == EXIT_REASON_MSR_WRITE)
6206 *exit_fastpath = handle_fastpath_set_msr_irqoff(vcpu);
6209 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
6211 if (pause_filter_thresh)
6212 shrink_ple_window(vcpu);
6215 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
6217 if (avic_handle_apic_id_update(vcpu) != 0)
6218 return;
6219 avic_handle_dfr_update(vcpu);
6220 avic_handle_ldr_update(vcpu);
6223 static void svm_setup_mce(struct kvm_vcpu *vcpu)
6225 /* [63:9] are reserved. */
6226 vcpu->arch.mcg_cap &= 0x1ff;
6229 static int svm_smi_allowed(struct kvm_vcpu *vcpu)
6231 struct vcpu_svm *svm = to_svm(vcpu);
6233 /* Per APM Vol.2 15.22.2 "Response to SMI" */
6234 if (!gif_set(svm))
6235 return 0;
6237 if (is_guest_mode(&svm->vcpu) &&
6238 svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
6239 /* TODO: Might need to set exit_info_1 and exit_info_2 here */
6240 svm->vmcb->control.exit_code = SVM_EXIT_SMI;
6241 svm->nested.exit_required = true;
6242 return 0;
6245 return 1;
6248 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
6250 struct vcpu_svm *svm = to_svm(vcpu);
6251 int ret;
6253 if (is_guest_mode(vcpu)) {
6254 /* FED8h - SVM Guest */
6255 put_smstate(u64, smstate, 0x7ed8, 1);
6256 /* FEE0h - SVM Guest VMCB Physical Address */
6257 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
6259 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
6260 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
6261 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
6263 ret = nested_svm_vmexit(svm);
6264 if (ret)
6265 return ret;
6267 return 0;
6270 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
6272 struct vcpu_svm *svm = to_svm(vcpu);
6273 struct vmcb *nested_vmcb;
6274 struct kvm_host_map map;
6275 u64 guest;
6276 u64 vmcb;
6278 guest = GET_SMSTATE(u64, smstate, 0x7ed8);
6279 vmcb = GET_SMSTATE(u64, smstate, 0x7ee0);
6281 if (guest) {
6282 if (kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb), &map) == -EINVAL)
6283 return 1;
6284 nested_vmcb = map.hva;
6285 enter_svm_guest_mode(svm, vmcb, nested_vmcb, &map);
6287 return 0;
6290 static int enable_smi_window(struct kvm_vcpu *vcpu)
6292 struct vcpu_svm *svm = to_svm(vcpu);
6294 if (!gif_set(svm)) {
6295 if (vgif_enabled(svm))
6296 set_intercept(svm, INTERCEPT_STGI);
6297 /* STGI will cause a vm exit */
6298 return 1;
6300 return 0;
6303 static int sev_flush_asids(void)
6305 int ret, error;
6308 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
6309 * so it must be guarded.
6311 down_write(&sev_deactivate_lock);
6313 wbinvd_on_all_cpus();
6314 ret = sev_guest_df_flush(&error);
6316 up_write(&sev_deactivate_lock);
6318 if (ret)
6319 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
6321 return ret;
6324 /* Must be called with the sev_bitmap_lock held */
6325 static bool __sev_recycle_asids(void)
6327 int pos;
6329 /* Check if there are any ASIDs to reclaim before performing a flush */
6330 pos = find_next_bit(sev_reclaim_asid_bitmap,
6331 max_sev_asid, min_sev_asid - 1);
6332 if (pos >= max_sev_asid)
6333 return false;
6335 if (sev_flush_asids())
6336 return false;
6338 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
6339 max_sev_asid);
6340 bitmap_zero(sev_reclaim_asid_bitmap, max_sev_asid);
6342 return true;
6345 static int sev_asid_new(void)
6347 bool retry = true;
6348 int pos;
6350 mutex_lock(&sev_bitmap_lock);
6353 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
6355 again:
6356 pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
6357 if (pos >= max_sev_asid) {
6358 if (retry && __sev_recycle_asids()) {
6359 retry = false;
6360 goto again;
6362 mutex_unlock(&sev_bitmap_lock);
6363 return -EBUSY;
6366 __set_bit(pos, sev_asid_bitmap);
6368 mutex_unlock(&sev_bitmap_lock);
6370 return pos + 1;
6373 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
6375 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6376 int asid, ret;
6378 ret = -EBUSY;
6379 if (unlikely(sev->active))
6380 return ret;
6382 asid = sev_asid_new();
6383 if (asid < 0)
6384 return ret;
6386 ret = sev_platform_init(&argp->error);
6387 if (ret)
6388 goto e_free;
6390 sev->active = true;
6391 sev->asid = asid;
6392 INIT_LIST_HEAD(&sev->regions_list);
6394 return 0;
6396 e_free:
6397 sev_asid_free(asid);
6398 return ret;
6401 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
6403 struct sev_data_activate *data;
6404 int asid = sev_get_asid(kvm);
6405 int ret;
6407 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6408 if (!data)
6409 return -ENOMEM;
6411 /* activate ASID on the given handle */
6412 data->handle = handle;
6413 data->asid = asid;
6414 ret = sev_guest_activate(data, error);
6415 kfree(data);
6417 return ret;
6420 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
6422 struct fd f;
6423 int ret;
6425 f = fdget(fd);
6426 if (!f.file)
6427 return -EBADF;
6429 ret = sev_issue_cmd_external_user(f.file, id, data, error);
6431 fdput(f);
6432 return ret;
6435 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
6437 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6439 return __sev_issue_cmd(sev->fd, id, data, error);
6442 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
6444 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6445 struct sev_data_launch_start *start;
6446 struct kvm_sev_launch_start params;
6447 void *dh_blob, *session_blob;
6448 int *error = &argp->error;
6449 int ret;
6451 if (!sev_guest(kvm))
6452 return -ENOTTY;
6454 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6455 return -EFAULT;
6457 start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT);
6458 if (!start)
6459 return -ENOMEM;
6461 dh_blob = NULL;
6462 if (params.dh_uaddr) {
6463 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
6464 if (IS_ERR(dh_blob)) {
6465 ret = PTR_ERR(dh_blob);
6466 goto e_free;
6469 start->dh_cert_address = __sme_set(__pa(dh_blob));
6470 start->dh_cert_len = params.dh_len;
6473 session_blob = NULL;
6474 if (params.session_uaddr) {
6475 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
6476 if (IS_ERR(session_blob)) {
6477 ret = PTR_ERR(session_blob);
6478 goto e_free_dh;
6481 start->session_address = __sme_set(__pa(session_blob));
6482 start->session_len = params.session_len;
6485 start->handle = params.handle;
6486 start->policy = params.policy;
6488 /* create memory encryption context */
6489 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
6490 if (ret)
6491 goto e_free_session;
6493 /* Bind ASID to this guest */
6494 ret = sev_bind_asid(kvm, start->handle, error);
6495 if (ret)
6496 goto e_free_session;
6498 /* return handle to userspace */
6499 params.handle = start->handle;
6500 if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
6501 sev_unbind_asid(kvm, start->handle);
6502 ret = -EFAULT;
6503 goto e_free_session;
6506 sev->handle = start->handle;
6507 sev->fd = argp->sev_fd;
6509 e_free_session:
6510 kfree(session_blob);
6511 e_free_dh:
6512 kfree(dh_blob);
6513 e_free:
6514 kfree(start);
6515 return ret;
6518 static unsigned long get_num_contig_pages(unsigned long idx,
6519 struct page **inpages, unsigned long npages)
6521 unsigned long paddr, next_paddr;
6522 unsigned long i = idx + 1, pages = 1;
6524 /* find the number of contiguous pages starting from idx */
6525 paddr = __sme_page_pa(inpages[idx]);
6526 while (i < npages) {
6527 next_paddr = __sme_page_pa(inpages[i++]);
6528 if ((paddr + PAGE_SIZE) == next_paddr) {
6529 pages++;
6530 paddr = next_paddr;
6531 continue;
6533 break;
6536 return pages;
6539 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
6541 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
6542 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6543 struct kvm_sev_launch_update_data params;
6544 struct sev_data_launch_update_data *data;
6545 struct page **inpages;
6546 int ret;
6548 if (!sev_guest(kvm))
6549 return -ENOTTY;
6551 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6552 return -EFAULT;
6554 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6555 if (!data)
6556 return -ENOMEM;
6558 vaddr = params.uaddr;
6559 size = params.len;
6560 vaddr_end = vaddr + size;
6562 /* Lock the user memory. */
6563 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
6564 if (!inpages) {
6565 ret = -ENOMEM;
6566 goto e_free;
6570 * The LAUNCH_UPDATE command will perform in-place encryption of the
6571 * memory content (i.e it will write the same memory region with C=1).
6572 * It's possible that the cache may contain the data with C=0, i.e.,
6573 * unencrypted so invalidate it first.
6575 sev_clflush_pages(inpages, npages);
6577 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
6578 int offset, len;
6581 * If the user buffer is not page-aligned, calculate the offset
6582 * within the page.
6584 offset = vaddr & (PAGE_SIZE - 1);
6586 /* Calculate the number of pages that can be encrypted in one go. */
6587 pages = get_num_contig_pages(i, inpages, npages);
6589 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
6591 data->handle = sev->handle;
6592 data->len = len;
6593 data->address = __sme_page_pa(inpages[i]) + offset;
6594 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
6595 if (ret)
6596 goto e_unpin;
6598 size -= len;
6599 next_vaddr = vaddr + len;
6602 e_unpin:
6603 /* content of memory is updated, mark pages dirty */
6604 for (i = 0; i < npages; i++) {
6605 set_page_dirty_lock(inpages[i]);
6606 mark_page_accessed(inpages[i]);
6608 /* unlock the user pages */
6609 sev_unpin_memory(kvm, inpages, npages);
6610 e_free:
6611 kfree(data);
6612 return ret;
6615 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
6617 void __user *measure = (void __user *)(uintptr_t)argp->data;
6618 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6619 struct sev_data_launch_measure *data;
6620 struct kvm_sev_launch_measure params;
6621 void __user *p = NULL;
6622 void *blob = NULL;
6623 int ret;
6625 if (!sev_guest(kvm))
6626 return -ENOTTY;
6628 if (copy_from_user(&params, measure, sizeof(params)))
6629 return -EFAULT;
6631 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6632 if (!data)
6633 return -ENOMEM;
6635 /* User wants to query the blob length */
6636 if (!params.len)
6637 goto cmd;
6639 p = (void __user *)(uintptr_t)params.uaddr;
6640 if (p) {
6641 if (params.len > SEV_FW_BLOB_MAX_SIZE) {
6642 ret = -EINVAL;
6643 goto e_free;
6646 ret = -ENOMEM;
6647 blob = kmalloc(params.len, GFP_KERNEL);
6648 if (!blob)
6649 goto e_free;
6651 data->address = __psp_pa(blob);
6652 data->len = params.len;
6655 cmd:
6656 data->handle = sev->handle;
6657 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
6660 * If we query the session length, FW responded with expected data.
6662 if (!params.len)
6663 goto done;
6665 if (ret)
6666 goto e_free_blob;
6668 if (blob) {
6669 if (copy_to_user(p, blob, params.len))
6670 ret = -EFAULT;
6673 done:
6674 params.len = data->len;
6675 if (copy_to_user(measure, &params, sizeof(params)))
6676 ret = -EFAULT;
6677 e_free_blob:
6678 kfree(blob);
6679 e_free:
6680 kfree(data);
6681 return ret;
6684 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
6686 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6687 struct sev_data_launch_finish *data;
6688 int ret;
6690 if (!sev_guest(kvm))
6691 return -ENOTTY;
6693 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6694 if (!data)
6695 return -ENOMEM;
6697 data->handle = sev->handle;
6698 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
6700 kfree(data);
6701 return ret;
6704 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
6706 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6707 struct kvm_sev_guest_status params;
6708 struct sev_data_guest_status *data;
6709 int ret;
6711 if (!sev_guest(kvm))
6712 return -ENOTTY;
6714 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6715 if (!data)
6716 return -ENOMEM;
6718 data->handle = sev->handle;
6719 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
6720 if (ret)
6721 goto e_free;
6723 params.policy = data->policy;
6724 params.state = data->state;
6725 params.handle = data->handle;
6727 if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
6728 ret = -EFAULT;
6729 e_free:
6730 kfree(data);
6731 return ret;
6734 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
6735 unsigned long dst, int size,
6736 int *error, bool enc)
6738 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6739 struct sev_data_dbg *data;
6740 int ret;
6742 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6743 if (!data)
6744 return -ENOMEM;
6746 data->handle = sev->handle;
6747 data->dst_addr = dst;
6748 data->src_addr = src;
6749 data->len = size;
6751 ret = sev_issue_cmd(kvm,
6752 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
6753 data, error);
6754 kfree(data);
6755 return ret;
6758 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
6759 unsigned long dst_paddr, int sz, int *err)
6761 int offset;
6764 * Its safe to read more than we are asked, caller should ensure that
6765 * destination has enough space.
6767 src_paddr = round_down(src_paddr, 16);
6768 offset = src_paddr & 15;
6769 sz = round_up(sz + offset, 16);
6771 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
6774 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
6775 unsigned long __user dst_uaddr,
6776 unsigned long dst_paddr,
6777 int size, int *err)
6779 struct page *tpage = NULL;
6780 int ret, offset;
6782 /* if inputs are not 16-byte then use intermediate buffer */
6783 if (!IS_ALIGNED(dst_paddr, 16) ||
6784 !IS_ALIGNED(paddr, 16) ||
6785 !IS_ALIGNED(size, 16)) {
6786 tpage = (void *)alloc_page(GFP_KERNEL);
6787 if (!tpage)
6788 return -ENOMEM;
6790 dst_paddr = __sme_page_pa(tpage);
6793 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
6794 if (ret)
6795 goto e_free;
6797 if (tpage) {
6798 offset = paddr & 15;
6799 if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
6800 page_address(tpage) + offset, size))
6801 ret = -EFAULT;
6804 e_free:
6805 if (tpage)
6806 __free_page(tpage);
6808 return ret;
6811 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
6812 unsigned long __user vaddr,
6813 unsigned long dst_paddr,
6814 unsigned long __user dst_vaddr,
6815 int size, int *error)
6817 struct page *src_tpage = NULL;
6818 struct page *dst_tpage = NULL;
6819 int ret, len = size;
6821 /* If source buffer is not aligned then use an intermediate buffer */
6822 if (!IS_ALIGNED(vaddr, 16)) {
6823 src_tpage = alloc_page(GFP_KERNEL);
6824 if (!src_tpage)
6825 return -ENOMEM;
6827 if (copy_from_user(page_address(src_tpage),
6828 (void __user *)(uintptr_t)vaddr, size)) {
6829 __free_page(src_tpage);
6830 return -EFAULT;
6833 paddr = __sme_page_pa(src_tpage);
6837 * If destination buffer or length is not aligned then do read-modify-write:
6838 * - decrypt destination in an intermediate buffer
6839 * - copy the source buffer in an intermediate buffer
6840 * - use the intermediate buffer as source buffer
6842 if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
6843 int dst_offset;
6845 dst_tpage = alloc_page(GFP_KERNEL);
6846 if (!dst_tpage) {
6847 ret = -ENOMEM;
6848 goto e_free;
6851 ret = __sev_dbg_decrypt(kvm, dst_paddr,
6852 __sme_page_pa(dst_tpage), size, error);
6853 if (ret)
6854 goto e_free;
6857 * If source is kernel buffer then use memcpy() otherwise
6858 * copy_from_user().
6860 dst_offset = dst_paddr & 15;
6862 if (src_tpage)
6863 memcpy(page_address(dst_tpage) + dst_offset,
6864 page_address(src_tpage), size);
6865 else {
6866 if (copy_from_user(page_address(dst_tpage) + dst_offset,
6867 (void __user *)(uintptr_t)vaddr, size)) {
6868 ret = -EFAULT;
6869 goto e_free;
6873 paddr = __sme_page_pa(dst_tpage);
6874 dst_paddr = round_down(dst_paddr, 16);
6875 len = round_up(size, 16);
6878 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
6880 e_free:
6881 if (src_tpage)
6882 __free_page(src_tpage);
6883 if (dst_tpage)
6884 __free_page(dst_tpage);
6885 return ret;
6888 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
6890 unsigned long vaddr, vaddr_end, next_vaddr;
6891 unsigned long dst_vaddr;
6892 struct page **src_p, **dst_p;
6893 struct kvm_sev_dbg debug;
6894 unsigned long n;
6895 unsigned int size;
6896 int ret;
6898 if (!sev_guest(kvm))
6899 return -ENOTTY;
6901 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
6902 return -EFAULT;
6904 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
6905 return -EINVAL;
6906 if (!debug.dst_uaddr)
6907 return -EINVAL;
6909 vaddr = debug.src_uaddr;
6910 size = debug.len;
6911 vaddr_end = vaddr + size;
6912 dst_vaddr = debug.dst_uaddr;
6914 for (; vaddr < vaddr_end; vaddr = next_vaddr) {
6915 int len, s_off, d_off;
6917 /* lock userspace source and destination page */
6918 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
6919 if (!src_p)
6920 return -EFAULT;
6922 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
6923 if (!dst_p) {
6924 sev_unpin_memory(kvm, src_p, n);
6925 return -EFAULT;
6929 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
6930 * memory content (i.e it will write the same memory region with C=1).
6931 * It's possible that the cache may contain the data with C=0, i.e.,
6932 * unencrypted so invalidate it first.
6934 sev_clflush_pages(src_p, 1);
6935 sev_clflush_pages(dst_p, 1);
6938 * Since user buffer may not be page aligned, calculate the
6939 * offset within the page.
6941 s_off = vaddr & ~PAGE_MASK;
6942 d_off = dst_vaddr & ~PAGE_MASK;
6943 len = min_t(size_t, (PAGE_SIZE - s_off), size);
6945 if (dec)
6946 ret = __sev_dbg_decrypt_user(kvm,
6947 __sme_page_pa(src_p[0]) + s_off,
6948 dst_vaddr,
6949 __sme_page_pa(dst_p[0]) + d_off,
6950 len, &argp->error);
6951 else
6952 ret = __sev_dbg_encrypt_user(kvm,
6953 __sme_page_pa(src_p[0]) + s_off,
6954 vaddr,
6955 __sme_page_pa(dst_p[0]) + d_off,
6956 dst_vaddr,
6957 len, &argp->error);
6959 sev_unpin_memory(kvm, src_p, n);
6960 sev_unpin_memory(kvm, dst_p, n);
6962 if (ret)
6963 goto err;
6965 next_vaddr = vaddr + len;
6966 dst_vaddr = dst_vaddr + len;
6967 size -= len;
6969 err:
6970 return ret;
6973 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
6975 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6976 struct sev_data_launch_secret *data;
6977 struct kvm_sev_launch_secret params;
6978 struct page **pages;
6979 void *blob, *hdr;
6980 unsigned long n;
6981 int ret, offset;
6983 if (!sev_guest(kvm))
6984 return -ENOTTY;
6986 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6987 return -EFAULT;
6989 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
6990 if (!pages)
6991 return -ENOMEM;
6994 * The secret must be copied into contiguous memory region, lets verify
6995 * that userspace memory pages are contiguous before we issue command.
6997 if (get_num_contig_pages(0, pages, n) != n) {
6998 ret = -EINVAL;
6999 goto e_unpin_memory;
7002 ret = -ENOMEM;
7003 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
7004 if (!data)
7005 goto e_unpin_memory;
7007 offset = params.guest_uaddr & (PAGE_SIZE - 1);
7008 data->guest_address = __sme_page_pa(pages[0]) + offset;
7009 data->guest_len = params.guest_len;
7011 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
7012 if (IS_ERR(blob)) {
7013 ret = PTR_ERR(blob);
7014 goto e_free;
7017 data->trans_address = __psp_pa(blob);
7018 data->trans_len = params.trans_len;
7020 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
7021 if (IS_ERR(hdr)) {
7022 ret = PTR_ERR(hdr);
7023 goto e_free_blob;
7025 data->hdr_address = __psp_pa(hdr);
7026 data->hdr_len = params.hdr_len;
7028 data->handle = sev->handle;
7029 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
7031 kfree(hdr);
7033 e_free_blob:
7034 kfree(blob);
7035 e_free:
7036 kfree(data);
7037 e_unpin_memory:
7038 sev_unpin_memory(kvm, pages, n);
7039 return ret;
7042 static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
7044 struct kvm_sev_cmd sev_cmd;
7045 int r;
7047 if (!svm_sev_enabled())
7048 return -ENOTTY;
7050 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
7051 return -EFAULT;
7053 mutex_lock(&kvm->lock);
7055 switch (sev_cmd.id) {
7056 case KVM_SEV_INIT:
7057 r = sev_guest_init(kvm, &sev_cmd);
7058 break;
7059 case KVM_SEV_LAUNCH_START:
7060 r = sev_launch_start(kvm, &sev_cmd);
7061 break;
7062 case KVM_SEV_LAUNCH_UPDATE_DATA:
7063 r = sev_launch_update_data(kvm, &sev_cmd);
7064 break;
7065 case KVM_SEV_LAUNCH_MEASURE:
7066 r = sev_launch_measure(kvm, &sev_cmd);
7067 break;
7068 case KVM_SEV_LAUNCH_FINISH:
7069 r = sev_launch_finish(kvm, &sev_cmd);
7070 break;
7071 case KVM_SEV_GUEST_STATUS:
7072 r = sev_guest_status(kvm, &sev_cmd);
7073 break;
7074 case KVM_SEV_DBG_DECRYPT:
7075 r = sev_dbg_crypt(kvm, &sev_cmd, true);
7076 break;
7077 case KVM_SEV_DBG_ENCRYPT:
7078 r = sev_dbg_crypt(kvm, &sev_cmd, false);
7079 break;
7080 case KVM_SEV_LAUNCH_SECRET:
7081 r = sev_launch_secret(kvm, &sev_cmd);
7082 break;
7083 default:
7084 r = -EINVAL;
7085 goto out;
7088 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
7089 r = -EFAULT;
7091 out:
7092 mutex_unlock(&kvm->lock);
7093 return r;
7096 static int svm_register_enc_region(struct kvm *kvm,
7097 struct kvm_enc_region *range)
7099 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7100 struct enc_region *region;
7101 int ret = 0;
7103 if (!sev_guest(kvm))
7104 return -ENOTTY;
7106 if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
7107 return -EINVAL;
7109 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
7110 if (!region)
7111 return -ENOMEM;
7113 region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
7114 if (!region->pages) {
7115 ret = -ENOMEM;
7116 goto e_free;
7120 * The guest may change the memory encryption attribute from C=0 -> C=1
7121 * or vice versa for this memory range. Lets make sure caches are
7122 * flushed to ensure that guest data gets written into memory with
7123 * correct C-bit.
7125 sev_clflush_pages(region->pages, region->npages);
7127 region->uaddr = range->addr;
7128 region->size = range->size;
7130 mutex_lock(&kvm->lock);
7131 list_add_tail(&region->list, &sev->regions_list);
7132 mutex_unlock(&kvm->lock);
7134 return ret;
7136 e_free:
7137 kfree(region);
7138 return ret;
7141 static struct enc_region *
7142 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
7144 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7145 struct list_head *head = &sev->regions_list;
7146 struct enc_region *i;
7148 list_for_each_entry(i, head, list) {
7149 if (i->uaddr == range->addr &&
7150 i->size == range->size)
7151 return i;
7154 return NULL;
7158 static int svm_unregister_enc_region(struct kvm *kvm,
7159 struct kvm_enc_region *range)
7161 struct enc_region *region;
7162 int ret;
7164 mutex_lock(&kvm->lock);
7166 if (!sev_guest(kvm)) {
7167 ret = -ENOTTY;
7168 goto failed;
7171 region = find_enc_region(kvm, range);
7172 if (!region) {
7173 ret = -EINVAL;
7174 goto failed;
7177 __unregister_enc_region_locked(kvm, region);
7179 mutex_unlock(&kvm->lock);
7180 return 0;
7182 failed:
7183 mutex_unlock(&kvm->lock);
7184 return ret;
7187 static bool svm_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7189 unsigned long cr4 = kvm_read_cr4(vcpu);
7190 bool smep = cr4 & X86_CR4_SMEP;
7191 bool smap = cr4 & X86_CR4_SMAP;
7192 bool is_user = svm_get_cpl(vcpu) == 3;
7195 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
7197 * Errata:
7198 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
7199 * possible that CPU microcode implementing DecodeAssist will fail
7200 * to read bytes of instruction which caused #NPF. In this case,
7201 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
7202 * return 0 instead of the correct guest instruction bytes.
7204 * This happens because CPU microcode reading instruction bytes
7205 * uses a special opcode which attempts to read data using CPL=0
7206 * priviledges. The microcode reads CS:RIP and if it hits a SMAP
7207 * fault, it gives up and returns no instruction bytes.
7209 * Detection:
7210 * We reach here in case CPU supports DecodeAssist, raised #NPF and
7211 * returned 0 in GuestIntrBytes field of the VMCB.
7212 * First, errata can only be triggered in case vCPU CR4.SMAP=1.
7213 * Second, if vCPU CR4.SMEP=1, errata could only be triggered
7214 * in case vCPU CPL==3 (Because otherwise guest would have triggered
7215 * a SMEP fault instead of #NPF).
7216 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
7217 * As most guests enable SMAP if they have also enabled SMEP, use above
7218 * logic in order to attempt minimize false-positive of detecting errata
7219 * while still preserving all cases semantic correctness.
7221 * Workaround:
7222 * To determine what instruction the guest was executing, the hypervisor
7223 * will have to decode the instruction at the instruction pointer.
7225 * In non SEV guest, hypervisor will be able to read the guest
7226 * memory to decode the instruction pointer when insn_len is zero
7227 * so we return true to indicate that decoding is possible.
7229 * But in the SEV guest, the guest memory is encrypted with the
7230 * guest specific key and hypervisor will not be able to decode the
7231 * instruction pointer so we will not able to workaround it. Lets
7232 * print the error and request to kill the guest.
7234 if (smap && (!smep || is_user)) {
7235 if (!sev_guest(vcpu->kvm))
7236 return true;
7238 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
7239 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7242 return false;
7245 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7247 struct vcpu_svm *svm = to_svm(vcpu);
7250 * TODO: Last condition latch INIT signals on vCPU when
7251 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
7252 * To properly emulate the INIT intercept, SVM should implement
7253 * kvm_x86_ops->check_nested_events() and call nested_svm_vmexit()
7254 * there if an INIT signal is pending.
7256 return !gif_set(svm) ||
7257 (svm->vmcb->control.intercept & (1ULL << INTERCEPT_INIT));
7260 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
7261 .cpu_has_kvm_support = has_svm,
7262 .disabled_by_bios = is_disabled,
7263 .hardware_setup = svm_hardware_setup,
7264 .hardware_unsetup = svm_hardware_unsetup,
7265 .check_processor_compatibility = svm_check_processor_compat,
7266 .hardware_enable = svm_hardware_enable,
7267 .hardware_disable = svm_hardware_disable,
7268 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
7269 .has_emulated_msr = svm_has_emulated_msr,
7271 .vcpu_create = svm_create_vcpu,
7272 .vcpu_free = svm_free_vcpu,
7273 .vcpu_reset = svm_vcpu_reset,
7275 .vm_alloc = svm_vm_alloc,
7276 .vm_free = svm_vm_free,
7277 .vm_init = avic_vm_init,
7278 .vm_destroy = svm_vm_destroy,
7280 .prepare_guest_switch = svm_prepare_guest_switch,
7281 .vcpu_load = svm_vcpu_load,
7282 .vcpu_put = svm_vcpu_put,
7283 .vcpu_blocking = svm_vcpu_blocking,
7284 .vcpu_unblocking = svm_vcpu_unblocking,
7286 .update_bp_intercept = update_bp_intercept,
7287 .get_msr_feature = svm_get_msr_feature,
7288 .get_msr = svm_get_msr,
7289 .set_msr = svm_set_msr,
7290 .get_segment_base = svm_get_segment_base,
7291 .get_segment = svm_get_segment,
7292 .set_segment = svm_set_segment,
7293 .get_cpl = svm_get_cpl,
7294 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
7295 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
7296 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
7297 .set_cr0 = svm_set_cr0,
7298 .set_cr3 = svm_set_cr3,
7299 .set_cr4 = svm_set_cr4,
7300 .set_efer = svm_set_efer,
7301 .get_idt = svm_get_idt,
7302 .set_idt = svm_set_idt,
7303 .get_gdt = svm_get_gdt,
7304 .set_gdt = svm_set_gdt,
7305 .get_dr6 = svm_get_dr6,
7306 .set_dr6 = svm_set_dr6,
7307 .set_dr7 = svm_set_dr7,
7308 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
7309 .cache_reg = svm_cache_reg,
7310 .get_rflags = svm_get_rflags,
7311 .set_rflags = svm_set_rflags,
7313 .tlb_flush = svm_flush_tlb,
7314 .tlb_flush_gva = svm_flush_tlb_gva,
7316 .run = svm_vcpu_run,
7317 .handle_exit = handle_exit,
7318 .skip_emulated_instruction = skip_emulated_instruction,
7319 .set_interrupt_shadow = svm_set_interrupt_shadow,
7320 .get_interrupt_shadow = svm_get_interrupt_shadow,
7321 .patch_hypercall = svm_patch_hypercall,
7322 .set_irq = svm_set_irq,
7323 .set_nmi = svm_inject_nmi,
7324 .queue_exception = svm_queue_exception,
7325 .cancel_injection = svm_cancel_injection,
7326 .interrupt_allowed = svm_interrupt_allowed,
7327 .nmi_allowed = svm_nmi_allowed,
7328 .get_nmi_mask = svm_get_nmi_mask,
7329 .set_nmi_mask = svm_set_nmi_mask,
7330 .enable_nmi_window = enable_nmi_window,
7331 .enable_irq_window = enable_irq_window,
7332 .update_cr8_intercept = update_cr8_intercept,
7333 .set_virtual_apic_mode = svm_set_virtual_apic_mode,
7334 .get_enable_apicv = svm_get_enable_apicv,
7335 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
7336 .load_eoi_exitmap = svm_load_eoi_exitmap,
7337 .hwapic_irr_update = svm_hwapic_irr_update,
7338 .hwapic_isr_update = svm_hwapic_isr_update,
7339 .sync_pir_to_irr = kvm_lapic_find_highest_irr,
7340 .apicv_post_state_restore = avic_post_state_restore,
7342 .set_tss_addr = svm_set_tss_addr,
7343 .set_identity_map_addr = svm_set_identity_map_addr,
7344 .get_tdp_level = get_npt_level,
7345 .get_mt_mask = svm_get_mt_mask,
7347 .get_exit_info = svm_get_exit_info,
7349 .get_lpage_level = svm_get_lpage_level,
7351 .cpuid_update = svm_cpuid_update,
7353 .rdtscp_supported = svm_rdtscp_supported,
7354 .invpcid_supported = svm_invpcid_supported,
7355 .mpx_supported = svm_mpx_supported,
7356 .xsaves_supported = svm_xsaves_supported,
7357 .umip_emulated = svm_umip_emulated,
7358 .pt_supported = svm_pt_supported,
7359 .pku_supported = svm_pku_supported,
7361 .set_supported_cpuid = svm_set_supported_cpuid,
7363 .has_wbinvd_exit = svm_has_wbinvd_exit,
7365 .read_l1_tsc_offset = svm_read_l1_tsc_offset,
7366 .write_l1_tsc_offset = svm_write_l1_tsc_offset,
7368 .set_tdp_cr3 = set_tdp_cr3,
7370 .check_intercept = svm_check_intercept,
7371 .handle_exit_irqoff = svm_handle_exit_irqoff,
7373 .request_immediate_exit = __kvm_request_immediate_exit,
7375 .sched_in = svm_sched_in,
7377 .pmu_ops = &amd_pmu_ops,
7378 .deliver_posted_interrupt = svm_deliver_avic_intr,
7379 .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
7380 .update_pi_irte = svm_update_pi_irte,
7381 .setup_mce = svm_setup_mce,
7383 .smi_allowed = svm_smi_allowed,
7384 .pre_enter_smm = svm_pre_enter_smm,
7385 .pre_leave_smm = svm_pre_leave_smm,
7386 .enable_smi_window = enable_smi_window,
7388 .mem_enc_op = svm_mem_enc_op,
7389 .mem_enc_reg_region = svm_register_enc_region,
7390 .mem_enc_unreg_region = svm_unregister_enc_region,
7392 .nested_enable_evmcs = NULL,
7393 .nested_get_evmcs_version = NULL,
7395 .need_emulation_on_page_fault = svm_need_emulation_on_page_fault,
7397 .apic_init_signal_blocked = svm_apic_init_signal_blocked,
7400 static int __init svm_init(void)
7402 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
7403 __alignof__(struct vcpu_svm), THIS_MODULE);
7406 static void __exit svm_exit(void)
7408 kvm_exit();
7411 module_init(svm_init)
7412 module_exit(svm_exit)