1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Yaniv Kamay <yaniv@qumranet.com>
12 * Avi Kivity <avi@qumranet.com>
15 #define pr_fmt(fmt) "SVM: " fmt
17 #include <linux/kvm_host.h>
21 #include "kvm_cache_regs.h"
26 #include <linux/module.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/kernel.h>
29 #include <linux/vmalloc.h>
30 #include <linux/highmem.h>
31 #include <linux/sched.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/amd-iommu.h>
35 #include <linux/hashtable.h>
36 #include <linux/frame.h>
37 #include <linux/psp-sev.h>
38 #include <linux/file.h>
39 #include <linux/pagemap.h>
40 #include <linux/swap.h>
41 #include <linux/rwsem.h>
44 #include <asm/perf_event.h>
45 #include <asm/tlbflush.h>
47 #include <asm/debugreg.h>
48 #include <asm/kvm_para.h>
49 #include <asm/irq_remapping.h>
50 #include <asm/spec-ctrl.h>
52 #include <asm/virtext.h>
55 #define __ex(x) __kvm_handle_fault_on_reboot(x)
57 MODULE_AUTHOR("Qumranet");
58 MODULE_LICENSE("GPL");
60 static const struct x86_cpu_id svm_cpu_id
[] = {
61 X86_FEATURE_MATCH(X86_FEATURE_SVM
),
64 MODULE_DEVICE_TABLE(x86cpu
, svm_cpu_id
);
66 #define IOPM_ALLOC_ORDER 2
67 #define MSRPM_ALLOC_ORDER 1
69 #define SEG_TYPE_LDT 2
70 #define SEG_TYPE_BUSY_TSS16 3
72 #define SVM_FEATURE_LBRV (1 << 1)
73 #define SVM_FEATURE_SVML (1 << 2)
74 #define SVM_FEATURE_TSC_RATE (1 << 4)
75 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
76 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
77 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
78 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
80 #define SVM_AVIC_DOORBELL 0xc001011b
82 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
83 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
84 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
86 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
88 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
89 #define TSC_RATIO_MIN 0x0000000000000001ULL
90 #define TSC_RATIO_MAX 0x000000ffffffffffULL
92 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
95 * 0xff is broadcast, so the max index allowed for physical APIC ID
96 * table is 0xfe. APIC IDs above 0xff are reserved.
98 #define AVIC_MAX_PHYSICAL_ID_COUNT 255
100 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
101 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
102 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
104 /* AVIC GATAG is encoded using VM and VCPU IDs */
105 #define AVIC_VCPU_ID_BITS 8
106 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
108 #define AVIC_VM_ID_BITS 24
109 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
110 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
112 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
113 (y & AVIC_VCPU_ID_MASK))
114 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
115 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
117 static bool erratum_383_found __read_mostly
;
119 static const u32 host_save_user_msrs
[] = {
121 MSR_STAR
, MSR_LSTAR
, MSR_CSTAR
, MSR_SYSCALL_MASK
, MSR_KERNEL_GS_BASE
,
124 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
128 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
130 struct kvm_sev_info
{
131 bool active
; /* SEV enabled guest */
132 unsigned int asid
; /* ASID used for this guest */
133 unsigned int handle
; /* SEV firmware handle */
134 int fd
; /* SEV device fd */
135 unsigned long pages_locked
; /* Number of pages locked */
136 struct list_head regions_list
; /* List of registered regions */
142 /* Struct members for AVIC */
144 struct page
*avic_logical_id_table_page
;
145 struct page
*avic_physical_id_table_page
;
146 struct hlist_node hnode
;
148 struct kvm_sev_info sev_info
;
153 struct nested_state
{
159 /* These are the merged vectors */
162 /* gpa pointers to the real vectors */
166 /* A VMEXIT is required but not yet emulated */
169 /* cache for intercepts of the guest */
172 u32 intercept_exceptions
;
175 /* Nested Paging related state */
179 #define MSRPM_OFFSETS 16
180 static u32 msrpm_offsets
[MSRPM_OFFSETS
] __read_mostly
;
183 * Set osvw_len to higher value when updated Revision Guides
184 * are published and we know what the new status bits are
186 static uint64_t osvw_len
= 4, osvw_status
;
189 struct kvm_vcpu vcpu
;
191 unsigned long vmcb_pa
;
192 struct svm_cpu_data
*svm_data
;
193 uint64_t asid_generation
;
194 uint64_t sysenter_esp
;
195 uint64_t sysenter_eip
;
202 u64 host_user_msrs
[NR_HOST_SAVE_USER_MSRS
];
212 * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
213 * translated into the appropriate L2_CFG bits on the host to
214 * perform speculative control.
222 struct nested_state nested
;
225 u64 nmi_singlestep_guest_rflags
;
227 unsigned int3_injected
;
228 unsigned long int3_rip
;
230 /* cached guest cpuid flags for faster access */
231 bool nrips_enabled
: 1;
235 struct page
*avic_backing_page
;
236 u64
*avic_physical_id_cache
;
237 bool avic_is_running
;
240 * Per-vcpu list of struct amd_svm_iommu_ir:
241 * This is used mainly to store interrupt remapping information used
242 * when update the vcpu affinity. This avoids the need to scan for
243 * IRTE and try to match ga_tag in the IOMMU driver.
245 struct list_head ir_list
;
246 spinlock_t ir_list_lock
;
248 /* which host CPU was used for running this vcpu */
249 unsigned int last_cpu
;
253 * This is a wrapper of struct amd_iommu_ir_data.
255 struct amd_svm_iommu_ir
{
256 struct list_head node
; /* Used by SVM for per-vcpu ir_list */
257 void *data
; /* Storing pointer to struct amd_ir_data */
260 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
261 #define AVIC_LOGICAL_ID_ENTRY_VALID_BIT 31
262 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
264 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
265 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
266 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
267 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
269 static DEFINE_PER_CPU(u64
, current_tsc_ratio
);
270 #define TSC_RATIO_DEFAULT 0x0100000000ULL
272 #define MSR_INVALID 0xffffffffU
274 static const struct svm_direct_access_msrs
{
275 u32 index
; /* Index of the MSR */
276 bool always
; /* True if intercept is always on */
277 } direct_access_msrs
[] = {
278 { .index
= MSR_STAR
, .always
= true },
279 { .index
= MSR_IA32_SYSENTER_CS
, .always
= true },
281 { .index
= MSR_GS_BASE
, .always
= true },
282 { .index
= MSR_FS_BASE
, .always
= true },
283 { .index
= MSR_KERNEL_GS_BASE
, .always
= true },
284 { .index
= MSR_LSTAR
, .always
= true },
285 { .index
= MSR_CSTAR
, .always
= true },
286 { .index
= MSR_SYSCALL_MASK
, .always
= true },
288 { .index
= MSR_IA32_SPEC_CTRL
, .always
= false },
289 { .index
= MSR_IA32_PRED_CMD
, .always
= false },
290 { .index
= MSR_IA32_LASTBRANCHFROMIP
, .always
= false },
291 { .index
= MSR_IA32_LASTBRANCHTOIP
, .always
= false },
292 { .index
= MSR_IA32_LASTINTFROMIP
, .always
= false },
293 { .index
= MSR_IA32_LASTINTTOIP
, .always
= false },
294 { .index
= MSR_INVALID
, .always
= false },
297 /* enable NPT for AMD64 and X86 with PAE */
298 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
299 static bool npt_enabled
= true;
301 static bool npt_enabled
;
305 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
306 * pause_filter_count: On processors that support Pause filtering(indicated
307 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
308 * count value. On VMRUN this value is loaded into an internal counter.
309 * Each time a pause instruction is executed, this counter is decremented
310 * until it reaches zero at which time a #VMEXIT is generated if pause
311 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
312 * Intercept Filtering for more details.
313 * This also indicate if ple logic enabled.
315 * pause_filter_thresh: In addition, some processor families support advanced
316 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
317 * the amount of time a guest is allowed to execute in a pause loop.
318 * In this mode, a 16-bit pause filter threshold field is added in the
319 * VMCB. The threshold value is a cycle count that is used to reset the
320 * pause counter. As with simple pause filtering, VMRUN loads the pause
321 * count value from VMCB into an internal counter. Then, on each pause
322 * instruction the hardware checks the elapsed number of cycles since
323 * the most recent pause instruction against the pause filter threshold.
324 * If the elapsed cycle count is greater than the pause filter threshold,
325 * then the internal pause count is reloaded from the VMCB and execution
326 * continues. If the elapsed cycle count is less than the pause filter
327 * threshold, then the internal pause count is decremented. If the count
328 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
329 * triggered. If advanced pause filtering is supported and pause filter
330 * threshold field is set to zero, the filter will operate in the simpler,
334 static unsigned short pause_filter_thresh
= KVM_DEFAULT_PLE_GAP
;
335 module_param(pause_filter_thresh
, ushort
, 0444);
337 static unsigned short pause_filter_count
= KVM_SVM_DEFAULT_PLE_WINDOW
;
338 module_param(pause_filter_count
, ushort
, 0444);
340 /* Default doubles per-vcpu window every exit. */
341 static unsigned short pause_filter_count_grow
= KVM_DEFAULT_PLE_WINDOW_GROW
;
342 module_param(pause_filter_count_grow
, ushort
, 0444);
344 /* Default resets per-vcpu window every exit to pause_filter_count. */
345 static unsigned short pause_filter_count_shrink
= KVM_DEFAULT_PLE_WINDOW_SHRINK
;
346 module_param(pause_filter_count_shrink
, ushort
, 0444);
348 /* Default is to compute the maximum so we can never overflow. */
349 static unsigned short pause_filter_count_max
= KVM_SVM_DEFAULT_PLE_WINDOW_MAX
;
350 module_param(pause_filter_count_max
, ushort
, 0444);
352 /* allow nested paging (virtualized MMU) for all guests */
353 static int npt
= true;
354 module_param(npt
, int, S_IRUGO
);
356 /* allow nested virtualization in KVM/SVM */
357 static int nested
= true;
358 module_param(nested
, int, S_IRUGO
);
360 /* enable / disable AVIC */
362 #ifdef CONFIG_X86_LOCAL_APIC
363 module_param(avic
, int, S_IRUGO
);
366 /* enable/disable Next RIP Save */
367 static int nrips
= true;
368 module_param(nrips
, int, 0444);
370 /* enable/disable Virtual VMLOAD VMSAVE */
371 static int vls
= true;
372 module_param(vls
, int, 0444);
374 /* enable/disable Virtual GIF */
375 static int vgif
= true;
376 module_param(vgif
, int, 0444);
378 /* enable/disable SEV support */
379 static int sev
= IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT
);
380 module_param(sev
, int, 0444);
382 static bool __read_mostly dump_invalid_vmcb
= 0;
383 module_param(dump_invalid_vmcb
, bool, 0644);
385 static u8 rsm_ins_bytes
[] = "\x0f\xaa";
387 static void svm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
);
388 static void svm_flush_tlb(struct kvm_vcpu
*vcpu
, bool invalidate_gpa
);
389 static void svm_complete_interrupts(struct vcpu_svm
*svm
);
391 static int nested_svm_exit_handled(struct vcpu_svm
*svm
);
392 static int nested_svm_intercept(struct vcpu_svm
*svm
);
393 static int nested_svm_vmexit(struct vcpu_svm
*svm
);
394 static int nested_svm_check_exception(struct vcpu_svm
*svm
, unsigned nr
,
395 bool has_error_code
, u32 error_code
);
398 VMCB_INTERCEPTS
, /* Intercept vectors, TSC offset,
399 pause filter count */
400 VMCB_PERM_MAP
, /* IOPM Base and MSRPM Base */
401 VMCB_ASID
, /* ASID */
402 VMCB_INTR
, /* int_ctl, int_vector */
403 VMCB_NPT
, /* npt_en, nCR3, gPAT */
404 VMCB_CR
, /* CR0, CR3, CR4, EFER */
405 VMCB_DR
, /* DR6, DR7 */
406 VMCB_DT
, /* GDT, IDT */
407 VMCB_SEG
, /* CS, DS, SS, ES, CPL */
408 VMCB_CR2
, /* CR2 only */
409 VMCB_LBR
, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
410 VMCB_AVIC
, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
411 * AVIC PHYSICAL_TABLE pointer,
412 * AVIC LOGICAL_TABLE pointer
417 /* TPR and CR2 are always written before VMRUN */
418 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
420 #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
422 static int sev_flush_asids(void);
423 static DECLARE_RWSEM(sev_deactivate_lock
);
424 static DEFINE_MUTEX(sev_bitmap_lock
);
425 static unsigned int max_sev_asid
;
426 static unsigned int min_sev_asid
;
427 static unsigned long *sev_asid_bitmap
;
428 static unsigned long *sev_reclaim_asid_bitmap
;
429 #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
432 struct list_head list
;
433 unsigned long npages
;
440 static inline struct kvm_svm
*to_kvm_svm(struct kvm
*kvm
)
442 return container_of(kvm
, struct kvm_svm
, kvm
);
445 static inline bool svm_sev_enabled(void)
447 return IS_ENABLED(CONFIG_KVM_AMD_SEV
) ? max_sev_asid
: 0;
450 static inline bool sev_guest(struct kvm
*kvm
)
452 #ifdef CONFIG_KVM_AMD_SEV
453 struct kvm_sev_info
*sev
= &to_kvm_svm(kvm
)->sev_info
;
461 static inline int sev_get_asid(struct kvm
*kvm
)
463 struct kvm_sev_info
*sev
= &to_kvm_svm(kvm
)->sev_info
;
468 static inline void mark_all_dirty(struct vmcb
*vmcb
)
470 vmcb
->control
.clean
= 0;
473 static inline void mark_all_clean(struct vmcb
*vmcb
)
475 vmcb
->control
.clean
= ((1 << VMCB_DIRTY_MAX
) - 1)
476 & ~VMCB_ALWAYS_DIRTY_MASK
;
479 static inline void mark_dirty(struct vmcb
*vmcb
, int bit
)
481 vmcb
->control
.clean
&= ~(1 << bit
);
484 static inline struct vcpu_svm
*to_svm(struct kvm_vcpu
*vcpu
)
486 return container_of(vcpu
, struct vcpu_svm
, vcpu
);
489 static inline void avic_update_vapic_bar(struct vcpu_svm
*svm
, u64 data
)
491 svm
->vmcb
->control
.avic_vapic_bar
= data
& VMCB_AVIC_APIC_BAR_MASK
;
492 mark_dirty(svm
->vmcb
, VMCB_AVIC
);
495 static inline bool avic_vcpu_is_running(struct kvm_vcpu
*vcpu
)
497 struct vcpu_svm
*svm
= to_svm(vcpu
);
498 u64
*entry
= svm
->avic_physical_id_cache
;
503 return (READ_ONCE(*entry
) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK
);
506 static void recalc_intercepts(struct vcpu_svm
*svm
)
508 struct vmcb_control_area
*c
, *h
;
509 struct nested_state
*g
;
511 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
513 if (!is_guest_mode(&svm
->vcpu
))
516 c
= &svm
->vmcb
->control
;
517 h
= &svm
->nested
.hsave
->control
;
520 c
->intercept_cr
= h
->intercept_cr
| g
->intercept_cr
;
521 c
->intercept_dr
= h
->intercept_dr
| g
->intercept_dr
;
522 c
->intercept_exceptions
= h
->intercept_exceptions
| g
->intercept_exceptions
;
523 c
->intercept
= h
->intercept
| g
->intercept
;
526 static inline struct vmcb
*get_host_vmcb(struct vcpu_svm
*svm
)
528 if (is_guest_mode(&svm
->vcpu
))
529 return svm
->nested
.hsave
;
534 static inline void set_cr_intercept(struct vcpu_svm
*svm
, int bit
)
536 struct vmcb
*vmcb
= get_host_vmcb(svm
);
538 vmcb
->control
.intercept_cr
|= (1U << bit
);
540 recalc_intercepts(svm
);
543 static inline void clr_cr_intercept(struct vcpu_svm
*svm
, int bit
)
545 struct vmcb
*vmcb
= get_host_vmcb(svm
);
547 vmcb
->control
.intercept_cr
&= ~(1U << bit
);
549 recalc_intercepts(svm
);
552 static inline bool is_cr_intercept(struct vcpu_svm
*svm
, int bit
)
554 struct vmcb
*vmcb
= get_host_vmcb(svm
);
556 return vmcb
->control
.intercept_cr
& (1U << bit
);
559 static inline void set_dr_intercepts(struct vcpu_svm
*svm
)
561 struct vmcb
*vmcb
= get_host_vmcb(svm
);
563 vmcb
->control
.intercept_dr
= (1 << INTERCEPT_DR0_READ
)
564 | (1 << INTERCEPT_DR1_READ
)
565 | (1 << INTERCEPT_DR2_READ
)
566 | (1 << INTERCEPT_DR3_READ
)
567 | (1 << INTERCEPT_DR4_READ
)
568 | (1 << INTERCEPT_DR5_READ
)
569 | (1 << INTERCEPT_DR6_READ
)
570 | (1 << INTERCEPT_DR7_READ
)
571 | (1 << INTERCEPT_DR0_WRITE
)
572 | (1 << INTERCEPT_DR1_WRITE
)
573 | (1 << INTERCEPT_DR2_WRITE
)
574 | (1 << INTERCEPT_DR3_WRITE
)
575 | (1 << INTERCEPT_DR4_WRITE
)
576 | (1 << INTERCEPT_DR5_WRITE
)
577 | (1 << INTERCEPT_DR6_WRITE
)
578 | (1 << INTERCEPT_DR7_WRITE
);
580 recalc_intercepts(svm
);
583 static inline void clr_dr_intercepts(struct vcpu_svm
*svm
)
585 struct vmcb
*vmcb
= get_host_vmcb(svm
);
587 vmcb
->control
.intercept_dr
= 0;
589 recalc_intercepts(svm
);
592 static inline void set_exception_intercept(struct vcpu_svm
*svm
, int bit
)
594 struct vmcb
*vmcb
= get_host_vmcb(svm
);
596 vmcb
->control
.intercept_exceptions
|= (1U << bit
);
598 recalc_intercepts(svm
);
601 static inline void clr_exception_intercept(struct vcpu_svm
*svm
, int bit
)
603 struct vmcb
*vmcb
= get_host_vmcb(svm
);
605 vmcb
->control
.intercept_exceptions
&= ~(1U << bit
);
607 recalc_intercepts(svm
);
610 static inline void set_intercept(struct vcpu_svm
*svm
, int bit
)
612 struct vmcb
*vmcb
= get_host_vmcb(svm
);
614 vmcb
->control
.intercept
|= (1ULL << bit
);
616 recalc_intercepts(svm
);
619 static inline void clr_intercept(struct vcpu_svm
*svm
, int bit
)
621 struct vmcb
*vmcb
= get_host_vmcb(svm
);
623 vmcb
->control
.intercept
&= ~(1ULL << bit
);
625 recalc_intercepts(svm
);
628 static inline bool vgif_enabled(struct vcpu_svm
*svm
)
630 return !!(svm
->vmcb
->control
.int_ctl
& V_GIF_ENABLE_MASK
);
633 static inline void enable_gif(struct vcpu_svm
*svm
)
635 if (vgif_enabled(svm
))
636 svm
->vmcb
->control
.int_ctl
|= V_GIF_MASK
;
638 svm
->vcpu
.arch
.hflags
|= HF_GIF_MASK
;
641 static inline void disable_gif(struct vcpu_svm
*svm
)
643 if (vgif_enabled(svm
))
644 svm
->vmcb
->control
.int_ctl
&= ~V_GIF_MASK
;
646 svm
->vcpu
.arch
.hflags
&= ~HF_GIF_MASK
;
649 static inline bool gif_set(struct vcpu_svm
*svm
)
651 if (vgif_enabled(svm
))
652 return !!(svm
->vmcb
->control
.int_ctl
& V_GIF_MASK
);
654 return !!(svm
->vcpu
.arch
.hflags
& HF_GIF_MASK
);
657 static unsigned long iopm_base
;
659 struct kvm_ldttss_desc
{
662 unsigned base1
:8, type
:5, dpl
:2, p
:1;
663 unsigned limit1
:4, zero0
:3, g
:1, base2
:8;
666 } __attribute__((packed
));
668 struct svm_cpu_data
{
675 struct kvm_ldttss_desc
*tss_desc
;
677 struct page
*save_area
;
678 struct vmcb
*current_vmcb
;
680 /* index = sev_asid, value = vmcb pointer */
681 struct vmcb
**sev_vmcbs
;
684 static DEFINE_PER_CPU(struct svm_cpu_data
*, svm_data
);
686 static const u32 msrpm_ranges
[] = {0, 0xc0000000, 0xc0010000};
688 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
689 #define MSRS_RANGE_SIZE 2048
690 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
692 static u32
svm_msrpm_offset(u32 msr
)
697 for (i
= 0; i
< NUM_MSR_MAPS
; i
++) {
698 if (msr
< msrpm_ranges
[i
] ||
699 msr
>= msrpm_ranges
[i
] + MSRS_IN_RANGE
)
702 offset
= (msr
- msrpm_ranges
[i
]) / 4; /* 4 msrs per u8 */
703 offset
+= (i
* MSRS_RANGE_SIZE
); /* add range offset */
705 /* Now we have the u8 offset - but need the u32 offset */
709 /* MSR not in any range */
713 #define MAX_INST_SIZE 15
715 static inline void clgi(void)
717 asm volatile (__ex("clgi"));
720 static inline void stgi(void)
722 asm volatile (__ex("stgi"));
725 static inline void invlpga(unsigned long addr
, u32 asid
)
727 asm volatile (__ex("invlpga %1, %0") : : "c"(asid
), "a"(addr
));
730 static int get_npt_level(struct kvm_vcpu
*vcpu
)
733 return PT64_ROOT_4LEVEL
;
735 return PT32E_ROOT_LEVEL
;
739 static void svm_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
741 vcpu
->arch
.efer
= efer
;
744 /* Shadow paging assumes NX to be available. */
747 if (!(efer
& EFER_LMA
))
751 to_svm(vcpu
)->vmcb
->save
.efer
= efer
| EFER_SVME
;
752 mark_dirty(to_svm(vcpu
)->vmcb
, VMCB_CR
);
755 static int is_external_interrupt(u32 info
)
757 info
&= SVM_EVTINJ_TYPE_MASK
| SVM_EVTINJ_VALID
;
758 return info
== (SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
);
761 static u32
svm_get_interrupt_shadow(struct kvm_vcpu
*vcpu
)
763 struct vcpu_svm
*svm
= to_svm(vcpu
);
766 if (svm
->vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
)
767 ret
= KVM_X86_SHADOW_INT_STI
| KVM_X86_SHADOW_INT_MOV_SS
;
771 static void svm_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
773 struct vcpu_svm
*svm
= to_svm(vcpu
);
776 svm
->vmcb
->control
.int_state
&= ~SVM_INTERRUPT_SHADOW_MASK
;
778 svm
->vmcb
->control
.int_state
|= SVM_INTERRUPT_SHADOW_MASK
;
782 static int skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
784 struct vcpu_svm
*svm
= to_svm(vcpu
);
786 if (nrips
&& svm
->vmcb
->control
.next_rip
!= 0) {
787 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS
));
788 svm
->next_rip
= svm
->vmcb
->control
.next_rip
;
791 if (!svm
->next_rip
) {
792 if (!kvm_emulate_instruction(vcpu
, EMULTYPE_SKIP
))
795 if (svm
->next_rip
- kvm_rip_read(vcpu
) > MAX_INST_SIZE
)
796 pr_err("%s: ip 0x%lx next 0x%llx\n",
797 __func__
, kvm_rip_read(vcpu
), svm
->next_rip
);
798 kvm_rip_write(vcpu
, svm
->next_rip
);
800 svm_set_interrupt_shadow(vcpu
, 0);
805 static void svm_queue_exception(struct kvm_vcpu
*vcpu
)
807 struct vcpu_svm
*svm
= to_svm(vcpu
);
808 unsigned nr
= vcpu
->arch
.exception
.nr
;
809 bool has_error_code
= vcpu
->arch
.exception
.has_error_code
;
810 bool reinject
= vcpu
->arch
.exception
.injected
;
811 u32 error_code
= vcpu
->arch
.exception
.error_code
;
814 * If we are within a nested VM we'd better #VMEXIT and let the guest
815 * handle the exception
818 nested_svm_check_exception(svm
, nr
, has_error_code
, error_code
))
821 kvm_deliver_exception_payload(&svm
->vcpu
);
823 if (nr
== BP_VECTOR
&& !nrips
) {
824 unsigned long rip
, old_rip
= kvm_rip_read(&svm
->vcpu
);
827 * For guest debugging where we have to reinject #BP if some
828 * INT3 is guest-owned:
829 * Emulate nRIP by moving RIP forward. Will fail if injection
830 * raises a fault that is not intercepted. Still better than
831 * failing in all cases.
833 (void)skip_emulated_instruction(&svm
->vcpu
);
834 rip
= kvm_rip_read(&svm
->vcpu
);
835 svm
->int3_rip
= rip
+ svm
->vmcb
->save
.cs
.base
;
836 svm
->int3_injected
= rip
- old_rip
;
839 svm
->vmcb
->control
.event_inj
= nr
841 | (has_error_code
? SVM_EVTINJ_VALID_ERR
: 0)
842 | SVM_EVTINJ_TYPE_EXEPT
;
843 svm
->vmcb
->control
.event_inj_err
= error_code
;
846 static void svm_init_erratum_383(void)
852 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH
))
855 /* Use _safe variants to not break nested virtualization */
856 val
= native_read_msr_safe(MSR_AMD64_DC_CFG
, &err
);
862 low
= lower_32_bits(val
);
863 high
= upper_32_bits(val
);
865 native_write_msr_safe(MSR_AMD64_DC_CFG
, low
, high
);
867 erratum_383_found
= true;
870 static void svm_init_osvw(struct kvm_vcpu
*vcpu
)
873 * Guests should see errata 400 and 415 as fixed (assuming that
874 * HLT and IO instructions are intercepted).
876 vcpu
->arch
.osvw
.length
= (osvw_len
>= 3) ? (osvw_len
) : 3;
877 vcpu
->arch
.osvw
.status
= osvw_status
& ~(6ULL);
880 * By increasing VCPU's osvw.length to 3 we are telling the guest that
881 * all osvw.status bits inside that length, including bit 0 (which is
882 * reserved for erratum 298), are valid. However, if host processor's
883 * osvw_len is 0 then osvw_status[0] carries no information. We need to
884 * be conservative here and therefore we tell the guest that erratum 298
885 * is present (because we really don't know).
887 if (osvw_len
== 0 && boot_cpu_data
.x86
== 0x10)
888 vcpu
->arch
.osvw
.status
|= 1;
891 static int has_svm(void)
895 if (!cpu_has_svm(&msg
)) {
896 printk(KERN_INFO
"has_svm: %s\n", msg
);
903 static void svm_hardware_disable(void)
905 /* Make sure we clean up behind us */
906 if (static_cpu_has(X86_FEATURE_TSCRATEMSR
))
907 wrmsrl(MSR_AMD64_TSC_RATIO
, TSC_RATIO_DEFAULT
);
911 amd_pmu_disable_virt();
914 static int svm_hardware_enable(void)
917 struct svm_cpu_data
*sd
;
919 struct desc_struct
*gdt
;
920 int me
= raw_smp_processor_id();
922 rdmsrl(MSR_EFER
, efer
);
923 if (efer
& EFER_SVME
)
927 pr_err("%s: err EOPNOTSUPP on %d\n", __func__
, me
);
930 sd
= per_cpu(svm_data
, me
);
932 pr_err("%s: svm_data is NULL on %d\n", __func__
, me
);
936 sd
->asid_generation
= 1;
937 sd
->max_asid
= cpuid_ebx(SVM_CPUID_FUNC
) - 1;
938 sd
->next_asid
= sd
->max_asid
+ 1;
939 sd
->min_asid
= max_sev_asid
+ 1;
941 gdt
= get_current_gdt_rw();
942 sd
->tss_desc
= (struct kvm_ldttss_desc
*)(gdt
+ GDT_ENTRY_TSS
);
944 wrmsrl(MSR_EFER
, efer
| EFER_SVME
);
946 wrmsrl(MSR_VM_HSAVE_PA
, page_to_pfn(sd
->save_area
) << PAGE_SHIFT
);
948 if (static_cpu_has(X86_FEATURE_TSCRATEMSR
)) {
949 wrmsrl(MSR_AMD64_TSC_RATIO
, TSC_RATIO_DEFAULT
);
950 __this_cpu_write(current_tsc_ratio
, TSC_RATIO_DEFAULT
);
957 * Note that it is possible to have a system with mixed processor
958 * revisions and therefore different OSVW bits. If bits are not the same
959 * on different processors then choose the worst case (i.e. if erratum
960 * is present on one processor and not on another then assume that the
961 * erratum is present everywhere).
963 if (cpu_has(&boot_cpu_data
, X86_FEATURE_OSVW
)) {
964 uint64_t len
, status
= 0;
967 len
= native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH
, &err
);
969 status
= native_read_msr_safe(MSR_AMD64_OSVW_STATUS
,
973 osvw_status
= osvw_len
= 0;
977 osvw_status
|= status
;
978 osvw_status
&= (1ULL << osvw_len
) - 1;
981 osvw_status
= osvw_len
= 0;
983 svm_init_erratum_383();
985 amd_pmu_enable_virt();
990 static void svm_cpu_uninit(int cpu
)
992 struct svm_cpu_data
*sd
= per_cpu(svm_data
, raw_smp_processor_id());
997 per_cpu(svm_data
, raw_smp_processor_id()) = NULL
;
998 kfree(sd
->sev_vmcbs
);
999 __free_page(sd
->save_area
);
1003 static int svm_cpu_init(int cpu
)
1005 struct svm_cpu_data
*sd
;
1008 sd
= kzalloc(sizeof(struct svm_cpu_data
), GFP_KERNEL
);
1013 sd
->save_area
= alloc_page(GFP_KERNEL
);
1017 if (svm_sev_enabled()) {
1019 sd
->sev_vmcbs
= kmalloc_array(max_sev_asid
+ 1,
1026 per_cpu(svm_data
, cpu
) = sd
;
1036 static bool valid_msr_intercept(u32 index
)
1040 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++)
1041 if (direct_access_msrs
[i
].index
== index
)
1047 static bool msr_write_intercepted(struct kvm_vcpu
*vcpu
, unsigned msr
)
1054 msrpm
= is_guest_mode(vcpu
) ? to_svm(vcpu
)->nested
.msrpm
:
1055 to_svm(vcpu
)->msrpm
;
1057 offset
= svm_msrpm_offset(msr
);
1058 bit_write
= 2 * (msr
& 0x0f) + 1;
1059 tmp
= msrpm
[offset
];
1061 BUG_ON(offset
== MSR_INVALID
);
1063 return !!test_bit(bit_write
, &tmp
);
1066 static void set_msr_interception(u32
*msrpm
, unsigned msr
,
1067 int read
, int write
)
1069 u8 bit_read
, bit_write
;
1074 * If this warning triggers extend the direct_access_msrs list at the
1075 * beginning of the file
1077 WARN_ON(!valid_msr_intercept(msr
));
1079 offset
= svm_msrpm_offset(msr
);
1080 bit_read
= 2 * (msr
& 0x0f);
1081 bit_write
= 2 * (msr
& 0x0f) + 1;
1082 tmp
= msrpm
[offset
];
1084 BUG_ON(offset
== MSR_INVALID
);
1086 read
? clear_bit(bit_read
, &tmp
) : set_bit(bit_read
, &tmp
);
1087 write
? clear_bit(bit_write
, &tmp
) : set_bit(bit_write
, &tmp
);
1089 msrpm
[offset
] = tmp
;
1092 static void svm_vcpu_init_msrpm(u32
*msrpm
)
1096 memset(msrpm
, 0xff, PAGE_SIZE
* (1 << MSRPM_ALLOC_ORDER
));
1098 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++) {
1099 if (!direct_access_msrs
[i
].always
)
1102 set_msr_interception(msrpm
, direct_access_msrs
[i
].index
, 1, 1);
1106 static void add_msr_offset(u32 offset
)
1110 for (i
= 0; i
< MSRPM_OFFSETS
; ++i
) {
1112 /* Offset already in list? */
1113 if (msrpm_offsets
[i
] == offset
)
1116 /* Slot used by another offset? */
1117 if (msrpm_offsets
[i
] != MSR_INVALID
)
1120 /* Add offset to list */
1121 msrpm_offsets
[i
] = offset
;
1127 * If this BUG triggers the msrpm_offsets table has an overflow. Just
1128 * increase MSRPM_OFFSETS in this case.
1133 static void init_msrpm_offsets(void)
1137 memset(msrpm_offsets
, 0xff, sizeof(msrpm_offsets
));
1139 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++) {
1142 offset
= svm_msrpm_offset(direct_access_msrs
[i
].index
);
1143 BUG_ON(offset
== MSR_INVALID
);
1145 add_msr_offset(offset
);
1149 static void svm_enable_lbrv(struct vcpu_svm
*svm
)
1151 u32
*msrpm
= svm
->msrpm
;
1153 svm
->vmcb
->control
.virt_ext
|= LBR_CTL_ENABLE_MASK
;
1154 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 1, 1);
1155 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 1, 1);
1156 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 1, 1);
1157 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 1, 1);
1160 static void svm_disable_lbrv(struct vcpu_svm
*svm
)
1162 u32
*msrpm
= svm
->msrpm
;
1164 svm
->vmcb
->control
.virt_ext
&= ~LBR_CTL_ENABLE_MASK
;
1165 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 0, 0);
1166 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 0, 0);
1167 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 0, 0);
1168 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 0, 0);
1171 static void disable_nmi_singlestep(struct vcpu_svm
*svm
)
1173 svm
->nmi_singlestep
= false;
1175 if (!(svm
->vcpu
.guest_debug
& KVM_GUESTDBG_SINGLESTEP
)) {
1176 /* Clear our flags if they were not set by the guest */
1177 if (!(svm
->nmi_singlestep_guest_rflags
& X86_EFLAGS_TF
))
1178 svm
->vmcb
->save
.rflags
&= ~X86_EFLAGS_TF
;
1179 if (!(svm
->nmi_singlestep_guest_rflags
& X86_EFLAGS_RF
))
1180 svm
->vmcb
->save
.rflags
&= ~X86_EFLAGS_RF
;
1185 * This hash table is used to map VM_ID to a struct kvm_svm,
1186 * when handling AMD IOMMU GALOG notification to schedule in
1187 * a particular vCPU.
1189 #define SVM_VM_DATA_HASH_BITS 8
1190 static DEFINE_HASHTABLE(svm_vm_data_hash
, SVM_VM_DATA_HASH_BITS
);
1191 static u32 next_vm_id
= 0;
1192 static bool next_vm_id_wrapped
= 0;
1193 static DEFINE_SPINLOCK(svm_vm_data_hash_lock
);
1196 * This function is called from IOMMU driver to notify
1197 * SVM to schedule in a particular vCPU of a particular VM.
1199 static int avic_ga_log_notifier(u32 ga_tag
)
1201 unsigned long flags
;
1202 struct kvm_svm
*kvm_svm
;
1203 struct kvm_vcpu
*vcpu
= NULL
;
1204 u32 vm_id
= AVIC_GATAG_TO_VMID(ga_tag
);
1205 u32 vcpu_id
= AVIC_GATAG_TO_VCPUID(ga_tag
);
1207 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__
, vm_id
, vcpu_id
);
1209 spin_lock_irqsave(&svm_vm_data_hash_lock
, flags
);
1210 hash_for_each_possible(svm_vm_data_hash
, kvm_svm
, hnode
, vm_id
) {
1211 if (kvm_svm
->avic_vm_id
!= vm_id
)
1213 vcpu
= kvm_get_vcpu_by_id(&kvm_svm
->kvm
, vcpu_id
);
1216 spin_unlock_irqrestore(&svm_vm_data_hash_lock
, flags
);
1219 * At this point, the IOMMU should have already set the pending
1220 * bit in the vAPIC backing page. So, we just need to schedule
1224 kvm_vcpu_wake_up(vcpu
);
1229 static __init
int sev_hardware_setup(void)
1231 struct sev_user_data_status
*status
;
1234 /* Maximum number of encrypted guests supported simultaneously */
1235 max_sev_asid
= cpuid_ecx(0x8000001F);
1240 /* Minimum ASID value that should be used for SEV guest */
1241 min_sev_asid
= cpuid_edx(0x8000001F);
1243 /* Initialize SEV ASID bitmaps */
1244 sev_asid_bitmap
= bitmap_zalloc(max_sev_asid
, GFP_KERNEL
);
1245 if (!sev_asid_bitmap
)
1248 sev_reclaim_asid_bitmap
= bitmap_zalloc(max_sev_asid
, GFP_KERNEL
);
1249 if (!sev_reclaim_asid_bitmap
)
1252 status
= kmalloc(sizeof(*status
), GFP_KERNEL
);
1257 * Check SEV platform status.
1259 * PLATFORM_STATUS can be called in any state, if we failed to query
1260 * the PLATFORM status then either PSP firmware does not support SEV
1261 * feature or SEV firmware is dead.
1263 rc
= sev_platform_status(status
, NULL
);
1267 pr_info("SEV supported\n");
1274 static void grow_ple_window(struct kvm_vcpu
*vcpu
)
1276 struct vcpu_svm
*svm
= to_svm(vcpu
);
1277 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
1278 int old
= control
->pause_filter_count
;
1280 control
->pause_filter_count
= __grow_ple_window(old
,
1282 pause_filter_count_grow
,
1283 pause_filter_count_max
);
1285 if (control
->pause_filter_count
!= old
) {
1286 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
1287 trace_kvm_ple_window_update(vcpu
->vcpu_id
,
1288 control
->pause_filter_count
, old
);
1292 static void shrink_ple_window(struct kvm_vcpu
*vcpu
)
1294 struct vcpu_svm
*svm
= to_svm(vcpu
);
1295 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
1296 int old
= control
->pause_filter_count
;
1298 control
->pause_filter_count
=
1299 __shrink_ple_window(old
,
1301 pause_filter_count_shrink
,
1302 pause_filter_count
);
1303 if (control
->pause_filter_count
!= old
) {
1304 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
1305 trace_kvm_ple_window_update(vcpu
->vcpu_id
,
1306 control
->pause_filter_count
, old
);
1311 * The default MMIO mask is a single bit (excluding the present bit),
1312 * which could conflict with the memory encryption bit. Check for
1313 * memory encryption support and override the default MMIO mask if
1314 * memory encryption is enabled.
1316 static __init
void svm_adjust_mmio_mask(void)
1318 unsigned int enc_bit
, mask_bit
;
1321 /* If there is no memory encryption support, use existing mask */
1322 if (cpuid_eax(0x80000000) < 0x8000001f)
1325 /* If memory encryption is not enabled, use existing mask */
1326 rdmsrl(MSR_K8_SYSCFG
, msr
);
1327 if (!(msr
& MSR_K8_SYSCFG_MEM_ENCRYPT
))
1330 enc_bit
= cpuid_ebx(0x8000001f) & 0x3f;
1331 mask_bit
= boot_cpu_data
.x86_phys_bits
;
1333 /* Increment the mask bit if it is the same as the encryption bit */
1334 if (enc_bit
== mask_bit
)
1338 * If the mask bit location is below 52, then some bits above the
1339 * physical addressing limit will always be reserved, so use the
1340 * rsvd_bits() function to generate the mask. This mask, along with
1341 * the present bit, will be used to generate a page fault with
1344 * If the mask bit location is 52 (or above), then clear the mask.
1346 mask
= (mask_bit
< 52) ? rsvd_bits(mask_bit
, 51) | PT_PRESENT_MASK
: 0;
1348 kvm_mmu_set_mmio_spte_mask(mask
, mask
, PT_WRITABLE_MASK
| PT_USER_MASK
);
1351 static __init
int svm_hardware_setup(void)
1354 struct page
*iopm_pages
;
1358 iopm_pages
= alloc_pages(GFP_KERNEL
, IOPM_ALLOC_ORDER
);
1363 iopm_va
= page_address(iopm_pages
);
1364 memset(iopm_va
, 0xff, PAGE_SIZE
* (1 << IOPM_ALLOC_ORDER
));
1365 iopm_base
= page_to_pfn(iopm_pages
) << PAGE_SHIFT
;
1367 init_msrpm_offsets();
1369 if (boot_cpu_has(X86_FEATURE_NX
))
1370 kvm_enable_efer_bits(EFER_NX
);
1372 if (boot_cpu_has(X86_FEATURE_FXSR_OPT
))
1373 kvm_enable_efer_bits(EFER_FFXSR
);
1375 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR
)) {
1376 kvm_has_tsc_control
= true;
1377 kvm_max_tsc_scaling_ratio
= TSC_RATIO_MAX
;
1378 kvm_tsc_scaling_ratio_frac_bits
= 32;
1381 /* Check for pause filtering support */
1382 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER
)) {
1383 pause_filter_count
= 0;
1384 pause_filter_thresh
= 0;
1385 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD
)) {
1386 pause_filter_thresh
= 0;
1390 printk(KERN_INFO
"kvm: Nested Virtualization enabled\n");
1391 kvm_enable_efer_bits(EFER_SVME
| EFER_LMSLE
);
1395 if (boot_cpu_has(X86_FEATURE_SEV
) &&
1396 IS_ENABLED(CONFIG_KVM_AMD_SEV
)) {
1397 r
= sev_hardware_setup();
1405 svm_adjust_mmio_mask();
1407 for_each_possible_cpu(cpu
) {
1408 r
= svm_cpu_init(cpu
);
1413 if (!boot_cpu_has(X86_FEATURE_NPT
))
1414 npt_enabled
= false;
1416 if (npt_enabled
&& !npt
) {
1417 printk(KERN_INFO
"kvm: Nested Paging disabled\n");
1418 npt_enabled
= false;
1422 printk(KERN_INFO
"kvm: Nested Paging enabled\n");
1428 if (!boot_cpu_has(X86_FEATURE_NRIPS
))
1434 !boot_cpu_has(X86_FEATURE_AVIC
) ||
1435 !IS_ENABLED(CONFIG_X86_LOCAL_APIC
)) {
1438 pr_info("AVIC enabled\n");
1440 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier
);
1446 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD
) ||
1447 !IS_ENABLED(CONFIG_X86_64
)) {
1450 pr_info("Virtual VMLOAD VMSAVE supported\n");
1455 if (!boot_cpu_has(X86_FEATURE_VGIF
))
1458 pr_info("Virtual GIF supported\n");
1464 __free_pages(iopm_pages
, IOPM_ALLOC_ORDER
);
1469 static __exit
void svm_hardware_unsetup(void)
1473 if (svm_sev_enabled()) {
1474 bitmap_free(sev_asid_bitmap
);
1475 bitmap_free(sev_reclaim_asid_bitmap
);
1480 for_each_possible_cpu(cpu
)
1481 svm_cpu_uninit(cpu
);
1483 __free_pages(pfn_to_page(iopm_base
>> PAGE_SHIFT
), IOPM_ALLOC_ORDER
);
1487 static void init_seg(struct vmcb_seg
*seg
)
1490 seg
->attrib
= SVM_SELECTOR_P_MASK
| SVM_SELECTOR_S_MASK
|
1491 SVM_SELECTOR_WRITE_MASK
; /* Read/Write Data Segment */
1492 seg
->limit
= 0xffff;
1496 static void init_sys_seg(struct vmcb_seg
*seg
, uint32_t type
)
1499 seg
->attrib
= SVM_SELECTOR_P_MASK
| type
;
1500 seg
->limit
= 0xffff;
1504 static u64
svm_read_l1_tsc_offset(struct kvm_vcpu
*vcpu
)
1506 struct vcpu_svm
*svm
= to_svm(vcpu
);
1508 if (is_guest_mode(vcpu
))
1509 return svm
->nested
.hsave
->control
.tsc_offset
;
1511 return vcpu
->arch
.tsc_offset
;
1514 static u64
svm_write_l1_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
1516 struct vcpu_svm
*svm
= to_svm(vcpu
);
1517 u64 g_tsc_offset
= 0;
1519 if (is_guest_mode(vcpu
)) {
1520 /* Write L1's TSC offset. */
1521 g_tsc_offset
= svm
->vmcb
->control
.tsc_offset
-
1522 svm
->nested
.hsave
->control
.tsc_offset
;
1523 svm
->nested
.hsave
->control
.tsc_offset
= offset
;
1526 trace_kvm_write_tsc_offset(vcpu
->vcpu_id
,
1527 svm
->vmcb
->control
.tsc_offset
- g_tsc_offset
,
1530 svm
->vmcb
->control
.tsc_offset
= offset
+ g_tsc_offset
;
1532 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
1533 return svm
->vmcb
->control
.tsc_offset
;
1536 static void avic_init_vmcb(struct vcpu_svm
*svm
)
1538 struct vmcb
*vmcb
= svm
->vmcb
;
1539 struct kvm_svm
*kvm_svm
= to_kvm_svm(svm
->vcpu
.kvm
);
1540 phys_addr_t bpa
= __sme_set(page_to_phys(svm
->avic_backing_page
));
1541 phys_addr_t lpa
= __sme_set(page_to_phys(kvm_svm
->avic_logical_id_table_page
));
1542 phys_addr_t ppa
= __sme_set(page_to_phys(kvm_svm
->avic_physical_id_table_page
));
1544 vmcb
->control
.avic_backing_page
= bpa
& AVIC_HPA_MASK
;
1545 vmcb
->control
.avic_logical_id
= lpa
& AVIC_HPA_MASK
;
1546 vmcb
->control
.avic_physical_id
= ppa
& AVIC_HPA_MASK
;
1547 vmcb
->control
.avic_physical_id
|= AVIC_MAX_PHYSICAL_ID_COUNT
;
1548 vmcb
->control
.int_ctl
|= AVIC_ENABLE_MASK
;
1551 static void init_vmcb(struct vcpu_svm
*svm
)
1553 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
1554 struct vmcb_save_area
*save
= &svm
->vmcb
->save
;
1556 svm
->vcpu
.arch
.hflags
= 0;
1558 set_cr_intercept(svm
, INTERCEPT_CR0_READ
);
1559 set_cr_intercept(svm
, INTERCEPT_CR3_READ
);
1560 set_cr_intercept(svm
, INTERCEPT_CR4_READ
);
1561 set_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
1562 set_cr_intercept(svm
, INTERCEPT_CR3_WRITE
);
1563 set_cr_intercept(svm
, INTERCEPT_CR4_WRITE
);
1564 if (!kvm_vcpu_apicv_active(&svm
->vcpu
))
1565 set_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
1567 set_dr_intercepts(svm
);
1569 set_exception_intercept(svm
, PF_VECTOR
);
1570 set_exception_intercept(svm
, UD_VECTOR
);
1571 set_exception_intercept(svm
, MC_VECTOR
);
1572 set_exception_intercept(svm
, AC_VECTOR
);
1573 set_exception_intercept(svm
, DB_VECTOR
);
1575 * Guest access to VMware backdoor ports could legitimately
1576 * trigger #GP because of TSS I/O permission bitmap.
1577 * We intercept those #GP and allow access to them anyway
1580 if (enable_vmware_backdoor
)
1581 set_exception_intercept(svm
, GP_VECTOR
);
1583 set_intercept(svm
, INTERCEPT_INTR
);
1584 set_intercept(svm
, INTERCEPT_NMI
);
1585 set_intercept(svm
, INTERCEPT_SMI
);
1586 set_intercept(svm
, INTERCEPT_SELECTIVE_CR0
);
1587 set_intercept(svm
, INTERCEPT_RDPMC
);
1588 set_intercept(svm
, INTERCEPT_CPUID
);
1589 set_intercept(svm
, INTERCEPT_INVD
);
1590 set_intercept(svm
, INTERCEPT_INVLPG
);
1591 set_intercept(svm
, INTERCEPT_INVLPGA
);
1592 set_intercept(svm
, INTERCEPT_IOIO_PROT
);
1593 set_intercept(svm
, INTERCEPT_MSR_PROT
);
1594 set_intercept(svm
, INTERCEPT_TASK_SWITCH
);
1595 set_intercept(svm
, INTERCEPT_SHUTDOWN
);
1596 set_intercept(svm
, INTERCEPT_VMRUN
);
1597 set_intercept(svm
, INTERCEPT_VMMCALL
);
1598 set_intercept(svm
, INTERCEPT_VMLOAD
);
1599 set_intercept(svm
, INTERCEPT_VMSAVE
);
1600 set_intercept(svm
, INTERCEPT_STGI
);
1601 set_intercept(svm
, INTERCEPT_CLGI
);
1602 set_intercept(svm
, INTERCEPT_SKINIT
);
1603 set_intercept(svm
, INTERCEPT_WBINVD
);
1604 set_intercept(svm
, INTERCEPT_XSETBV
);
1605 set_intercept(svm
, INTERCEPT_RDPRU
);
1606 set_intercept(svm
, INTERCEPT_RSM
);
1608 if (!kvm_mwait_in_guest(svm
->vcpu
.kvm
)) {
1609 set_intercept(svm
, INTERCEPT_MONITOR
);
1610 set_intercept(svm
, INTERCEPT_MWAIT
);
1613 if (!kvm_hlt_in_guest(svm
->vcpu
.kvm
))
1614 set_intercept(svm
, INTERCEPT_HLT
);
1616 control
->iopm_base_pa
= __sme_set(iopm_base
);
1617 control
->msrpm_base_pa
= __sme_set(__pa(svm
->msrpm
));
1618 control
->int_ctl
= V_INTR_MASKING_MASK
;
1620 init_seg(&save
->es
);
1621 init_seg(&save
->ss
);
1622 init_seg(&save
->ds
);
1623 init_seg(&save
->fs
);
1624 init_seg(&save
->gs
);
1626 save
->cs
.selector
= 0xf000;
1627 save
->cs
.base
= 0xffff0000;
1628 /* Executable/Readable Code Segment */
1629 save
->cs
.attrib
= SVM_SELECTOR_READ_MASK
| SVM_SELECTOR_P_MASK
|
1630 SVM_SELECTOR_S_MASK
| SVM_SELECTOR_CODE_MASK
;
1631 save
->cs
.limit
= 0xffff;
1633 save
->gdtr
.limit
= 0xffff;
1634 save
->idtr
.limit
= 0xffff;
1636 init_sys_seg(&save
->ldtr
, SEG_TYPE_LDT
);
1637 init_sys_seg(&save
->tr
, SEG_TYPE_BUSY_TSS16
);
1639 svm_set_efer(&svm
->vcpu
, 0);
1640 save
->dr6
= 0xffff0ff0;
1641 kvm_set_rflags(&svm
->vcpu
, 2);
1642 save
->rip
= 0x0000fff0;
1643 svm
->vcpu
.arch
.regs
[VCPU_REGS_RIP
] = save
->rip
;
1646 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1647 * It also updates the guest-visible cr0 value.
1649 svm_set_cr0(&svm
->vcpu
, X86_CR0_NW
| X86_CR0_CD
| X86_CR0_ET
);
1650 kvm_mmu_reset_context(&svm
->vcpu
);
1652 save
->cr4
= X86_CR4_PAE
;
1656 /* Setup VMCB for Nested Paging */
1657 control
->nested_ctl
|= SVM_NESTED_CTL_NP_ENABLE
;
1658 clr_intercept(svm
, INTERCEPT_INVLPG
);
1659 clr_exception_intercept(svm
, PF_VECTOR
);
1660 clr_cr_intercept(svm
, INTERCEPT_CR3_READ
);
1661 clr_cr_intercept(svm
, INTERCEPT_CR3_WRITE
);
1662 save
->g_pat
= svm
->vcpu
.arch
.pat
;
1666 svm
->asid_generation
= 0;
1668 svm
->nested
.vmcb
= 0;
1669 svm
->vcpu
.arch
.hflags
= 0;
1671 if (pause_filter_count
) {
1672 control
->pause_filter_count
= pause_filter_count
;
1673 if (pause_filter_thresh
)
1674 control
->pause_filter_thresh
= pause_filter_thresh
;
1675 set_intercept(svm
, INTERCEPT_PAUSE
);
1677 clr_intercept(svm
, INTERCEPT_PAUSE
);
1680 if (kvm_vcpu_apicv_active(&svm
->vcpu
))
1681 avic_init_vmcb(svm
);
1684 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1685 * in VMCB and clear intercepts to avoid #VMEXIT.
1688 clr_intercept(svm
, INTERCEPT_VMLOAD
);
1689 clr_intercept(svm
, INTERCEPT_VMSAVE
);
1690 svm
->vmcb
->control
.virt_ext
|= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK
;
1694 clr_intercept(svm
, INTERCEPT_STGI
);
1695 clr_intercept(svm
, INTERCEPT_CLGI
);
1696 svm
->vmcb
->control
.int_ctl
|= V_GIF_ENABLE_MASK
;
1699 if (sev_guest(svm
->vcpu
.kvm
)) {
1700 svm
->vmcb
->control
.nested_ctl
|= SVM_NESTED_CTL_SEV_ENABLE
;
1701 clr_exception_intercept(svm
, UD_VECTOR
);
1704 mark_all_dirty(svm
->vmcb
);
1710 static u64
*avic_get_physical_id_entry(struct kvm_vcpu
*vcpu
,
1713 u64
*avic_physical_id_table
;
1714 struct kvm_svm
*kvm_svm
= to_kvm_svm(vcpu
->kvm
);
1716 if (index
>= AVIC_MAX_PHYSICAL_ID_COUNT
)
1719 avic_physical_id_table
= page_address(kvm_svm
->avic_physical_id_table_page
);
1721 return &avic_physical_id_table
[index
];
1726 * AVIC hardware walks the nested page table to check permissions,
1727 * but does not use the SPA address specified in the leaf page
1728 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
1729 * field of the VMCB. Therefore, we set up the
1730 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1732 static int avic_init_access_page(struct kvm_vcpu
*vcpu
)
1734 struct kvm
*kvm
= vcpu
->kvm
;
1737 mutex_lock(&kvm
->slots_lock
);
1738 if (kvm
->arch
.apic_access_page_done
)
1741 ret
= __x86_set_memory_region(kvm
,
1742 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
,
1743 APIC_DEFAULT_PHYS_BASE
,
1748 kvm
->arch
.apic_access_page_done
= true;
1750 mutex_unlock(&kvm
->slots_lock
);
1754 static int avic_init_backing_page(struct kvm_vcpu
*vcpu
)
1757 u64
*entry
, new_entry
;
1758 int id
= vcpu
->vcpu_id
;
1759 struct vcpu_svm
*svm
= to_svm(vcpu
);
1761 ret
= avic_init_access_page(vcpu
);
1765 if (id
>= AVIC_MAX_PHYSICAL_ID_COUNT
)
1768 if (!svm
->vcpu
.arch
.apic
->regs
)
1771 svm
->avic_backing_page
= virt_to_page(svm
->vcpu
.arch
.apic
->regs
);
1773 /* Setting AVIC backing page address in the phy APIC ID table */
1774 entry
= avic_get_physical_id_entry(vcpu
, id
);
1778 new_entry
= __sme_set((page_to_phys(svm
->avic_backing_page
) &
1779 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK
) |
1780 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK
);
1781 WRITE_ONCE(*entry
, new_entry
);
1783 svm
->avic_physical_id_cache
= entry
;
1788 static void sev_asid_free(int asid
)
1790 struct svm_cpu_data
*sd
;
1793 mutex_lock(&sev_bitmap_lock
);
1796 __set_bit(pos
, sev_reclaim_asid_bitmap
);
1798 for_each_possible_cpu(cpu
) {
1799 sd
= per_cpu(svm_data
, cpu
);
1800 sd
->sev_vmcbs
[pos
] = NULL
;
1803 mutex_unlock(&sev_bitmap_lock
);
1806 static void sev_unbind_asid(struct kvm
*kvm
, unsigned int handle
)
1808 struct sev_data_decommission
*decommission
;
1809 struct sev_data_deactivate
*data
;
1814 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
1818 /* deactivate handle */
1819 data
->handle
= handle
;
1821 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
1822 down_read(&sev_deactivate_lock
);
1823 sev_guest_deactivate(data
, NULL
);
1824 up_read(&sev_deactivate_lock
);
1828 decommission
= kzalloc(sizeof(*decommission
), GFP_KERNEL
);
1832 /* decommission handle */
1833 decommission
->handle
= handle
;
1834 sev_guest_decommission(decommission
, NULL
);
1836 kfree(decommission
);
1839 static struct page
**sev_pin_memory(struct kvm
*kvm
, unsigned long uaddr
,
1840 unsigned long ulen
, unsigned long *n
,
1843 struct kvm_sev_info
*sev
= &to_kvm_svm(kvm
)->sev_info
;
1844 unsigned long npages
, npinned
, size
;
1845 unsigned long locked
, lock_limit
;
1846 struct page
**pages
;
1847 unsigned long first
, last
;
1849 if (ulen
== 0 || uaddr
+ ulen
< uaddr
)
1852 /* Calculate number of pages. */
1853 first
= (uaddr
& PAGE_MASK
) >> PAGE_SHIFT
;
1854 last
= ((uaddr
+ ulen
- 1) & PAGE_MASK
) >> PAGE_SHIFT
;
1855 npages
= (last
- first
+ 1);
1857 locked
= sev
->pages_locked
+ npages
;
1858 lock_limit
= rlimit(RLIMIT_MEMLOCK
) >> PAGE_SHIFT
;
1859 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
)) {
1860 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked
, lock_limit
);
1864 /* Avoid using vmalloc for smaller buffers. */
1865 size
= npages
* sizeof(struct page
*);
1866 if (size
> PAGE_SIZE
)
1867 pages
= __vmalloc(size
, GFP_KERNEL_ACCOUNT
| __GFP_ZERO
,
1870 pages
= kmalloc(size
, GFP_KERNEL_ACCOUNT
);
1875 /* Pin the user virtual address. */
1876 npinned
= get_user_pages_fast(uaddr
, npages
, FOLL_WRITE
, pages
);
1877 if (npinned
!= npages
) {
1878 pr_err("SEV: Failure locking %lu pages.\n", npages
);
1883 sev
->pages_locked
= locked
;
1889 release_pages(pages
, npinned
);
1895 static void sev_unpin_memory(struct kvm
*kvm
, struct page
**pages
,
1896 unsigned long npages
)
1898 struct kvm_sev_info
*sev
= &to_kvm_svm(kvm
)->sev_info
;
1900 release_pages(pages
, npages
);
1902 sev
->pages_locked
-= npages
;
1905 static void sev_clflush_pages(struct page
*pages
[], unsigned long npages
)
1907 uint8_t *page_virtual
;
1910 if (npages
== 0 || pages
== NULL
)
1913 for (i
= 0; i
< npages
; i
++) {
1914 page_virtual
= kmap_atomic(pages
[i
]);
1915 clflush_cache_range(page_virtual
, PAGE_SIZE
);
1916 kunmap_atomic(page_virtual
);
1920 static void __unregister_enc_region_locked(struct kvm
*kvm
,
1921 struct enc_region
*region
)
1924 * The guest may change the memory encryption attribute from C=0 -> C=1
1925 * or vice versa for this memory range. Lets make sure caches are
1926 * flushed to ensure that guest data gets written into memory with
1929 sev_clflush_pages(region
->pages
, region
->npages
);
1931 sev_unpin_memory(kvm
, region
->pages
, region
->npages
);
1932 list_del(®ion
->list
);
1936 static struct kvm
*svm_vm_alloc(void)
1938 struct kvm_svm
*kvm_svm
= __vmalloc(sizeof(struct kvm_svm
),
1939 GFP_KERNEL_ACCOUNT
| __GFP_ZERO
,
1941 return &kvm_svm
->kvm
;
1944 static void svm_vm_free(struct kvm
*kvm
)
1946 vfree(to_kvm_svm(kvm
));
1949 static void sev_vm_destroy(struct kvm
*kvm
)
1951 struct kvm_sev_info
*sev
= &to_kvm_svm(kvm
)->sev_info
;
1952 struct list_head
*head
= &sev
->regions_list
;
1953 struct list_head
*pos
, *q
;
1955 if (!sev_guest(kvm
))
1958 mutex_lock(&kvm
->lock
);
1961 * if userspace was terminated before unregistering the memory regions
1962 * then lets unpin all the registered memory.
1964 if (!list_empty(head
)) {
1965 list_for_each_safe(pos
, q
, head
) {
1966 __unregister_enc_region_locked(kvm
,
1967 list_entry(pos
, struct enc_region
, list
));
1971 mutex_unlock(&kvm
->lock
);
1973 sev_unbind_asid(kvm
, sev
->handle
);
1974 sev_asid_free(sev
->asid
);
1977 static void avic_vm_destroy(struct kvm
*kvm
)
1979 unsigned long flags
;
1980 struct kvm_svm
*kvm_svm
= to_kvm_svm(kvm
);
1985 if (kvm_svm
->avic_logical_id_table_page
)
1986 __free_page(kvm_svm
->avic_logical_id_table_page
);
1987 if (kvm_svm
->avic_physical_id_table_page
)
1988 __free_page(kvm_svm
->avic_physical_id_table_page
);
1990 spin_lock_irqsave(&svm_vm_data_hash_lock
, flags
);
1991 hash_del(&kvm_svm
->hnode
);
1992 spin_unlock_irqrestore(&svm_vm_data_hash_lock
, flags
);
1995 static void svm_vm_destroy(struct kvm
*kvm
)
1997 avic_vm_destroy(kvm
);
1998 sev_vm_destroy(kvm
);
2001 static int avic_vm_init(struct kvm
*kvm
)
2003 unsigned long flags
;
2005 struct kvm_svm
*kvm_svm
= to_kvm_svm(kvm
);
2007 struct page
*p_page
;
2008 struct page
*l_page
;
2014 /* Allocating physical APIC ID table (4KB) */
2015 p_page
= alloc_page(GFP_KERNEL_ACCOUNT
);
2019 kvm_svm
->avic_physical_id_table_page
= p_page
;
2020 clear_page(page_address(p_page
));
2022 /* Allocating logical APIC ID table (4KB) */
2023 l_page
= alloc_page(GFP_KERNEL_ACCOUNT
);
2027 kvm_svm
->avic_logical_id_table_page
= l_page
;
2028 clear_page(page_address(l_page
));
2030 spin_lock_irqsave(&svm_vm_data_hash_lock
, flags
);
2032 vm_id
= next_vm_id
= (next_vm_id
+ 1) & AVIC_VM_ID_MASK
;
2033 if (vm_id
== 0) { /* id is 1-based, zero is not okay */
2034 next_vm_id_wrapped
= 1;
2037 /* Is it still in use? Only possible if wrapped at least once */
2038 if (next_vm_id_wrapped
) {
2039 hash_for_each_possible(svm_vm_data_hash
, k2
, hnode
, vm_id
) {
2040 if (k2
->avic_vm_id
== vm_id
)
2044 kvm_svm
->avic_vm_id
= vm_id
;
2045 hash_add(svm_vm_data_hash
, &kvm_svm
->hnode
, kvm_svm
->avic_vm_id
);
2046 spin_unlock_irqrestore(&svm_vm_data_hash_lock
, flags
);
2051 avic_vm_destroy(kvm
);
2056 avic_update_iommu_vcpu_affinity(struct kvm_vcpu
*vcpu
, int cpu
, bool r
)
2059 unsigned long flags
;
2060 struct amd_svm_iommu_ir
*ir
;
2061 struct vcpu_svm
*svm
= to_svm(vcpu
);
2063 if (!kvm_arch_has_assigned_device(vcpu
->kvm
))
2067 * Here, we go through the per-vcpu ir_list to update all existing
2068 * interrupt remapping table entry targeting this vcpu.
2070 spin_lock_irqsave(&svm
->ir_list_lock
, flags
);
2072 if (list_empty(&svm
->ir_list
))
2075 list_for_each_entry(ir
, &svm
->ir_list
, node
) {
2076 ret
= amd_iommu_update_ga(cpu
, r
, ir
->data
);
2081 spin_unlock_irqrestore(&svm
->ir_list_lock
, flags
);
2085 static void avic_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2088 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
2089 int h_physical_id
= kvm_cpu_get_apicid(cpu
);
2090 struct vcpu_svm
*svm
= to_svm(vcpu
);
2092 if (!kvm_vcpu_apicv_active(vcpu
))
2096 * Since the host physical APIC id is 8 bits,
2097 * we can support host APIC ID upto 255.
2099 if (WARN_ON(h_physical_id
> AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK
))
2102 entry
= READ_ONCE(*(svm
->avic_physical_id_cache
));
2103 WARN_ON(entry
& AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK
);
2105 entry
&= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK
;
2106 entry
|= (h_physical_id
& AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK
);
2108 entry
&= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK
;
2109 if (svm
->avic_is_running
)
2110 entry
|= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK
;
2112 WRITE_ONCE(*(svm
->avic_physical_id_cache
), entry
);
2113 avic_update_iommu_vcpu_affinity(vcpu
, h_physical_id
,
2114 svm
->avic_is_running
);
2117 static void avic_vcpu_put(struct kvm_vcpu
*vcpu
)
2120 struct vcpu_svm
*svm
= to_svm(vcpu
);
2122 if (!kvm_vcpu_apicv_active(vcpu
))
2125 entry
= READ_ONCE(*(svm
->avic_physical_id_cache
));
2126 if (entry
& AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK
)
2127 avic_update_iommu_vcpu_affinity(vcpu
, -1, 0);
2129 entry
&= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK
;
2130 WRITE_ONCE(*(svm
->avic_physical_id_cache
), entry
);
2134 * This function is called during VCPU halt/unhalt.
2136 static void avic_set_running(struct kvm_vcpu
*vcpu
, bool is_run
)
2138 struct vcpu_svm
*svm
= to_svm(vcpu
);
2140 svm
->avic_is_running
= is_run
;
2142 avic_vcpu_load(vcpu
, vcpu
->cpu
);
2144 avic_vcpu_put(vcpu
);
2147 static void svm_vcpu_reset(struct kvm_vcpu
*vcpu
, bool init_event
)
2149 struct vcpu_svm
*svm
= to_svm(vcpu
);
2153 vcpu
->arch
.microcode_version
= 0x01000065;
2155 svm
->virt_spec_ctrl
= 0;
2158 svm
->vcpu
.arch
.apic_base
= APIC_DEFAULT_PHYS_BASE
|
2159 MSR_IA32_APICBASE_ENABLE
;
2160 if (kvm_vcpu_is_reset_bsp(&svm
->vcpu
))
2161 svm
->vcpu
.arch
.apic_base
|= MSR_IA32_APICBASE_BSP
;
2165 kvm_cpuid(vcpu
, &eax
, &dummy
, &dummy
, &dummy
, true);
2166 kvm_rdx_write(vcpu
, eax
);
2168 if (kvm_vcpu_apicv_active(vcpu
) && !init_event
)
2169 avic_update_vapic_bar(svm
, APIC_DEFAULT_PHYS_BASE
);
2172 static int avic_init_vcpu(struct vcpu_svm
*svm
)
2176 if (!kvm_vcpu_apicv_active(&svm
->vcpu
))
2179 ret
= avic_init_backing_page(&svm
->vcpu
);
2183 INIT_LIST_HEAD(&svm
->ir_list
);
2184 spin_lock_init(&svm
->ir_list_lock
);
2185 svm
->dfr_reg
= APIC_DFR_FLAT
;
2190 static int svm_create_vcpu(struct kvm_vcpu
*vcpu
)
2192 struct vcpu_svm
*svm
;
2194 struct page
*msrpm_pages
;
2195 struct page
*hsave_page
;
2196 struct page
*nested_msrpm_pages
;
2199 BUILD_BUG_ON(offsetof(struct vcpu_svm
, vcpu
) != 0);
2203 page
= alloc_page(GFP_KERNEL_ACCOUNT
);
2207 msrpm_pages
= alloc_pages(GFP_KERNEL_ACCOUNT
, MSRPM_ALLOC_ORDER
);
2211 nested_msrpm_pages
= alloc_pages(GFP_KERNEL_ACCOUNT
, MSRPM_ALLOC_ORDER
);
2212 if (!nested_msrpm_pages
)
2215 hsave_page
= alloc_page(GFP_KERNEL_ACCOUNT
);
2219 err
= avic_init_vcpu(svm
);
2223 /* We initialize this flag to true to make sure that the is_running
2224 * bit would be set the first time the vcpu is loaded.
2226 svm
->avic_is_running
= true;
2228 svm
->nested
.hsave
= page_address(hsave_page
);
2230 svm
->msrpm
= page_address(msrpm_pages
);
2231 svm_vcpu_init_msrpm(svm
->msrpm
);
2233 svm
->nested
.msrpm
= page_address(nested_msrpm_pages
);
2234 svm_vcpu_init_msrpm(svm
->nested
.msrpm
);
2236 svm
->vmcb
= page_address(page
);
2237 clear_page(svm
->vmcb
);
2238 svm
->vmcb_pa
= __sme_set(page_to_pfn(page
) << PAGE_SHIFT
);
2239 svm
->asid_generation
= 0;
2242 svm_init_osvw(vcpu
);
2247 __free_page(hsave_page
);
2249 __free_pages(nested_msrpm_pages
, MSRPM_ALLOC_ORDER
);
2251 __free_pages(msrpm_pages
, MSRPM_ALLOC_ORDER
);
2258 static void svm_clear_current_vmcb(struct vmcb
*vmcb
)
2262 for_each_online_cpu(i
)
2263 cmpxchg(&per_cpu(svm_data
, i
)->current_vmcb
, vmcb
, NULL
);
2266 static void svm_free_vcpu(struct kvm_vcpu
*vcpu
)
2268 struct vcpu_svm
*svm
= to_svm(vcpu
);
2271 * The vmcb page can be recycled, causing a false negative in
2272 * svm_vcpu_load(). So, ensure that no logical CPU has this
2273 * vmcb page recorded as its current vmcb.
2275 svm_clear_current_vmcb(svm
->vmcb
);
2277 __free_page(pfn_to_page(__sme_clr(svm
->vmcb_pa
) >> PAGE_SHIFT
));
2278 __free_pages(virt_to_page(svm
->msrpm
), MSRPM_ALLOC_ORDER
);
2279 __free_page(virt_to_page(svm
->nested
.hsave
));
2280 __free_pages(virt_to_page(svm
->nested
.msrpm
), MSRPM_ALLOC_ORDER
);
2283 static void svm_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2285 struct vcpu_svm
*svm
= to_svm(vcpu
);
2286 struct svm_cpu_data
*sd
= per_cpu(svm_data
, cpu
);
2289 if (unlikely(cpu
!= vcpu
->cpu
)) {
2290 svm
->asid_generation
= 0;
2291 mark_all_dirty(svm
->vmcb
);
2294 #ifdef CONFIG_X86_64
2295 rdmsrl(MSR_GS_BASE
, to_svm(vcpu
)->host
.gs_base
);
2297 savesegment(fs
, svm
->host
.fs
);
2298 savesegment(gs
, svm
->host
.gs
);
2299 svm
->host
.ldt
= kvm_read_ldt();
2301 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
2302 rdmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
2304 if (static_cpu_has(X86_FEATURE_TSCRATEMSR
)) {
2305 u64 tsc_ratio
= vcpu
->arch
.tsc_scaling_ratio
;
2306 if (tsc_ratio
!= __this_cpu_read(current_tsc_ratio
)) {
2307 __this_cpu_write(current_tsc_ratio
, tsc_ratio
);
2308 wrmsrl(MSR_AMD64_TSC_RATIO
, tsc_ratio
);
2311 /* This assumes that the kernel never uses MSR_TSC_AUX */
2312 if (static_cpu_has(X86_FEATURE_RDTSCP
))
2313 wrmsrl(MSR_TSC_AUX
, svm
->tsc_aux
);
2315 if (sd
->current_vmcb
!= svm
->vmcb
) {
2316 sd
->current_vmcb
= svm
->vmcb
;
2317 indirect_branch_prediction_barrier();
2319 avic_vcpu_load(vcpu
, cpu
);
2322 static void svm_vcpu_put(struct kvm_vcpu
*vcpu
)
2324 struct vcpu_svm
*svm
= to_svm(vcpu
);
2327 avic_vcpu_put(vcpu
);
2329 ++vcpu
->stat
.host_state_reload
;
2330 kvm_load_ldt(svm
->host
.ldt
);
2331 #ifdef CONFIG_X86_64
2332 loadsegment(fs
, svm
->host
.fs
);
2333 wrmsrl(MSR_KERNEL_GS_BASE
, current
->thread
.gsbase
);
2334 load_gs_index(svm
->host
.gs
);
2336 #ifdef CONFIG_X86_32_LAZY_GS
2337 loadsegment(gs
, svm
->host
.gs
);
2340 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
2341 wrmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
2344 static void svm_vcpu_blocking(struct kvm_vcpu
*vcpu
)
2346 avic_set_running(vcpu
, false);
2349 static void svm_vcpu_unblocking(struct kvm_vcpu
*vcpu
)
2351 avic_set_running(vcpu
, true);
2354 static unsigned long svm_get_rflags(struct kvm_vcpu
*vcpu
)
2356 struct vcpu_svm
*svm
= to_svm(vcpu
);
2357 unsigned long rflags
= svm
->vmcb
->save
.rflags
;
2359 if (svm
->nmi_singlestep
) {
2360 /* Hide our flags if they were not set by the guest */
2361 if (!(svm
->nmi_singlestep_guest_rflags
& X86_EFLAGS_TF
))
2362 rflags
&= ~X86_EFLAGS_TF
;
2363 if (!(svm
->nmi_singlestep_guest_rflags
& X86_EFLAGS_RF
))
2364 rflags
&= ~X86_EFLAGS_RF
;
2369 static void svm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
2371 if (to_svm(vcpu
)->nmi_singlestep
)
2372 rflags
|= (X86_EFLAGS_TF
| X86_EFLAGS_RF
);
2375 * Any change of EFLAGS.VM is accompanied by a reload of SS
2376 * (caused by either a task switch or an inter-privilege IRET),
2377 * so we do not need to update the CPL here.
2379 to_svm(vcpu
)->vmcb
->save
.rflags
= rflags
;
2382 static void svm_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
2385 case VCPU_EXREG_PDPTR
:
2386 BUG_ON(!npt_enabled
);
2387 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
2394 static void svm_set_vintr(struct vcpu_svm
*svm
)
2396 set_intercept(svm
, INTERCEPT_VINTR
);
2399 static void svm_clear_vintr(struct vcpu_svm
*svm
)
2401 clr_intercept(svm
, INTERCEPT_VINTR
);
2404 static struct vmcb_seg
*svm_seg(struct kvm_vcpu
*vcpu
, int seg
)
2406 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
2409 case VCPU_SREG_CS
: return &save
->cs
;
2410 case VCPU_SREG_DS
: return &save
->ds
;
2411 case VCPU_SREG_ES
: return &save
->es
;
2412 case VCPU_SREG_FS
: return &save
->fs
;
2413 case VCPU_SREG_GS
: return &save
->gs
;
2414 case VCPU_SREG_SS
: return &save
->ss
;
2415 case VCPU_SREG_TR
: return &save
->tr
;
2416 case VCPU_SREG_LDTR
: return &save
->ldtr
;
2422 static u64
svm_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
2424 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
2429 static void svm_get_segment(struct kvm_vcpu
*vcpu
,
2430 struct kvm_segment
*var
, int seg
)
2432 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
2434 var
->base
= s
->base
;
2435 var
->limit
= s
->limit
;
2436 var
->selector
= s
->selector
;
2437 var
->type
= s
->attrib
& SVM_SELECTOR_TYPE_MASK
;
2438 var
->s
= (s
->attrib
>> SVM_SELECTOR_S_SHIFT
) & 1;
2439 var
->dpl
= (s
->attrib
>> SVM_SELECTOR_DPL_SHIFT
) & 3;
2440 var
->present
= (s
->attrib
>> SVM_SELECTOR_P_SHIFT
) & 1;
2441 var
->avl
= (s
->attrib
>> SVM_SELECTOR_AVL_SHIFT
) & 1;
2442 var
->l
= (s
->attrib
>> SVM_SELECTOR_L_SHIFT
) & 1;
2443 var
->db
= (s
->attrib
>> SVM_SELECTOR_DB_SHIFT
) & 1;
2446 * AMD CPUs circa 2014 track the G bit for all segments except CS.
2447 * However, the SVM spec states that the G bit is not observed by the
2448 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2449 * So let's synthesize a legal G bit for all segments, this helps
2450 * running KVM nested. It also helps cross-vendor migration, because
2451 * Intel's vmentry has a check on the 'G' bit.
2453 var
->g
= s
->limit
> 0xfffff;
2456 * AMD's VMCB does not have an explicit unusable field, so emulate it
2457 * for cross vendor migration purposes by "not present"
2459 var
->unusable
= !var
->present
;
2464 * Work around a bug where the busy flag in the tr selector
2474 * The accessed bit must always be set in the segment
2475 * descriptor cache, although it can be cleared in the
2476 * descriptor, the cached bit always remains at 1. Since
2477 * Intel has a check on this, set it here to support
2478 * cross-vendor migration.
2485 * On AMD CPUs sometimes the DB bit in the segment
2486 * descriptor is left as 1, although the whole segment has
2487 * been made unusable. Clear it here to pass an Intel VMX
2488 * entry check when cross vendor migrating.
2492 /* This is symmetric with svm_set_segment() */
2493 var
->dpl
= to_svm(vcpu
)->vmcb
->save
.cpl
;
2498 static int svm_get_cpl(struct kvm_vcpu
*vcpu
)
2500 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
2505 static void svm_get_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
2507 struct vcpu_svm
*svm
= to_svm(vcpu
);
2509 dt
->size
= svm
->vmcb
->save
.idtr
.limit
;
2510 dt
->address
= svm
->vmcb
->save
.idtr
.base
;
2513 static void svm_set_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
2515 struct vcpu_svm
*svm
= to_svm(vcpu
);
2517 svm
->vmcb
->save
.idtr
.limit
= dt
->size
;
2518 svm
->vmcb
->save
.idtr
.base
= dt
->address
;
2519 mark_dirty(svm
->vmcb
, VMCB_DT
);
2522 static void svm_get_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
2524 struct vcpu_svm
*svm
= to_svm(vcpu
);
2526 dt
->size
= svm
->vmcb
->save
.gdtr
.limit
;
2527 dt
->address
= svm
->vmcb
->save
.gdtr
.base
;
2530 static void svm_set_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
2532 struct vcpu_svm
*svm
= to_svm(vcpu
);
2534 svm
->vmcb
->save
.gdtr
.limit
= dt
->size
;
2535 svm
->vmcb
->save
.gdtr
.base
= dt
->address
;
2536 mark_dirty(svm
->vmcb
, VMCB_DT
);
2539 static void svm_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
)
2543 static void svm_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
2547 static void update_cr0_intercept(struct vcpu_svm
*svm
)
2549 ulong gcr0
= svm
->vcpu
.arch
.cr0
;
2550 u64
*hcr0
= &svm
->vmcb
->save
.cr0
;
2552 *hcr0
= (*hcr0
& ~SVM_CR0_SELECTIVE_MASK
)
2553 | (gcr0
& SVM_CR0_SELECTIVE_MASK
);
2555 mark_dirty(svm
->vmcb
, VMCB_CR
);
2557 if (gcr0
== *hcr0
) {
2558 clr_cr_intercept(svm
, INTERCEPT_CR0_READ
);
2559 clr_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
2561 set_cr_intercept(svm
, INTERCEPT_CR0_READ
);
2562 set_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
2566 static void svm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
2568 struct vcpu_svm
*svm
= to_svm(vcpu
);
2570 #ifdef CONFIG_X86_64
2571 if (vcpu
->arch
.efer
& EFER_LME
) {
2572 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
2573 vcpu
->arch
.efer
|= EFER_LMA
;
2574 svm
->vmcb
->save
.efer
|= EFER_LMA
| EFER_LME
;
2577 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
)) {
2578 vcpu
->arch
.efer
&= ~EFER_LMA
;
2579 svm
->vmcb
->save
.efer
&= ~(EFER_LMA
| EFER_LME
);
2583 vcpu
->arch
.cr0
= cr0
;
2586 cr0
|= X86_CR0_PG
| X86_CR0_WP
;
2589 * re-enable caching here because the QEMU bios
2590 * does not do it - this results in some delay at
2593 if (kvm_check_has_quirk(vcpu
->kvm
, KVM_X86_QUIRK_CD_NW_CLEARED
))
2594 cr0
&= ~(X86_CR0_CD
| X86_CR0_NW
);
2595 svm
->vmcb
->save
.cr0
= cr0
;
2596 mark_dirty(svm
->vmcb
, VMCB_CR
);
2597 update_cr0_intercept(svm
);
2600 static int svm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
2602 unsigned long host_cr4_mce
= cr4_read_shadow() & X86_CR4_MCE
;
2603 unsigned long old_cr4
= to_svm(vcpu
)->vmcb
->save
.cr4
;
2605 if (cr4
& X86_CR4_VMXE
)
2608 if (npt_enabled
&& ((old_cr4
^ cr4
) & X86_CR4_PGE
))
2609 svm_flush_tlb(vcpu
, true);
2611 vcpu
->arch
.cr4
= cr4
;
2614 cr4
|= host_cr4_mce
;
2615 to_svm(vcpu
)->vmcb
->save
.cr4
= cr4
;
2616 mark_dirty(to_svm(vcpu
)->vmcb
, VMCB_CR
);
2620 static void svm_set_segment(struct kvm_vcpu
*vcpu
,
2621 struct kvm_segment
*var
, int seg
)
2623 struct vcpu_svm
*svm
= to_svm(vcpu
);
2624 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
2626 s
->base
= var
->base
;
2627 s
->limit
= var
->limit
;
2628 s
->selector
= var
->selector
;
2629 s
->attrib
= (var
->type
& SVM_SELECTOR_TYPE_MASK
);
2630 s
->attrib
|= (var
->s
& 1) << SVM_SELECTOR_S_SHIFT
;
2631 s
->attrib
|= (var
->dpl
& 3) << SVM_SELECTOR_DPL_SHIFT
;
2632 s
->attrib
|= ((var
->present
& 1) && !var
->unusable
) << SVM_SELECTOR_P_SHIFT
;
2633 s
->attrib
|= (var
->avl
& 1) << SVM_SELECTOR_AVL_SHIFT
;
2634 s
->attrib
|= (var
->l
& 1) << SVM_SELECTOR_L_SHIFT
;
2635 s
->attrib
|= (var
->db
& 1) << SVM_SELECTOR_DB_SHIFT
;
2636 s
->attrib
|= (var
->g
& 1) << SVM_SELECTOR_G_SHIFT
;
2639 * This is always accurate, except if SYSRET returned to a segment
2640 * with SS.DPL != 3. Intel does not have this quirk, and always
2641 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2642 * would entail passing the CPL to userspace and back.
2644 if (seg
== VCPU_SREG_SS
)
2645 /* This is symmetric with svm_get_segment() */
2646 svm
->vmcb
->save
.cpl
= (var
->dpl
& 3);
2648 mark_dirty(svm
->vmcb
, VMCB_SEG
);
2651 static void update_bp_intercept(struct kvm_vcpu
*vcpu
)
2653 struct vcpu_svm
*svm
= to_svm(vcpu
);
2655 clr_exception_intercept(svm
, BP_VECTOR
);
2657 if (vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
) {
2658 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
2659 set_exception_intercept(svm
, BP_VECTOR
);
2661 vcpu
->guest_debug
= 0;
2664 static void new_asid(struct vcpu_svm
*svm
, struct svm_cpu_data
*sd
)
2666 if (sd
->next_asid
> sd
->max_asid
) {
2667 ++sd
->asid_generation
;
2668 sd
->next_asid
= sd
->min_asid
;
2669 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_FLUSH_ALL_ASID
;
2672 svm
->asid_generation
= sd
->asid_generation
;
2673 svm
->vmcb
->control
.asid
= sd
->next_asid
++;
2675 mark_dirty(svm
->vmcb
, VMCB_ASID
);
2678 static u64
svm_get_dr6(struct kvm_vcpu
*vcpu
)
2680 return to_svm(vcpu
)->vmcb
->save
.dr6
;
2683 static void svm_set_dr6(struct kvm_vcpu
*vcpu
, unsigned long value
)
2685 struct vcpu_svm
*svm
= to_svm(vcpu
);
2687 svm
->vmcb
->save
.dr6
= value
;
2688 mark_dirty(svm
->vmcb
, VMCB_DR
);
2691 static void svm_sync_dirty_debug_regs(struct kvm_vcpu
*vcpu
)
2693 struct vcpu_svm
*svm
= to_svm(vcpu
);
2695 get_debugreg(vcpu
->arch
.db
[0], 0);
2696 get_debugreg(vcpu
->arch
.db
[1], 1);
2697 get_debugreg(vcpu
->arch
.db
[2], 2);
2698 get_debugreg(vcpu
->arch
.db
[3], 3);
2699 vcpu
->arch
.dr6
= svm_get_dr6(vcpu
);
2700 vcpu
->arch
.dr7
= svm
->vmcb
->save
.dr7
;
2702 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_WONT_EXIT
;
2703 set_dr_intercepts(svm
);
2706 static void svm_set_dr7(struct kvm_vcpu
*vcpu
, unsigned long value
)
2708 struct vcpu_svm
*svm
= to_svm(vcpu
);
2710 svm
->vmcb
->save
.dr7
= value
;
2711 mark_dirty(svm
->vmcb
, VMCB_DR
);
2714 static int pf_interception(struct vcpu_svm
*svm
)
2716 u64 fault_address
= __sme_clr(svm
->vmcb
->control
.exit_info_2
);
2717 u64 error_code
= svm
->vmcb
->control
.exit_info_1
;
2719 return kvm_handle_page_fault(&svm
->vcpu
, error_code
, fault_address
,
2720 static_cpu_has(X86_FEATURE_DECODEASSISTS
) ?
2721 svm
->vmcb
->control
.insn_bytes
: NULL
,
2722 svm
->vmcb
->control
.insn_len
);
2725 static int npf_interception(struct vcpu_svm
*svm
)
2727 u64 fault_address
= __sme_clr(svm
->vmcb
->control
.exit_info_2
);
2728 u64 error_code
= svm
->vmcb
->control
.exit_info_1
;
2730 trace_kvm_page_fault(fault_address
, error_code
);
2731 return kvm_mmu_page_fault(&svm
->vcpu
, fault_address
, error_code
,
2732 static_cpu_has(X86_FEATURE_DECODEASSISTS
) ?
2733 svm
->vmcb
->control
.insn_bytes
: NULL
,
2734 svm
->vmcb
->control
.insn_len
);
2737 static int db_interception(struct vcpu_svm
*svm
)
2739 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
2740 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
2742 if (!(svm
->vcpu
.guest_debug
&
2743 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)) &&
2744 !svm
->nmi_singlestep
) {
2745 kvm_queue_exception(&svm
->vcpu
, DB_VECTOR
);
2749 if (svm
->nmi_singlestep
) {
2750 disable_nmi_singlestep(svm
);
2751 /* Make sure we check for pending NMIs upon entry */
2752 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2755 if (svm
->vcpu
.guest_debug
&
2756 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)) {
2757 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
2758 kvm_run
->debug
.arch
.pc
=
2759 svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
2760 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
2767 static int bp_interception(struct vcpu_svm
*svm
)
2769 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
2771 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
2772 kvm_run
->debug
.arch
.pc
= svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
2773 kvm_run
->debug
.arch
.exception
= BP_VECTOR
;
2777 static int ud_interception(struct vcpu_svm
*svm
)
2779 return handle_ud(&svm
->vcpu
);
2782 static int ac_interception(struct vcpu_svm
*svm
)
2784 kvm_queue_exception_e(&svm
->vcpu
, AC_VECTOR
, 0);
2788 static int gp_interception(struct vcpu_svm
*svm
)
2790 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
2791 u32 error_code
= svm
->vmcb
->control
.exit_info_1
;
2793 WARN_ON_ONCE(!enable_vmware_backdoor
);
2796 * VMware backdoor emulation on #GP interception only handles IN{S},
2797 * OUT{S}, and RDPMC, none of which generate a non-zero error code.
2800 kvm_queue_exception_e(vcpu
, GP_VECTOR
, error_code
);
2803 return kvm_emulate_instruction(vcpu
, EMULTYPE_VMWARE_GP
);
2806 static bool is_erratum_383(void)
2811 if (!erratum_383_found
)
2814 value
= native_read_msr_safe(MSR_IA32_MC0_STATUS
, &err
);
2818 /* Bit 62 may or may not be set for this mce */
2819 value
&= ~(1ULL << 62);
2821 if (value
!= 0xb600000000010015ULL
)
2824 /* Clear MCi_STATUS registers */
2825 for (i
= 0; i
< 6; ++i
)
2826 native_write_msr_safe(MSR_IA32_MCx_STATUS(i
), 0, 0);
2828 value
= native_read_msr_safe(MSR_IA32_MCG_STATUS
, &err
);
2832 value
&= ~(1ULL << 2);
2833 low
= lower_32_bits(value
);
2834 high
= upper_32_bits(value
);
2836 native_write_msr_safe(MSR_IA32_MCG_STATUS
, low
, high
);
2839 /* Flush tlb to evict multi-match entries */
2845 static void svm_handle_mce(struct vcpu_svm
*svm
)
2847 if (is_erratum_383()) {
2849 * Erratum 383 triggered. Guest state is corrupt so kill the
2852 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2854 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, &svm
->vcpu
);
2860 * On an #MC intercept the MCE handler is not called automatically in
2861 * the host. So do it by hand here.
2865 /* not sure if we ever come back to this point */
2870 static int mc_interception(struct vcpu_svm
*svm
)
2875 static int shutdown_interception(struct vcpu_svm
*svm
)
2877 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
2880 * VMCB is undefined after a SHUTDOWN intercept
2881 * so reinitialize it.
2883 clear_page(svm
->vmcb
);
2886 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
2890 static int io_interception(struct vcpu_svm
*svm
)
2892 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
2893 u32 io_info
= svm
->vmcb
->control
.exit_info_1
; /* address size bug? */
2894 int size
, in
, string
;
2897 ++svm
->vcpu
.stat
.io_exits
;
2898 string
= (io_info
& SVM_IOIO_STR_MASK
) != 0;
2899 in
= (io_info
& SVM_IOIO_TYPE_MASK
) != 0;
2901 return kvm_emulate_instruction(vcpu
, 0);
2903 port
= io_info
>> 16;
2904 size
= (io_info
& SVM_IOIO_SIZE_MASK
) >> SVM_IOIO_SIZE_SHIFT
;
2905 svm
->next_rip
= svm
->vmcb
->control
.exit_info_2
;
2907 return kvm_fast_pio(&svm
->vcpu
, size
, port
, in
);
2910 static int nmi_interception(struct vcpu_svm
*svm
)
2915 static int intr_interception(struct vcpu_svm
*svm
)
2917 ++svm
->vcpu
.stat
.irq_exits
;
2921 static int nop_on_interception(struct vcpu_svm
*svm
)
2926 static int halt_interception(struct vcpu_svm
*svm
)
2928 return kvm_emulate_halt(&svm
->vcpu
);
2931 static int vmmcall_interception(struct vcpu_svm
*svm
)
2933 return kvm_emulate_hypercall(&svm
->vcpu
);
2936 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu
*vcpu
)
2938 struct vcpu_svm
*svm
= to_svm(vcpu
);
2940 return svm
->nested
.nested_cr3
;
2943 static u64
nested_svm_get_tdp_pdptr(struct kvm_vcpu
*vcpu
, int index
)
2945 struct vcpu_svm
*svm
= to_svm(vcpu
);
2946 u64 cr3
= svm
->nested
.nested_cr3
;
2950 ret
= kvm_vcpu_read_guest_page(vcpu
, gpa_to_gfn(__sme_clr(cr3
)), &pdpte
,
2951 offset_in_page(cr3
) + index
* 8, 8);
2957 static void nested_svm_set_tdp_cr3(struct kvm_vcpu
*vcpu
,
2960 struct vcpu_svm
*svm
= to_svm(vcpu
);
2962 svm
->vmcb
->control
.nested_cr3
= __sme_set(root
);
2963 mark_dirty(svm
->vmcb
, VMCB_NPT
);
2966 static void nested_svm_inject_npf_exit(struct kvm_vcpu
*vcpu
,
2967 struct x86_exception
*fault
)
2969 struct vcpu_svm
*svm
= to_svm(vcpu
);
2971 if (svm
->vmcb
->control
.exit_code
!= SVM_EXIT_NPF
) {
2973 * TODO: track the cause of the nested page fault, and
2974 * correctly fill in the high bits of exit_info_1.
2976 svm
->vmcb
->control
.exit_code
= SVM_EXIT_NPF
;
2977 svm
->vmcb
->control
.exit_code_hi
= 0;
2978 svm
->vmcb
->control
.exit_info_1
= (1ULL << 32);
2979 svm
->vmcb
->control
.exit_info_2
= fault
->address
;
2982 svm
->vmcb
->control
.exit_info_1
&= ~0xffffffffULL
;
2983 svm
->vmcb
->control
.exit_info_1
|= fault
->error_code
;
2986 * The present bit is always zero for page structure faults on real
2989 if (svm
->vmcb
->control
.exit_info_1
& (2ULL << 32))
2990 svm
->vmcb
->control
.exit_info_1
&= ~1;
2992 nested_svm_vmexit(svm
);
2995 static void nested_svm_init_mmu_context(struct kvm_vcpu
*vcpu
)
2997 WARN_ON(mmu_is_nested(vcpu
));
2999 vcpu
->arch
.mmu
= &vcpu
->arch
.guest_mmu
;
3000 kvm_init_shadow_mmu(vcpu
);
3001 vcpu
->arch
.mmu
->set_cr3
= nested_svm_set_tdp_cr3
;
3002 vcpu
->arch
.mmu
->get_cr3
= nested_svm_get_tdp_cr3
;
3003 vcpu
->arch
.mmu
->get_pdptr
= nested_svm_get_tdp_pdptr
;
3004 vcpu
->arch
.mmu
->inject_page_fault
= nested_svm_inject_npf_exit
;
3005 vcpu
->arch
.mmu
->shadow_root_level
= get_npt_level(vcpu
);
3006 reset_shadow_zero_bits_mask(vcpu
, vcpu
->arch
.mmu
);
3007 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.nested_mmu
;
3010 static void nested_svm_uninit_mmu_context(struct kvm_vcpu
*vcpu
)
3012 vcpu
->arch
.mmu
= &vcpu
->arch
.root_mmu
;
3013 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.root_mmu
;
3016 static int nested_svm_check_permissions(struct vcpu_svm
*svm
)
3018 if (!(svm
->vcpu
.arch
.efer
& EFER_SVME
) ||
3019 !is_paging(&svm
->vcpu
)) {
3020 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
3024 if (svm
->vmcb
->save
.cpl
) {
3025 kvm_inject_gp(&svm
->vcpu
, 0);
3032 static int nested_svm_check_exception(struct vcpu_svm
*svm
, unsigned nr
,
3033 bool has_error_code
, u32 error_code
)
3037 if (!is_guest_mode(&svm
->vcpu
))
3040 vmexit
= nested_svm_intercept(svm
);
3041 if (vmexit
!= NESTED_EXIT_DONE
)
3044 svm
->vmcb
->control
.exit_code
= SVM_EXIT_EXCP_BASE
+ nr
;
3045 svm
->vmcb
->control
.exit_code_hi
= 0;
3046 svm
->vmcb
->control
.exit_info_1
= error_code
;
3049 * EXITINFO2 is undefined for all exception intercepts other
3052 if (svm
->vcpu
.arch
.exception
.nested_apf
)
3053 svm
->vmcb
->control
.exit_info_2
= svm
->vcpu
.arch
.apf
.nested_apf_token
;
3054 else if (svm
->vcpu
.arch
.exception
.has_payload
)
3055 svm
->vmcb
->control
.exit_info_2
= svm
->vcpu
.arch
.exception
.payload
;
3057 svm
->vmcb
->control
.exit_info_2
= svm
->vcpu
.arch
.cr2
;
3059 svm
->nested
.exit_required
= true;
3063 /* This function returns true if it is save to enable the irq window */
3064 static inline bool nested_svm_intr(struct vcpu_svm
*svm
)
3066 if (!is_guest_mode(&svm
->vcpu
))
3069 if (!(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
))
3072 if (!(svm
->vcpu
.arch
.hflags
& HF_HIF_MASK
))
3076 * if vmexit was already requested (by intercepted exception
3077 * for instance) do not overwrite it with "external interrupt"
3080 if (svm
->nested
.exit_required
)
3083 svm
->vmcb
->control
.exit_code
= SVM_EXIT_INTR
;
3084 svm
->vmcb
->control
.exit_info_1
= 0;
3085 svm
->vmcb
->control
.exit_info_2
= 0;
3087 if (svm
->nested
.intercept
& 1ULL) {
3089 * The #vmexit can't be emulated here directly because this
3090 * code path runs with irqs and preemption disabled. A
3091 * #vmexit emulation might sleep. Only signal request for
3094 svm
->nested
.exit_required
= true;
3095 trace_kvm_nested_intr_vmexit(svm
->vmcb
->save
.rip
);
3102 /* This function returns true if it is save to enable the nmi window */
3103 static inline bool nested_svm_nmi(struct vcpu_svm
*svm
)
3105 if (!is_guest_mode(&svm
->vcpu
))
3108 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_NMI
)))
3111 svm
->vmcb
->control
.exit_code
= SVM_EXIT_NMI
;
3112 svm
->nested
.exit_required
= true;
3117 static int nested_svm_intercept_ioio(struct vcpu_svm
*svm
)
3119 unsigned port
, size
, iopm_len
;
3124 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_IOIO_PROT
)))
3125 return NESTED_EXIT_HOST
;
3127 port
= svm
->vmcb
->control
.exit_info_1
>> 16;
3128 size
= (svm
->vmcb
->control
.exit_info_1
& SVM_IOIO_SIZE_MASK
) >>
3129 SVM_IOIO_SIZE_SHIFT
;
3130 gpa
= svm
->nested
.vmcb_iopm
+ (port
/ 8);
3131 start_bit
= port
% 8;
3132 iopm_len
= (start_bit
+ size
> 8) ? 2 : 1;
3133 mask
= (0xf >> (4 - size
)) << start_bit
;
3136 if (kvm_vcpu_read_guest(&svm
->vcpu
, gpa
, &val
, iopm_len
))
3137 return NESTED_EXIT_DONE
;
3139 return (val
& mask
) ? NESTED_EXIT_DONE
: NESTED_EXIT_HOST
;
3142 static int nested_svm_exit_handled_msr(struct vcpu_svm
*svm
)
3144 u32 offset
, msr
, value
;
3147 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_MSR_PROT
)))
3148 return NESTED_EXIT_HOST
;
3150 msr
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
3151 offset
= svm_msrpm_offset(msr
);
3152 write
= svm
->vmcb
->control
.exit_info_1
& 1;
3153 mask
= 1 << ((2 * (msr
& 0xf)) + write
);
3155 if (offset
== MSR_INVALID
)
3156 return NESTED_EXIT_DONE
;
3158 /* Offset is in 32 bit units but need in 8 bit units */
3161 if (kvm_vcpu_read_guest(&svm
->vcpu
, svm
->nested
.vmcb_msrpm
+ offset
, &value
, 4))
3162 return NESTED_EXIT_DONE
;
3164 return (value
& mask
) ? NESTED_EXIT_DONE
: NESTED_EXIT_HOST
;
3167 /* DB exceptions for our internal use must not cause vmexit */
3168 static int nested_svm_intercept_db(struct vcpu_svm
*svm
)
3172 /* if we're not singlestepping, it's not ours */
3173 if (!svm
->nmi_singlestep
)
3174 return NESTED_EXIT_DONE
;
3176 /* if it's not a singlestep exception, it's not ours */
3177 if (kvm_get_dr(&svm
->vcpu
, 6, &dr6
))
3178 return NESTED_EXIT_DONE
;
3179 if (!(dr6
& DR6_BS
))
3180 return NESTED_EXIT_DONE
;
3182 /* if the guest is singlestepping, it should get the vmexit */
3183 if (svm
->nmi_singlestep_guest_rflags
& X86_EFLAGS_TF
) {
3184 disable_nmi_singlestep(svm
);
3185 return NESTED_EXIT_DONE
;
3188 /* it's ours, the nested hypervisor must not see this one */
3189 return NESTED_EXIT_HOST
;
3192 static int nested_svm_exit_special(struct vcpu_svm
*svm
)
3194 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
3196 switch (exit_code
) {
3199 case SVM_EXIT_EXCP_BASE
+ MC_VECTOR
:
3200 return NESTED_EXIT_HOST
;
3202 /* For now we are always handling NPFs when using them */
3204 return NESTED_EXIT_HOST
;
3206 case SVM_EXIT_EXCP_BASE
+ PF_VECTOR
:
3207 /* When we're shadowing, trap PFs, but not async PF */
3208 if (!npt_enabled
&& svm
->vcpu
.arch
.apf
.host_apf_reason
== 0)
3209 return NESTED_EXIT_HOST
;
3215 return NESTED_EXIT_CONTINUE
;
3219 * If this function returns true, this #vmexit was already handled
3221 static int nested_svm_intercept(struct vcpu_svm
*svm
)
3223 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
3224 int vmexit
= NESTED_EXIT_HOST
;
3226 switch (exit_code
) {
3228 vmexit
= nested_svm_exit_handled_msr(svm
);
3231 vmexit
= nested_svm_intercept_ioio(svm
);
3233 case SVM_EXIT_READ_CR0
... SVM_EXIT_WRITE_CR8
: {
3234 u32 bit
= 1U << (exit_code
- SVM_EXIT_READ_CR0
);
3235 if (svm
->nested
.intercept_cr
& bit
)
3236 vmexit
= NESTED_EXIT_DONE
;
3239 case SVM_EXIT_READ_DR0
... SVM_EXIT_WRITE_DR7
: {
3240 u32 bit
= 1U << (exit_code
- SVM_EXIT_READ_DR0
);
3241 if (svm
->nested
.intercept_dr
& bit
)
3242 vmexit
= NESTED_EXIT_DONE
;
3245 case SVM_EXIT_EXCP_BASE
... SVM_EXIT_EXCP_BASE
+ 0x1f: {
3246 u32 excp_bits
= 1 << (exit_code
- SVM_EXIT_EXCP_BASE
);
3247 if (svm
->nested
.intercept_exceptions
& excp_bits
) {
3248 if (exit_code
== SVM_EXIT_EXCP_BASE
+ DB_VECTOR
)
3249 vmexit
= nested_svm_intercept_db(svm
);
3251 vmexit
= NESTED_EXIT_DONE
;
3253 /* async page fault always cause vmexit */
3254 else if ((exit_code
== SVM_EXIT_EXCP_BASE
+ PF_VECTOR
) &&
3255 svm
->vcpu
.arch
.exception
.nested_apf
!= 0)
3256 vmexit
= NESTED_EXIT_DONE
;
3259 case SVM_EXIT_ERR
: {
3260 vmexit
= NESTED_EXIT_DONE
;
3264 u64 exit_bits
= 1ULL << (exit_code
- SVM_EXIT_INTR
);
3265 if (svm
->nested
.intercept
& exit_bits
)
3266 vmexit
= NESTED_EXIT_DONE
;
3273 static int nested_svm_exit_handled(struct vcpu_svm
*svm
)
3277 vmexit
= nested_svm_intercept(svm
);
3279 if (vmexit
== NESTED_EXIT_DONE
)
3280 nested_svm_vmexit(svm
);
3285 static inline void copy_vmcb_control_area(struct vmcb
*dst_vmcb
, struct vmcb
*from_vmcb
)
3287 struct vmcb_control_area
*dst
= &dst_vmcb
->control
;
3288 struct vmcb_control_area
*from
= &from_vmcb
->control
;
3290 dst
->intercept_cr
= from
->intercept_cr
;
3291 dst
->intercept_dr
= from
->intercept_dr
;
3292 dst
->intercept_exceptions
= from
->intercept_exceptions
;
3293 dst
->intercept
= from
->intercept
;
3294 dst
->iopm_base_pa
= from
->iopm_base_pa
;
3295 dst
->msrpm_base_pa
= from
->msrpm_base_pa
;
3296 dst
->tsc_offset
= from
->tsc_offset
;
3297 dst
->asid
= from
->asid
;
3298 dst
->tlb_ctl
= from
->tlb_ctl
;
3299 dst
->int_ctl
= from
->int_ctl
;
3300 dst
->int_vector
= from
->int_vector
;
3301 dst
->int_state
= from
->int_state
;
3302 dst
->exit_code
= from
->exit_code
;
3303 dst
->exit_code_hi
= from
->exit_code_hi
;
3304 dst
->exit_info_1
= from
->exit_info_1
;
3305 dst
->exit_info_2
= from
->exit_info_2
;
3306 dst
->exit_int_info
= from
->exit_int_info
;
3307 dst
->exit_int_info_err
= from
->exit_int_info_err
;
3308 dst
->nested_ctl
= from
->nested_ctl
;
3309 dst
->event_inj
= from
->event_inj
;
3310 dst
->event_inj_err
= from
->event_inj_err
;
3311 dst
->nested_cr3
= from
->nested_cr3
;
3312 dst
->virt_ext
= from
->virt_ext
;
3313 dst
->pause_filter_count
= from
->pause_filter_count
;
3314 dst
->pause_filter_thresh
= from
->pause_filter_thresh
;
3317 static int nested_svm_vmexit(struct vcpu_svm
*svm
)
3320 struct vmcb
*nested_vmcb
;
3321 struct vmcb
*hsave
= svm
->nested
.hsave
;
3322 struct vmcb
*vmcb
= svm
->vmcb
;
3323 struct kvm_host_map map
;
3325 trace_kvm_nested_vmexit_inject(vmcb
->control
.exit_code
,
3326 vmcb
->control
.exit_info_1
,
3327 vmcb
->control
.exit_info_2
,
3328 vmcb
->control
.exit_int_info
,
3329 vmcb
->control
.exit_int_info_err
,
3332 rc
= kvm_vcpu_map(&svm
->vcpu
, gpa_to_gfn(svm
->nested
.vmcb
), &map
);
3335 kvm_inject_gp(&svm
->vcpu
, 0);
3339 nested_vmcb
= map
.hva
;
3341 /* Exit Guest-Mode */
3342 leave_guest_mode(&svm
->vcpu
);
3343 svm
->nested
.vmcb
= 0;
3345 /* Give the current vmcb to the guest */
3348 nested_vmcb
->save
.es
= vmcb
->save
.es
;
3349 nested_vmcb
->save
.cs
= vmcb
->save
.cs
;
3350 nested_vmcb
->save
.ss
= vmcb
->save
.ss
;
3351 nested_vmcb
->save
.ds
= vmcb
->save
.ds
;
3352 nested_vmcb
->save
.gdtr
= vmcb
->save
.gdtr
;
3353 nested_vmcb
->save
.idtr
= vmcb
->save
.idtr
;
3354 nested_vmcb
->save
.efer
= svm
->vcpu
.arch
.efer
;
3355 nested_vmcb
->save
.cr0
= kvm_read_cr0(&svm
->vcpu
);
3356 nested_vmcb
->save
.cr3
= kvm_read_cr3(&svm
->vcpu
);
3357 nested_vmcb
->save
.cr2
= vmcb
->save
.cr2
;
3358 nested_vmcb
->save
.cr4
= svm
->vcpu
.arch
.cr4
;
3359 nested_vmcb
->save
.rflags
= kvm_get_rflags(&svm
->vcpu
);
3360 nested_vmcb
->save
.rip
= vmcb
->save
.rip
;
3361 nested_vmcb
->save
.rsp
= vmcb
->save
.rsp
;
3362 nested_vmcb
->save
.rax
= vmcb
->save
.rax
;
3363 nested_vmcb
->save
.dr7
= vmcb
->save
.dr7
;
3364 nested_vmcb
->save
.dr6
= vmcb
->save
.dr6
;
3365 nested_vmcb
->save
.cpl
= vmcb
->save
.cpl
;
3367 nested_vmcb
->control
.int_ctl
= vmcb
->control
.int_ctl
;
3368 nested_vmcb
->control
.int_vector
= vmcb
->control
.int_vector
;
3369 nested_vmcb
->control
.int_state
= vmcb
->control
.int_state
;
3370 nested_vmcb
->control
.exit_code
= vmcb
->control
.exit_code
;
3371 nested_vmcb
->control
.exit_code_hi
= vmcb
->control
.exit_code_hi
;
3372 nested_vmcb
->control
.exit_info_1
= vmcb
->control
.exit_info_1
;
3373 nested_vmcb
->control
.exit_info_2
= vmcb
->control
.exit_info_2
;
3374 nested_vmcb
->control
.exit_int_info
= vmcb
->control
.exit_int_info
;
3375 nested_vmcb
->control
.exit_int_info_err
= vmcb
->control
.exit_int_info_err
;
3377 if (svm
->nrips_enabled
)
3378 nested_vmcb
->control
.next_rip
= vmcb
->control
.next_rip
;
3381 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3382 * to make sure that we do not lose injected events. So check event_inj
3383 * here and copy it to exit_int_info if it is valid.
3384 * Exit_int_info and event_inj can't be both valid because the case
3385 * below only happens on a VMRUN instruction intercept which has
3386 * no valid exit_int_info set.
3388 if (vmcb
->control
.event_inj
& SVM_EVTINJ_VALID
) {
3389 struct vmcb_control_area
*nc
= &nested_vmcb
->control
;
3391 nc
->exit_int_info
= vmcb
->control
.event_inj
;
3392 nc
->exit_int_info_err
= vmcb
->control
.event_inj_err
;
3395 nested_vmcb
->control
.tlb_ctl
= 0;
3396 nested_vmcb
->control
.event_inj
= 0;
3397 nested_vmcb
->control
.event_inj_err
= 0;
3399 nested_vmcb
->control
.pause_filter_count
=
3400 svm
->vmcb
->control
.pause_filter_count
;
3401 nested_vmcb
->control
.pause_filter_thresh
=
3402 svm
->vmcb
->control
.pause_filter_thresh
;
3404 /* We always set V_INTR_MASKING and remember the old value in hflags */
3405 if (!(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
))
3406 nested_vmcb
->control
.int_ctl
&= ~V_INTR_MASKING_MASK
;
3408 /* Restore the original control entries */
3409 copy_vmcb_control_area(vmcb
, hsave
);
3411 svm
->vcpu
.arch
.tsc_offset
= svm
->vmcb
->control
.tsc_offset
;
3412 kvm_clear_exception_queue(&svm
->vcpu
);
3413 kvm_clear_interrupt_queue(&svm
->vcpu
);
3415 svm
->nested
.nested_cr3
= 0;
3417 /* Restore selected save entries */
3418 svm
->vmcb
->save
.es
= hsave
->save
.es
;
3419 svm
->vmcb
->save
.cs
= hsave
->save
.cs
;
3420 svm
->vmcb
->save
.ss
= hsave
->save
.ss
;
3421 svm
->vmcb
->save
.ds
= hsave
->save
.ds
;
3422 svm
->vmcb
->save
.gdtr
= hsave
->save
.gdtr
;
3423 svm
->vmcb
->save
.idtr
= hsave
->save
.idtr
;
3424 kvm_set_rflags(&svm
->vcpu
, hsave
->save
.rflags
);
3425 svm_set_efer(&svm
->vcpu
, hsave
->save
.efer
);
3426 svm_set_cr0(&svm
->vcpu
, hsave
->save
.cr0
| X86_CR0_PE
);
3427 svm_set_cr4(&svm
->vcpu
, hsave
->save
.cr4
);
3429 svm
->vmcb
->save
.cr3
= hsave
->save
.cr3
;
3430 svm
->vcpu
.arch
.cr3
= hsave
->save
.cr3
;
3432 (void)kvm_set_cr3(&svm
->vcpu
, hsave
->save
.cr3
);
3434 kvm_rax_write(&svm
->vcpu
, hsave
->save
.rax
);
3435 kvm_rsp_write(&svm
->vcpu
, hsave
->save
.rsp
);
3436 kvm_rip_write(&svm
->vcpu
, hsave
->save
.rip
);
3437 svm
->vmcb
->save
.dr7
= 0;
3438 svm
->vmcb
->save
.cpl
= 0;
3439 svm
->vmcb
->control
.exit_int_info
= 0;
3441 mark_all_dirty(svm
->vmcb
);
3443 kvm_vcpu_unmap(&svm
->vcpu
, &map
, true);
3445 nested_svm_uninit_mmu_context(&svm
->vcpu
);
3446 kvm_mmu_reset_context(&svm
->vcpu
);
3447 kvm_mmu_load(&svm
->vcpu
);
3450 * Drop what we picked up for L2 via svm_complete_interrupts() so it
3451 * doesn't end up in L1.
3453 svm
->vcpu
.arch
.nmi_injected
= false;
3454 kvm_clear_exception_queue(&svm
->vcpu
);
3455 kvm_clear_interrupt_queue(&svm
->vcpu
);
3460 static bool nested_svm_vmrun_msrpm(struct vcpu_svm
*svm
)
3463 * This function merges the msr permission bitmaps of kvm and the
3464 * nested vmcb. It is optimized in that it only merges the parts where
3465 * the kvm msr permission bitmap may contain zero bits
3469 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_MSR_PROT
)))
3472 for (i
= 0; i
< MSRPM_OFFSETS
; i
++) {
3476 if (msrpm_offsets
[i
] == 0xffffffff)
3479 p
= msrpm_offsets
[i
];
3480 offset
= svm
->nested
.vmcb_msrpm
+ (p
* 4);
3482 if (kvm_vcpu_read_guest(&svm
->vcpu
, offset
, &value
, 4))
3485 svm
->nested
.msrpm
[p
] = svm
->msrpm
[p
] | value
;
3488 svm
->vmcb
->control
.msrpm_base_pa
= __sme_set(__pa(svm
->nested
.msrpm
));
3493 static bool nested_vmcb_checks(struct vmcb
*vmcb
)
3495 if ((vmcb
->control
.intercept
& (1ULL << INTERCEPT_VMRUN
)) == 0)
3498 if (vmcb
->control
.asid
== 0)
3501 if ((vmcb
->control
.nested_ctl
& SVM_NESTED_CTL_NP_ENABLE
) &&
3508 static void enter_svm_guest_mode(struct vcpu_svm
*svm
, u64 vmcb_gpa
,
3509 struct vmcb
*nested_vmcb
, struct kvm_host_map
*map
)
3511 if (kvm_get_rflags(&svm
->vcpu
) & X86_EFLAGS_IF
)
3512 svm
->vcpu
.arch
.hflags
|= HF_HIF_MASK
;
3514 svm
->vcpu
.arch
.hflags
&= ~HF_HIF_MASK
;
3516 if (nested_vmcb
->control
.nested_ctl
& SVM_NESTED_CTL_NP_ENABLE
) {
3517 svm
->nested
.nested_cr3
= nested_vmcb
->control
.nested_cr3
;
3518 nested_svm_init_mmu_context(&svm
->vcpu
);
3521 /* Load the nested guest state */
3522 svm
->vmcb
->save
.es
= nested_vmcb
->save
.es
;
3523 svm
->vmcb
->save
.cs
= nested_vmcb
->save
.cs
;
3524 svm
->vmcb
->save
.ss
= nested_vmcb
->save
.ss
;
3525 svm
->vmcb
->save
.ds
= nested_vmcb
->save
.ds
;
3526 svm
->vmcb
->save
.gdtr
= nested_vmcb
->save
.gdtr
;
3527 svm
->vmcb
->save
.idtr
= nested_vmcb
->save
.idtr
;
3528 kvm_set_rflags(&svm
->vcpu
, nested_vmcb
->save
.rflags
);
3529 svm_set_efer(&svm
->vcpu
, nested_vmcb
->save
.efer
);
3530 svm_set_cr0(&svm
->vcpu
, nested_vmcb
->save
.cr0
);
3531 svm_set_cr4(&svm
->vcpu
, nested_vmcb
->save
.cr4
);
3533 svm
->vmcb
->save
.cr3
= nested_vmcb
->save
.cr3
;
3534 svm
->vcpu
.arch
.cr3
= nested_vmcb
->save
.cr3
;
3536 (void)kvm_set_cr3(&svm
->vcpu
, nested_vmcb
->save
.cr3
);
3538 /* Guest paging mode is active - reset mmu */
3539 kvm_mmu_reset_context(&svm
->vcpu
);
3541 svm
->vmcb
->save
.cr2
= svm
->vcpu
.arch
.cr2
= nested_vmcb
->save
.cr2
;
3542 kvm_rax_write(&svm
->vcpu
, nested_vmcb
->save
.rax
);
3543 kvm_rsp_write(&svm
->vcpu
, nested_vmcb
->save
.rsp
);
3544 kvm_rip_write(&svm
->vcpu
, nested_vmcb
->save
.rip
);
3546 /* In case we don't even reach vcpu_run, the fields are not updated */
3547 svm
->vmcb
->save
.rax
= nested_vmcb
->save
.rax
;
3548 svm
->vmcb
->save
.rsp
= nested_vmcb
->save
.rsp
;
3549 svm
->vmcb
->save
.rip
= nested_vmcb
->save
.rip
;
3550 svm
->vmcb
->save
.dr7
= nested_vmcb
->save
.dr7
;
3551 svm
->vmcb
->save
.dr6
= nested_vmcb
->save
.dr6
;
3552 svm
->vmcb
->save
.cpl
= nested_vmcb
->save
.cpl
;
3554 svm
->nested
.vmcb_msrpm
= nested_vmcb
->control
.msrpm_base_pa
& ~0x0fffULL
;
3555 svm
->nested
.vmcb_iopm
= nested_vmcb
->control
.iopm_base_pa
& ~0x0fffULL
;
3557 /* cache intercepts */
3558 svm
->nested
.intercept_cr
= nested_vmcb
->control
.intercept_cr
;
3559 svm
->nested
.intercept_dr
= nested_vmcb
->control
.intercept_dr
;
3560 svm
->nested
.intercept_exceptions
= nested_vmcb
->control
.intercept_exceptions
;
3561 svm
->nested
.intercept
= nested_vmcb
->control
.intercept
;
3563 svm_flush_tlb(&svm
->vcpu
, true);
3564 svm
->vmcb
->control
.int_ctl
= nested_vmcb
->control
.int_ctl
| V_INTR_MASKING_MASK
;
3565 if (nested_vmcb
->control
.int_ctl
& V_INTR_MASKING_MASK
)
3566 svm
->vcpu
.arch
.hflags
|= HF_VINTR_MASK
;
3568 svm
->vcpu
.arch
.hflags
&= ~HF_VINTR_MASK
;
3570 if (svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
) {
3571 /* We only want the cr8 intercept bits of the guest */
3572 clr_cr_intercept(svm
, INTERCEPT_CR8_READ
);
3573 clr_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
3576 /* We don't want to see VMMCALLs from a nested guest */
3577 clr_intercept(svm
, INTERCEPT_VMMCALL
);
3579 svm
->vcpu
.arch
.tsc_offset
+= nested_vmcb
->control
.tsc_offset
;
3580 svm
->vmcb
->control
.tsc_offset
= svm
->vcpu
.arch
.tsc_offset
;
3582 svm
->vmcb
->control
.virt_ext
= nested_vmcb
->control
.virt_ext
;
3583 svm
->vmcb
->control
.int_vector
= nested_vmcb
->control
.int_vector
;
3584 svm
->vmcb
->control
.int_state
= nested_vmcb
->control
.int_state
;
3585 svm
->vmcb
->control
.event_inj
= nested_vmcb
->control
.event_inj
;
3586 svm
->vmcb
->control
.event_inj_err
= nested_vmcb
->control
.event_inj_err
;
3588 svm
->vmcb
->control
.pause_filter_count
=
3589 nested_vmcb
->control
.pause_filter_count
;
3590 svm
->vmcb
->control
.pause_filter_thresh
=
3591 nested_vmcb
->control
.pause_filter_thresh
;
3593 kvm_vcpu_unmap(&svm
->vcpu
, map
, true);
3595 /* Enter Guest-Mode */
3596 enter_guest_mode(&svm
->vcpu
);
3599 * Merge guest and host intercepts - must be called with vcpu in
3600 * guest-mode to take affect here
3602 recalc_intercepts(svm
);
3604 svm
->nested
.vmcb
= vmcb_gpa
;
3608 mark_all_dirty(svm
->vmcb
);
3611 static int nested_svm_vmrun(struct vcpu_svm
*svm
)
3614 struct vmcb
*nested_vmcb
;
3615 struct vmcb
*hsave
= svm
->nested
.hsave
;
3616 struct vmcb
*vmcb
= svm
->vmcb
;
3617 struct kvm_host_map map
;
3620 vmcb_gpa
= svm
->vmcb
->save
.rax
;
3622 ret
= kvm_vcpu_map(&svm
->vcpu
, gpa_to_gfn(vmcb_gpa
), &map
);
3623 if (ret
== -EINVAL
) {
3624 kvm_inject_gp(&svm
->vcpu
, 0);
3627 return kvm_skip_emulated_instruction(&svm
->vcpu
);
3630 ret
= kvm_skip_emulated_instruction(&svm
->vcpu
);
3632 nested_vmcb
= map
.hva
;
3634 if (!nested_vmcb_checks(nested_vmcb
)) {
3635 nested_vmcb
->control
.exit_code
= SVM_EXIT_ERR
;
3636 nested_vmcb
->control
.exit_code_hi
= 0;
3637 nested_vmcb
->control
.exit_info_1
= 0;
3638 nested_vmcb
->control
.exit_info_2
= 0;
3640 kvm_vcpu_unmap(&svm
->vcpu
, &map
, true);
3645 trace_kvm_nested_vmrun(svm
->vmcb
->save
.rip
, vmcb_gpa
,
3646 nested_vmcb
->save
.rip
,
3647 nested_vmcb
->control
.int_ctl
,
3648 nested_vmcb
->control
.event_inj
,
3649 nested_vmcb
->control
.nested_ctl
);
3651 trace_kvm_nested_intercepts(nested_vmcb
->control
.intercept_cr
& 0xffff,
3652 nested_vmcb
->control
.intercept_cr
>> 16,
3653 nested_vmcb
->control
.intercept_exceptions
,
3654 nested_vmcb
->control
.intercept
);
3656 /* Clear internal status */
3657 kvm_clear_exception_queue(&svm
->vcpu
);
3658 kvm_clear_interrupt_queue(&svm
->vcpu
);
3661 * Save the old vmcb, so we don't need to pick what we save, but can
3662 * restore everything when a VMEXIT occurs
3664 hsave
->save
.es
= vmcb
->save
.es
;
3665 hsave
->save
.cs
= vmcb
->save
.cs
;
3666 hsave
->save
.ss
= vmcb
->save
.ss
;
3667 hsave
->save
.ds
= vmcb
->save
.ds
;
3668 hsave
->save
.gdtr
= vmcb
->save
.gdtr
;
3669 hsave
->save
.idtr
= vmcb
->save
.idtr
;
3670 hsave
->save
.efer
= svm
->vcpu
.arch
.efer
;
3671 hsave
->save
.cr0
= kvm_read_cr0(&svm
->vcpu
);
3672 hsave
->save
.cr4
= svm
->vcpu
.arch
.cr4
;
3673 hsave
->save
.rflags
= kvm_get_rflags(&svm
->vcpu
);
3674 hsave
->save
.rip
= kvm_rip_read(&svm
->vcpu
);
3675 hsave
->save
.rsp
= vmcb
->save
.rsp
;
3676 hsave
->save
.rax
= vmcb
->save
.rax
;
3678 hsave
->save
.cr3
= vmcb
->save
.cr3
;
3680 hsave
->save
.cr3
= kvm_read_cr3(&svm
->vcpu
);
3682 copy_vmcb_control_area(hsave
, vmcb
);
3684 enter_svm_guest_mode(svm
, vmcb_gpa
, nested_vmcb
, &map
);
3686 if (!nested_svm_vmrun_msrpm(svm
)) {
3687 svm
->vmcb
->control
.exit_code
= SVM_EXIT_ERR
;
3688 svm
->vmcb
->control
.exit_code_hi
= 0;
3689 svm
->vmcb
->control
.exit_info_1
= 0;
3690 svm
->vmcb
->control
.exit_info_2
= 0;
3692 nested_svm_vmexit(svm
);
3698 static void nested_svm_vmloadsave(struct vmcb
*from_vmcb
, struct vmcb
*to_vmcb
)
3700 to_vmcb
->save
.fs
= from_vmcb
->save
.fs
;
3701 to_vmcb
->save
.gs
= from_vmcb
->save
.gs
;
3702 to_vmcb
->save
.tr
= from_vmcb
->save
.tr
;
3703 to_vmcb
->save
.ldtr
= from_vmcb
->save
.ldtr
;
3704 to_vmcb
->save
.kernel_gs_base
= from_vmcb
->save
.kernel_gs_base
;
3705 to_vmcb
->save
.star
= from_vmcb
->save
.star
;
3706 to_vmcb
->save
.lstar
= from_vmcb
->save
.lstar
;
3707 to_vmcb
->save
.cstar
= from_vmcb
->save
.cstar
;
3708 to_vmcb
->save
.sfmask
= from_vmcb
->save
.sfmask
;
3709 to_vmcb
->save
.sysenter_cs
= from_vmcb
->save
.sysenter_cs
;
3710 to_vmcb
->save
.sysenter_esp
= from_vmcb
->save
.sysenter_esp
;
3711 to_vmcb
->save
.sysenter_eip
= from_vmcb
->save
.sysenter_eip
;
3714 static int vmload_interception(struct vcpu_svm
*svm
)
3716 struct vmcb
*nested_vmcb
;
3717 struct kvm_host_map map
;
3720 if (nested_svm_check_permissions(svm
))
3723 ret
= kvm_vcpu_map(&svm
->vcpu
, gpa_to_gfn(svm
->vmcb
->save
.rax
), &map
);
3726 kvm_inject_gp(&svm
->vcpu
, 0);
3730 nested_vmcb
= map
.hva
;
3732 ret
= kvm_skip_emulated_instruction(&svm
->vcpu
);
3734 nested_svm_vmloadsave(nested_vmcb
, svm
->vmcb
);
3735 kvm_vcpu_unmap(&svm
->vcpu
, &map
, true);
3740 static int vmsave_interception(struct vcpu_svm
*svm
)
3742 struct vmcb
*nested_vmcb
;
3743 struct kvm_host_map map
;
3746 if (nested_svm_check_permissions(svm
))
3749 ret
= kvm_vcpu_map(&svm
->vcpu
, gpa_to_gfn(svm
->vmcb
->save
.rax
), &map
);
3752 kvm_inject_gp(&svm
->vcpu
, 0);
3756 nested_vmcb
= map
.hva
;
3758 ret
= kvm_skip_emulated_instruction(&svm
->vcpu
);
3760 nested_svm_vmloadsave(svm
->vmcb
, nested_vmcb
);
3761 kvm_vcpu_unmap(&svm
->vcpu
, &map
, true);
3766 static int vmrun_interception(struct vcpu_svm
*svm
)
3768 if (nested_svm_check_permissions(svm
))
3771 return nested_svm_vmrun(svm
);
3774 static int stgi_interception(struct vcpu_svm
*svm
)
3778 if (nested_svm_check_permissions(svm
))
3782 * If VGIF is enabled, the STGI intercept is only added to
3783 * detect the opening of the SMI/NMI window; remove it now.
3785 if (vgif_enabled(svm
))
3786 clr_intercept(svm
, INTERCEPT_STGI
);
3788 ret
= kvm_skip_emulated_instruction(&svm
->vcpu
);
3789 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
3796 static int clgi_interception(struct vcpu_svm
*svm
)
3800 if (nested_svm_check_permissions(svm
))
3803 ret
= kvm_skip_emulated_instruction(&svm
->vcpu
);
3807 /* After a CLGI no interrupts should come */
3808 if (!kvm_vcpu_apicv_active(&svm
->vcpu
)) {
3809 svm_clear_vintr(svm
);
3810 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
3811 mark_dirty(svm
->vmcb
, VMCB_INTR
);
3817 static int invlpga_interception(struct vcpu_svm
*svm
)
3819 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
3821 trace_kvm_invlpga(svm
->vmcb
->save
.rip
, kvm_rcx_read(&svm
->vcpu
),
3822 kvm_rax_read(&svm
->vcpu
));
3824 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3825 kvm_mmu_invlpg(vcpu
, kvm_rax_read(&svm
->vcpu
));
3827 return kvm_skip_emulated_instruction(&svm
->vcpu
);
3830 static int skinit_interception(struct vcpu_svm
*svm
)
3832 trace_kvm_skinit(svm
->vmcb
->save
.rip
, kvm_rax_read(&svm
->vcpu
));
3834 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
3838 static int wbinvd_interception(struct vcpu_svm
*svm
)
3840 return kvm_emulate_wbinvd(&svm
->vcpu
);
3843 static int xsetbv_interception(struct vcpu_svm
*svm
)
3845 u64 new_bv
= kvm_read_edx_eax(&svm
->vcpu
);
3846 u32 index
= kvm_rcx_read(&svm
->vcpu
);
3848 if (kvm_set_xcr(&svm
->vcpu
, index
, new_bv
) == 0) {
3849 return kvm_skip_emulated_instruction(&svm
->vcpu
);
3855 static int rdpru_interception(struct vcpu_svm
*svm
)
3857 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
3861 static int task_switch_interception(struct vcpu_svm
*svm
)
3865 int int_type
= svm
->vmcb
->control
.exit_int_info
&
3866 SVM_EXITINTINFO_TYPE_MASK
;
3867 int int_vec
= svm
->vmcb
->control
.exit_int_info
& SVM_EVTINJ_VEC_MASK
;
3869 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_TYPE_MASK
;
3871 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_VALID
;
3872 bool has_error_code
= false;
3875 tss_selector
= (u16
)svm
->vmcb
->control
.exit_info_1
;
3877 if (svm
->vmcb
->control
.exit_info_2
&
3878 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET
))
3879 reason
= TASK_SWITCH_IRET
;
3880 else if (svm
->vmcb
->control
.exit_info_2
&
3881 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP
))
3882 reason
= TASK_SWITCH_JMP
;
3884 reason
= TASK_SWITCH_GATE
;
3886 reason
= TASK_SWITCH_CALL
;
3888 if (reason
== TASK_SWITCH_GATE
) {
3890 case SVM_EXITINTINFO_TYPE_NMI
:
3891 svm
->vcpu
.arch
.nmi_injected
= false;
3893 case SVM_EXITINTINFO_TYPE_EXEPT
:
3894 if (svm
->vmcb
->control
.exit_info_2
&
3895 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE
)) {
3896 has_error_code
= true;
3898 (u32
)svm
->vmcb
->control
.exit_info_2
;
3900 kvm_clear_exception_queue(&svm
->vcpu
);
3902 case SVM_EXITINTINFO_TYPE_INTR
:
3903 kvm_clear_interrupt_queue(&svm
->vcpu
);
3910 if (reason
!= TASK_SWITCH_GATE
||
3911 int_type
== SVM_EXITINTINFO_TYPE_SOFT
||
3912 (int_type
== SVM_EXITINTINFO_TYPE_EXEPT
&&
3913 (int_vec
== OF_VECTOR
|| int_vec
== BP_VECTOR
))) {
3914 if (!skip_emulated_instruction(&svm
->vcpu
))
3918 if (int_type
!= SVM_EXITINTINFO_TYPE_SOFT
)
3921 return kvm_task_switch(&svm
->vcpu
, tss_selector
, int_vec
, reason
,
3922 has_error_code
, error_code
);
3925 static int cpuid_interception(struct vcpu_svm
*svm
)
3927 return kvm_emulate_cpuid(&svm
->vcpu
);
3930 static int iret_interception(struct vcpu_svm
*svm
)
3932 ++svm
->vcpu
.stat
.nmi_window_exits
;
3933 clr_intercept(svm
, INTERCEPT_IRET
);
3934 svm
->vcpu
.arch
.hflags
|= HF_IRET_MASK
;
3935 svm
->nmi_iret_rip
= kvm_rip_read(&svm
->vcpu
);
3936 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
3940 static int invlpg_interception(struct vcpu_svm
*svm
)
3942 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS
))
3943 return kvm_emulate_instruction(&svm
->vcpu
, 0);
3945 kvm_mmu_invlpg(&svm
->vcpu
, svm
->vmcb
->control
.exit_info_1
);
3946 return kvm_skip_emulated_instruction(&svm
->vcpu
);
3949 static int emulate_on_interception(struct vcpu_svm
*svm
)
3951 return kvm_emulate_instruction(&svm
->vcpu
, 0);
3954 static int rsm_interception(struct vcpu_svm
*svm
)
3956 return kvm_emulate_instruction_from_buffer(&svm
->vcpu
, rsm_ins_bytes
, 2);
3959 static int rdpmc_interception(struct vcpu_svm
*svm
)
3964 return emulate_on_interception(svm
);
3966 err
= kvm_rdpmc(&svm
->vcpu
);
3967 return kvm_complete_insn_gp(&svm
->vcpu
, err
);
3970 static bool check_selective_cr0_intercepted(struct vcpu_svm
*svm
,
3973 unsigned long cr0
= svm
->vcpu
.arch
.cr0
;
3977 intercept
= svm
->nested
.intercept
;
3979 if (!is_guest_mode(&svm
->vcpu
) ||
3980 (!(intercept
& (1ULL << INTERCEPT_SELECTIVE_CR0
))))
3983 cr0
&= ~SVM_CR0_SELECTIVE_MASK
;
3984 val
&= ~SVM_CR0_SELECTIVE_MASK
;
3987 svm
->vmcb
->control
.exit_code
= SVM_EXIT_CR0_SEL_WRITE
;
3988 ret
= (nested_svm_exit_handled(svm
) == NESTED_EXIT_DONE
);
3994 #define CR_VALID (1ULL << 63)
3996 static int cr_interception(struct vcpu_svm
*svm
)
4002 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS
))
4003 return emulate_on_interception(svm
);
4005 if (unlikely((svm
->vmcb
->control
.exit_info_1
& CR_VALID
) == 0))
4006 return emulate_on_interception(svm
);
4008 reg
= svm
->vmcb
->control
.exit_info_1
& SVM_EXITINFO_REG_MASK
;
4009 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_CR0_SEL_WRITE
)
4010 cr
= SVM_EXIT_WRITE_CR0
- SVM_EXIT_READ_CR0
;
4012 cr
= svm
->vmcb
->control
.exit_code
- SVM_EXIT_READ_CR0
;
4015 if (cr
>= 16) { /* mov to cr */
4017 val
= kvm_register_read(&svm
->vcpu
, reg
);
4020 if (!check_selective_cr0_intercepted(svm
, val
))
4021 err
= kvm_set_cr0(&svm
->vcpu
, val
);
4027 err
= kvm_set_cr3(&svm
->vcpu
, val
);
4030 err
= kvm_set_cr4(&svm
->vcpu
, val
);
4033 err
= kvm_set_cr8(&svm
->vcpu
, val
);
4036 WARN(1, "unhandled write to CR%d", cr
);
4037 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
4040 } else { /* mov from cr */
4043 val
= kvm_read_cr0(&svm
->vcpu
);
4046 val
= svm
->vcpu
.arch
.cr2
;
4049 val
= kvm_read_cr3(&svm
->vcpu
);
4052 val
= kvm_read_cr4(&svm
->vcpu
);
4055 val
= kvm_get_cr8(&svm
->vcpu
);
4058 WARN(1, "unhandled read from CR%d", cr
);
4059 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
4062 kvm_register_write(&svm
->vcpu
, reg
, val
);
4064 return kvm_complete_insn_gp(&svm
->vcpu
, err
);
4067 static int dr_interception(struct vcpu_svm
*svm
)
4072 if (svm
->vcpu
.guest_debug
== 0) {
4074 * No more DR vmexits; force a reload of the debug registers
4075 * and reenter on this instruction. The next vmexit will
4076 * retrieve the full state of the debug registers.
4078 clr_dr_intercepts(svm
);
4079 svm
->vcpu
.arch
.switch_db_regs
|= KVM_DEBUGREG_WONT_EXIT
;
4083 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS
))
4084 return emulate_on_interception(svm
);
4086 reg
= svm
->vmcb
->control
.exit_info_1
& SVM_EXITINFO_REG_MASK
;
4087 dr
= svm
->vmcb
->control
.exit_code
- SVM_EXIT_READ_DR0
;
4089 if (dr
>= 16) { /* mov to DRn */
4090 if (!kvm_require_dr(&svm
->vcpu
, dr
- 16))
4092 val
= kvm_register_read(&svm
->vcpu
, reg
);
4093 kvm_set_dr(&svm
->vcpu
, dr
- 16, val
);
4095 if (!kvm_require_dr(&svm
->vcpu
, dr
))
4097 kvm_get_dr(&svm
->vcpu
, dr
, &val
);
4098 kvm_register_write(&svm
->vcpu
, reg
, val
);
4101 return kvm_skip_emulated_instruction(&svm
->vcpu
);
4104 static int cr8_write_interception(struct vcpu_svm
*svm
)
4106 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
4109 u8 cr8_prev
= kvm_get_cr8(&svm
->vcpu
);
4110 /* instruction emulation calls kvm_set_cr8() */
4111 r
= cr_interception(svm
);
4112 if (lapic_in_kernel(&svm
->vcpu
))
4114 if (cr8_prev
<= kvm_get_cr8(&svm
->vcpu
))
4116 kvm_run
->exit_reason
= KVM_EXIT_SET_TPR
;
4120 static int svm_get_msr_feature(struct kvm_msr_entry
*msr
)
4124 switch (msr
->index
) {
4125 case MSR_F10H_DECFG
:
4126 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC
))
4127 msr
->data
|= MSR_F10H_DECFG_LFENCE_SERIALIZE
;
4136 static int svm_get_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
4138 struct vcpu_svm
*svm
= to_svm(vcpu
);
4140 switch (msr_info
->index
) {
4142 msr_info
->data
= svm
->vmcb
->save
.star
;
4144 #ifdef CONFIG_X86_64
4146 msr_info
->data
= svm
->vmcb
->save
.lstar
;
4149 msr_info
->data
= svm
->vmcb
->save
.cstar
;
4151 case MSR_KERNEL_GS_BASE
:
4152 msr_info
->data
= svm
->vmcb
->save
.kernel_gs_base
;
4154 case MSR_SYSCALL_MASK
:
4155 msr_info
->data
= svm
->vmcb
->save
.sfmask
;
4158 case MSR_IA32_SYSENTER_CS
:
4159 msr_info
->data
= svm
->vmcb
->save
.sysenter_cs
;
4161 case MSR_IA32_SYSENTER_EIP
:
4162 msr_info
->data
= svm
->sysenter_eip
;
4164 case MSR_IA32_SYSENTER_ESP
:
4165 msr_info
->data
= svm
->sysenter_esp
;
4168 if (!boot_cpu_has(X86_FEATURE_RDTSCP
))
4170 msr_info
->data
= svm
->tsc_aux
;
4173 * Nobody will change the following 5 values in the VMCB so we can
4174 * safely return them on rdmsr. They will always be 0 until LBRV is
4177 case MSR_IA32_DEBUGCTLMSR
:
4178 msr_info
->data
= svm
->vmcb
->save
.dbgctl
;
4180 case MSR_IA32_LASTBRANCHFROMIP
:
4181 msr_info
->data
= svm
->vmcb
->save
.br_from
;
4183 case MSR_IA32_LASTBRANCHTOIP
:
4184 msr_info
->data
= svm
->vmcb
->save
.br_to
;
4186 case MSR_IA32_LASTINTFROMIP
:
4187 msr_info
->data
= svm
->vmcb
->save
.last_excp_from
;
4189 case MSR_IA32_LASTINTTOIP
:
4190 msr_info
->data
= svm
->vmcb
->save
.last_excp_to
;
4192 case MSR_VM_HSAVE_PA
:
4193 msr_info
->data
= svm
->nested
.hsave_msr
;
4196 msr_info
->data
= svm
->nested
.vm_cr_msr
;
4198 case MSR_IA32_SPEC_CTRL
:
4199 if (!msr_info
->host_initiated
&&
4200 !guest_cpuid_has(vcpu
, X86_FEATURE_AMD_IBRS
) &&
4201 !guest_cpuid_has(vcpu
, X86_FEATURE_AMD_SSBD
))
4204 msr_info
->data
= svm
->spec_ctrl
;
4206 case MSR_AMD64_VIRT_SPEC_CTRL
:
4207 if (!msr_info
->host_initiated
&&
4208 !guest_cpuid_has(vcpu
, X86_FEATURE_VIRT_SSBD
))
4211 msr_info
->data
= svm
->virt_spec_ctrl
;
4213 case MSR_F15H_IC_CFG
: {
4217 family
= guest_cpuid_family(vcpu
);
4218 model
= guest_cpuid_model(vcpu
);
4220 if (family
< 0 || model
< 0)
4221 return kvm_get_msr_common(vcpu
, msr_info
);
4225 if (family
== 0x15 &&
4226 (model
>= 0x2 && model
< 0x20))
4227 msr_info
->data
= 0x1E;
4230 case MSR_F10H_DECFG
:
4231 msr_info
->data
= svm
->msr_decfg
;
4234 return kvm_get_msr_common(vcpu
, msr_info
);
4239 static int rdmsr_interception(struct vcpu_svm
*svm
)
4241 return kvm_emulate_rdmsr(&svm
->vcpu
);
4244 static int svm_set_vm_cr(struct kvm_vcpu
*vcpu
, u64 data
)
4246 struct vcpu_svm
*svm
= to_svm(vcpu
);
4247 int svm_dis
, chg_mask
;
4249 if (data
& ~SVM_VM_CR_VALID_MASK
)
4252 chg_mask
= SVM_VM_CR_VALID_MASK
;
4254 if (svm
->nested
.vm_cr_msr
& SVM_VM_CR_SVM_DIS_MASK
)
4255 chg_mask
&= ~(SVM_VM_CR_SVM_LOCK_MASK
| SVM_VM_CR_SVM_DIS_MASK
);
4257 svm
->nested
.vm_cr_msr
&= ~chg_mask
;
4258 svm
->nested
.vm_cr_msr
|= (data
& chg_mask
);
4260 svm_dis
= svm
->nested
.vm_cr_msr
& SVM_VM_CR_SVM_DIS_MASK
;
4262 /* check for svm_disable while efer.svme is set */
4263 if (svm_dis
&& (vcpu
->arch
.efer
& EFER_SVME
))
4269 static int svm_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
4271 struct vcpu_svm
*svm
= to_svm(vcpu
);
4273 u32 ecx
= msr
->index
;
4274 u64 data
= msr
->data
;
4276 case MSR_IA32_CR_PAT
:
4277 if (!kvm_mtrr_valid(vcpu
, MSR_IA32_CR_PAT
, data
))
4279 vcpu
->arch
.pat
= data
;
4280 svm
->vmcb
->save
.g_pat
= data
;
4281 mark_dirty(svm
->vmcb
, VMCB_NPT
);
4283 case MSR_IA32_SPEC_CTRL
:
4284 if (!msr
->host_initiated
&&
4285 !guest_cpuid_has(vcpu
, X86_FEATURE_AMD_IBRS
) &&
4286 !guest_cpuid_has(vcpu
, X86_FEATURE_AMD_SSBD
))
4289 if (data
& ~kvm_spec_ctrl_valid_bits(vcpu
))
4292 svm
->spec_ctrl
= data
;
4298 * When it's written (to non-zero) for the first time, pass
4302 * The handling of the MSR bitmap for L2 guests is done in
4303 * nested_svm_vmrun_msrpm.
4304 * We update the L1 MSR bit as well since it will end up
4305 * touching the MSR anyway now.
4307 set_msr_interception(svm
->msrpm
, MSR_IA32_SPEC_CTRL
, 1, 1);
4309 case MSR_IA32_PRED_CMD
:
4310 if (!msr
->host_initiated
&&
4311 !guest_cpuid_has(vcpu
, X86_FEATURE_AMD_IBPB
))
4314 if (data
& ~PRED_CMD_IBPB
)
4316 if (!boot_cpu_has(X86_FEATURE_AMD_IBPB
))
4321 wrmsrl(MSR_IA32_PRED_CMD
, PRED_CMD_IBPB
);
4322 set_msr_interception(svm
->msrpm
, MSR_IA32_PRED_CMD
, 0, 1);
4324 case MSR_AMD64_VIRT_SPEC_CTRL
:
4325 if (!msr
->host_initiated
&&
4326 !guest_cpuid_has(vcpu
, X86_FEATURE_VIRT_SSBD
))
4329 if (data
& ~SPEC_CTRL_SSBD
)
4332 svm
->virt_spec_ctrl
= data
;
4335 svm
->vmcb
->save
.star
= data
;
4337 #ifdef CONFIG_X86_64
4339 svm
->vmcb
->save
.lstar
= data
;
4342 svm
->vmcb
->save
.cstar
= data
;
4344 case MSR_KERNEL_GS_BASE
:
4345 svm
->vmcb
->save
.kernel_gs_base
= data
;
4347 case MSR_SYSCALL_MASK
:
4348 svm
->vmcb
->save
.sfmask
= data
;
4351 case MSR_IA32_SYSENTER_CS
:
4352 svm
->vmcb
->save
.sysenter_cs
= data
;
4354 case MSR_IA32_SYSENTER_EIP
:
4355 svm
->sysenter_eip
= data
;
4356 svm
->vmcb
->save
.sysenter_eip
= data
;
4358 case MSR_IA32_SYSENTER_ESP
:
4359 svm
->sysenter_esp
= data
;
4360 svm
->vmcb
->save
.sysenter_esp
= data
;
4363 if (!boot_cpu_has(X86_FEATURE_RDTSCP
))
4367 * This is rare, so we update the MSR here instead of using
4368 * direct_access_msrs. Doing that would require a rdmsr in
4371 svm
->tsc_aux
= data
;
4372 wrmsrl(MSR_TSC_AUX
, svm
->tsc_aux
);
4374 case MSR_IA32_DEBUGCTLMSR
:
4375 if (!boot_cpu_has(X86_FEATURE_LBRV
)) {
4376 vcpu_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4380 if (data
& DEBUGCTL_RESERVED_BITS
)
4383 svm
->vmcb
->save
.dbgctl
= data
;
4384 mark_dirty(svm
->vmcb
, VMCB_LBR
);
4385 if (data
& (1ULL<<0))
4386 svm_enable_lbrv(svm
);
4388 svm_disable_lbrv(svm
);
4390 case MSR_VM_HSAVE_PA
:
4391 svm
->nested
.hsave_msr
= data
;
4394 return svm_set_vm_cr(vcpu
, data
);
4396 vcpu_unimpl(vcpu
, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx
, data
);
4398 case MSR_F10H_DECFG
: {
4399 struct kvm_msr_entry msr_entry
;
4401 msr_entry
.index
= msr
->index
;
4402 if (svm_get_msr_feature(&msr_entry
))
4405 /* Check the supported bits */
4406 if (data
& ~msr_entry
.data
)
4409 /* Don't allow the guest to change a bit, #GP */
4410 if (!msr
->host_initiated
&& (data
^ msr_entry
.data
))
4413 svm
->msr_decfg
= data
;
4416 case MSR_IA32_APICBASE
:
4417 if (kvm_vcpu_apicv_active(vcpu
))
4418 avic_update_vapic_bar(to_svm(vcpu
), data
);
4421 return kvm_set_msr_common(vcpu
, msr
);
4426 static int wrmsr_interception(struct vcpu_svm
*svm
)
4428 return kvm_emulate_wrmsr(&svm
->vcpu
);
4431 static int msr_interception(struct vcpu_svm
*svm
)
4433 if (svm
->vmcb
->control
.exit_info_1
)
4434 return wrmsr_interception(svm
);
4436 return rdmsr_interception(svm
);
4439 static int interrupt_window_interception(struct vcpu_svm
*svm
)
4441 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
4442 svm_clear_vintr(svm
);
4443 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
4444 mark_dirty(svm
->vmcb
, VMCB_INTR
);
4445 ++svm
->vcpu
.stat
.irq_window_exits
;
4449 static int pause_interception(struct vcpu_svm
*svm
)
4451 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
4452 bool in_kernel
= (svm_get_cpl(vcpu
) == 0);
4454 if (pause_filter_thresh
)
4455 grow_ple_window(vcpu
);
4457 kvm_vcpu_on_spin(vcpu
, in_kernel
);
4461 static int nop_interception(struct vcpu_svm
*svm
)
4463 return kvm_skip_emulated_instruction(&(svm
->vcpu
));
4466 static int monitor_interception(struct vcpu_svm
*svm
)
4468 printk_once(KERN_WARNING
"kvm: MONITOR instruction emulated as NOP!\n");
4469 return nop_interception(svm
);
4472 static int mwait_interception(struct vcpu_svm
*svm
)
4474 printk_once(KERN_WARNING
"kvm: MWAIT instruction emulated as NOP!\n");
4475 return nop_interception(svm
);
4478 enum avic_ipi_failure_cause
{
4479 AVIC_IPI_FAILURE_INVALID_INT_TYPE
,
4480 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING
,
4481 AVIC_IPI_FAILURE_INVALID_TARGET
,
4482 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE
,
4485 static int avic_incomplete_ipi_interception(struct vcpu_svm
*svm
)
4487 u32 icrh
= svm
->vmcb
->control
.exit_info_1
>> 32;
4488 u32 icrl
= svm
->vmcb
->control
.exit_info_1
;
4489 u32 id
= svm
->vmcb
->control
.exit_info_2
>> 32;
4490 u32 index
= svm
->vmcb
->control
.exit_info_2
& 0xFF;
4491 struct kvm_lapic
*apic
= svm
->vcpu
.arch
.apic
;
4493 trace_kvm_avic_incomplete_ipi(svm
->vcpu
.vcpu_id
, icrh
, icrl
, id
, index
);
4496 case AVIC_IPI_FAILURE_INVALID_INT_TYPE
:
4498 * AVIC hardware handles the generation of
4499 * IPIs when the specified Message Type is Fixed
4500 * (also known as fixed delivery mode) and
4501 * the Trigger Mode is edge-triggered. The hardware
4502 * also supports self and broadcast delivery modes
4503 * specified via the Destination Shorthand(DSH)
4504 * field of the ICRL. Logical and physical APIC ID
4505 * formats are supported. All other IPI types cause
4506 * a #VMEXIT, which needs to emulated.
4508 kvm_lapic_reg_write(apic
, APIC_ICR2
, icrh
);
4509 kvm_lapic_reg_write(apic
, APIC_ICR
, icrl
);
4511 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING
: {
4513 struct kvm_vcpu
*vcpu
;
4514 struct kvm
*kvm
= svm
->vcpu
.kvm
;
4515 struct kvm_lapic
*apic
= svm
->vcpu
.arch
.apic
;
4518 * At this point, we expect that the AVIC HW has already
4519 * set the appropriate IRR bits on the valid target
4520 * vcpus. So, we just need to kick the appropriate vcpu.
4522 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
4523 bool m
= kvm_apic_match_dest(vcpu
, apic
,
4524 icrl
& APIC_SHORT_MASK
,
4525 GET_APIC_DEST_FIELD(icrh
),
4526 icrl
& APIC_DEST_MASK
);
4528 if (m
&& !avic_vcpu_is_running(vcpu
))
4529 kvm_vcpu_wake_up(vcpu
);
4533 case AVIC_IPI_FAILURE_INVALID_TARGET
:
4534 WARN_ONCE(1, "Invalid IPI target: index=%u, vcpu=%d, icr=%#0x:%#0x\n",
4535 index
, svm
->vcpu
.vcpu_id
, icrh
, icrl
);
4537 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE
:
4538 WARN_ONCE(1, "Invalid backing page\n");
4541 pr_err("Unknown IPI interception\n");
4547 static u32
*avic_get_logical_id_entry(struct kvm_vcpu
*vcpu
, u32 ldr
, bool flat
)
4549 struct kvm_svm
*kvm_svm
= to_kvm_svm(vcpu
->kvm
);
4551 u32
*logical_apic_id_table
;
4552 int dlid
= GET_APIC_LOGICAL_ID(ldr
);
4557 if (flat
) { /* flat */
4558 index
= ffs(dlid
) - 1;
4561 } else { /* cluster */
4562 int cluster
= (dlid
& 0xf0) >> 4;
4563 int apic
= ffs(dlid
& 0x0f) - 1;
4565 if ((apic
< 0) || (apic
> 7) ||
4568 index
= (cluster
<< 2) + apic
;
4571 logical_apic_id_table
= (u32
*) page_address(kvm_svm
->avic_logical_id_table_page
);
4573 return &logical_apic_id_table
[index
];
4576 static int avic_ldr_write(struct kvm_vcpu
*vcpu
, u8 g_physical_id
, u32 ldr
)
4579 u32
*entry
, new_entry
;
4581 flat
= kvm_lapic_get_reg(vcpu
->arch
.apic
, APIC_DFR
) == APIC_DFR_FLAT
;
4582 entry
= avic_get_logical_id_entry(vcpu
, ldr
, flat
);
4586 new_entry
= READ_ONCE(*entry
);
4587 new_entry
&= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK
;
4588 new_entry
|= (g_physical_id
& AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK
);
4589 new_entry
|= AVIC_LOGICAL_ID_ENTRY_VALID_MASK
;
4590 WRITE_ONCE(*entry
, new_entry
);
4595 static void avic_invalidate_logical_id_entry(struct kvm_vcpu
*vcpu
)
4597 struct vcpu_svm
*svm
= to_svm(vcpu
);
4598 bool flat
= svm
->dfr_reg
== APIC_DFR_FLAT
;
4599 u32
*entry
= avic_get_logical_id_entry(vcpu
, svm
->ldr_reg
, flat
);
4602 clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT
, (unsigned long *)entry
);
4605 static int avic_handle_ldr_update(struct kvm_vcpu
*vcpu
)
4608 struct vcpu_svm
*svm
= to_svm(vcpu
);
4609 u32 ldr
= kvm_lapic_get_reg(vcpu
->arch
.apic
, APIC_LDR
);
4610 u32 id
= kvm_xapic_id(vcpu
->arch
.apic
);
4612 if (ldr
== svm
->ldr_reg
)
4615 avic_invalidate_logical_id_entry(vcpu
);
4618 ret
= avic_ldr_write(vcpu
, id
, ldr
);
4626 static int avic_handle_apic_id_update(struct kvm_vcpu
*vcpu
)
4629 struct vcpu_svm
*svm
= to_svm(vcpu
);
4630 u32 id
= kvm_xapic_id(vcpu
->arch
.apic
);
4632 if (vcpu
->vcpu_id
== id
)
4635 old
= avic_get_physical_id_entry(vcpu
, vcpu
->vcpu_id
);
4636 new = avic_get_physical_id_entry(vcpu
, id
);
4640 /* We need to move physical_id_entry to new offset */
4643 to_svm(vcpu
)->avic_physical_id_cache
= new;
4646 * Also update the guest physical APIC ID in the logical
4647 * APIC ID table entry if already setup the LDR.
4650 avic_handle_ldr_update(vcpu
);
4655 static void avic_handle_dfr_update(struct kvm_vcpu
*vcpu
)
4657 struct vcpu_svm
*svm
= to_svm(vcpu
);
4658 u32 dfr
= kvm_lapic_get_reg(vcpu
->arch
.apic
, APIC_DFR
);
4660 if (svm
->dfr_reg
== dfr
)
4663 avic_invalidate_logical_id_entry(vcpu
);
4667 static int avic_unaccel_trap_write(struct vcpu_svm
*svm
)
4669 struct kvm_lapic
*apic
= svm
->vcpu
.arch
.apic
;
4670 u32 offset
= svm
->vmcb
->control
.exit_info_1
&
4671 AVIC_UNACCEL_ACCESS_OFFSET_MASK
;
4675 if (avic_handle_apic_id_update(&svm
->vcpu
))
4679 if (avic_handle_ldr_update(&svm
->vcpu
))
4683 avic_handle_dfr_update(&svm
->vcpu
);
4689 kvm_lapic_reg_write(apic
, offset
, kvm_lapic_get_reg(apic
, offset
));
4694 static bool is_avic_unaccelerated_access_trap(u32 offset
)
4723 static int avic_unaccelerated_access_interception(struct vcpu_svm
*svm
)
4726 u32 offset
= svm
->vmcb
->control
.exit_info_1
&
4727 AVIC_UNACCEL_ACCESS_OFFSET_MASK
;
4728 u32 vector
= svm
->vmcb
->control
.exit_info_2
&
4729 AVIC_UNACCEL_ACCESS_VECTOR_MASK
;
4730 bool write
= (svm
->vmcb
->control
.exit_info_1
>> 32) &
4731 AVIC_UNACCEL_ACCESS_WRITE_MASK
;
4732 bool trap
= is_avic_unaccelerated_access_trap(offset
);
4734 trace_kvm_avic_unaccelerated_access(svm
->vcpu
.vcpu_id
, offset
,
4735 trap
, write
, vector
);
4738 WARN_ONCE(!write
, "svm: Handling trap read.\n");
4739 ret
= avic_unaccel_trap_write(svm
);
4741 /* Handling Fault */
4742 ret
= kvm_emulate_instruction(&svm
->vcpu
, 0);
4748 static int (*const svm_exit_handlers
[])(struct vcpu_svm
*svm
) = {
4749 [SVM_EXIT_READ_CR0
] = cr_interception
,
4750 [SVM_EXIT_READ_CR3
] = cr_interception
,
4751 [SVM_EXIT_READ_CR4
] = cr_interception
,
4752 [SVM_EXIT_READ_CR8
] = cr_interception
,
4753 [SVM_EXIT_CR0_SEL_WRITE
] = cr_interception
,
4754 [SVM_EXIT_WRITE_CR0
] = cr_interception
,
4755 [SVM_EXIT_WRITE_CR3
] = cr_interception
,
4756 [SVM_EXIT_WRITE_CR4
] = cr_interception
,
4757 [SVM_EXIT_WRITE_CR8
] = cr8_write_interception
,
4758 [SVM_EXIT_READ_DR0
] = dr_interception
,
4759 [SVM_EXIT_READ_DR1
] = dr_interception
,
4760 [SVM_EXIT_READ_DR2
] = dr_interception
,
4761 [SVM_EXIT_READ_DR3
] = dr_interception
,
4762 [SVM_EXIT_READ_DR4
] = dr_interception
,
4763 [SVM_EXIT_READ_DR5
] = dr_interception
,
4764 [SVM_EXIT_READ_DR6
] = dr_interception
,
4765 [SVM_EXIT_READ_DR7
] = dr_interception
,
4766 [SVM_EXIT_WRITE_DR0
] = dr_interception
,
4767 [SVM_EXIT_WRITE_DR1
] = dr_interception
,
4768 [SVM_EXIT_WRITE_DR2
] = dr_interception
,
4769 [SVM_EXIT_WRITE_DR3
] = dr_interception
,
4770 [SVM_EXIT_WRITE_DR4
] = dr_interception
,
4771 [SVM_EXIT_WRITE_DR5
] = dr_interception
,
4772 [SVM_EXIT_WRITE_DR6
] = dr_interception
,
4773 [SVM_EXIT_WRITE_DR7
] = dr_interception
,
4774 [SVM_EXIT_EXCP_BASE
+ DB_VECTOR
] = db_interception
,
4775 [SVM_EXIT_EXCP_BASE
+ BP_VECTOR
] = bp_interception
,
4776 [SVM_EXIT_EXCP_BASE
+ UD_VECTOR
] = ud_interception
,
4777 [SVM_EXIT_EXCP_BASE
+ PF_VECTOR
] = pf_interception
,
4778 [SVM_EXIT_EXCP_BASE
+ MC_VECTOR
] = mc_interception
,
4779 [SVM_EXIT_EXCP_BASE
+ AC_VECTOR
] = ac_interception
,
4780 [SVM_EXIT_EXCP_BASE
+ GP_VECTOR
] = gp_interception
,
4781 [SVM_EXIT_INTR
] = intr_interception
,
4782 [SVM_EXIT_NMI
] = nmi_interception
,
4783 [SVM_EXIT_SMI
] = nop_on_interception
,
4784 [SVM_EXIT_INIT
] = nop_on_interception
,
4785 [SVM_EXIT_VINTR
] = interrupt_window_interception
,
4786 [SVM_EXIT_RDPMC
] = rdpmc_interception
,
4787 [SVM_EXIT_CPUID
] = cpuid_interception
,
4788 [SVM_EXIT_IRET
] = iret_interception
,
4789 [SVM_EXIT_INVD
] = emulate_on_interception
,
4790 [SVM_EXIT_PAUSE
] = pause_interception
,
4791 [SVM_EXIT_HLT
] = halt_interception
,
4792 [SVM_EXIT_INVLPG
] = invlpg_interception
,
4793 [SVM_EXIT_INVLPGA
] = invlpga_interception
,
4794 [SVM_EXIT_IOIO
] = io_interception
,
4795 [SVM_EXIT_MSR
] = msr_interception
,
4796 [SVM_EXIT_TASK_SWITCH
] = task_switch_interception
,
4797 [SVM_EXIT_SHUTDOWN
] = shutdown_interception
,
4798 [SVM_EXIT_VMRUN
] = vmrun_interception
,
4799 [SVM_EXIT_VMMCALL
] = vmmcall_interception
,
4800 [SVM_EXIT_VMLOAD
] = vmload_interception
,
4801 [SVM_EXIT_VMSAVE
] = vmsave_interception
,
4802 [SVM_EXIT_STGI
] = stgi_interception
,
4803 [SVM_EXIT_CLGI
] = clgi_interception
,
4804 [SVM_EXIT_SKINIT
] = skinit_interception
,
4805 [SVM_EXIT_WBINVD
] = wbinvd_interception
,
4806 [SVM_EXIT_MONITOR
] = monitor_interception
,
4807 [SVM_EXIT_MWAIT
] = mwait_interception
,
4808 [SVM_EXIT_XSETBV
] = xsetbv_interception
,
4809 [SVM_EXIT_RDPRU
] = rdpru_interception
,
4810 [SVM_EXIT_NPF
] = npf_interception
,
4811 [SVM_EXIT_RSM
] = rsm_interception
,
4812 [SVM_EXIT_AVIC_INCOMPLETE_IPI
] = avic_incomplete_ipi_interception
,
4813 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS
] = avic_unaccelerated_access_interception
,
4816 static void dump_vmcb(struct kvm_vcpu
*vcpu
)
4818 struct vcpu_svm
*svm
= to_svm(vcpu
);
4819 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
4820 struct vmcb_save_area
*save
= &svm
->vmcb
->save
;
4822 if (!dump_invalid_vmcb
) {
4823 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
4827 pr_err("VMCB Control Area:\n");
4828 pr_err("%-20s%04x\n", "cr_read:", control
->intercept_cr
& 0xffff);
4829 pr_err("%-20s%04x\n", "cr_write:", control
->intercept_cr
>> 16);
4830 pr_err("%-20s%04x\n", "dr_read:", control
->intercept_dr
& 0xffff);
4831 pr_err("%-20s%04x\n", "dr_write:", control
->intercept_dr
>> 16);
4832 pr_err("%-20s%08x\n", "exceptions:", control
->intercept_exceptions
);
4833 pr_err("%-20s%016llx\n", "intercepts:", control
->intercept
);
4834 pr_err("%-20s%d\n", "pause filter count:", control
->pause_filter_count
);
4835 pr_err("%-20s%d\n", "pause filter threshold:",
4836 control
->pause_filter_thresh
);
4837 pr_err("%-20s%016llx\n", "iopm_base_pa:", control
->iopm_base_pa
);
4838 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control
->msrpm_base_pa
);
4839 pr_err("%-20s%016llx\n", "tsc_offset:", control
->tsc_offset
);
4840 pr_err("%-20s%d\n", "asid:", control
->asid
);
4841 pr_err("%-20s%d\n", "tlb_ctl:", control
->tlb_ctl
);
4842 pr_err("%-20s%08x\n", "int_ctl:", control
->int_ctl
);
4843 pr_err("%-20s%08x\n", "int_vector:", control
->int_vector
);
4844 pr_err("%-20s%08x\n", "int_state:", control
->int_state
);
4845 pr_err("%-20s%08x\n", "exit_code:", control
->exit_code
);
4846 pr_err("%-20s%016llx\n", "exit_info1:", control
->exit_info_1
);
4847 pr_err("%-20s%016llx\n", "exit_info2:", control
->exit_info_2
);
4848 pr_err("%-20s%08x\n", "exit_int_info:", control
->exit_int_info
);
4849 pr_err("%-20s%08x\n", "exit_int_info_err:", control
->exit_int_info_err
);
4850 pr_err("%-20s%lld\n", "nested_ctl:", control
->nested_ctl
);
4851 pr_err("%-20s%016llx\n", "nested_cr3:", control
->nested_cr3
);
4852 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control
->avic_vapic_bar
);
4853 pr_err("%-20s%08x\n", "event_inj:", control
->event_inj
);
4854 pr_err("%-20s%08x\n", "event_inj_err:", control
->event_inj_err
);
4855 pr_err("%-20s%lld\n", "virt_ext:", control
->virt_ext
);
4856 pr_err("%-20s%016llx\n", "next_rip:", control
->next_rip
);
4857 pr_err("%-20s%016llx\n", "avic_backing_page:", control
->avic_backing_page
);
4858 pr_err("%-20s%016llx\n", "avic_logical_id:", control
->avic_logical_id
);
4859 pr_err("%-20s%016llx\n", "avic_physical_id:", control
->avic_physical_id
);
4860 pr_err("VMCB State Save Area:\n");
4861 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4863 save
->es
.selector
, save
->es
.attrib
,
4864 save
->es
.limit
, save
->es
.base
);
4865 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4867 save
->cs
.selector
, save
->cs
.attrib
,
4868 save
->cs
.limit
, save
->cs
.base
);
4869 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4871 save
->ss
.selector
, save
->ss
.attrib
,
4872 save
->ss
.limit
, save
->ss
.base
);
4873 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4875 save
->ds
.selector
, save
->ds
.attrib
,
4876 save
->ds
.limit
, save
->ds
.base
);
4877 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4879 save
->fs
.selector
, save
->fs
.attrib
,
4880 save
->fs
.limit
, save
->fs
.base
);
4881 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4883 save
->gs
.selector
, save
->gs
.attrib
,
4884 save
->gs
.limit
, save
->gs
.base
);
4885 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4887 save
->gdtr
.selector
, save
->gdtr
.attrib
,
4888 save
->gdtr
.limit
, save
->gdtr
.base
);
4889 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4891 save
->ldtr
.selector
, save
->ldtr
.attrib
,
4892 save
->ldtr
.limit
, save
->ldtr
.base
);
4893 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4895 save
->idtr
.selector
, save
->idtr
.attrib
,
4896 save
->idtr
.limit
, save
->idtr
.base
);
4897 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4899 save
->tr
.selector
, save
->tr
.attrib
,
4900 save
->tr
.limit
, save
->tr
.base
);
4901 pr_err("cpl: %d efer: %016llx\n",
4902 save
->cpl
, save
->efer
);
4903 pr_err("%-15s %016llx %-13s %016llx\n",
4904 "cr0:", save
->cr0
, "cr2:", save
->cr2
);
4905 pr_err("%-15s %016llx %-13s %016llx\n",
4906 "cr3:", save
->cr3
, "cr4:", save
->cr4
);
4907 pr_err("%-15s %016llx %-13s %016llx\n",
4908 "dr6:", save
->dr6
, "dr7:", save
->dr7
);
4909 pr_err("%-15s %016llx %-13s %016llx\n",
4910 "rip:", save
->rip
, "rflags:", save
->rflags
);
4911 pr_err("%-15s %016llx %-13s %016llx\n",
4912 "rsp:", save
->rsp
, "rax:", save
->rax
);
4913 pr_err("%-15s %016llx %-13s %016llx\n",
4914 "star:", save
->star
, "lstar:", save
->lstar
);
4915 pr_err("%-15s %016llx %-13s %016llx\n",
4916 "cstar:", save
->cstar
, "sfmask:", save
->sfmask
);
4917 pr_err("%-15s %016llx %-13s %016llx\n",
4918 "kernel_gs_base:", save
->kernel_gs_base
,
4919 "sysenter_cs:", save
->sysenter_cs
);
4920 pr_err("%-15s %016llx %-13s %016llx\n",
4921 "sysenter_esp:", save
->sysenter_esp
,
4922 "sysenter_eip:", save
->sysenter_eip
);
4923 pr_err("%-15s %016llx %-13s %016llx\n",
4924 "gpat:", save
->g_pat
, "dbgctl:", save
->dbgctl
);
4925 pr_err("%-15s %016llx %-13s %016llx\n",
4926 "br_from:", save
->br_from
, "br_to:", save
->br_to
);
4927 pr_err("%-15s %016llx %-13s %016llx\n",
4928 "excp_from:", save
->last_excp_from
,
4929 "excp_to:", save
->last_excp_to
);
4932 static void svm_get_exit_info(struct kvm_vcpu
*vcpu
, u64
*info1
, u64
*info2
)
4934 struct vmcb_control_area
*control
= &to_svm(vcpu
)->vmcb
->control
;
4936 *info1
= control
->exit_info_1
;
4937 *info2
= control
->exit_info_2
;
4940 static int handle_exit(struct kvm_vcpu
*vcpu
,
4941 enum exit_fastpath_completion exit_fastpath
)
4943 struct vcpu_svm
*svm
= to_svm(vcpu
);
4944 struct kvm_run
*kvm_run
= vcpu
->run
;
4945 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
4947 trace_kvm_exit(exit_code
, vcpu
, KVM_ISA_SVM
);
4949 if (!is_cr_intercept(svm
, INTERCEPT_CR0_WRITE
))
4950 vcpu
->arch
.cr0
= svm
->vmcb
->save
.cr0
;
4952 vcpu
->arch
.cr3
= svm
->vmcb
->save
.cr3
;
4954 if (unlikely(svm
->nested
.exit_required
)) {
4955 nested_svm_vmexit(svm
);
4956 svm
->nested
.exit_required
= false;
4961 if (is_guest_mode(vcpu
)) {
4964 trace_kvm_nested_vmexit(svm
->vmcb
->save
.rip
, exit_code
,
4965 svm
->vmcb
->control
.exit_info_1
,
4966 svm
->vmcb
->control
.exit_info_2
,
4967 svm
->vmcb
->control
.exit_int_info
,
4968 svm
->vmcb
->control
.exit_int_info_err
,
4971 vmexit
= nested_svm_exit_special(svm
);
4973 if (vmexit
== NESTED_EXIT_CONTINUE
)
4974 vmexit
= nested_svm_exit_handled(svm
);
4976 if (vmexit
== NESTED_EXIT_DONE
)
4980 svm_complete_interrupts(svm
);
4982 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_ERR
) {
4983 kvm_run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
4984 kvm_run
->fail_entry
.hardware_entry_failure_reason
4985 = svm
->vmcb
->control
.exit_code
;
4990 if (is_external_interrupt(svm
->vmcb
->control
.exit_int_info
) &&
4991 exit_code
!= SVM_EXIT_EXCP_BASE
+ PF_VECTOR
&&
4992 exit_code
!= SVM_EXIT_NPF
&& exit_code
!= SVM_EXIT_TASK_SWITCH
&&
4993 exit_code
!= SVM_EXIT_INTR
&& exit_code
!= SVM_EXIT_NMI
)
4994 printk(KERN_ERR
"%s: unexpected exit_int_info 0x%x "
4996 __func__
, svm
->vmcb
->control
.exit_int_info
,
4999 if (exit_fastpath
== EXIT_FASTPATH_SKIP_EMUL_INS
) {
5000 kvm_skip_emulated_instruction(vcpu
);
5002 } else if (exit_code
>= ARRAY_SIZE(svm_exit_handlers
)
5003 || !svm_exit_handlers
[exit_code
]) {
5004 vcpu_unimpl(vcpu
, "svm: unexpected exit reason 0x%x\n", exit_code
);
5006 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
5007 vcpu
->run
->internal
.suberror
=
5008 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON
;
5009 vcpu
->run
->internal
.ndata
= 1;
5010 vcpu
->run
->internal
.data
[0] = exit_code
;
5014 #ifdef CONFIG_RETPOLINE
5015 if (exit_code
== SVM_EXIT_MSR
)
5016 return msr_interception(svm
);
5017 else if (exit_code
== SVM_EXIT_VINTR
)
5018 return interrupt_window_interception(svm
);
5019 else if (exit_code
== SVM_EXIT_INTR
)
5020 return intr_interception(svm
);
5021 else if (exit_code
== SVM_EXIT_HLT
)
5022 return halt_interception(svm
);
5023 else if (exit_code
== SVM_EXIT_NPF
)
5024 return npf_interception(svm
);
5026 return svm_exit_handlers
[exit_code
](svm
);
5029 static void reload_tss(struct kvm_vcpu
*vcpu
)
5031 int cpu
= raw_smp_processor_id();
5033 struct svm_cpu_data
*sd
= per_cpu(svm_data
, cpu
);
5034 sd
->tss_desc
->type
= 9; /* available 32/64-bit TSS */
5038 static void pre_sev_run(struct vcpu_svm
*svm
, int cpu
)
5040 struct svm_cpu_data
*sd
= per_cpu(svm_data
, cpu
);
5041 int asid
= sev_get_asid(svm
->vcpu
.kvm
);
5043 /* Assign the asid allocated with this SEV guest */
5044 svm
->vmcb
->control
.asid
= asid
;
5049 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
5050 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
5052 if (sd
->sev_vmcbs
[asid
] == svm
->vmcb
&&
5053 svm
->last_cpu
== cpu
)
5056 svm
->last_cpu
= cpu
;
5057 sd
->sev_vmcbs
[asid
] = svm
->vmcb
;
5058 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_FLUSH_ASID
;
5059 mark_dirty(svm
->vmcb
, VMCB_ASID
);
5062 static void pre_svm_run(struct vcpu_svm
*svm
)
5064 int cpu
= raw_smp_processor_id();
5066 struct svm_cpu_data
*sd
= per_cpu(svm_data
, cpu
);
5068 if (sev_guest(svm
->vcpu
.kvm
))
5069 return pre_sev_run(svm
, cpu
);
5071 /* FIXME: handle wraparound of asid_generation */
5072 if (svm
->asid_generation
!= sd
->asid_generation
)
5076 static void svm_inject_nmi(struct kvm_vcpu
*vcpu
)
5078 struct vcpu_svm
*svm
= to_svm(vcpu
);
5080 svm
->vmcb
->control
.event_inj
= SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_NMI
;
5081 vcpu
->arch
.hflags
|= HF_NMI_MASK
;
5082 set_intercept(svm
, INTERCEPT_IRET
);
5083 ++vcpu
->stat
.nmi_injections
;
5086 static inline void svm_inject_irq(struct vcpu_svm
*svm
, int irq
)
5088 struct vmcb_control_area
*control
;
5090 /* The following fields are ignored when AVIC is enabled */
5091 control
= &svm
->vmcb
->control
;
5092 control
->int_vector
= irq
;
5093 control
->int_ctl
&= ~V_INTR_PRIO_MASK
;
5094 control
->int_ctl
|= V_IRQ_MASK
|
5095 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT
);
5096 mark_dirty(svm
->vmcb
, VMCB_INTR
);
5099 static void svm_set_irq(struct kvm_vcpu
*vcpu
)
5101 struct vcpu_svm
*svm
= to_svm(vcpu
);
5103 BUG_ON(!(gif_set(svm
)));
5105 trace_kvm_inj_virq(vcpu
->arch
.interrupt
.nr
);
5106 ++vcpu
->stat
.irq_injections
;
5108 svm
->vmcb
->control
.event_inj
= vcpu
->arch
.interrupt
.nr
|
5109 SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
;
5112 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu
*vcpu
)
5114 return is_guest_mode(vcpu
) && (vcpu
->arch
.hflags
& HF_VINTR_MASK
);
5117 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
5119 struct vcpu_svm
*svm
= to_svm(vcpu
);
5121 if (svm_nested_virtualize_tpr(vcpu
))
5124 clr_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
5130 set_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
5133 static void svm_set_virtual_apic_mode(struct kvm_vcpu
*vcpu
)
5138 static bool svm_get_enable_apicv(struct kvm
*kvm
)
5140 return avic
&& irqchip_split(kvm
);
5143 static void svm_hwapic_irr_update(struct kvm_vcpu
*vcpu
, int max_irr
)
5147 static void svm_hwapic_isr_update(struct kvm_vcpu
*vcpu
, int max_isr
)
5151 /* Note: Currently only used by Hyper-V. */
5152 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu
*vcpu
)
5154 struct vcpu_svm
*svm
= to_svm(vcpu
);
5155 struct vmcb
*vmcb
= svm
->vmcb
;
5157 if (kvm_vcpu_apicv_active(vcpu
))
5158 vmcb
->control
.int_ctl
|= AVIC_ENABLE_MASK
;
5160 vmcb
->control
.int_ctl
&= ~AVIC_ENABLE_MASK
;
5161 mark_dirty(vmcb
, VMCB_AVIC
);
5164 static void svm_load_eoi_exitmap(struct kvm_vcpu
*vcpu
, u64
*eoi_exit_bitmap
)
5169 static void svm_deliver_avic_intr(struct kvm_vcpu
*vcpu
, int vec
)
5171 kvm_lapic_set_irr(vec
, vcpu
->arch
.apic
);
5172 smp_mb__after_atomic();
5174 if (avic_vcpu_is_running(vcpu
)) {
5175 int cpuid
= vcpu
->cpu
;
5177 if (cpuid
!= get_cpu())
5178 wrmsrl(SVM_AVIC_DOORBELL
, kvm_cpu_get_apicid(cpuid
));
5181 kvm_vcpu_wake_up(vcpu
);
5184 static bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu
*vcpu
)
5189 static void svm_ir_list_del(struct vcpu_svm
*svm
, struct amd_iommu_pi_data
*pi
)
5191 unsigned long flags
;
5192 struct amd_svm_iommu_ir
*cur
;
5194 spin_lock_irqsave(&svm
->ir_list_lock
, flags
);
5195 list_for_each_entry(cur
, &svm
->ir_list
, node
) {
5196 if (cur
->data
!= pi
->ir_data
)
5198 list_del(&cur
->node
);
5202 spin_unlock_irqrestore(&svm
->ir_list_lock
, flags
);
5205 static int svm_ir_list_add(struct vcpu_svm
*svm
, struct amd_iommu_pi_data
*pi
)
5208 unsigned long flags
;
5209 struct amd_svm_iommu_ir
*ir
;
5212 * In some cases, the existing irte is updaed and re-set,
5213 * so we need to check here if it's already been * added
5216 if (pi
->ir_data
&& (pi
->prev_ga_tag
!= 0)) {
5217 struct kvm
*kvm
= svm
->vcpu
.kvm
;
5218 u32 vcpu_id
= AVIC_GATAG_TO_VCPUID(pi
->prev_ga_tag
);
5219 struct kvm_vcpu
*prev_vcpu
= kvm_get_vcpu_by_id(kvm
, vcpu_id
);
5220 struct vcpu_svm
*prev_svm
;
5227 prev_svm
= to_svm(prev_vcpu
);
5228 svm_ir_list_del(prev_svm
, pi
);
5232 * Allocating new amd_iommu_pi_data, which will get
5233 * add to the per-vcpu ir_list.
5235 ir
= kzalloc(sizeof(struct amd_svm_iommu_ir
), GFP_KERNEL_ACCOUNT
);
5240 ir
->data
= pi
->ir_data
;
5242 spin_lock_irqsave(&svm
->ir_list_lock
, flags
);
5243 list_add(&ir
->node
, &svm
->ir_list
);
5244 spin_unlock_irqrestore(&svm
->ir_list_lock
, flags
);
5251 * The HW cannot support posting multicast/broadcast
5252 * interrupts to a vCPU. So, we still use legacy interrupt
5253 * remapping for these kind of interrupts.
5255 * For lowest-priority interrupts, we only support
5256 * those with single CPU as the destination, e.g. user
5257 * configures the interrupts via /proc/irq or uses
5258 * irqbalance to make the interrupts single-CPU.
5261 get_pi_vcpu_info(struct kvm
*kvm
, struct kvm_kernel_irq_routing_entry
*e
,
5262 struct vcpu_data
*vcpu_info
, struct vcpu_svm
**svm
)
5264 struct kvm_lapic_irq irq
;
5265 struct kvm_vcpu
*vcpu
= NULL
;
5267 kvm_set_msi_irq(kvm
, e
, &irq
);
5269 if (!kvm_intr_is_single_vcpu(kvm
, &irq
, &vcpu
) ||
5270 !kvm_irq_is_postable(&irq
)) {
5271 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
5272 __func__
, irq
.vector
);
5276 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__
,
5278 *svm
= to_svm(vcpu
);
5279 vcpu_info
->pi_desc_addr
= __sme_set(page_to_phys((*svm
)->avic_backing_page
));
5280 vcpu_info
->vector
= irq
.vector
;
5286 * svm_update_pi_irte - set IRTE for Posted-Interrupts
5289 * @host_irq: host irq of the interrupt
5290 * @guest_irq: gsi of the interrupt
5291 * @set: set or unset PI
5292 * returns 0 on success, < 0 on failure
5294 static int svm_update_pi_irte(struct kvm
*kvm
, unsigned int host_irq
,
5295 uint32_t guest_irq
, bool set
)
5297 struct kvm_kernel_irq_routing_entry
*e
;
5298 struct kvm_irq_routing_table
*irq_rt
;
5299 int idx
, ret
= -EINVAL
;
5301 if (!kvm_arch_has_assigned_device(kvm
) ||
5302 !irq_remapping_cap(IRQ_POSTING_CAP
))
5305 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5306 __func__
, host_irq
, guest_irq
, set
);
5308 idx
= srcu_read_lock(&kvm
->irq_srcu
);
5309 irq_rt
= srcu_dereference(kvm
->irq_routing
, &kvm
->irq_srcu
);
5310 WARN_ON(guest_irq
>= irq_rt
->nr_rt_entries
);
5312 hlist_for_each_entry(e
, &irq_rt
->map
[guest_irq
], link
) {
5313 struct vcpu_data vcpu_info
;
5314 struct vcpu_svm
*svm
= NULL
;
5316 if (e
->type
!= KVM_IRQ_ROUTING_MSI
)
5320 * Here, we setup with legacy mode in the following cases:
5321 * 1. When cannot target interrupt to a specific vcpu.
5322 * 2. Unsetting posted interrupt.
5323 * 3. APIC virtialization is disabled for the vcpu.
5324 * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
5326 if (!get_pi_vcpu_info(kvm
, e
, &vcpu_info
, &svm
) && set
&&
5327 kvm_vcpu_apicv_active(&svm
->vcpu
)) {
5328 struct amd_iommu_pi_data pi
;
5330 /* Try to enable guest_mode in IRTE */
5331 pi
.base
= __sme_set(page_to_phys(svm
->avic_backing_page
) &
5333 pi
.ga_tag
= AVIC_GATAG(to_kvm_svm(kvm
)->avic_vm_id
,
5335 pi
.is_guest_mode
= true;
5336 pi
.vcpu_data
= &vcpu_info
;
5337 ret
= irq_set_vcpu_affinity(host_irq
, &pi
);
5340 * Here, we successfully setting up vcpu affinity in
5341 * IOMMU guest mode. Now, we need to store the posted
5342 * interrupt information in a per-vcpu ir_list so that
5343 * we can reference to them directly when we update vcpu
5344 * scheduling information in IOMMU irte.
5346 if (!ret
&& pi
.is_guest_mode
)
5347 svm_ir_list_add(svm
, &pi
);
5349 /* Use legacy mode in IRTE */
5350 struct amd_iommu_pi_data pi
;
5353 * Here, pi is used to:
5354 * - Tell IOMMU to use legacy mode for this interrupt.
5355 * - Retrieve ga_tag of prior interrupt remapping data.
5357 pi
.is_guest_mode
= false;
5358 ret
= irq_set_vcpu_affinity(host_irq
, &pi
);
5361 * Check if the posted interrupt was previously
5362 * setup with the guest_mode by checking if the ga_tag
5363 * was cached. If so, we need to clean up the per-vcpu
5366 if (!ret
&& pi
.prev_ga_tag
) {
5367 int id
= AVIC_GATAG_TO_VCPUID(pi
.prev_ga_tag
);
5368 struct kvm_vcpu
*vcpu
;
5370 vcpu
= kvm_get_vcpu_by_id(kvm
, id
);
5372 svm_ir_list_del(to_svm(vcpu
), &pi
);
5377 trace_kvm_pi_irte_update(host_irq
, svm
->vcpu
.vcpu_id
,
5378 e
->gsi
, vcpu_info
.vector
,
5379 vcpu_info
.pi_desc_addr
, set
);
5383 pr_err("%s: failed to update PI IRTE\n", __func__
);
5390 srcu_read_unlock(&kvm
->irq_srcu
, idx
);
5394 static int svm_nmi_allowed(struct kvm_vcpu
*vcpu
)
5396 struct vcpu_svm
*svm
= to_svm(vcpu
);
5397 struct vmcb
*vmcb
= svm
->vmcb
;
5399 ret
= !(vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
) &&
5400 !(svm
->vcpu
.arch
.hflags
& HF_NMI_MASK
);
5401 ret
= ret
&& gif_set(svm
) && nested_svm_nmi(svm
);
5406 static bool svm_get_nmi_mask(struct kvm_vcpu
*vcpu
)
5408 struct vcpu_svm
*svm
= to_svm(vcpu
);
5410 return !!(svm
->vcpu
.arch
.hflags
& HF_NMI_MASK
);
5413 static void svm_set_nmi_mask(struct kvm_vcpu
*vcpu
, bool masked
)
5415 struct vcpu_svm
*svm
= to_svm(vcpu
);
5418 svm
->vcpu
.arch
.hflags
|= HF_NMI_MASK
;
5419 set_intercept(svm
, INTERCEPT_IRET
);
5421 svm
->vcpu
.arch
.hflags
&= ~HF_NMI_MASK
;
5422 clr_intercept(svm
, INTERCEPT_IRET
);
5426 static int svm_interrupt_allowed(struct kvm_vcpu
*vcpu
)
5428 struct vcpu_svm
*svm
= to_svm(vcpu
);
5429 struct vmcb
*vmcb
= svm
->vmcb
;
5432 if (!gif_set(svm
) ||
5433 (vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
))
5436 ret
= !!(kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
);
5438 if (is_guest_mode(vcpu
))
5439 return ret
&& !(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
);
5444 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
5446 struct vcpu_svm
*svm
= to_svm(vcpu
);
5448 if (kvm_vcpu_apicv_active(vcpu
))
5452 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5453 * 1, because that's a separate STGI/VMRUN intercept. The next time we
5454 * get that intercept, this function will be called again though and
5455 * we'll get the vintr intercept. However, if the vGIF feature is
5456 * enabled, the STGI interception will not occur. Enable the irq
5457 * window under the assumption that the hardware will set the GIF.
5459 if ((vgif_enabled(svm
) || gif_set(svm
)) && nested_svm_intr(svm
)) {
5461 svm_inject_irq(svm
, 0x0);
5465 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
5467 struct vcpu_svm
*svm
= to_svm(vcpu
);
5469 if ((svm
->vcpu
.arch
.hflags
& (HF_NMI_MASK
| HF_IRET_MASK
))
5471 return; /* IRET will cause a vm exit */
5473 if (!gif_set(svm
)) {
5474 if (vgif_enabled(svm
))
5475 set_intercept(svm
, INTERCEPT_STGI
);
5476 return; /* STGI will cause a vm exit */
5479 if (svm
->nested
.exit_required
)
5480 return; /* we're not going to run the guest yet */
5483 * Something prevents NMI from been injected. Single step over possible
5484 * problem (IRET or exception injection or interrupt shadow)
5486 svm
->nmi_singlestep_guest_rflags
= svm_get_rflags(vcpu
);
5487 svm
->nmi_singlestep
= true;
5488 svm
->vmcb
->save
.rflags
|= (X86_EFLAGS_TF
| X86_EFLAGS_RF
);
5491 static int svm_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
5496 static int svm_set_identity_map_addr(struct kvm
*kvm
, u64 ident_addr
)
5501 static void svm_flush_tlb(struct kvm_vcpu
*vcpu
, bool invalidate_gpa
)
5503 struct vcpu_svm
*svm
= to_svm(vcpu
);
5505 if (static_cpu_has(X86_FEATURE_FLUSHBYASID
))
5506 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_FLUSH_ASID
;
5508 svm
->asid_generation
--;
5511 static void svm_flush_tlb_gva(struct kvm_vcpu
*vcpu
, gva_t gva
)
5513 struct vcpu_svm
*svm
= to_svm(vcpu
);
5515 invlpga(gva
, svm
->vmcb
->control
.asid
);
5518 static void svm_prepare_guest_switch(struct kvm_vcpu
*vcpu
)
5522 static inline void sync_cr8_to_lapic(struct kvm_vcpu
*vcpu
)
5524 struct vcpu_svm
*svm
= to_svm(vcpu
);
5526 if (svm_nested_virtualize_tpr(vcpu
))
5529 if (!is_cr_intercept(svm
, INTERCEPT_CR8_WRITE
)) {
5530 int cr8
= svm
->vmcb
->control
.int_ctl
& V_TPR_MASK
;
5531 kvm_set_cr8(vcpu
, cr8
);
5535 static inline void sync_lapic_to_cr8(struct kvm_vcpu
*vcpu
)
5537 struct vcpu_svm
*svm
= to_svm(vcpu
);
5540 if (svm_nested_virtualize_tpr(vcpu
) ||
5541 kvm_vcpu_apicv_active(vcpu
))
5544 cr8
= kvm_get_cr8(vcpu
);
5545 svm
->vmcb
->control
.int_ctl
&= ~V_TPR_MASK
;
5546 svm
->vmcb
->control
.int_ctl
|= cr8
& V_TPR_MASK
;
5549 static void svm_complete_interrupts(struct vcpu_svm
*svm
)
5553 u32 exitintinfo
= svm
->vmcb
->control
.exit_int_info
;
5554 unsigned int3_injected
= svm
->int3_injected
;
5556 svm
->int3_injected
= 0;
5559 * If we've made progress since setting HF_IRET_MASK, we've
5560 * executed an IRET and can allow NMI injection.
5562 if ((svm
->vcpu
.arch
.hflags
& HF_IRET_MASK
)
5563 && kvm_rip_read(&svm
->vcpu
) != svm
->nmi_iret_rip
) {
5564 svm
->vcpu
.arch
.hflags
&= ~(HF_NMI_MASK
| HF_IRET_MASK
);
5565 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
5568 svm
->vcpu
.arch
.nmi_injected
= false;
5569 kvm_clear_exception_queue(&svm
->vcpu
);
5570 kvm_clear_interrupt_queue(&svm
->vcpu
);
5572 if (!(exitintinfo
& SVM_EXITINTINFO_VALID
))
5575 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
5577 vector
= exitintinfo
& SVM_EXITINTINFO_VEC_MASK
;
5578 type
= exitintinfo
& SVM_EXITINTINFO_TYPE_MASK
;
5581 case SVM_EXITINTINFO_TYPE_NMI
:
5582 svm
->vcpu
.arch
.nmi_injected
= true;
5584 case SVM_EXITINTINFO_TYPE_EXEPT
:
5586 * In case of software exceptions, do not reinject the vector,
5587 * but re-execute the instruction instead. Rewind RIP first
5588 * if we emulated INT3 before.
5590 if (kvm_exception_is_soft(vector
)) {
5591 if (vector
== BP_VECTOR
&& int3_injected
&&
5592 kvm_is_linear_rip(&svm
->vcpu
, svm
->int3_rip
))
5593 kvm_rip_write(&svm
->vcpu
,
5594 kvm_rip_read(&svm
->vcpu
) -
5598 if (exitintinfo
& SVM_EXITINTINFO_VALID_ERR
) {
5599 u32 err
= svm
->vmcb
->control
.exit_int_info_err
;
5600 kvm_requeue_exception_e(&svm
->vcpu
, vector
, err
);
5603 kvm_requeue_exception(&svm
->vcpu
, vector
);
5605 case SVM_EXITINTINFO_TYPE_INTR
:
5606 kvm_queue_interrupt(&svm
->vcpu
, vector
, false);
5613 static void svm_cancel_injection(struct kvm_vcpu
*vcpu
)
5615 struct vcpu_svm
*svm
= to_svm(vcpu
);
5616 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
5618 control
->exit_int_info
= control
->event_inj
;
5619 control
->exit_int_info_err
= control
->event_inj_err
;
5620 control
->event_inj
= 0;
5621 svm_complete_interrupts(svm
);
5624 static void svm_vcpu_run(struct kvm_vcpu
*vcpu
)
5626 struct vcpu_svm
*svm
= to_svm(vcpu
);
5628 svm
->vmcb
->save
.rax
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
5629 svm
->vmcb
->save
.rsp
= vcpu
->arch
.regs
[VCPU_REGS_RSP
];
5630 svm
->vmcb
->save
.rip
= vcpu
->arch
.regs
[VCPU_REGS_RIP
];
5633 * A vmexit emulation is required before the vcpu can be executed
5636 if (unlikely(svm
->nested
.exit_required
))
5640 * Disable singlestep if we're injecting an interrupt/exception.
5641 * We don't want our modified rflags to be pushed on the stack where
5642 * we might not be able to easily reset them if we disabled NMI
5645 if (svm
->nmi_singlestep
&& svm
->vmcb
->control
.event_inj
) {
5647 * Event injection happens before external interrupts cause a
5648 * vmexit and interrupts are disabled here, so smp_send_reschedule
5649 * is enough to force an immediate vmexit.
5651 disable_nmi_singlestep(svm
);
5652 smp_send_reschedule(vcpu
->cpu
);
5657 sync_lapic_to_cr8(vcpu
);
5659 svm
->vmcb
->save
.cr2
= vcpu
->arch
.cr2
;
5662 kvm_load_guest_xsave_state(vcpu
);
5664 if (lapic_in_kernel(vcpu
) &&
5665 vcpu
->arch
.apic
->lapic_timer
.timer_advance_ns
)
5666 kvm_wait_lapic_expire(vcpu
);
5669 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5670 * it's non-zero. Since vmentry is serialising on affected CPUs, there
5671 * is no need to worry about the conditional branch over the wrmsr
5672 * being speculatively taken.
5674 x86_spec_ctrl_set_guest(svm
->spec_ctrl
, svm
->virt_spec_ctrl
);
5679 "push %%" _ASM_BP
"; \n\t"
5680 "mov %c[rbx](%[svm]), %%" _ASM_BX
" \n\t"
5681 "mov %c[rcx](%[svm]), %%" _ASM_CX
" \n\t"
5682 "mov %c[rdx](%[svm]), %%" _ASM_DX
" \n\t"
5683 "mov %c[rsi](%[svm]), %%" _ASM_SI
" \n\t"
5684 "mov %c[rdi](%[svm]), %%" _ASM_DI
" \n\t"
5685 "mov %c[rbp](%[svm]), %%" _ASM_BP
" \n\t"
5686 #ifdef CONFIG_X86_64
5687 "mov %c[r8](%[svm]), %%r8 \n\t"
5688 "mov %c[r9](%[svm]), %%r9 \n\t"
5689 "mov %c[r10](%[svm]), %%r10 \n\t"
5690 "mov %c[r11](%[svm]), %%r11 \n\t"
5691 "mov %c[r12](%[svm]), %%r12 \n\t"
5692 "mov %c[r13](%[svm]), %%r13 \n\t"
5693 "mov %c[r14](%[svm]), %%r14 \n\t"
5694 "mov %c[r15](%[svm]), %%r15 \n\t"
5697 /* Enter guest mode */
5698 "push %%" _ASM_AX
" \n\t"
5699 "mov %c[vmcb](%[svm]), %%" _ASM_AX
" \n\t"
5700 __ex("vmload %%" _ASM_AX
) "\n\t"
5701 __ex("vmrun %%" _ASM_AX
) "\n\t"
5702 __ex("vmsave %%" _ASM_AX
) "\n\t"
5703 "pop %%" _ASM_AX
" \n\t"
5705 /* Save guest registers, load host registers */
5706 "mov %%" _ASM_BX
", %c[rbx](%[svm]) \n\t"
5707 "mov %%" _ASM_CX
", %c[rcx](%[svm]) \n\t"
5708 "mov %%" _ASM_DX
", %c[rdx](%[svm]) \n\t"
5709 "mov %%" _ASM_SI
", %c[rsi](%[svm]) \n\t"
5710 "mov %%" _ASM_DI
", %c[rdi](%[svm]) \n\t"
5711 "mov %%" _ASM_BP
", %c[rbp](%[svm]) \n\t"
5712 #ifdef CONFIG_X86_64
5713 "mov %%r8, %c[r8](%[svm]) \n\t"
5714 "mov %%r9, %c[r9](%[svm]) \n\t"
5715 "mov %%r10, %c[r10](%[svm]) \n\t"
5716 "mov %%r11, %c[r11](%[svm]) \n\t"
5717 "mov %%r12, %c[r12](%[svm]) \n\t"
5718 "mov %%r13, %c[r13](%[svm]) \n\t"
5719 "mov %%r14, %c[r14](%[svm]) \n\t"
5720 "mov %%r15, %c[r15](%[svm]) \n\t"
5722 * Clear host registers marked as clobbered to prevent
5725 "xor %%r8d, %%r8d \n\t"
5726 "xor %%r9d, %%r9d \n\t"
5727 "xor %%r10d, %%r10d \n\t"
5728 "xor %%r11d, %%r11d \n\t"
5729 "xor %%r12d, %%r12d \n\t"
5730 "xor %%r13d, %%r13d \n\t"
5731 "xor %%r14d, %%r14d \n\t"
5732 "xor %%r15d, %%r15d \n\t"
5734 "xor %%ebx, %%ebx \n\t"
5735 "xor %%ecx, %%ecx \n\t"
5736 "xor %%edx, %%edx \n\t"
5737 "xor %%esi, %%esi \n\t"
5738 "xor %%edi, %%edi \n\t"
5742 [vmcb
]"i"(offsetof(struct vcpu_svm
, vmcb_pa
)),
5743 [rbx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
5744 [rcx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
5745 [rdx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
5746 [rsi
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
5747 [rdi
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
5748 [rbp
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RBP
]))
5749 #ifdef CONFIG_X86_64
5750 , [r8
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
5751 [r9
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
5752 [r10
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
5753 [r11
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
5754 [r12
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
5755 [r13
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
5756 [r14
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
5757 [r15
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R15
]))
5760 #ifdef CONFIG_X86_64
5761 , "rbx", "rcx", "rdx", "rsi", "rdi"
5762 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5764 , "ebx", "ecx", "edx", "esi", "edi"
5768 /* Eliminate branch target predictions from guest mode */
5771 #ifdef CONFIG_X86_64
5772 wrmsrl(MSR_GS_BASE
, svm
->host
.gs_base
);
5774 loadsegment(fs
, svm
->host
.fs
);
5775 #ifndef CONFIG_X86_32_LAZY_GS
5776 loadsegment(gs
, svm
->host
.gs
);
5781 * We do not use IBRS in the kernel. If this vCPU has used the
5782 * SPEC_CTRL MSR it may have left it on; save the value and
5783 * turn it off. This is much more efficient than blindly adding
5784 * it to the atomic save/restore list. Especially as the former
5785 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5787 * For non-nested case:
5788 * If the L01 MSR bitmap does not intercept the MSR, then we need to
5792 * If the L02 MSR bitmap does not intercept the MSR, then we need to
5795 if (unlikely(!msr_write_intercepted(vcpu
, MSR_IA32_SPEC_CTRL
)))
5796 svm
->spec_ctrl
= native_read_msr(MSR_IA32_SPEC_CTRL
);
5800 local_irq_disable();
5802 x86_spec_ctrl_restore_host(svm
->spec_ctrl
, svm
->virt_spec_ctrl
);
5804 vcpu
->arch
.cr2
= svm
->vmcb
->save
.cr2
;
5805 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = svm
->vmcb
->save
.rax
;
5806 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = svm
->vmcb
->save
.rsp
;
5807 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = svm
->vmcb
->save
.rip
;
5809 if (unlikely(svm
->vmcb
->control
.exit_code
== SVM_EXIT_NMI
))
5810 kvm_before_interrupt(&svm
->vcpu
);
5812 kvm_load_host_xsave_state(vcpu
);
5815 /* Any pending NMI will happen here */
5817 if (unlikely(svm
->vmcb
->control
.exit_code
== SVM_EXIT_NMI
))
5818 kvm_after_interrupt(&svm
->vcpu
);
5820 sync_cr8_to_lapic(vcpu
);
5824 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_DO_NOTHING
;
5826 /* if exit due to PF check for async PF */
5827 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_EXCP_BASE
+ PF_VECTOR
)
5828 svm
->vcpu
.arch
.apf
.host_apf_reason
= kvm_read_and_reset_pf_reason();
5831 vcpu
->arch
.regs_avail
&= ~(1 << VCPU_EXREG_PDPTR
);
5832 vcpu
->arch
.regs_dirty
&= ~(1 << VCPU_EXREG_PDPTR
);
5836 * We need to handle MC intercepts here before the vcpu has a chance to
5837 * change the physical cpu
5839 if (unlikely(svm
->vmcb
->control
.exit_code
==
5840 SVM_EXIT_EXCP_BASE
+ MC_VECTOR
))
5841 svm_handle_mce(svm
);
5843 mark_all_clean(svm
->vmcb
);
5845 STACK_FRAME_NON_STANDARD(svm_vcpu_run
);
5847 static void svm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long root
)
5849 struct vcpu_svm
*svm
= to_svm(vcpu
);
5851 svm
->vmcb
->save
.cr3
= __sme_set(root
);
5852 mark_dirty(svm
->vmcb
, VMCB_CR
);
5855 static void set_tdp_cr3(struct kvm_vcpu
*vcpu
, unsigned long root
)
5857 struct vcpu_svm
*svm
= to_svm(vcpu
);
5859 svm
->vmcb
->control
.nested_cr3
= __sme_set(root
);
5860 mark_dirty(svm
->vmcb
, VMCB_NPT
);
5862 /* Also sync guest cr3 here in case we live migrate */
5863 svm
->vmcb
->save
.cr3
= kvm_read_cr3(vcpu
);
5864 mark_dirty(svm
->vmcb
, VMCB_CR
);
5867 static int is_disabled(void)
5871 rdmsrl(MSR_VM_CR
, vm_cr
);
5872 if (vm_cr
& (1 << SVM_VM_CR_SVM_DISABLE
))
5879 svm_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
5882 * Patch in the VMMCALL instruction:
5884 hypercall
[0] = 0x0f;
5885 hypercall
[1] = 0x01;
5886 hypercall
[2] = 0xd9;
5889 static int __init
svm_check_processor_compat(void)
5894 static bool svm_cpu_has_accelerated_tpr(void)
5899 static bool svm_has_emulated_msr(int index
)
5902 case MSR_IA32_MCG_EXT_CTL
:
5903 case MSR_IA32_VMX_BASIC
... MSR_IA32_VMX_VMFUNC
:
5912 static u64
svm_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
5917 static void svm_cpuid_update(struct kvm_vcpu
*vcpu
)
5919 struct vcpu_svm
*svm
= to_svm(vcpu
);
5921 vcpu
->arch
.xsaves_enabled
= guest_cpuid_has(vcpu
, X86_FEATURE_XSAVE
) &&
5922 boot_cpu_has(X86_FEATURE_XSAVE
) &&
5923 boot_cpu_has(X86_FEATURE_XSAVES
);
5925 /* Update nrips enabled cache */
5926 svm
->nrips_enabled
= !!guest_cpuid_has(&svm
->vcpu
, X86_FEATURE_NRIPS
);
5928 if (!kvm_vcpu_apicv_active(vcpu
))
5931 guest_cpuid_clear(vcpu
, X86_FEATURE_X2APIC
);
5934 #define F feature_bit
5936 static void svm_set_supported_cpuid(u32 func
, struct kvm_cpuid_entry2
*entry
)
5941 entry
->ecx
&= ~F(X2APIC
);
5945 entry
->ecx
|= (1 << 2); /* Set SVM bit */
5948 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD
) ||
5949 boot_cpu_has(X86_FEATURE_AMD_SSBD
))
5950 entry
->ebx
|= F(VIRT_SSBD
);
5953 entry
->eax
= 1; /* SVM revision 1 */
5954 entry
->ebx
= 8; /* Lets support 8 ASIDs in case we add proper
5955 ASID emulation to nested SVM */
5956 entry
->ecx
= 0; /* Reserved */
5957 entry
->edx
= 0; /* Per default do not support any
5958 additional features */
5960 /* Support next_rip if host supports it */
5961 if (boot_cpu_has(X86_FEATURE_NRIPS
))
5962 entry
->edx
|= F(NRIPS
);
5964 /* Support NPT for the guest if enabled */
5966 entry
->edx
|= F(NPT
);
5971 static int svm_get_lpage_level(void)
5973 return PT_PDPE_LEVEL
;
5976 static bool svm_rdtscp_supported(void)
5978 return boot_cpu_has(X86_FEATURE_RDTSCP
);
5981 static bool svm_invpcid_supported(void)
5986 static bool svm_mpx_supported(void)
5991 static bool svm_xsaves_supported(void)
5993 return boot_cpu_has(X86_FEATURE_XSAVES
);
5996 static bool svm_umip_emulated(void)
6001 static bool svm_pt_supported(void)
6006 static bool svm_has_wbinvd_exit(void)
6011 static bool svm_pku_supported(void)
6016 #define PRE_EX(exit) { .exit_code = (exit), \
6017 .stage = X86_ICPT_PRE_EXCEPT, }
6018 #define POST_EX(exit) { .exit_code = (exit), \
6019 .stage = X86_ICPT_POST_EXCEPT, }
6020 #define POST_MEM(exit) { .exit_code = (exit), \
6021 .stage = X86_ICPT_POST_MEMACCESS, }
6023 static const struct __x86_intercept
{
6025 enum x86_intercept_stage stage
;
6026 } x86_intercept_map
[] = {
6027 [x86_intercept_cr_read
] = POST_EX(SVM_EXIT_READ_CR0
),
6028 [x86_intercept_cr_write
] = POST_EX(SVM_EXIT_WRITE_CR0
),
6029 [x86_intercept_clts
] = POST_EX(SVM_EXIT_WRITE_CR0
),
6030 [x86_intercept_lmsw
] = POST_EX(SVM_EXIT_WRITE_CR0
),
6031 [x86_intercept_smsw
] = POST_EX(SVM_EXIT_READ_CR0
),
6032 [x86_intercept_dr_read
] = POST_EX(SVM_EXIT_READ_DR0
),
6033 [x86_intercept_dr_write
] = POST_EX(SVM_EXIT_WRITE_DR0
),
6034 [x86_intercept_sldt
] = POST_EX(SVM_EXIT_LDTR_READ
),
6035 [x86_intercept_str
] = POST_EX(SVM_EXIT_TR_READ
),
6036 [x86_intercept_lldt
] = POST_EX(SVM_EXIT_LDTR_WRITE
),
6037 [x86_intercept_ltr
] = POST_EX(SVM_EXIT_TR_WRITE
),
6038 [x86_intercept_sgdt
] = POST_EX(SVM_EXIT_GDTR_READ
),
6039 [x86_intercept_sidt
] = POST_EX(SVM_EXIT_IDTR_READ
),
6040 [x86_intercept_lgdt
] = POST_EX(SVM_EXIT_GDTR_WRITE
),
6041 [x86_intercept_lidt
] = POST_EX(SVM_EXIT_IDTR_WRITE
),
6042 [x86_intercept_vmrun
] = POST_EX(SVM_EXIT_VMRUN
),
6043 [x86_intercept_vmmcall
] = POST_EX(SVM_EXIT_VMMCALL
),
6044 [x86_intercept_vmload
] = POST_EX(SVM_EXIT_VMLOAD
),
6045 [x86_intercept_vmsave
] = POST_EX(SVM_EXIT_VMSAVE
),
6046 [x86_intercept_stgi
] = POST_EX(SVM_EXIT_STGI
),
6047 [x86_intercept_clgi
] = POST_EX(SVM_EXIT_CLGI
),
6048 [x86_intercept_skinit
] = POST_EX(SVM_EXIT_SKINIT
),
6049 [x86_intercept_invlpga
] = POST_EX(SVM_EXIT_INVLPGA
),
6050 [x86_intercept_rdtscp
] = POST_EX(SVM_EXIT_RDTSCP
),
6051 [x86_intercept_monitor
] = POST_MEM(SVM_EXIT_MONITOR
),
6052 [x86_intercept_mwait
] = POST_EX(SVM_EXIT_MWAIT
),
6053 [x86_intercept_invlpg
] = POST_EX(SVM_EXIT_INVLPG
),
6054 [x86_intercept_invd
] = POST_EX(SVM_EXIT_INVD
),
6055 [x86_intercept_wbinvd
] = POST_EX(SVM_EXIT_WBINVD
),
6056 [x86_intercept_wrmsr
] = POST_EX(SVM_EXIT_MSR
),
6057 [x86_intercept_rdtsc
] = POST_EX(SVM_EXIT_RDTSC
),
6058 [x86_intercept_rdmsr
] = POST_EX(SVM_EXIT_MSR
),
6059 [x86_intercept_rdpmc
] = POST_EX(SVM_EXIT_RDPMC
),
6060 [x86_intercept_cpuid
] = PRE_EX(SVM_EXIT_CPUID
),
6061 [x86_intercept_rsm
] = PRE_EX(SVM_EXIT_RSM
),
6062 [x86_intercept_pause
] = PRE_EX(SVM_EXIT_PAUSE
),
6063 [x86_intercept_pushf
] = PRE_EX(SVM_EXIT_PUSHF
),
6064 [x86_intercept_popf
] = PRE_EX(SVM_EXIT_POPF
),
6065 [x86_intercept_intn
] = PRE_EX(SVM_EXIT_SWINT
),
6066 [x86_intercept_iret
] = PRE_EX(SVM_EXIT_IRET
),
6067 [x86_intercept_icebp
] = PRE_EX(SVM_EXIT_ICEBP
),
6068 [x86_intercept_hlt
] = POST_EX(SVM_EXIT_HLT
),
6069 [x86_intercept_in
] = POST_EX(SVM_EXIT_IOIO
),
6070 [x86_intercept_ins
] = POST_EX(SVM_EXIT_IOIO
),
6071 [x86_intercept_out
] = POST_EX(SVM_EXIT_IOIO
),
6072 [x86_intercept_outs
] = POST_EX(SVM_EXIT_IOIO
),
6073 [x86_intercept_xsetbv
] = PRE_EX(SVM_EXIT_XSETBV
),
6080 static int svm_check_intercept(struct kvm_vcpu
*vcpu
,
6081 struct x86_instruction_info
*info
,
6082 enum x86_intercept_stage stage
)
6084 struct vcpu_svm
*svm
= to_svm(vcpu
);
6085 int vmexit
, ret
= X86EMUL_CONTINUE
;
6086 struct __x86_intercept icpt_info
;
6087 struct vmcb
*vmcb
= svm
->vmcb
;
6089 if (info
->intercept
>= ARRAY_SIZE(x86_intercept_map
))
6092 icpt_info
= x86_intercept_map
[info
->intercept
];
6094 if (stage
!= icpt_info
.stage
)
6097 switch (icpt_info
.exit_code
) {
6098 case SVM_EXIT_READ_CR0
:
6099 if (info
->intercept
== x86_intercept_cr_read
)
6100 icpt_info
.exit_code
+= info
->modrm_reg
;
6102 case SVM_EXIT_WRITE_CR0
: {
6103 unsigned long cr0
, val
;
6106 if (info
->intercept
== x86_intercept_cr_write
)
6107 icpt_info
.exit_code
+= info
->modrm_reg
;
6109 if (icpt_info
.exit_code
!= SVM_EXIT_WRITE_CR0
||
6110 info
->intercept
== x86_intercept_clts
)
6113 intercept
= svm
->nested
.intercept
;
6115 if (!(intercept
& (1ULL << INTERCEPT_SELECTIVE_CR0
)))
6118 cr0
= vcpu
->arch
.cr0
& ~SVM_CR0_SELECTIVE_MASK
;
6119 val
= info
->src_val
& ~SVM_CR0_SELECTIVE_MASK
;
6121 if (info
->intercept
== x86_intercept_lmsw
) {
6124 /* lmsw can't clear PE - catch this here */
6125 if (cr0
& X86_CR0_PE
)
6130 icpt_info
.exit_code
= SVM_EXIT_CR0_SEL_WRITE
;
6134 case SVM_EXIT_READ_DR0
:
6135 case SVM_EXIT_WRITE_DR0
:
6136 icpt_info
.exit_code
+= info
->modrm_reg
;
6139 if (info
->intercept
== x86_intercept_wrmsr
)
6140 vmcb
->control
.exit_info_1
= 1;
6142 vmcb
->control
.exit_info_1
= 0;
6144 case SVM_EXIT_PAUSE
:
6146 * We get this for NOP only, but pause
6147 * is rep not, check this here
6149 if (info
->rep_prefix
!= REPE_PREFIX
)
6152 case SVM_EXIT_IOIO
: {
6156 if (info
->intercept
== x86_intercept_in
||
6157 info
->intercept
== x86_intercept_ins
) {
6158 exit_info
= ((info
->src_val
& 0xffff) << 16) |
6160 bytes
= info
->dst_bytes
;
6162 exit_info
= (info
->dst_val
& 0xffff) << 16;
6163 bytes
= info
->src_bytes
;
6166 if (info
->intercept
== x86_intercept_outs
||
6167 info
->intercept
== x86_intercept_ins
)
6168 exit_info
|= SVM_IOIO_STR_MASK
;
6170 if (info
->rep_prefix
)
6171 exit_info
|= SVM_IOIO_REP_MASK
;
6173 bytes
= min(bytes
, 4u);
6175 exit_info
|= bytes
<< SVM_IOIO_SIZE_SHIFT
;
6177 exit_info
|= (u32
)info
->ad_bytes
<< (SVM_IOIO_ASIZE_SHIFT
- 1);
6179 vmcb
->control
.exit_info_1
= exit_info
;
6180 vmcb
->control
.exit_info_2
= info
->next_rip
;
6188 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
6189 if (static_cpu_has(X86_FEATURE_NRIPS
))
6190 vmcb
->control
.next_rip
= info
->next_rip
;
6191 vmcb
->control
.exit_code
= icpt_info
.exit_code
;
6192 vmexit
= nested_svm_exit_handled(svm
);
6194 ret
= (vmexit
== NESTED_EXIT_DONE
) ? X86EMUL_INTERCEPTED
6201 static void svm_handle_exit_irqoff(struct kvm_vcpu
*vcpu
,
6202 enum exit_fastpath_completion
*exit_fastpath
)
6204 if (!is_guest_mode(vcpu
) &&
6205 to_svm(vcpu
)->vmcb
->control
.exit_code
== EXIT_REASON_MSR_WRITE
)
6206 *exit_fastpath
= handle_fastpath_set_msr_irqoff(vcpu
);
6209 static void svm_sched_in(struct kvm_vcpu
*vcpu
, int cpu
)
6211 if (pause_filter_thresh
)
6212 shrink_ple_window(vcpu
);
6215 static inline void avic_post_state_restore(struct kvm_vcpu
*vcpu
)
6217 if (avic_handle_apic_id_update(vcpu
) != 0)
6219 avic_handle_dfr_update(vcpu
);
6220 avic_handle_ldr_update(vcpu
);
6223 static void svm_setup_mce(struct kvm_vcpu
*vcpu
)
6225 /* [63:9] are reserved. */
6226 vcpu
->arch
.mcg_cap
&= 0x1ff;
6229 static int svm_smi_allowed(struct kvm_vcpu
*vcpu
)
6231 struct vcpu_svm
*svm
= to_svm(vcpu
);
6233 /* Per APM Vol.2 15.22.2 "Response to SMI" */
6237 if (is_guest_mode(&svm
->vcpu
) &&
6238 svm
->nested
.intercept
& (1ULL << INTERCEPT_SMI
)) {
6239 /* TODO: Might need to set exit_info_1 and exit_info_2 here */
6240 svm
->vmcb
->control
.exit_code
= SVM_EXIT_SMI
;
6241 svm
->nested
.exit_required
= true;
6248 static int svm_pre_enter_smm(struct kvm_vcpu
*vcpu
, char *smstate
)
6250 struct vcpu_svm
*svm
= to_svm(vcpu
);
6253 if (is_guest_mode(vcpu
)) {
6254 /* FED8h - SVM Guest */
6255 put_smstate(u64
, smstate
, 0x7ed8, 1);
6256 /* FEE0h - SVM Guest VMCB Physical Address */
6257 put_smstate(u64
, smstate
, 0x7ee0, svm
->nested
.vmcb
);
6259 svm
->vmcb
->save
.rax
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
6260 svm
->vmcb
->save
.rsp
= vcpu
->arch
.regs
[VCPU_REGS_RSP
];
6261 svm
->vmcb
->save
.rip
= vcpu
->arch
.regs
[VCPU_REGS_RIP
];
6263 ret
= nested_svm_vmexit(svm
);
6270 static int svm_pre_leave_smm(struct kvm_vcpu
*vcpu
, const char *smstate
)
6272 struct vcpu_svm
*svm
= to_svm(vcpu
);
6273 struct vmcb
*nested_vmcb
;
6274 struct kvm_host_map map
;
6278 guest
= GET_SMSTATE(u64
, smstate
, 0x7ed8);
6279 vmcb
= GET_SMSTATE(u64
, smstate
, 0x7ee0);
6282 if (kvm_vcpu_map(&svm
->vcpu
, gpa_to_gfn(vmcb
), &map
) == -EINVAL
)
6284 nested_vmcb
= map
.hva
;
6285 enter_svm_guest_mode(svm
, vmcb
, nested_vmcb
, &map
);
6290 static int enable_smi_window(struct kvm_vcpu
*vcpu
)
6292 struct vcpu_svm
*svm
= to_svm(vcpu
);
6294 if (!gif_set(svm
)) {
6295 if (vgif_enabled(svm
))
6296 set_intercept(svm
, INTERCEPT_STGI
);
6297 /* STGI will cause a vm exit */
6303 static int sev_flush_asids(void)
6308 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
6309 * so it must be guarded.
6311 down_write(&sev_deactivate_lock
);
6313 wbinvd_on_all_cpus();
6314 ret
= sev_guest_df_flush(&error
);
6316 up_write(&sev_deactivate_lock
);
6319 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret
, error
);
6324 /* Must be called with the sev_bitmap_lock held */
6325 static bool __sev_recycle_asids(void)
6329 /* Check if there are any ASIDs to reclaim before performing a flush */
6330 pos
= find_next_bit(sev_reclaim_asid_bitmap
,
6331 max_sev_asid
, min_sev_asid
- 1);
6332 if (pos
>= max_sev_asid
)
6335 if (sev_flush_asids())
6338 bitmap_xor(sev_asid_bitmap
, sev_asid_bitmap
, sev_reclaim_asid_bitmap
,
6340 bitmap_zero(sev_reclaim_asid_bitmap
, max_sev_asid
);
6345 static int sev_asid_new(void)
6350 mutex_lock(&sev_bitmap_lock
);
6353 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
6356 pos
= find_next_zero_bit(sev_asid_bitmap
, max_sev_asid
, min_sev_asid
- 1);
6357 if (pos
>= max_sev_asid
) {
6358 if (retry
&& __sev_recycle_asids()) {
6362 mutex_unlock(&sev_bitmap_lock
);
6366 __set_bit(pos
, sev_asid_bitmap
);
6368 mutex_unlock(&sev_bitmap_lock
);
6373 static int sev_guest_init(struct kvm
*kvm
, struct kvm_sev_cmd
*argp
)
6375 struct kvm_sev_info
*sev
= &to_kvm_svm(kvm
)->sev_info
;
6379 if (unlikely(sev
->active
))
6382 asid
= sev_asid_new();
6386 ret
= sev_platform_init(&argp
->error
);
6392 INIT_LIST_HEAD(&sev
->regions_list
);
6397 sev_asid_free(asid
);
6401 static int sev_bind_asid(struct kvm
*kvm
, unsigned int handle
, int *error
)
6403 struct sev_data_activate
*data
;
6404 int asid
= sev_get_asid(kvm
);
6407 data
= kzalloc(sizeof(*data
), GFP_KERNEL_ACCOUNT
);
6411 /* activate ASID on the given handle */
6412 data
->handle
= handle
;
6414 ret
= sev_guest_activate(data
, error
);
6420 static int __sev_issue_cmd(int fd
, int id
, void *data
, int *error
)
6429 ret
= sev_issue_cmd_external_user(f
.file
, id
, data
, error
);
6435 static int sev_issue_cmd(struct kvm
*kvm
, int id
, void *data
, int *error
)
6437 struct kvm_sev_info
*sev
= &to_kvm_svm(kvm
)->sev_info
;
6439 return __sev_issue_cmd(sev
->fd
, id
, data
, error
);
6442 static int sev_launch_start(struct kvm
*kvm
, struct kvm_sev_cmd
*argp
)
6444 struct kvm_sev_info
*sev
= &to_kvm_svm(kvm
)->sev_info
;
6445 struct sev_data_launch_start
*start
;
6446 struct kvm_sev_launch_start params
;
6447 void *dh_blob
, *session_blob
;
6448 int *error
= &argp
->error
;
6451 if (!sev_guest(kvm
))
6454 if (copy_from_user(¶ms
, (void __user
*)(uintptr_t)argp
->data
, sizeof(params
)))
6457 start
= kzalloc(sizeof(*start
), GFP_KERNEL_ACCOUNT
);
6462 if (params
.dh_uaddr
) {
6463 dh_blob
= psp_copy_user_blob(params
.dh_uaddr
, params
.dh_len
);
6464 if (IS_ERR(dh_blob
)) {
6465 ret
= PTR_ERR(dh_blob
);
6469 start
->dh_cert_address
= __sme_set(__pa(dh_blob
));
6470 start
->dh_cert_len
= params
.dh_len
;
6473 session_blob
= NULL
;
6474 if (params
.session_uaddr
) {
6475 session_blob
= psp_copy_user_blob(params
.session_uaddr
, params
.session_len
);
6476 if (IS_ERR(session_blob
)) {
6477 ret
= PTR_ERR(session_blob
);
6481 start
->session_address
= __sme_set(__pa(session_blob
));
6482 start
->session_len
= params
.session_len
;
6485 start
->handle
= params
.handle
;
6486 start
->policy
= params
.policy
;
6488 /* create memory encryption context */
6489 ret
= __sev_issue_cmd(argp
->sev_fd
, SEV_CMD_LAUNCH_START
, start
, error
);
6491 goto e_free_session
;
6493 /* Bind ASID to this guest */
6494 ret
= sev_bind_asid(kvm
, start
->handle
, error
);
6496 goto e_free_session
;
6498 /* return handle to userspace */
6499 params
.handle
= start
->handle
;
6500 if (copy_to_user((void __user
*)(uintptr_t)argp
->data
, ¶ms
, sizeof(params
))) {
6501 sev_unbind_asid(kvm
, start
->handle
);
6503 goto e_free_session
;
6506 sev
->handle
= start
->handle
;
6507 sev
->fd
= argp
->sev_fd
;
6510 kfree(session_blob
);
6518 static unsigned long get_num_contig_pages(unsigned long idx
,
6519 struct page
**inpages
, unsigned long npages
)
6521 unsigned long paddr
, next_paddr
;
6522 unsigned long i
= idx
+ 1, pages
= 1;
6524 /* find the number of contiguous pages starting from idx */
6525 paddr
= __sme_page_pa(inpages
[idx
]);
6526 while (i
< npages
) {
6527 next_paddr
= __sme_page_pa(inpages
[i
++]);
6528 if ((paddr
+ PAGE_SIZE
) == next_paddr
) {
6539 static int sev_launch_update_data(struct kvm
*kvm
, struct kvm_sev_cmd
*argp
)
6541 unsigned long vaddr
, vaddr_end
, next_vaddr
, npages
, pages
, size
, i
;
6542 struct kvm_sev_info
*sev
= &to_kvm_svm(kvm
)->sev_info
;
6543 struct kvm_sev_launch_update_data params
;
6544 struct sev_data_launch_update_data
*data
;
6545 struct page
**inpages
;
6548 if (!sev_guest(kvm
))
6551 if (copy_from_user(¶ms
, (void __user
*)(uintptr_t)argp
->data
, sizeof(params
)))
6554 data
= kzalloc(sizeof(*data
), GFP_KERNEL_ACCOUNT
);
6558 vaddr
= params
.uaddr
;
6560 vaddr_end
= vaddr
+ size
;
6562 /* Lock the user memory. */
6563 inpages
= sev_pin_memory(kvm
, vaddr
, size
, &npages
, 1);
6570 * The LAUNCH_UPDATE command will perform in-place encryption of the
6571 * memory content (i.e it will write the same memory region with C=1).
6572 * It's possible that the cache may contain the data with C=0, i.e.,
6573 * unencrypted so invalidate it first.
6575 sev_clflush_pages(inpages
, npages
);
6577 for (i
= 0; vaddr
< vaddr_end
; vaddr
= next_vaddr
, i
+= pages
) {
6581 * If the user buffer is not page-aligned, calculate the offset
6584 offset
= vaddr
& (PAGE_SIZE
- 1);
6586 /* Calculate the number of pages that can be encrypted in one go. */
6587 pages
= get_num_contig_pages(i
, inpages
, npages
);
6589 len
= min_t(size_t, ((pages
* PAGE_SIZE
) - offset
), size
);
6591 data
->handle
= sev
->handle
;
6593 data
->address
= __sme_page_pa(inpages
[i
]) + offset
;
6594 ret
= sev_issue_cmd(kvm
, SEV_CMD_LAUNCH_UPDATE_DATA
, data
, &argp
->error
);
6599 next_vaddr
= vaddr
+ len
;
6603 /* content of memory is updated, mark pages dirty */
6604 for (i
= 0; i
< npages
; i
++) {
6605 set_page_dirty_lock(inpages
[i
]);
6606 mark_page_accessed(inpages
[i
]);
6608 /* unlock the user pages */
6609 sev_unpin_memory(kvm
, inpages
, npages
);
6615 static int sev_launch_measure(struct kvm
*kvm
, struct kvm_sev_cmd
*argp
)
6617 void __user
*measure
= (void __user
*)(uintptr_t)argp
->data
;
6618 struct kvm_sev_info
*sev
= &to_kvm_svm(kvm
)->sev_info
;
6619 struct sev_data_launch_measure
*data
;
6620 struct kvm_sev_launch_measure params
;
6621 void __user
*p
= NULL
;
6625 if (!sev_guest(kvm
))
6628 if (copy_from_user(¶ms
, measure
, sizeof(params
)))
6631 data
= kzalloc(sizeof(*data
), GFP_KERNEL_ACCOUNT
);
6635 /* User wants to query the blob length */
6639 p
= (void __user
*)(uintptr_t)params
.uaddr
;
6641 if (params
.len
> SEV_FW_BLOB_MAX_SIZE
) {
6647 blob
= kmalloc(params
.len
, GFP_KERNEL
);
6651 data
->address
= __psp_pa(blob
);
6652 data
->len
= params
.len
;
6656 data
->handle
= sev
->handle
;
6657 ret
= sev_issue_cmd(kvm
, SEV_CMD_LAUNCH_MEASURE
, data
, &argp
->error
);
6660 * If we query the session length, FW responded with expected data.
6669 if (copy_to_user(p
, blob
, params
.len
))
6674 params
.len
= data
->len
;
6675 if (copy_to_user(measure
, ¶ms
, sizeof(params
)))
6684 static int sev_launch_finish(struct kvm
*kvm
, struct kvm_sev_cmd
*argp
)
6686 struct kvm_sev_info
*sev
= &to_kvm_svm(kvm
)->sev_info
;
6687 struct sev_data_launch_finish
*data
;
6690 if (!sev_guest(kvm
))
6693 data
= kzalloc(sizeof(*data
), GFP_KERNEL_ACCOUNT
);
6697 data
->handle
= sev
->handle
;
6698 ret
= sev_issue_cmd(kvm
, SEV_CMD_LAUNCH_FINISH
, data
, &argp
->error
);
6704 static int sev_guest_status(struct kvm
*kvm
, struct kvm_sev_cmd
*argp
)
6706 struct kvm_sev_info
*sev
= &to_kvm_svm(kvm
)->sev_info
;
6707 struct kvm_sev_guest_status params
;
6708 struct sev_data_guest_status
*data
;
6711 if (!sev_guest(kvm
))
6714 data
= kzalloc(sizeof(*data
), GFP_KERNEL_ACCOUNT
);
6718 data
->handle
= sev
->handle
;
6719 ret
= sev_issue_cmd(kvm
, SEV_CMD_GUEST_STATUS
, data
, &argp
->error
);
6723 params
.policy
= data
->policy
;
6724 params
.state
= data
->state
;
6725 params
.handle
= data
->handle
;
6727 if (copy_to_user((void __user
*)(uintptr_t)argp
->data
, ¶ms
, sizeof(params
)))
6734 static int __sev_issue_dbg_cmd(struct kvm
*kvm
, unsigned long src
,
6735 unsigned long dst
, int size
,
6736 int *error
, bool enc
)
6738 struct kvm_sev_info
*sev
= &to_kvm_svm(kvm
)->sev_info
;
6739 struct sev_data_dbg
*data
;
6742 data
= kzalloc(sizeof(*data
), GFP_KERNEL_ACCOUNT
);
6746 data
->handle
= sev
->handle
;
6747 data
->dst_addr
= dst
;
6748 data
->src_addr
= src
;
6751 ret
= sev_issue_cmd(kvm
,
6752 enc
? SEV_CMD_DBG_ENCRYPT
: SEV_CMD_DBG_DECRYPT
,
6758 static int __sev_dbg_decrypt(struct kvm
*kvm
, unsigned long src_paddr
,
6759 unsigned long dst_paddr
, int sz
, int *err
)
6764 * Its safe to read more than we are asked, caller should ensure that
6765 * destination has enough space.
6767 src_paddr
= round_down(src_paddr
, 16);
6768 offset
= src_paddr
& 15;
6769 sz
= round_up(sz
+ offset
, 16);
6771 return __sev_issue_dbg_cmd(kvm
, src_paddr
, dst_paddr
, sz
, err
, false);
6774 static int __sev_dbg_decrypt_user(struct kvm
*kvm
, unsigned long paddr
,
6775 unsigned long __user dst_uaddr
,
6776 unsigned long dst_paddr
,
6779 struct page
*tpage
= NULL
;
6782 /* if inputs are not 16-byte then use intermediate buffer */
6783 if (!IS_ALIGNED(dst_paddr
, 16) ||
6784 !IS_ALIGNED(paddr
, 16) ||
6785 !IS_ALIGNED(size
, 16)) {
6786 tpage
= (void *)alloc_page(GFP_KERNEL
);
6790 dst_paddr
= __sme_page_pa(tpage
);
6793 ret
= __sev_dbg_decrypt(kvm
, paddr
, dst_paddr
, size
, err
);
6798 offset
= paddr
& 15;
6799 if (copy_to_user((void __user
*)(uintptr_t)dst_uaddr
,
6800 page_address(tpage
) + offset
, size
))
6811 static int __sev_dbg_encrypt_user(struct kvm
*kvm
, unsigned long paddr
,
6812 unsigned long __user vaddr
,
6813 unsigned long dst_paddr
,
6814 unsigned long __user dst_vaddr
,
6815 int size
, int *error
)
6817 struct page
*src_tpage
= NULL
;
6818 struct page
*dst_tpage
= NULL
;
6819 int ret
, len
= size
;
6821 /* If source buffer is not aligned then use an intermediate buffer */
6822 if (!IS_ALIGNED(vaddr
, 16)) {
6823 src_tpage
= alloc_page(GFP_KERNEL
);
6827 if (copy_from_user(page_address(src_tpage
),
6828 (void __user
*)(uintptr_t)vaddr
, size
)) {
6829 __free_page(src_tpage
);
6833 paddr
= __sme_page_pa(src_tpage
);
6837 * If destination buffer or length is not aligned then do read-modify-write:
6838 * - decrypt destination in an intermediate buffer
6839 * - copy the source buffer in an intermediate buffer
6840 * - use the intermediate buffer as source buffer
6842 if (!IS_ALIGNED(dst_vaddr
, 16) || !IS_ALIGNED(size
, 16)) {
6845 dst_tpage
= alloc_page(GFP_KERNEL
);
6851 ret
= __sev_dbg_decrypt(kvm
, dst_paddr
,
6852 __sme_page_pa(dst_tpage
), size
, error
);
6857 * If source is kernel buffer then use memcpy() otherwise
6860 dst_offset
= dst_paddr
& 15;
6863 memcpy(page_address(dst_tpage
) + dst_offset
,
6864 page_address(src_tpage
), size
);
6866 if (copy_from_user(page_address(dst_tpage
) + dst_offset
,
6867 (void __user
*)(uintptr_t)vaddr
, size
)) {
6873 paddr
= __sme_page_pa(dst_tpage
);
6874 dst_paddr
= round_down(dst_paddr
, 16);
6875 len
= round_up(size
, 16);
6878 ret
= __sev_issue_dbg_cmd(kvm
, paddr
, dst_paddr
, len
, error
, true);
6882 __free_page(src_tpage
);
6884 __free_page(dst_tpage
);
6888 static int sev_dbg_crypt(struct kvm
*kvm
, struct kvm_sev_cmd
*argp
, bool dec
)
6890 unsigned long vaddr
, vaddr_end
, next_vaddr
;
6891 unsigned long dst_vaddr
;
6892 struct page
**src_p
, **dst_p
;
6893 struct kvm_sev_dbg debug
;
6898 if (!sev_guest(kvm
))
6901 if (copy_from_user(&debug
, (void __user
*)(uintptr_t)argp
->data
, sizeof(debug
)))
6904 if (!debug
.len
|| debug
.src_uaddr
+ debug
.len
< debug
.src_uaddr
)
6906 if (!debug
.dst_uaddr
)
6909 vaddr
= debug
.src_uaddr
;
6911 vaddr_end
= vaddr
+ size
;
6912 dst_vaddr
= debug
.dst_uaddr
;
6914 for (; vaddr
< vaddr_end
; vaddr
= next_vaddr
) {
6915 int len
, s_off
, d_off
;
6917 /* lock userspace source and destination page */
6918 src_p
= sev_pin_memory(kvm
, vaddr
& PAGE_MASK
, PAGE_SIZE
, &n
, 0);
6922 dst_p
= sev_pin_memory(kvm
, dst_vaddr
& PAGE_MASK
, PAGE_SIZE
, &n
, 1);
6924 sev_unpin_memory(kvm
, src_p
, n
);
6929 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
6930 * memory content (i.e it will write the same memory region with C=1).
6931 * It's possible that the cache may contain the data with C=0, i.e.,
6932 * unencrypted so invalidate it first.
6934 sev_clflush_pages(src_p
, 1);
6935 sev_clflush_pages(dst_p
, 1);
6938 * Since user buffer may not be page aligned, calculate the
6939 * offset within the page.
6941 s_off
= vaddr
& ~PAGE_MASK
;
6942 d_off
= dst_vaddr
& ~PAGE_MASK
;
6943 len
= min_t(size_t, (PAGE_SIZE
- s_off
), size
);
6946 ret
= __sev_dbg_decrypt_user(kvm
,
6947 __sme_page_pa(src_p
[0]) + s_off
,
6949 __sme_page_pa(dst_p
[0]) + d_off
,
6952 ret
= __sev_dbg_encrypt_user(kvm
,
6953 __sme_page_pa(src_p
[0]) + s_off
,
6955 __sme_page_pa(dst_p
[0]) + d_off
,
6959 sev_unpin_memory(kvm
, src_p
, n
);
6960 sev_unpin_memory(kvm
, dst_p
, n
);
6965 next_vaddr
= vaddr
+ len
;
6966 dst_vaddr
= dst_vaddr
+ len
;
6973 static int sev_launch_secret(struct kvm
*kvm
, struct kvm_sev_cmd
*argp
)
6975 struct kvm_sev_info
*sev
= &to_kvm_svm(kvm
)->sev_info
;
6976 struct sev_data_launch_secret
*data
;
6977 struct kvm_sev_launch_secret params
;
6978 struct page
**pages
;
6983 if (!sev_guest(kvm
))
6986 if (copy_from_user(¶ms
, (void __user
*)(uintptr_t)argp
->data
, sizeof(params
)))
6989 pages
= sev_pin_memory(kvm
, params
.guest_uaddr
, params
.guest_len
, &n
, 1);
6994 * The secret must be copied into contiguous memory region, lets verify
6995 * that userspace memory pages are contiguous before we issue command.
6997 if (get_num_contig_pages(0, pages
, n
) != n
) {
6999 goto e_unpin_memory
;
7003 data
= kzalloc(sizeof(*data
), GFP_KERNEL_ACCOUNT
);
7005 goto e_unpin_memory
;
7007 offset
= params
.guest_uaddr
& (PAGE_SIZE
- 1);
7008 data
->guest_address
= __sme_page_pa(pages
[0]) + offset
;
7009 data
->guest_len
= params
.guest_len
;
7011 blob
= psp_copy_user_blob(params
.trans_uaddr
, params
.trans_len
);
7013 ret
= PTR_ERR(blob
);
7017 data
->trans_address
= __psp_pa(blob
);
7018 data
->trans_len
= params
.trans_len
;
7020 hdr
= psp_copy_user_blob(params
.hdr_uaddr
, params
.hdr_len
);
7025 data
->hdr_address
= __psp_pa(hdr
);
7026 data
->hdr_len
= params
.hdr_len
;
7028 data
->handle
= sev
->handle
;
7029 ret
= sev_issue_cmd(kvm
, SEV_CMD_LAUNCH_UPDATE_SECRET
, data
, &argp
->error
);
7038 sev_unpin_memory(kvm
, pages
, n
);
7042 static int svm_mem_enc_op(struct kvm
*kvm
, void __user
*argp
)
7044 struct kvm_sev_cmd sev_cmd
;
7047 if (!svm_sev_enabled())
7050 if (copy_from_user(&sev_cmd
, argp
, sizeof(struct kvm_sev_cmd
)))
7053 mutex_lock(&kvm
->lock
);
7055 switch (sev_cmd
.id
) {
7057 r
= sev_guest_init(kvm
, &sev_cmd
);
7059 case KVM_SEV_LAUNCH_START
:
7060 r
= sev_launch_start(kvm
, &sev_cmd
);
7062 case KVM_SEV_LAUNCH_UPDATE_DATA
:
7063 r
= sev_launch_update_data(kvm
, &sev_cmd
);
7065 case KVM_SEV_LAUNCH_MEASURE
:
7066 r
= sev_launch_measure(kvm
, &sev_cmd
);
7068 case KVM_SEV_LAUNCH_FINISH
:
7069 r
= sev_launch_finish(kvm
, &sev_cmd
);
7071 case KVM_SEV_GUEST_STATUS
:
7072 r
= sev_guest_status(kvm
, &sev_cmd
);
7074 case KVM_SEV_DBG_DECRYPT
:
7075 r
= sev_dbg_crypt(kvm
, &sev_cmd
, true);
7077 case KVM_SEV_DBG_ENCRYPT
:
7078 r
= sev_dbg_crypt(kvm
, &sev_cmd
, false);
7080 case KVM_SEV_LAUNCH_SECRET
:
7081 r
= sev_launch_secret(kvm
, &sev_cmd
);
7088 if (copy_to_user(argp
, &sev_cmd
, sizeof(struct kvm_sev_cmd
)))
7092 mutex_unlock(&kvm
->lock
);
7096 static int svm_register_enc_region(struct kvm
*kvm
,
7097 struct kvm_enc_region
*range
)
7099 struct kvm_sev_info
*sev
= &to_kvm_svm(kvm
)->sev_info
;
7100 struct enc_region
*region
;
7103 if (!sev_guest(kvm
))
7106 if (range
->addr
> ULONG_MAX
|| range
->size
> ULONG_MAX
)
7109 region
= kzalloc(sizeof(*region
), GFP_KERNEL_ACCOUNT
);
7113 region
->pages
= sev_pin_memory(kvm
, range
->addr
, range
->size
, ®ion
->npages
, 1);
7114 if (!region
->pages
) {
7120 * The guest may change the memory encryption attribute from C=0 -> C=1
7121 * or vice versa for this memory range. Lets make sure caches are
7122 * flushed to ensure that guest data gets written into memory with
7125 sev_clflush_pages(region
->pages
, region
->npages
);
7127 region
->uaddr
= range
->addr
;
7128 region
->size
= range
->size
;
7130 mutex_lock(&kvm
->lock
);
7131 list_add_tail(®ion
->list
, &sev
->regions_list
);
7132 mutex_unlock(&kvm
->lock
);
7141 static struct enc_region
*
7142 find_enc_region(struct kvm
*kvm
, struct kvm_enc_region
*range
)
7144 struct kvm_sev_info
*sev
= &to_kvm_svm(kvm
)->sev_info
;
7145 struct list_head
*head
= &sev
->regions_list
;
7146 struct enc_region
*i
;
7148 list_for_each_entry(i
, head
, list
) {
7149 if (i
->uaddr
== range
->addr
&&
7150 i
->size
== range
->size
)
7158 static int svm_unregister_enc_region(struct kvm
*kvm
,
7159 struct kvm_enc_region
*range
)
7161 struct enc_region
*region
;
7164 mutex_lock(&kvm
->lock
);
7166 if (!sev_guest(kvm
)) {
7171 region
= find_enc_region(kvm
, range
);
7177 __unregister_enc_region_locked(kvm
, region
);
7179 mutex_unlock(&kvm
->lock
);
7183 mutex_unlock(&kvm
->lock
);
7187 static bool svm_need_emulation_on_page_fault(struct kvm_vcpu
*vcpu
)
7189 unsigned long cr4
= kvm_read_cr4(vcpu
);
7190 bool smep
= cr4
& X86_CR4_SMEP
;
7191 bool smap
= cr4
& X86_CR4_SMAP
;
7192 bool is_user
= svm_get_cpl(vcpu
) == 3;
7195 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
7198 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
7199 * possible that CPU microcode implementing DecodeAssist will fail
7200 * to read bytes of instruction which caused #NPF. In this case,
7201 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
7202 * return 0 instead of the correct guest instruction bytes.
7204 * This happens because CPU microcode reading instruction bytes
7205 * uses a special opcode which attempts to read data using CPL=0
7206 * priviledges. The microcode reads CS:RIP and if it hits a SMAP
7207 * fault, it gives up and returns no instruction bytes.
7210 * We reach here in case CPU supports DecodeAssist, raised #NPF and
7211 * returned 0 in GuestIntrBytes field of the VMCB.
7212 * First, errata can only be triggered in case vCPU CR4.SMAP=1.
7213 * Second, if vCPU CR4.SMEP=1, errata could only be triggered
7214 * in case vCPU CPL==3 (Because otherwise guest would have triggered
7215 * a SMEP fault instead of #NPF).
7216 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
7217 * As most guests enable SMAP if they have also enabled SMEP, use above
7218 * logic in order to attempt minimize false-positive of detecting errata
7219 * while still preserving all cases semantic correctness.
7222 * To determine what instruction the guest was executing, the hypervisor
7223 * will have to decode the instruction at the instruction pointer.
7225 * In non SEV guest, hypervisor will be able to read the guest
7226 * memory to decode the instruction pointer when insn_len is zero
7227 * so we return true to indicate that decoding is possible.
7229 * But in the SEV guest, the guest memory is encrypted with the
7230 * guest specific key and hypervisor will not be able to decode the
7231 * instruction pointer so we will not able to workaround it. Lets
7232 * print the error and request to kill the guest.
7234 if (smap
&& (!smep
|| is_user
)) {
7235 if (!sev_guest(vcpu
->kvm
))
7238 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
7239 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
7245 static bool svm_apic_init_signal_blocked(struct kvm_vcpu
*vcpu
)
7247 struct vcpu_svm
*svm
= to_svm(vcpu
);
7250 * TODO: Last condition latch INIT signals on vCPU when
7251 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
7252 * To properly emulate the INIT intercept, SVM should implement
7253 * kvm_x86_ops->check_nested_events() and call nested_svm_vmexit()
7254 * there if an INIT signal is pending.
7256 return !gif_set(svm
) ||
7257 (svm
->vmcb
->control
.intercept
& (1ULL << INTERCEPT_INIT
));
7260 static struct kvm_x86_ops svm_x86_ops __ro_after_init
= {
7261 .cpu_has_kvm_support
= has_svm
,
7262 .disabled_by_bios
= is_disabled
,
7263 .hardware_setup
= svm_hardware_setup
,
7264 .hardware_unsetup
= svm_hardware_unsetup
,
7265 .check_processor_compatibility
= svm_check_processor_compat
,
7266 .hardware_enable
= svm_hardware_enable
,
7267 .hardware_disable
= svm_hardware_disable
,
7268 .cpu_has_accelerated_tpr
= svm_cpu_has_accelerated_tpr
,
7269 .has_emulated_msr
= svm_has_emulated_msr
,
7271 .vcpu_create
= svm_create_vcpu
,
7272 .vcpu_free
= svm_free_vcpu
,
7273 .vcpu_reset
= svm_vcpu_reset
,
7275 .vm_alloc
= svm_vm_alloc
,
7276 .vm_free
= svm_vm_free
,
7277 .vm_init
= avic_vm_init
,
7278 .vm_destroy
= svm_vm_destroy
,
7280 .prepare_guest_switch
= svm_prepare_guest_switch
,
7281 .vcpu_load
= svm_vcpu_load
,
7282 .vcpu_put
= svm_vcpu_put
,
7283 .vcpu_blocking
= svm_vcpu_blocking
,
7284 .vcpu_unblocking
= svm_vcpu_unblocking
,
7286 .update_bp_intercept
= update_bp_intercept
,
7287 .get_msr_feature
= svm_get_msr_feature
,
7288 .get_msr
= svm_get_msr
,
7289 .set_msr
= svm_set_msr
,
7290 .get_segment_base
= svm_get_segment_base
,
7291 .get_segment
= svm_get_segment
,
7292 .set_segment
= svm_set_segment
,
7293 .get_cpl
= svm_get_cpl
,
7294 .get_cs_db_l_bits
= kvm_get_cs_db_l_bits
,
7295 .decache_cr0_guest_bits
= svm_decache_cr0_guest_bits
,
7296 .decache_cr4_guest_bits
= svm_decache_cr4_guest_bits
,
7297 .set_cr0
= svm_set_cr0
,
7298 .set_cr3
= svm_set_cr3
,
7299 .set_cr4
= svm_set_cr4
,
7300 .set_efer
= svm_set_efer
,
7301 .get_idt
= svm_get_idt
,
7302 .set_idt
= svm_set_idt
,
7303 .get_gdt
= svm_get_gdt
,
7304 .set_gdt
= svm_set_gdt
,
7305 .get_dr6
= svm_get_dr6
,
7306 .set_dr6
= svm_set_dr6
,
7307 .set_dr7
= svm_set_dr7
,
7308 .sync_dirty_debug_regs
= svm_sync_dirty_debug_regs
,
7309 .cache_reg
= svm_cache_reg
,
7310 .get_rflags
= svm_get_rflags
,
7311 .set_rflags
= svm_set_rflags
,
7313 .tlb_flush
= svm_flush_tlb
,
7314 .tlb_flush_gva
= svm_flush_tlb_gva
,
7316 .run
= svm_vcpu_run
,
7317 .handle_exit
= handle_exit
,
7318 .skip_emulated_instruction
= skip_emulated_instruction
,
7319 .set_interrupt_shadow
= svm_set_interrupt_shadow
,
7320 .get_interrupt_shadow
= svm_get_interrupt_shadow
,
7321 .patch_hypercall
= svm_patch_hypercall
,
7322 .set_irq
= svm_set_irq
,
7323 .set_nmi
= svm_inject_nmi
,
7324 .queue_exception
= svm_queue_exception
,
7325 .cancel_injection
= svm_cancel_injection
,
7326 .interrupt_allowed
= svm_interrupt_allowed
,
7327 .nmi_allowed
= svm_nmi_allowed
,
7328 .get_nmi_mask
= svm_get_nmi_mask
,
7329 .set_nmi_mask
= svm_set_nmi_mask
,
7330 .enable_nmi_window
= enable_nmi_window
,
7331 .enable_irq_window
= enable_irq_window
,
7332 .update_cr8_intercept
= update_cr8_intercept
,
7333 .set_virtual_apic_mode
= svm_set_virtual_apic_mode
,
7334 .get_enable_apicv
= svm_get_enable_apicv
,
7335 .refresh_apicv_exec_ctrl
= svm_refresh_apicv_exec_ctrl
,
7336 .load_eoi_exitmap
= svm_load_eoi_exitmap
,
7337 .hwapic_irr_update
= svm_hwapic_irr_update
,
7338 .hwapic_isr_update
= svm_hwapic_isr_update
,
7339 .sync_pir_to_irr
= kvm_lapic_find_highest_irr
,
7340 .apicv_post_state_restore
= avic_post_state_restore
,
7342 .set_tss_addr
= svm_set_tss_addr
,
7343 .set_identity_map_addr
= svm_set_identity_map_addr
,
7344 .get_tdp_level
= get_npt_level
,
7345 .get_mt_mask
= svm_get_mt_mask
,
7347 .get_exit_info
= svm_get_exit_info
,
7349 .get_lpage_level
= svm_get_lpage_level
,
7351 .cpuid_update
= svm_cpuid_update
,
7353 .rdtscp_supported
= svm_rdtscp_supported
,
7354 .invpcid_supported
= svm_invpcid_supported
,
7355 .mpx_supported
= svm_mpx_supported
,
7356 .xsaves_supported
= svm_xsaves_supported
,
7357 .umip_emulated
= svm_umip_emulated
,
7358 .pt_supported
= svm_pt_supported
,
7359 .pku_supported
= svm_pku_supported
,
7361 .set_supported_cpuid
= svm_set_supported_cpuid
,
7363 .has_wbinvd_exit
= svm_has_wbinvd_exit
,
7365 .read_l1_tsc_offset
= svm_read_l1_tsc_offset
,
7366 .write_l1_tsc_offset
= svm_write_l1_tsc_offset
,
7368 .set_tdp_cr3
= set_tdp_cr3
,
7370 .check_intercept
= svm_check_intercept
,
7371 .handle_exit_irqoff
= svm_handle_exit_irqoff
,
7373 .request_immediate_exit
= __kvm_request_immediate_exit
,
7375 .sched_in
= svm_sched_in
,
7377 .pmu_ops
= &amd_pmu_ops
,
7378 .deliver_posted_interrupt
= svm_deliver_avic_intr
,
7379 .dy_apicv_has_pending_interrupt
= svm_dy_apicv_has_pending_interrupt
,
7380 .update_pi_irte
= svm_update_pi_irte
,
7381 .setup_mce
= svm_setup_mce
,
7383 .smi_allowed
= svm_smi_allowed
,
7384 .pre_enter_smm
= svm_pre_enter_smm
,
7385 .pre_leave_smm
= svm_pre_leave_smm
,
7386 .enable_smi_window
= enable_smi_window
,
7388 .mem_enc_op
= svm_mem_enc_op
,
7389 .mem_enc_reg_region
= svm_register_enc_region
,
7390 .mem_enc_unreg_region
= svm_unregister_enc_region
,
7392 .nested_enable_evmcs
= NULL
,
7393 .nested_get_evmcs_version
= NULL
,
7395 .need_emulation_on_page_fault
= svm_need_emulation_on_page_fault
,
7397 .apic_init_signal_blocked
= svm_apic_init_signal_blocked
,
7400 static int __init
svm_init(void)
7402 return kvm_init(&svm_x86_ops
, sizeof(struct vcpu_svm
),
7403 __alignof__(struct vcpu_svm
), THIS_MODULE
);
7406 static void __exit
svm_exit(void)
7411 module_init(svm_init
)
7412 module_exit(svm_exit
)