1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * derived from drivers/kvm/kvm_main.c
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
19 #include <linux/kvm_host.h>
24 #include "kvm_cache_regs.h"
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
34 #include <linux/vmalloc.h>
35 #include <linux/export.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <linux/kvm_irqfd.h>
52 #include <linux/irqbypass.h>
53 #include <linux/sched/stat.h>
54 #include <linux/sched/isolation.h>
55 #include <linux/mem_encrypt.h>
57 #include <trace/events/kvm.h>
59 #include <asm/debugreg.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68 #include <asm/mshyperv.h>
69 #include <asm/hypervisor.h>
70 #include <asm/intel_pt.h>
71 #include <asm/emulate_prefix.h>
72 #include <clocksource/hyperv_timer.h>
74 #define CREATE_TRACE_POINTS
77 #define MAX_IO_MSRS 256
78 #define KVM_MAX_MCE_BANKS 32
79 u64 __read_mostly kvm_mce_cap_supported
= MCG_CTL_P
| MCG_SER_P
;
80 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported
);
82 #define emul_to_vcpu(ctxt) \
83 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
86 * - enable syscall per default because its emulated by KVM
87 * - enable LME and LMA per default on 64 bit KVM
91 u64 __read_mostly efer_reserved_bits
= ~((u64
)(EFER_SCE
| EFER_LME
| EFER_LMA
));
93 static u64 __read_mostly efer_reserved_bits
= ~((u64
)EFER_SCE
);
96 static u64 __read_mostly cr4_reserved_bits
= CR4_RESERVED_BITS
;
98 #define VM_STAT(x, ...) offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__
99 #define VCPU_STAT(x, ...) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__
101 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
102 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
104 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
);
105 static void process_nmi(struct kvm_vcpu
*vcpu
);
106 static void enter_smm(struct kvm_vcpu
*vcpu
);
107 static void __kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
);
108 static void store_regs(struct kvm_vcpu
*vcpu
);
109 static int sync_regs(struct kvm_vcpu
*vcpu
);
111 struct kvm_x86_ops
*kvm_x86_ops __read_mostly
;
112 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
114 static bool __read_mostly ignore_msrs
= 0;
115 module_param(ignore_msrs
, bool, S_IRUGO
| S_IWUSR
);
117 static bool __read_mostly report_ignored_msrs
= true;
118 module_param(report_ignored_msrs
, bool, S_IRUGO
| S_IWUSR
);
120 unsigned int min_timer_period_us
= 200;
121 module_param(min_timer_period_us
, uint
, S_IRUGO
| S_IWUSR
);
123 static bool __read_mostly kvmclock_periodic_sync
= true;
124 module_param(kvmclock_periodic_sync
, bool, S_IRUGO
);
126 bool __read_mostly kvm_has_tsc_control
;
127 EXPORT_SYMBOL_GPL(kvm_has_tsc_control
);
128 u32 __read_mostly kvm_max_guest_tsc_khz
;
129 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz
);
130 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits
;
131 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits
);
132 u64 __read_mostly kvm_max_tsc_scaling_ratio
;
133 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio
);
134 u64 __read_mostly kvm_default_tsc_scaling_ratio
;
135 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio
);
137 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
138 static u32 __read_mostly tsc_tolerance_ppm
= 250;
139 module_param(tsc_tolerance_ppm
, uint
, S_IRUGO
| S_IWUSR
);
142 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
143 * adaptive tuning starting from default advancment of 1000ns. '0' disables
144 * advancement entirely. Any other value is used as-is and disables adaptive
145 * tuning, i.e. allows priveleged userspace to set an exact advancement time.
147 static int __read_mostly lapic_timer_advance_ns
= -1;
148 module_param(lapic_timer_advance_ns
, int, S_IRUGO
| S_IWUSR
);
150 static bool __read_mostly vector_hashing
= true;
151 module_param(vector_hashing
, bool, S_IRUGO
);
153 bool __read_mostly enable_vmware_backdoor
= false;
154 module_param(enable_vmware_backdoor
, bool, S_IRUGO
);
155 EXPORT_SYMBOL_GPL(enable_vmware_backdoor
);
157 static bool __read_mostly force_emulation_prefix
= false;
158 module_param(force_emulation_prefix
, bool, S_IRUGO
);
160 int __read_mostly pi_inject_timer
= -1;
161 module_param(pi_inject_timer
, bint
, S_IRUGO
| S_IWUSR
);
163 #define KVM_NR_SHARED_MSRS 16
165 struct kvm_shared_msrs_global
{
167 u32 msrs
[KVM_NR_SHARED_MSRS
];
170 struct kvm_shared_msrs
{
171 struct user_return_notifier urn
;
173 struct kvm_shared_msr_values
{
176 } values
[KVM_NR_SHARED_MSRS
];
179 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global
;
180 static struct kvm_shared_msrs __percpu
*shared_msrs
;
182 static u64 __read_mostly host_xss
;
184 struct kvm_stats_debugfs_item debugfs_entries
[] = {
185 { "pf_fixed", VCPU_STAT(pf_fixed
) },
186 { "pf_guest", VCPU_STAT(pf_guest
) },
187 { "tlb_flush", VCPU_STAT(tlb_flush
) },
188 { "invlpg", VCPU_STAT(invlpg
) },
189 { "exits", VCPU_STAT(exits
) },
190 { "io_exits", VCPU_STAT(io_exits
) },
191 { "mmio_exits", VCPU_STAT(mmio_exits
) },
192 { "signal_exits", VCPU_STAT(signal_exits
) },
193 { "irq_window", VCPU_STAT(irq_window_exits
) },
194 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
195 { "halt_exits", VCPU_STAT(halt_exits
) },
196 { "halt_successful_poll", VCPU_STAT(halt_successful_poll
) },
197 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll
) },
198 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid
) },
199 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
200 { "hypercalls", VCPU_STAT(hypercalls
) },
201 { "request_irq", VCPU_STAT(request_irq_exits
) },
202 { "irq_exits", VCPU_STAT(irq_exits
) },
203 { "host_state_reload", VCPU_STAT(host_state_reload
) },
204 { "fpu_reload", VCPU_STAT(fpu_reload
) },
205 { "insn_emulation", VCPU_STAT(insn_emulation
) },
206 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
207 { "irq_injections", VCPU_STAT(irq_injections
) },
208 { "nmi_injections", VCPU_STAT(nmi_injections
) },
209 { "req_event", VCPU_STAT(req_event
) },
210 { "l1d_flush", VCPU_STAT(l1d_flush
) },
211 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
212 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
213 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
214 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
215 { "mmu_flooded", VM_STAT(mmu_flooded
) },
216 { "mmu_recycled", VM_STAT(mmu_recycled
) },
217 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
218 { "mmu_unsync", VM_STAT(mmu_unsync
) },
219 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
220 { "largepages", VM_STAT(lpages
, .mode
= 0444) },
221 { "nx_largepages_splitted", VM_STAT(nx_lpage_splits
, .mode
= 0444) },
222 { "max_mmu_page_hash_collisions",
223 VM_STAT(max_mmu_page_hash_collisions
) },
227 u64 __read_mostly host_xcr0
;
229 struct kmem_cache
*x86_fpu_cache
;
230 EXPORT_SYMBOL_GPL(x86_fpu_cache
);
232 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
);
234 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu
*vcpu
)
237 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
); i
++)
238 vcpu
->arch
.apf
.gfns
[i
] = ~0;
241 static void kvm_on_user_return(struct user_return_notifier
*urn
)
244 struct kvm_shared_msrs
*locals
245 = container_of(urn
, struct kvm_shared_msrs
, urn
);
246 struct kvm_shared_msr_values
*values
;
250 * Disabling irqs at this point since the following code could be
251 * interrupted and executed through kvm_arch_hardware_disable()
253 local_irq_save(flags
);
254 if (locals
->registered
) {
255 locals
->registered
= false;
256 user_return_notifier_unregister(urn
);
258 local_irq_restore(flags
);
259 for (slot
= 0; slot
< shared_msrs_global
.nr
; ++slot
) {
260 values
= &locals
->values
[slot
];
261 if (values
->host
!= values
->curr
) {
262 wrmsrl(shared_msrs_global
.msrs
[slot
], values
->host
);
263 values
->curr
= values
->host
;
268 void kvm_define_shared_msr(unsigned slot
, u32 msr
)
270 BUG_ON(slot
>= KVM_NR_SHARED_MSRS
);
271 shared_msrs_global
.msrs
[slot
] = msr
;
272 if (slot
>= shared_msrs_global
.nr
)
273 shared_msrs_global
.nr
= slot
+ 1;
275 EXPORT_SYMBOL_GPL(kvm_define_shared_msr
);
277 static void kvm_shared_msr_cpu_online(void)
279 unsigned int cpu
= smp_processor_id();
280 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
284 for (i
= 0; i
< shared_msrs_global
.nr
; ++i
) {
285 rdmsrl_safe(shared_msrs_global
.msrs
[i
], &value
);
286 smsr
->values
[i
].host
= value
;
287 smsr
->values
[i
].curr
= value
;
291 int kvm_set_shared_msr(unsigned slot
, u64 value
, u64 mask
)
293 unsigned int cpu
= smp_processor_id();
294 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
297 value
= (value
& mask
) | (smsr
->values
[slot
].host
& ~mask
);
298 if (value
== smsr
->values
[slot
].curr
)
300 err
= wrmsrl_safe(shared_msrs_global
.msrs
[slot
], value
);
304 smsr
->values
[slot
].curr
= value
;
305 if (!smsr
->registered
) {
306 smsr
->urn
.on_user_return
= kvm_on_user_return
;
307 user_return_notifier_register(&smsr
->urn
);
308 smsr
->registered
= true;
312 EXPORT_SYMBOL_GPL(kvm_set_shared_msr
);
314 static void drop_user_return_notifiers(void)
316 unsigned int cpu
= smp_processor_id();
317 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
319 if (smsr
->registered
)
320 kvm_on_user_return(&smsr
->urn
);
323 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
325 return vcpu
->arch
.apic_base
;
327 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
329 enum lapic_mode
kvm_get_apic_mode(struct kvm_vcpu
*vcpu
)
331 return kvm_apic_mode(kvm_get_apic_base(vcpu
));
333 EXPORT_SYMBOL_GPL(kvm_get_apic_mode
);
335 int kvm_set_apic_base(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
337 enum lapic_mode old_mode
= kvm_get_apic_mode(vcpu
);
338 enum lapic_mode new_mode
= kvm_apic_mode(msr_info
->data
);
339 u64 reserved_bits
= ((~0ULL) << cpuid_maxphyaddr(vcpu
)) | 0x2ff |
340 (guest_cpuid_has(vcpu
, X86_FEATURE_X2APIC
) ? 0 : X2APIC_ENABLE
);
342 if ((msr_info
->data
& reserved_bits
) != 0 || new_mode
== LAPIC_MODE_INVALID
)
344 if (!msr_info
->host_initiated
) {
345 if (old_mode
== LAPIC_MODE_X2APIC
&& new_mode
== LAPIC_MODE_XAPIC
)
347 if (old_mode
== LAPIC_MODE_DISABLED
&& new_mode
== LAPIC_MODE_X2APIC
)
351 kvm_lapic_set_base(vcpu
, msr_info
->data
);
354 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
356 asmlinkage __visible
void kvm_spurious_fault(void)
358 /* Fault while not rebooting. We want the trace. */
359 BUG_ON(!kvm_rebooting
);
361 EXPORT_SYMBOL_GPL(kvm_spurious_fault
);
363 #define EXCPT_BENIGN 0
364 #define EXCPT_CONTRIBUTORY 1
367 static int exception_class(int vector
)
377 return EXCPT_CONTRIBUTORY
;
384 #define EXCPT_FAULT 0
386 #define EXCPT_ABORT 2
387 #define EXCPT_INTERRUPT 3
389 static int exception_type(int vector
)
393 if (WARN_ON(vector
> 31 || vector
== NMI_VECTOR
))
394 return EXCPT_INTERRUPT
;
398 /* #DB is trap, as instruction watchpoints are handled elsewhere */
399 if (mask
& ((1 << DB_VECTOR
) | (1 << BP_VECTOR
) | (1 << OF_VECTOR
)))
402 if (mask
& ((1 << DF_VECTOR
) | (1 << MC_VECTOR
)))
405 /* Reserved exceptions will result in fault */
409 void kvm_deliver_exception_payload(struct kvm_vcpu
*vcpu
)
411 unsigned nr
= vcpu
->arch
.exception
.nr
;
412 bool has_payload
= vcpu
->arch
.exception
.has_payload
;
413 unsigned long payload
= vcpu
->arch
.exception
.payload
;
421 * "Certain debug exceptions may clear bit 0-3. The
422 * remaining contents of the DR6 register are never
423 * cleared by the processor".
425 vcpu
->arch
.dr6
&= ~DR_TRAP_BITS
;
427 * DR6.RTM is set by all #DB exceptions that don't clear it.
429 vcpu
->arch
.dr6
|= DR6_RTM
;
430 vcpu
->arch
.dr6
|= payload
;
432 * Bit 16 should be set in the payload whenever the #DB
433 * exception should clear DR6.RTM. This makes the payload
434 * compatible with the pending debug exceptions under VMX.
435 * Though not currently documented in the SDM, this also
436 * makes the payload compatible with the exit qualification
437 * for #DB exceptions under VMX.
439 vcpu
->arch
.dr6
^= payload
& DR6_RTM
;
442 vcpu
->arch
.cr2
= payload
;
446 vcpu
->arch
.exception
.has_payload
= false;
447 vcpu
->arch
.exception
.payload
= 0;
449 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload
);
451 static void kvm_multiple_exception(struct kvm_vcpu
*vcpu
,
452 unsigned nr
, bool has_error
, u32 error_code
,
453 bool has_payload
, unsigned long payload
, bool reinject
)
458 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
460 if (!vcpu
->arch
.exception
.pending
&& !vcpu
->arch
.exception
.injected
) {
462 if (has_error
&& !is_protmode(vcpu
))
466 * On vmentry, vcpu->arch.exception.pending is only
467 * true if an event injection was blocked by
468 * nested_run_pending. In that case, however,
469 * vcpu_enter_guest requests an immediate exit,
470 * and the guest shouldn't proceed far enough to
473 WARN_ON_ONCE(vcpu
->arch
.exception
.pending
);
474 vcpu
->arch
.exception
.injected
= true;
475 if (WARN_ON_ONCE(has_payload
)) {
477 * A reinjected event has already
478 * delivered its payload.
484 vcpu
->arch
.exception
.pending
= true;
485 vcpu
->arch
.exception
.injected
= false;
487 vcpu
->arch
.exception
.has_error_code
= has_error
;
488 vcpu
->arch
.exception
.nr
= nr
;
489 vcpu
->arch
.exception
.error_code
= error_code
;
490 vcpu
->arch
.exception
.has_payload
= has_payload
;
491 vcpu
->arch
.exception
.payload
= payload
;
493 * In guest mode, payload delivery should be deferred,
494 * so that the L1 hypervisor can intercept #PF before
495 * CR2 is modified (or intercept #DB before DR6 is
496 * modified under nVMX). However, for ABI
497 * compatibility with KVM_GET_VCPU_EVENTS and
498 * KVM_SET_VCPU_EVENTS, we can't delay payload
499 * delivery unless userspace has enabled this
500 * functionality via the per-VM capability,
501 * KVM_CAP_EXCEPTION_PAYLOAD.
503 if (!vcpu
->kvm
->arch
.exception_payload_enabled
||
504 !is_guest_mode(vcpu
))
505 kvm_deliver_exception_payload(vcpu
);
509 /* to check exception */
510 prev_nr
= vcpu
->arch
.exception
.nr
;
511 if (prev_nr
== DF_VECTOR
) {
512 /* triple fault -> shutdown */
513 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
516 class1
= exception_class(prev_nr
);
517 class2
= exception_class(nr
);
518 if ((class1
== EXCPT_CONTRIBUTORY
&& class2
== EXCPT_CONTRIBUTORY
)
519 || (class1
== EXCPT_PF
&& class2
!= EXCPT_BENIGN
)) {
521 * Generate double fault per SDM Table 5-5. Set
522 * exception.pending = true so that the double fault
523 * can trigger a nested vmexit.
525 vcpu
->arch
.exception
.pending
= true;
526 vcpu
->arch
.exception
.injected
= false;
527 vcpu
->arch
.exception
.has_error_code
= true;
528 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
529 vcpu
->arch
.exception
.error_code
= 0;
530 vcpu
->arch
.exception
.has_payload
= false;
531 vcpu
->arch
.exception
.payload
= 0;
533 /* replace previous exception with a new one in a hope
534 that instruction re-execution will regenerate lost
539 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
541 kvm_multiple_exception(vcpu
, nr
, false, 0, false, 0, false);
543 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
545 void kvm_requeue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
547 kvm_multiple_exception(vcpu
, nr
, false, 0, false, 0, true);
549 EXPORT_SYMBOL_GPL(kvm_requeue_exception
);
551 static void kvm_queue_exception_p(struct kvm_vcpu
*vcpu
, unsigned nr
,
552 unsigned long payload
)
554 kvm_multiple_exception(vcpu
, nr
, false, 0, true, payload
, false);
557 static void kvm_queue_exception_e_p(struct kvm_vcpu
*vcpu
, unsigned nr
,
558 u32 error_code
, unsigned long payload
)
560 kvm_multiple_exception(vcpu
, nr
, true, error_code
,
561 true, payload
, false);
564 int kvm_complete_insn_gp(struct kvm_vcpu
*vcpu
, int err
)
567 kvm_inject_gp(vcpu
, 0);
569 return kvm_skip_emulated_instruction(vcpu
);
573 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp
);
575 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
577 ++vcpu
->stat
.pf_guest
;
578 vcpu
->arch
.exception
.nested_apf
=
579 is_guest_mode(vcpu
) && fault
->async_page_fault
;
580 if (vcpu
->arch
.exception
.nested_apf
) {
581 vcpu
->arch
.apf
.nested_apf_token
= fault
->address
;
582 kvm_queue_exception_e(vcpu
, PF_VECTOR
, fault
->error_code
);
584 kvm_queue_exception_e_p(vcpu
, PF_VECTOR
, fault
->error_code
,
588 EXPORT_SYMBOL_GPL(kvm_inject_page_fault
);
590 static bool kvm_propagate_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
592 if (mmu_is_nested(vcpu
) && !fault
->nested_page_fault
)
593 vcpu
->arch
.nested_mmu
.inject_page_fault(vcpu
, fault
);
595 vcpu
->arch
.mmu
->inject_page_fault(vcpu
, fault
);
597 return fault
->nested_page_fault
;
600 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
602 atomic_inc(&vcpu
->arch
.nmi_queued
);
603 kvm_make_request(KVM_REQ_NMI
, vcpu
);
605 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
607 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
609 kvm_multiple_exception(vcpu
, nr
, true, error_code
, false, 0, false);
611 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
613 void kvm_requeue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
615 kvm_multiple_exception(vcpu
, nr
, true, error_code
, false, 0, true);
617 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e
);
620 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
621 * a #GP and return false.
623 bool kvm_require_cpl(struct kvm_vcpu
*vcpu
, int required_cpl
)
625 if (kvm_x86_ops
->get_cpl(vcpu
) <= required_cpl
)
627 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
630 EXPORT_SYMBOL_GPL(kvm_require_cpl
);
632 bool kvm_require_dr(struct kvm_vcpu
*vcpu
, int dr
)
634 if ((dr
!= 4 && dr
!= 5) || !kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
637 kvm_queue_exception(vcpu
, UD_VECTOR
);
640 EXPORT_SYMBOL_GPL(kvm_require_dr
);
643 * This function will be used to read from the physical memory of the currently
644 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
645 * can read from guest physical or from the guest's guest physical memory.
647 int kvm_read_guest_page_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
648 gfn_t ngfn
, void *data
, int offset
, int len
,
651 struct x86_exception exception
;
655 ngpa
= gfn_to_gpa(ngfn
);
656 real_gfn
= mmu
->translate_gpa(vcpu
, ngpa
, access
, &exception
);
657 if (real_gfn
== UNMAPPED_GVA
)
660 real_gfn
= gpa_to_gfn(real_gfn
);
662 return kvm_vcpu_read_guest_page(vcpu
, real_gfn
, data
, offset
, len
);
664 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu
);
666 static int kvm_read_nested_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
667 void *data
, int offset
, int len
, u32 access
)
669 return kvm_read_guest_page_mmu(vcpu
, vcpu
->arch
.walk_mmu
, gfn
,
670 data
, offset
, len
, access
);
673 static inline u64
pdptr_rsvd_bits(struct kvm_vcpu
*vcpu
)
675 return rsvd_bits(cpuid_maxphyaddr(vcpu
), 63) | rsvd_bits(5, 8) |
680 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
682 int load_pdptrs(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
, unsigned long cr3
)
684 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
685 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
688 u64 pdpte
[ARRAY_SIZE(mmu
->pdptrs
)];
690 ret
= kvm_read_guest_page_mmu(vcpu
, mmu
, pdpt_gfn
, pdpte
,
691 offset
* sizeof(u64
), sizeof(pdpte
),
692 PFERR_USER_MASK
|PFERR_WRITE_MASK
);
697 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
698 if ((pdpte
[i
] & PT_PRESENT_MASK
) &&
699 (pdpte
[i
] & pdptr_rsvd_bits(vcpu
))) {
706 memcpy(mmu
->pdptrs
, pdpte
, sizeof(mmu
->pdptrs
));
707 kvm_register_mark_dirty(vcpu
, VCPU_EXREG_PDPTR
);
713 EXPORT_SYMBOL_GPL(load_pdptrs
);
715 bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
717 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.walk_mmu
->pdptrs
)];
722 if (!is_pae_paging(vcpu
))
725 if (!kvm_register_is_available(vcpu
, VCPU_EXREG_PDPTR
))
728 gfn
= (kvm_read_cr3(vcpu
) & 0xffffffe0ul
) >> PAGE_SHIFT
;
729 offset
= (kvm_read_cr3(vcpu
) & 0xffffffe0ul
) & (PAGE_SIZE
- 1);
730 r
= kvm_read_nested_guest_page(vcpu
, gfn
, pdpte
, offset
, sizeof(pdpte
),
731 PFERR_USER_MASK
| PFERR_WRITE_MASK
);
735 return memcmp(pdpte
, vcpu
->arch
.walk_mmu
->pdptrs
, sizeof(pdpte
)) != 0;
737 EXPORT_SYMBOL_GPL(pdptrs_changed
);
739 int kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
741 unsigned long old_cr0
= kvm_read_cr0(vcpu
);
742 unsigned long update_bits
= X86_CR0_PG
| X86_CR0_WP
;
747 if (cr0
& 0xffffffff00000000UL
)
751 cr0
&= ~CR0_RESERVED_BITS
;
753 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
))
756 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
))
759 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
761 if ((vcpu
->arch
.efer
& EFER_LME
)) {
766 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
771 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
776 if (!(cr0
& X86_CR0_PG
) && kvm_read_cr4_bits(vcpu
, X86_CR4_PCIDE
))
779 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
781 if ((cr0
^ old_cr0
) & X86_CR0_PG
) {
782 kvm_clear_async_pf_completion_queue(vcpu
);
783 kvm_async_pf_hash_reset(vcpu
);
786 if ((cr0
^ old_cr0
) & update_bits
)
787 kvm_mmu_reset_context(vcpu
);
789 if (((cr0
^ old_cr0
) & X86_CR0_CD
) &&
790 kvm_arch_has_noncoherent_dma(vcpu
->kvm
) &&
791 !kvm_check_has_quirk(vcpu
->kvm
, KVM_X86_QUIRK_CD_NW_CLEARED
))
792 kvm_zap_gfn_range(vcpu
->kvm
, 0, ~0ULL);
796 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
798 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
800 (void)kvm_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~0x0eul
) | (msw
& 0x0f));
802 EXPORT_SYMBOL_GPL(kvm_lmsw
);
804 void kvm_load_guest_xsave_state(struct kvm_vcpu
*vcpu
)
806 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
)) {
808 if (vcpu
->arch
.xcr0
!= host_xcr0
)
809 xsetbv(XCR_XFEATURE_ENABLED_MASK
, vcpu
->arch
.xcr0
);
811 if (vcpu
->arch
.xsaves_enabled
&&
812 vcpu
->arch
.ia32_xss
!= host_xss
)
813 wrmsrl(MSR_IA32_XSS
, vcpu
->arch
.ia32_xss
);
816 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state
);
818 void kvm_load_host_xsave_state(struct kvm_vcpu
*vcpu
)
820 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
)) {
822 if (vcpu
->arch
.xcr0
!= host_xcr0
)
823 xsetbv(XCR_XFEATURE_ENABLED_MASK
, host_xcr0
);
825 if (vcpu
->arch
.xsaves_enabled
&&
826 vcpu
->arch
.ia32_xss
!= host_xss
)
827 wrmsrl(MSR_IA32_XSS
, host_xss
);
831 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state
);
833 static int __kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
836 u64 old_xcr0
= vcpu
->arch
.xcr0
;
839 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
840 if (index
!= XCR_XFEATURE_ENABLED_MASK
)
842 if (!(xcr0
& XFEATURE_MASK_FP
))
844 if ((xcr0
& XFEATURE_MASK_YMM
) && !(xcr0
& XFEATURE_MASK_SSE
))
848 * Do not allow the guest to set bits that we do not support
849 * saving. However, xcr0 bit 0 is always set, even if the
850 * emulated CPU does not support XSAVE (see fx_init).
852 valid_bits
= vcpu
->arch
.guest_supported_xcr0
| XFEATURE_MASK_FP
;
853 if (xcr0
& ~valid_bits
)
856 if ((!(xcr0
& XFEATURE_MASK_BNDREGS
)) !=
857 (!(xcr0
& XFEATURE_MASK_BNDCSR
)))
860 if (xcr0
& XFEATURE_MASK_AVX512
) {
861 if (!(xcr0
& XFEATURE_MASK_YMM
))
863 if ((xcr0
& XFEATURE_MASK_AVX512
) != XFEATURE_MASK_AVX512
)
866 vcpu
->arch
.xcr0
= xcr0
;
868 if ((xcr0
^ old_xcr0
) & XFEATURE_MASK_EXTEND
)
869 kvm_update_cpuid(vcpu
);
873 int kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
875 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 ||
876 __kvm_set_xcr(vcpu
, index
, xcr
)) {
877 kvm_inject_gp(vcpu
, 0);
882 EXPORT_SYMBOL_GPL(kvm_set_xcr
);
884 #define __cr4_reserved_bits(__cpu_has, __c) \
886 u64 __reserved_bits = CR4_RESERVED_BITS; \
888 if (!__cpu_has(__c, X86_FEATURE_XSAVE)) \
889 __reserved_bits |= X86_CR4_OSXSAVE; \
890 if (!__cpu_has(__c, X86_FEATURE_SMEP)) \
891 __reserved_bits |= X86_CR4_SMEP; \
892 if (!__cpu_has(__c, X86_FEATURE_SMAP)) \
893 __reserved_bits |= X86_CR4_SMAP; \
894 if (!__cpu_has(__c, X86_FEATURE_FSGSBASE)) \
895 __reserved_bits |= X86_CR4_FSGSBASE; \
896 if (!__cpu_has(__c, X86_FEATURE_PKU)) \
897 __reserved_bits |= X86_CR4_PKE; \
898 if (!__cpu_has(__c, X86_FEATURE_LA57)) \
899 __reserved_bits |= X86_CR4_LA57; \
903 static u64
kvm_host_cr4_reserved_bits(struct cpuinfo_x86
*c
)
905 u64 reserved_bits
= __cr4_reserved_bits(cpu_has
, c
);
907 if (cpuid_ecx(0x7) & feature_bit(LA57
))
908 reserved_bits
&= ~X86_CR4_LA57
;
910 if (kvm_x86_ops
->umip_emulated())
911 reserved_bits
&= ~X86_CR4_UMIP
;
913 return reserved_bits
;
916 static int kvm_valid_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
918 if (cr4
& cr4_reserved_bits
)
921 if (cr4
& __cr4_reserved_bits(guest_cpuid_has
, vcpu
))
927 int kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
929 unsigned long old_cr4
= kvm_read_cr4(vcpu
);
930 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
| X86_CR4_PAE
|
931 X86_CR4_SMEP
| X86_CR4_SMAP
| X86_CR4_PKE
;
933 if (kvm_valid_cr4(vcpu
, cr4
))
936 if (is_long_mode(vcpu
)) {
937 if (!(cr4
& X86_CR4_PAE
))
939 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
940 && ((cr4
^ old_cr4
) & pdptr_bits
)
941 && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
945 if ((cr4
& X86_CR4_PCIDE
) && !(old_cr4
& X86_CR4_PCIDE
)) {
946 if (!guest_cpuid_has(vcpu
, X86_FEATURE_PCID
))
949 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
950 if ((kvm_read_cr3(vcpu
) & X86_CR3_PCID_MASK
) || !is_long_mode(vcpu
))
954 if (kvm_x86_ops
->set_cr4(vcpu
, cr4
))
957 if (((cr4
^ old_cr4
) & pdptr_bits
) ||
958 (!(cr4
& X86_CR4_PCIDE
) && (old_cr4
& X86_CR4_PCIDE
)))
959 kvm_mmu_reset_context(vcpu
);
961 if ((cr4
^ old_cr4
) & (X86_CR4_OSXSAVE
| X86_CR4_PKE
))
962 kvm_update_cpuid(vcpu
);
966 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
968 int kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
970 bool skip_tlb_flush
= false;
972 bool pcid_enabled
= kvm_read_cr4_bits(vcpu
, X86_CR4_PCIDE
);
975 skip_tlb_flush
= cr3
& X86_CR3_PCID_NOFLUSH
;
976 cr3
&= ~X86_CR3_PCID_NOFLUSH
;
980 if (cr3
== kvm_read_cr3(vcpu
) && !pdptrs_changed(vcpu
)) {
981 if (!skip_tlb_flush
) {
982 kvm_mmu_sync_roots(vcpu
);
983 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
988 if (is_long_mode(vcpu
) &&
989 (cr3
& rsvd_bits(cpuid_maxphyaddr(vcpu
), 63)))
991 else if (is_pae_paging(vcpu
) &&
992 !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, cr3
))
995 kvm_mmu_new_cr3(vcpu
, cr3
, skip_tlb_flush
);
996 vcpu
->arch
.cr3
= cr3
;
997 kvm_register_mark_available(vcpu
, VCPU_EXREG_CR3
);
1001 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
1003 int kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
1005 if (cr8
& CR8_RESERVED_BITS
)
1007 if (lapic_in_kernel(vcpu
))
1008 kvm_lapic_set_tpr(vcpu
, cr8
);
1010 vcpu
->arch
.cr8
= cr8
;
1013 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
1015 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
1017 if (lapic_in_kernel(vcpu
))
1018 return kvm_lapic_get_cr8(vcpu
);
1020 return vcpu
->arch
.cr8
;
1022 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
1024 static void kvm_update_dr0123(struct kvm_vcpu
*vcpu
)
1028 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
1029 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
1030 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
1031 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_RELOAD
;
1035 static void kvm_update_dr6(struct kvm_vcpu
*vcpu
)
1037 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
1038 kvm_x86_ops
->set_dr6(vcpu
, vcpu
->arch
.dr6
);
1041 static void kvm_update_dr7(struct kvm_vcpu
*vcpu
)
1045 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
1046 dr7
= vcpu
->arch
.guest_debug_dr7
;
1048 dr7
= vcpu
->arch
.dr7
;
1049 kvm_x86_ops
->set_dr7(vcpu
, dr7
);
1050 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_BP_ENABLED
;
1051 if (dr7
& DR7_BP_EN_MASK
)
1052 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_BP_ENABLED
;
1055 static u64
kvm_dr6_fixed(struct kvm_vcpu
*vcpu
)
1057 u64 fixed
= DR6_FIXED_1
;
1059 if (!guest_cpuid_has(vcpu
, X86_FEATURE_RTM
))
1064 static int __kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
1066 size_t size
= ARRAY_SIZE(vcpu
->arch
.db
);
1070 vcpu
->arch
.db
[array_index_nospec(dr
, size
)] = val
;
1071 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
1072 vcpu
->arch
.eff_db
[dr
] = val
;
1077 if (val
& 0xffffffff00000000ULL
)
1078 return -1; /* #GP */
1079 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | kvm_dr6_fixed(vcpu
);
1080 kvm_update_dr6(vcpu
);
1085 if (!kvm_dr7_valid(val
))
1086 return -1; /* #GP */
1087 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
1088 kvm_update_dr7(vcpu
);
1095 int kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
1097 if (__kvm_set_dr(vcpu
, dr
, val
)) {
1098 kvm_inject_gp(vcpu
, 0);
1103 EXPORT_SYMBOL_GPL(kvm_set_dr
);
1105 int kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
1107 size_t size
= ARRAY_SIZE(vcpu
->arch
.db
);
1111 *val
= vcpu
->arch
.db
[array_index_nospec(dr
, size
)];
1116 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
1117 *val
= vcpu
->arch
.dr6
;
1119 *val
= kvm_x86_ops
->get_dr6(vcpu
);
1124 *val
= vcpu
->arch
.dr7
;
1129 EXPORT_SYMBOL_GPL(kvm_get_dr
);
1131 bool kvm_rdpmc(struct kvm_vcpu
*vcpu
)
1133 u32 ecx
= kvm_rcx_read(vcpu
);
1137 err
= kvm_pmu_rdpmc(vcpu
, ecx
, &data
);
1140 kvm_rax_write(vcpu
, (u32
)data
);
1141 kvm_rdx_write(vcpu
, data
>> 32);
1144 EXPORT_SYMBOL_GPL(kvm_rdpmc
);
1147 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1148 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1150 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1151 * extract the supported MSRs from the related const lists.
1152 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1153 * capabilities of the host cpu. This capabilities test skips MSRs that are
1154 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1155 * may depend on host virtualization features rather than host cpu features.
1158 static const u32 msrs_to_save_all
[] = {
1159 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
1161 #ifdef CONFIG_X86_64
1162 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
1164 MSR_IA32_TSC
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
,
1165 MSR_IA32_FEAT_CTL
, MSR_IA32_BNDCFGS
, MSR_TSC_AUX
,
1167 MSR_IA32_RTIT_CTL
, MSR_IA32_RTIT_STATUS
, MSR_IA32_RTIT_CR3_MATCH
,
1168 MSR_IA32_RTIT_OUTPUT_BASE
, MSR_IA32_RTIT_OUTPUT_MASK
,
1169 MSR_IA32_RTIT_ADDR0_A
, MSR_IA32_RTIT_ADDR0_B
,
1170 MSR_IA32_RTIT_ADDR1_A
, MSR_IA32_RTIT_ADDR1_B
,
1171 MSR_IA32_RTIT_ADDR2_A
, MSR_IA32_RTIT_ADDR2_B
,
1172 MSR_IA32_RTIT_ADDR3_A
, MSR_IA32_RTIT_ADDR3_B
,
1173 MSR_IA32_UMWAIT_CONTROL
,
1175 MSR_ARCH_PERFMON_FIXED_CTR0
, MSR_ARCH_PERFMON_FIXED_CTR1
,
1176 MSR_ARCH_PERFMON_FIXED_CTR0
+ 2, MSR_ARCH_PERFMON_FIXED_CTR0
+ 3,
1177 MSR_CORE_PERF_FIXED_CTR_CTRL
, MSR_CORE_PERF_GLOBAL_STATUS
,
1178 MSR_CORE_PERF_GLOBAL_CTRL
, MSR_CORE_PERF_GLOBAL_OVF_CTRL
,
1179 MSR_ARCH_PERFMON_PERFCTR0
, MSR_ARCH_PERFMON_PERFCTR1
,
1180 MSR_ARCH_PERFMON_PERFCTR0
+ 2, MSR_ARCH_PERFMON_PERFCTR0
+ 3,
1181 MSR_ARCH_PERFMON_PERFCTR0
+ 4, MSR_ARCH_PERFMON_PERFCTR0
+ 5,
1182 MSR_ARCH_PERFMON_PERFCTR0
+ 6, MSR_ARCH_PERFMON_PERFCTR0
+ 7,
1183 MSR_ARCH_PERFMON_PERFCTR0
+ 8, MSR_ARCH_PERFMON_PERFCTR0
+ 9,
1184 MSR_ARCH_PERFMON_PERFCTR0
+ 10, MSR_ARCH_PERFMON_PERFCTR0
+ 11,
1185 MSR_ARCH_PERFMON_PERFCTR0
+ 12, MSR_ARCH_PERFMON_PERFCTR0
+ 13,
1186 MSR_ARCH_PERFMON_PERFCTR0
+ 14, MSR_ARCH_PERFMON_PERFCTR0
+ 15,
1187 MSR_ARCH_PERFMON_PERFCTR0
+ 16, MSR_ARCH_PERFMON_PERFCTR0
+ 17,
1188 MSR_ARCH_PERFMON_EVENTSEL0
, MSR_ARCH_PERFMON_EVENTSEL1
,
1189 MSR_ARCH_PERFMON_EVENTSEL0
+ 2, MSR_ARCH_PERFMON_EVENTSEL0
+ 3,
1190 MSR_ARCH_PERFMON_EVENTSEL0
+ 4, MSR_ARCH_PERFMON_EVENTSEL0
+ 5,
1191 MSR_ARCH_PERFMON_EVENTSEL0
+ 6, MSR_ARCH_PERFMON_EVENTSEL0
+ 7,
1192 MSR_ARCH_PERFMON_EVENTSEL0
+ 8, MSR_ARCH_PERFMON_EVENTSEL0
+ 9,
1193 MSR_ARCH_PERFMON_EVENTSEL0
+ 10, MSR_ARCH_PERFMON_EVENTSEL0
+ 11,
1194 MSR_ARCH_PERFMON_EVENTSEL0
+ 12, MSR_ARCH_PERFMON_EVENTSEL0
+ 13,
1195 MSR_ARCH_PERFMON_EVENTSEL0
+ 14, MSR_ARCH_PERFMON_EVENTSEL0
+ 15,
1196 MSR_ARCH_PERFMON_EVENTSEL0
+ 16, MSR_ARCH_PERFMON_EVENTSEL0
+ 17,
1199 static u32 msrs_to_save
[ARRAY_SIZE(msrs_to_save_all
)];
1200 static unsigned num_msrs_to_save
;
1202 static const u32 emulated_msrs_all
[] = {
1203 MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
1204 MSR_KVM_SYSTEM_TIME_NEW
, MSR_KVM_WALL_CLOCK_NEW
,
1205 HV_X64_MSR_GUEST_OS_ID
, HV_X64_MSR_HYPERCALL
,
1206 HV_X64_MSR_TIME_REF_COUNT
, HV_X64_MSR_REFERENCE_TSC
,
1207 HV_X64_MSR_TSC_FREQUENCY
, HV_X64_MSR_APIC_FREQUENCY
,
1208 HV_X64_MSR_CRASH_P0
, HV_X64_MSR_CRASH_P1
, HV_X64_MSR_CRASH_P2
,
1209 HV_X64_MSR_CRASH_P3
, HV_X64_MSR_CRASH_P4
, HV_X64_MSR_CRASH_CTL
,
1211 HV_X64_MSR_VP_INDEX
,
1212 HV_X64_MSR_VP_RUNTIME
,
1213 HV_X64_MSR_SCONTROL
,
1214 HV_X64_MSR_STIMER0_CONFIG
,
1215 HV_X64_MSR_VP_ASSIST_PAGE
,
1216 HV_X64_MSR_REENLIGHTENMENT_CONTROL
, HV_X64_MSR_TSC_EMULATION_CONTROL
,
1217 HV_X64_MSR_TSC_EMULATION_STATUS
,
1219 MSR_KVM_ASYNC_PF_EN
, MSR_KVM_STEAL_TIME
,
1222 MSR_IA32_TSC_ADJUST
,
1223 MSR_IA32_TSCDEADLINE
,
1224 MSR_IA32_ARCH_CAPABILITIES
,
1225 MSR_IA32_MISC_ENABLE
,
1226 MSR_IA32_MCG_STATUS
,
1228 MSR_IA32_MCG_EXT_CTL
,
1232 MSR_MISC_FEATURES_ENABLES
,
1233 MSR_AMD64_VIRT_SPEC_CTRL
,
1238 * The following list leaves out MSRs whose values are determined
1239 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1240 * We always support the "true" VMX control MSRs, even if the host
1241 * processor does not, so I am putting these registers here rather
1242 * than in msrs_to_save_all.
1245 MSR_IA32_VMX_TRUE_PINBASED_CTLS
,
1246 MSR_IA32_VMX_TRUE_PROCBASED_CTLS
,
1247 MSR_IA32_VMX_TRUE_EXIT_CTLS
,
1248 MSR_IA32_VMX_TRUE_ENTRY_CTLS
,
1250 MSR_IA32_VMX_CR0_FIXED0
,
1251 MSR_IA32_VMX_CR4_FIXED0
,
1252 MSR_IA32_VMX_VMCS_ENUM
,
1253 MSR_IA32_VMX_PROCBASED_CTLS2
,
1254 MSR_IA32_VMX_EPT_VPID_CAP
,
1255 MSR_IA32_VMX_VMFUNC
,
1258 MSR_KVM_POLL_CONTROL
,
1261 static u32 emulated_msrs
[ARRAY_SIZE(emulated_msrs_all
)];
1262 static unsigned num_emulated_msrs
;
1265 * List of msr numbers which are used to expose MSR-based features that
1266 * can be used by a hypervisor to validate requested CPU features.
1268 static const u32 msr_based_features_all
[] = {
1270 MSR_IA32_VMX_TRUE_PINBASED_CTLS
,
1271 MSR_IA32_VMX_PINBASED_CTLS
,
1272 MSR_IA32_VMX_TRUE_PROCBASED_CTLS
,
1273 MSR_IA32_VMX_PROCBASED_CTLS
,
1274 MSR_IA32_VMX_TRUE_EXIT_CTLS
,
1275 MSR_IA32_VMX_EXIT_CTLS
,
1276 MSR_IA32_VMX_TRUE_ENTRY_CTLS
,
1277 MSR_IA32_VMX_ENTRY_CTLS
,
1279 MSR_IA32_VMX_CR0_FIXED0
,
1280 MSR_IA32_VMX_CR0_FIXED1
,
1281 MSR_IA32_VMX_CR4_FIXED0
,
1282 MSR_IA32_VMX_CR4_FIXED1
,
1283 MSR_IA32_VMX_VMCS_ENUM
,
1284 MSR_IA32_VMX_PROCBASED_CTLS2
,
1285 MSR_IA32_VMX_EPT_VPID_CAP
,
1286 MSR_IA32_VMX_VMFUNC
,
1290 MSR_IA32_ARCH_CAPABILITIES
,
1293 static u32 msr_based_features
[ARRAY_SIZE(msr_based_features_all
)];
1294 static unsigned int num_msr_based_features
;
1296 static u64
kvm_get_arch_capabilities(void)
1300 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES
))
1301 rdmsrl(MSR_IA32_ARCH_CAPABILITIES
, data
);
1304 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1305 * the nested hypervisor runs with NX huge pages. If it is not,
1306 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1307 * L1 guests, so it need not worry about its own (L2) guests.
1309 data
|= ARCH_CAP_PSCHANGE_MC_NO
;
1312 * If we're doing cache flushes (either "always" or "cond")
1313 * we will do one whenever the guest does a vmlaunch/vmresume.
1314 * If an outer hypervisor is doing the cache flush for us
1315 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1316 * capability to the guest too, and if EPT is disabled we're not
1317 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1318 * require a nested hypervisor to do a flush of its own.
1320 if (l1tf_vmx_mitigation
!= VMENTER_L1D_FLUSH_NEVER
)
1321 data
|= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH
;
1323 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN
))
1324 data
|= ARCH_CAP_RDCL_NO
;
1325 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS
))
1326 data
|= ARCH_CAP_SSB_NO
;
1327 if (!boot_cpu_has_bug(X86_BUG_MDS
))
1328 data
|= ARCH_CAP_MDS_NO
;
1331 * On TAA affected systems:
1332 * - nothing to do if TSX is disabled on the host.
1333 * - we emulate TSX_CTRL if present on the host.
1334 * This lets the guest use VERW to clear CPU buffers.
1336 if (!boot_cpu_has(X86_FEATURE_RTM
))
1337 data
&= ~(ARCH_CAP_TAA_NO
| ARCH_CAP_TSX_CTRL_MSR
);
1338 else if (!boot_cpu_has_bug(X86_BUG_TAA
))
1339 data
|= ARCH_CAP_TAA_NO
;
1344 static int kvm_get_msr_feature(struct kvm_msr_entry
*msr
)
1346 switch (msr
->index
) {
1347 case MSR_IA32_ARCH_CAPABILITIES
:
1348 msr
->data
= kvm_get_arch_capabilities();
1350 case MSR_IA32_UCODE_REV
:
1351 rdmsrl_safe(msr
->index
, &msr
->data
);
1354 if (kvm_x86_ops
->get_msr_feature(msr
))
1360 static int do_get_msr_feature(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
1362 struct kvm_msr_entry msr
;
1366 r
= kvm_get_msr_feature(&msr
);
1375 static bool __kvm_valid_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1377 if (efer
& EFER_FFXSR
&& !guest_cpuid_has(vcpu
, X86_FEATURE_FXSR_OPT
))
1380 if (efer
& EFER_SVME
&& !guest_cpuid_has(vcpu
, X86_FEATURE_SVM
))
1383 if (efer
& (EFER_LME
| EFER_LMA
) &&
1384 !guest_cpuid_has(vcpu
, X86_FEATURE_LM
))
1387 if (efer
& EFER_NX
&& !guest_cpuid_has(vcpu
, X86_FEATURE_NX
))
1393 bool kvm_valid_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1395 if (efer
& efer_reserved_bits
)
1398 return __kvm_valid_efer(vcpu
, efer
);
1400 EXPORT_SYMBOL_GPL(kvm_valid_efer
);
1402 static int set_efer(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
1404 u64 old_efer
= vcpu
->arch
.efer
;
1405 u64 efer
= msr_info
->data
;
1407 if (efer
& efer_reserved_bits
)
1410 if (!msr_info
->host_initiated
) {
1411 if (!__kvm_valid_efer(vcpu
, efer
))
1414 if (is_paging(vcpu
) &&
1415 (vcpu
->arch
.efer
& EFER_LME
) != (efer
& EFER_LME
))
1420 efer
|= vcpu
->arch
.efer
& EFER_LMA
;
1422 kvm_x86_ops
->set_efer(vcpu
, efer
);
1424 /* Update reserved bits */
1425 if ((efer
^ old_efer
) & EFER_NX
)
1426 kvm_mmu_reset_context(vcpu
);
1431 void kvm_enable_efer_bits(u64 mask
)
1433 efer_reserved_bits
&= ~mask
;
1435 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
1438 * Write @data into the MSR specified by @index. Select MSR specific fault
1439 * checks are bypassed if @host_initiated is %true.
1440 * Returns 0 on success, non-0 otherwise.
1441 * Assumes vcpu_load() was already called.
1443 static int __kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 index
, u64 data
,
1444 bool host_initiated
)
1446 struct msr_data msr
;
1451 case MSR_KERNEL_GS_BASE
:
1454 if (is_noncanonical_address(data
, vcpu
))
1457 case MSR_IA32_SYSENTER_EIP
:
1458 case MSR_IA32_SYSENTER_ESP
:
1460 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1461 * non-canonical address is written on Intel but not on
1462 * AMD (which ignores the top 32-bits, because it does
1463 * not implement 64-bit SYSENTER).
1465 * 64-bit code should hence be able to write a non-canonical
1466 * value on AMD. Making the address canonical ensures that
1467 * vmentry does not fail on Intel after writing a non-canonical
1468 * value, and that something deterministic happens if the guest
1469 * invokes 64-bit SYSENTER.
1471 data
= get_canonical(data
, vcpu_virt_addr_bits(vcpu
));
1476 msr
.host_initiated
= host_initiated
;
1478 return kvm_x86_ops
->set_msr(vcpu
, &msr
);
1482 * Read the MSR specified by @index into @data. Select MSR specific fault
1483 * checks are bypassed if @host_initiated is %true.
1484 * Returns 0 on success, non-0 otherwise.
1485 * Assumes vcpu_load() was already called.
1487 int __kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 index
, u64
*data
,
1488 bool host_initiated
)
1490 struct msr_data msr
;
1494 msr
.host_initiated
= host_initiated
;
1496 ret
= kvm_x86_ops
->get_msr(vcpu
, &msr
);
1502 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 index
, u64
*data
)
1504 return __kvm_get_msr(vcpu
, index
, data
, false);
1506 EXPORT_SYMBOL_GPL(kvm_get_msr
);
1508 int kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 index
, u64 data
)
1510 return __kvm_set_msr(vcpu
, index
, data
, false);
1512 EXPORT_SYMBOL_GPL(kvm_set_msr
);
1514 int kvm_emulate_rdmsr(struct kvm_vcpu
*vcpu
)
1516 u32 ecx
= kvm_rcx_read(vcpu
);
1519 if (kvm_get_msr(vcpu
, ecx
, &data
)) {
1520 trace_kvm_msr_read_ex(ecx
);
1521 kvm_inject_gp(vcpu
, 0);
1525 trace_kvm_msr_read(ecx
, data
);
1527 kvm_rax_write(vcpu
, data
& -1u);
1528 kvm_rdx_write(vcpu
, (data
>> 32) & -1u);
1529 return kvm_skip_emulated_instruction(vcpu
);
1531 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr
);
1533 int kvm_emulate_wrmsr(struct kvm_vcpu
*vcpu
)
1535 u32 ecx
= kvm_rcx_read(vcpu
);
1536 u64 data
= kvm_read_edx_eax(vcpu
);
1538 if (kvm_set_msr(vcpu
, ecx
, data
)) {
1539 trace_kvm_msr_write_ex(ecx
, data
);
1540 kvm_inject_gp(vcpu
, 0);
1544 trace_kvm_msr_write(ecx
, data
);
1545 return kvm_skip_emulated_instruction(vcpu
);
1547 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr
);
1550 * The fast path for frequent and performance sensitive wrmsr emulation,
1551 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1552 * the latency of virtual IPI by avoiding the expensive bits of transitioning
1553 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1554 * other cases which must be called after interrupts are enabled on the host.
1556 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu
*vcpu
, u64 data
)
1558 if (lapic_in_kernel(vcpu
) && apic_x2apic_mode(vcpu
->arch
.apic
) &&
1559 ((data
& APIC_DEST_MASK
) == APIC_DEST_PHYSICAL
) &&
1560 ((data
& APIC_MODE_MASK
) == APIC_DM_FIXED
)) {
1562 kvm_lapic_set_reg(vcpu
->arch
.apic
, APIC_ICR2
, (u32
)(data
>> 32));
1563 return kvm_lapic_reg_write(vcpu
->arch
.apic
, APIC_ICR
, (u32
)data
);
1569 enum exit_fastpath_completion
handle_fastpath_set_msr_irqoff(struct kvm_vcpu
*vcpu
)
1571 u32 msr
= kvm_rcx_read(vcpu
);
1572 u64 data
= kvm_read_edx_eax(vcpu
);
1576 case APIC_BASE_MSR
+ (APIC_ICR
>> 4):
1577 ret
= handle_fastpath_set_x2apic_icr_irqoff(vcpu
, data
);
1580 return EXIT_FASTPATH_NONE
;
1584 trace_kvm_msr_write(msr
, data
);
1585 return EXIT_FASTPATH_SKIP_EMUL_INS
;
1588 return EXIT_FASTPATH_NONE
;
1590 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff
);
1593 * Adapt set_msr() to msr_io()'s calling convention
1595 static int do_get_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
1597 return __kvm_get_msr(vcpu
, index
, data
, true);
1600 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
1602 return __kvm_set_msr(vcpu
, index
, *data
, true);
1605 #ifdef CONFIG_X86_64
1606 struct pvclock_clock
{
1614 struct pvclock_gtod_data
{
1617 struct pvclock_clock clock
; /* extract of a clocksource struct */
1618 struct pvclock_clock raw_clock
; /* extract of a clocksource struct */
1624 u64 monotonic_raw_nsec
;
1627 static struct pvclock_gtod_data pvclock_gtod_data
;
1629 static void update_pvclock_gtod(struct timekeeper
*tk
)
1631 struct pvclock_gtod_data
*vdata
= &pvclock_gtod_data
;
1632 u64 boot_ns
, boot_ns_raw
;
1634 boot_ns
= ktime_to_ns(ktime_add(tk
->tkr_mono
.base
, tk
->offs_boot
));
1635 boot_ns_raw
= ktime_to_ns(ktime_add(tk
->tkr_raw
.base
, tk
->offs_boot
));
1637 write_seqcount_begin(&vdata
->seq
);
1639 /* copy pvclock gtod data */
1640 vdata
->clock
.vclock_mode
= tk
->tkr_mono
.clock
->archdata
.vclock_mode
;
1641 vdata
->clock
.cycle_last
= tk
->tkr_mono
.cycle_last
;
1642 vdata
->clock
.mask
= tk
->tkr_mono
.mask
;
1643 vdata
->clock
.mult
= tk
->tkr_mono
.mult
;
1644 vdata
->clock
.shift
= tk
->tkr_mono
.shift
;
1646 vdata
->raw_clock
.vclock_mode
= tk
->tkr_raw
.clock
->archdata
.vclock_mode
;
1647 vdata
->raw_clock
.cycle_last
= tk
->tkr_raw
.cycle_last
;
1648 vdata
->raw_clock
.mask
= tk
->tkr_raw
.mask
;
1649 vdata
->raw_clock
.mult
= tk
->tkr_raw
.mult
;
1650 vdata
->raw_clock
.shift
= tk
->tkr_raw
.shift
;
1652 vdata
->boot_ns
= boot_ns
;
1653 vdata
->nsec_base
= tk
->tkr_mono
.xtime_nsec
;
1655 vdata
->wall_time_sec
= tk
->xtime_sec
;
1657 vdata
->boot_ns_raw
= boot_ns_raw
;
1658 vdata
->monotonic_raw_nsec
= tk
->tkr_raw
.xtime_nsec
;
1660 write_seqcount_end(&vdata
->seq
);
1664 void kvm_set_pending_timer(struct kvm_vcpu
*vcpu
)
1666 kvm_make_request(KVM_REQ_PENDING_TIMER
, vcpu
);
1667 kvm_vcpu_kick(vcpu
);
1670 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
1674 struct pvclock_wall_clock wc
;
1675 struct timespec64 boot
;
1680 r
= kvm_read_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1685 ++version
; /* first time write, random junk */
1689 if (kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
)))
1693 * The guest calculates current wall clock time by adding
1694 * system time (updated by kvm_guest_time_update below) to the
1695 * wall clock specified here. guest system time equals host
1696 * system time for us, thus we must fill in host boot time here.
1698 getboottime64(&boot
);
1700 if (kvm
->arch
.kvmclock_offset
) {
1701 struct timespec64 ts
= ns_to_timespec64(kvm
->arch
.kvmclock_offset
);
1702 boot
= timespec64_sub(boot
, ts
);
1704 wc
.sec
= (u32
)boot
.tv_sec
; /* overflow in 2106 guest time */
1705 wc
.nsec
= boot
.tv_nsec
;
1706 wc
.version
= version
;
1708 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
1711 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1714 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
1716 do_shl32_div32(dividend
, divisor
);
1720 static void kvm_get_time_scale(uint64_t scaled_hz
, uint64_t base_hz
,
1721 s8
*pshift
, u32
*pmultiplier
)
1729 scaled64
= scaled_hz
;
1730 while (tps64
> scaled64
*2 || tps64
& 0xffffffff00000000ULL
) {
1735 tps32
= (uint32_t)tps64
;
1736 while (tps32
<= scaled64
|| scaled64
& 0xffffffff00000000ULL
) {
1737 if (scaled64
& 0xffffffff00000000ULL
|| tps32
& 0x80000000)
1745 *pmultiplier
= div_frac(scaled64
, tps32
);
1748 #ifdef CONFIG_X86_64
1749 static atomic_t kvm_guest_has_master_clock
= ATOMIC_INIT(0);
1752 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
1753 static unsigned long max_tsc_khz
;
1755 static u32
adjust_tsc_khz(u32 khz
, s32 ppm
)
1757 u64 v
= (u64
)khz
* (1000000 + ppm
);
1762 static int set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
, bool scale
)
1766 /* Guest TSC same frequency as host TSC? */
1768 vcpu
->arch
.tsc_scaling_ratio
= kvm_default_tsc_scaling_ratio
;
1772 /* TSC scaling supported? */
1773 if (!kvm_has_tsc_control
) {
1774 if (user_tsc_khz
> tsc_khz
) {
1775 vcpu
->arch
.tsc_catchup
= 1;
1776 vcpu
->arch
.tsc_always_catchup
= 1;
1779 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1784 /* TSC scaling required - calculate ratio */
1785 ratio
= mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits
,
1786 user_tsc_khz
, tsc_khz
);
1788 if (ratio
== 0 || ratio
>= kvm_max_tsc_scaling_ratio
) {
1789 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1794 vcpu
->arch
.tsc_scaling_ratio
= ratio
;
1798 static int kvm_set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
)
1800 u32 thresh_lo
, thresh_hi
;
1801 int use_scaling
= 0;
1803 /* tsc_khz can be zero if TSC calibration fails */
1804 if (user_tsc_khz
== 0) {
1805 /* set tsc_scaling_ratio to a safe value */
1806 vcpu
->arch
.tsc_scaling_ratio
= kvm_default_tsc_scaling_ratio
;
1810 /* Compute a scale to convert nanoseconds in TSC cycles */
1811 kvm_get_time_scale(user_tsc_khz
* 1000LL, NSEC_PER_SEC
,
1812 &vcpu
->arch
.virtual_tsc_shift
,
1813 &vcpu
->arch
.virtual_tsc_mult
);
1814 vcpu
->arch
.virtual_tsc_khz
= user_tsc_khz
;
1817 * Compute the variation in TSC rate which is acceptable
1818 * within the range of tolerance and decide if the
1819 * rate being applied is within that bounds of the hardware
1820 * rate. If so, no scaling or compensation need be done.
1822 thresh_lo
= adjust_tsc_khz(tsc_khz
, -tsc_tolerance_ppm
);
1823 thresh_hi
= adjust_tsc_khz(tsc_khz
, tsc_tolerance_ppm
);
1824 if (user_tsc_khz
< thresh_lo
|| user_tsc_khz
> thresh_hi
) {
1825 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz
, thresh_lo
, thresh_hi
);
1828 return set_tsc_khz(vcpu
, user_tsc_khz
, use_scaling
);
1831 static u64
compute_guest_tsc(struct kvm_vcpu
*vcpu
, s64 kernel_ns
)
1833 u64 tsc
= pvclock_scale_delta(kernel_ns
-vcpu
->arch
.this_tsc_nsec
,
1834 vcpu
->arch
.virtual_tsc_mult
,
1835 vcpu
->arch
.virtual_tsc_shift
);
1836 tsc
+= vcpu
->arch
.this_tsc_write
;
1840 static inline int gtod_is_based_on_tsc(int mode
)
1842 return mode
== VCLOCK_TSC
|| mode
== VCLOCK_HVCLOCK
;
1845 static void kvm_track_tsc_matching(struct kvm_vcpu
*vcpu
)
1847 #ifdef CONFIG_X86_64
1849 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
1850 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1852 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1853 atomic_read(&vcpu
->kvm
->online_vcpus
));
1856 * Once the masterclock is enabled, always perform request in
1857 * order to update it.
1859 * In order to enable masterclock, the host clocksource must be TSC
1860 * and the vcpus need to have matched TSCs. When that happens,
1861 * perform request to enable masterclock.
1863 if (ka
->use_master_clock
||
1864 (gtod_is_based_on_tsc(gtod
->clock
.vclock_mode
) && vcpus_matched
))
1865 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
1867 trace_kvm_track_tsc(vcpu
->vcpu_id
, ka
->nr_vcpus_matched_tsc
,
1868 atomic_read(&vcpu
->kvm
->online_vcpus
),
1869 ka
->use_master_clock
, gtod
->clock
.vclock_mode
);
1873 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu
*vcpu
, s64 offset
)
1875 u64 curr_offset
= kvm_x86_ops
->read_l1_tsc_offset(vcpu
);
1876 vcpu
->arch
.ia32_tsc_adjust_msr
+= offset
- curr_offset
;
1880 * Multiply tsc by a fixed point number represented by ratio.
1882 * The most significant 64-N bits (mult) of ratio represent the
1883 * integral part of the fixed point number; the remaining N bits
1884 * (frac) represent the fractional part, ie. ratio represents a fixed
1885 * point number (mult + frac * 2^(-N)).
1887 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1889 static inline u64
__scale_tsc(u64 ratio
, u64 tsc
)
1891 return mul_u64_u64_shr(tsc
, ratio
, kvm_tsc_scaling_ratio_frac_bits
);
1894 u64
kvm_scale_tsc(struct kvm_vcpu
*vcpu
, u64 tsc
)
1897 u64 ratio
= vcpu
->arch
.tsc_scaling_ratio
;
1899 if (ratio
!= kvm_default_tsc_scaling_ratio
)
1900 _tsc
= __scale_tsc(ratio
, tsc
);
1904 EXPORT_SYMBOL_GPL(kvm_scale_tsc
);
1906 static u64
kvm_compute_tsc_offset(struct kvm_vcpu
*vcpu
, u64 target_tsc
)
1910 tsc
= kvm_scale_tsc(vcpu
, rdtsc());
1912 return target_tsc
- tsc
;
1915 u64
kvm_read_l1_tsc(struct kvm_vcpu
*vcpu
, u64 host_tsc
)
1917 u64 tsc_offset
= kvm_x86_ops
->read_l1_tsc_offset(vcpu
);
1919 return tsc_offset
+ kvm_scale_tsc(vcpu
, host_tsc
);
1921 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc
);
1923 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
1925 vcpu
->arch
.tsc_offset
= kvm_x86_ops
->write_l1_tsc_offset(vcpu
, offset
);
1928 static inline bool kvm_check_tsc_unstable(void)
1930 #ifdef CONFIG_X86_64
1932 * TSC is marked unstable when we're running on Hyper-V,
1933 * 'TSC page' clocksource is good.
1935 if (pvclock_gtod_data
.clock
.vclock_mode
== VCLOCK_HVCLOCK
)
1938 return check_tsc_unstable();
1941 void kvm_write_tsc(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
1943 struct kvm
*kvm
= vcpu
->kvm
;
1944 u64 offset
, ns
, elapsed
;
1945 unsigned long flags
;
1947 bool already_matched
;
1948 u64 data
= msr
->data
;
1949 bool synchronizing
= false;
1951 raw_spin_lock_irqsave(&kvm
->arch
.tsc_write_lock
, flags
);
1952 offset
= kvm_compute_tsc_offset(vcpu
, data
);
1953 ns
= ktime_get_boottime_ns();
1954 elapsed
= ns
- kvm
->arch
.last_tsc_nsec
;
1956 if (vcpu
->arch
.virtual_tsc_khz
) {
1957 if (data
== 0 && msr
->host_initiated
) {
1959 * detection of vcpu initialization -- need to sync
1960 * with other vCPUs. This particularly helps to keep
1961 * kvm_clock stable after CPU hotplug
1963 synchronizing
= true;
1965 u64 tsc_exp
= kvm
->arch
.last_tsc_write
+
1966 nsec_to_cycles(vcpu
, elapsed
);
1967 u64 tsc_hz
= vcpu
->arch
.virtual_tsc_khz
* 1000LL;
1969 * Special case: TSC write with a small delta (1 second)
1970 * of virtual cycle time against real time is
1971 * interpreted as an attempt to synchronize the CPU.
1973 synchronizing
= data
< tsc_exp
+ tsc_hz
&&
1974 data
+ tsc_hz
> tsc_exp
;
1979 * For a reliable TSC, we can match TSC offsets, and for an unstable
1980 * TSC, we add elapsed time in this computation. We could let the
1981 * compensation code attempt to catch up if we fall behind, but
1982 * it's better to try to match offsets from the beginning.
1984 if (synchronizing
&&
1985 vcpu
->arch
.virtual_tsc_khz
== kvm
->arch
.last_tsc_khz
) {
1986 if (!kvm_check_tsc_unstable()) {
1987 offset
= kvm
->arch
.cur_tsc_offset
;
1989 u64 delta
= nsec_to_cycles(vcpu
, elapsed
);
1991 offset
= kvm_compute_tsc_offset(vcpu
, data
);
1994 already_matched
= (vcpu
->arch
.this_tsc_generation
== kvm
->arch
.cur_tsc_generation
);
1997 * We split periods of matched TSC writes into generations.
1998 * For each generation, we track the original measured
1999 * nanosecond time, offset, and write, so if TSCs are in
2000 * sync, we can match exact offset, and if not, we can match
2001 * exact software computation in compute_guest_tsc()
2003 * These values are tracked in kvm->arch.cur_xxx variables.
2005 kvm
->arch
.cur_tsc_generation
++;
2006 kvm
->arch
.cur_tsc_nsec
= ns
;
2007 kvm
->arch
.cur_tsc_write
= data
;
2008 kvm
->arch
.cur_tsc_offset
= offset
;
2013 * We also track th most recent recorded KHZ, write and time to
2014 * allow the matching interval to be extended at each write.
2016 kvm
->arch
.last_tsc_nsec
= ns
;
2017 kvm
->arch
.last_tsc_write
= data
;
2018 kvm
->arch
.last_tsc_khz
= vcpu
->arch
.virtual_tsc_khz
;
2020 vcpu
->arch
.last_guest_tsc
= data
;
2022 /* Keep track of which generation this VCPU has synchronized to */
2023 vcpu
->arch
.this_tsc_generation
= kvm
->arch
.cur_tsc_generation
;
2024 vcpu
->arch
.this_tsc_nsec
= kvm
->arch
.cur_tsc_nsec
;
2025 vcpu
->arch
.this_tsc_write
= kvm
->arch
.cur_tsc_write
;
2027 if (!msr
->host_initiated
&& guest_cpuid_has(vcpu
, X86_FEATURE_TSC_ADJUST
))
2028 update_ia32_tsc_adjust_msr(vcpu
, offset
);
2030 kvm_vcpu_write_tsc_offset(vcpu
, offset
);
2031 raw_spin_unlock_irqrestore(&kvm
->arch
.tsc_write_lock
, flags
);
2033 spin_lock(&kvm
->arch
.pvclock_gtod_sync_lock
);
2035 kvm
->arch
.nr_vcpus_matched_tsc
= 0;
2036 } else if (!already_matched
) {
2037 kvm
->arch
.nr_vcpus_matched_tsc
++;
2040 kvm_track_tsc_matching(vcpu
);
2041 spin_unlock(&kvm
->arch
.pvclock_gtod_sync_lock
);
2044 EXPORT_SYMBOL_GPL(kvm_write_tsc
);
2046 static inline void adjust_tsc_offset_guest(struct kvm_vcpu
*vcpu
,
2049 u64 tsc_offset
= kvm_x86_ops
->read_l1_tsc_offset(vcpu
);
2050 kvm_vcpu_write_tsc_offset(vcpu
, tsc_offset
+ adjustment
);
2053 static inline void adjust_tsc_offset_host(struct kvm_vcpu
*vcpu
, s64 adjustment
)
2055 if (vcpu
->arch
.tsc_scaling_ratio
!= kvm_default_tsc_scaling_ratio
)
2056 WARN_ON(adjustment
< 0);
2057 adjustment
= kvm_scale_tsc(vcpu
, (u64
) adjustment
);
2058 adjust_tsc_offset_guest(vcpu
, adjustment
);
2061 #ifdef CONFIG_X86_64
2063 static u64
read_tsc(void)
2065 u64 ret
= (u64
)rdtsc_ordered();
2066 u64 last
= pvclock_gtod_data
.clock
.cycle_last
;
2068 if (likely(ret
>= last
))
2072 * GCC likes to generate cmov here, but this branch is extremely
2073 * predictable (it's just a function of time and the likely is
2074 * very likely) and there's a data dependence, so force GCC
2075 * to generate a branch instead. I don't barrier() because
2076 * we don't actually need a barrier, and if this function
2077 * ever gets inlined it will generate worse code.
2083 static inline u64
vgettsc(struct pvclock_clock
*clock
, u64
*tsc_timestamp
,
2089 switch (clock
->vclock_mode
) {
2090 case VCLOCK_HVCLOCK
:
2091 tsc_pg_val
= hv_read_tsc_page_tsc(hv_get_tsc_page(),
2093 if (tsc_pg_val
!= U64_MAX
) {
2094 /* TSC page valid */
2095 *mode
= VCLOCK_HVCLOCK
;
2096 v
= (tsc_pg_val
- clock
->cycle_last
) &
2099 /* TSC page invalid */
2100 *mode
= VCLOCK_NONE
;
2105 *tsc_timestamp
= read_tsc();
2106 v
= (*tsc_timestamp
- clock
->cycle_last
) &
2110 *mode
= VCLOCK_NONE
;
2113 if (*mode
== VCLOCK_NONE
)
2114 *tsc_timestamp
= v
= 0;
2116 return v
* clock
->mult
;
2119 static int do_monotonic_raw(s64
*t
, u64
*tsc_timestamp
)
2121 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
2127 seq
= read_seqcount_begin(>od
->seq
);
2128 ns
= gtod
->monotonic_raw_nsec
;
2129 ns
+= vgettsc(>od
->raw_clock
, tsc_timestamp
, &mode
);
2130 ns
>>= gtod
->clock
.shift
;
2131 ns
+= gtod
->boot_ns_raw
;
2132 } while (unlikely(read_seqcount_retry(>od
->seq
, seq
)));
2138 static int do_realtime(struct timespec64
*ts
, u64
*tsc_timestamp
)
2140 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
2146 seq
= read_seqcount_begin(>od
->seq
);
2147 ts
->tv_sec
= gtod
->wall_time_sec
;
2148 ns
= gtod
->nsec_base
;
2149 ns
+= vgettsc(>od
->clock
, tsc_timestamp
, &mode
);
2150 ns
>>= gtod
->clock
.shift
;
2151 } while (unlikely(read_seqcount_retry(>od
->seq
, seq
)));
2153 ts
->tv_sec
+= __iter_div_u64_rem(ns
, NSEC_PER_SEC
, &ns
);
2159 /* returns true if host is using TSC based clocksource */
2160 static bool kvm_get_time_and_clockread(s64
*kernel_ns
, u64
*tsc_timestamp
)
2162 /* checked again under seqlock below */
2163 if (!gtod_is_based_on_tsc(pvclock_gtod_data
.clock
.vclock_mode
))
2166 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns
,
2170 /* returns true if host is using TSC based clocksource */
2171 static bool kvm_get_walltime_and_clockread(struct timespec64
*ts
,
2174 /* checked again under seqlock below */
2175 if (!gtod_is_based_on_tsc(pvclock_gtod_data
.clock
.vclock_mode
))
2178 return gtod_is_based_on_tsc(do_realtime(ts
, tsc_timestamp
));
2184 * Assuming a stable TSC across physical CPUS, and a stable TSC
2185 * across virtual CPUs, the following condition is possible.
2186 * Each numbered line represents an event visible to both
2187 * CPUs at the next numbered event.
2189 * "timespecX" represents host monotonic time. "tscX" represents
2192 * VCPU0 on CPU0 | VCPU1 on CPU1
2194 * 1. read timespec0,tsc0
2195 * 2. | timespec1 = timespec0 + N
2197 * 3. transition to guest | transition to guest
2198 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2199 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2200 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2202 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2205 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2207 * - 0 < N - M => M < N
2209 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2210 * always the case (the difference between two distinct xtime instances
2211 * might be smaller then the difference between corresponding TSC reads,
2212 * when updating guest vcpus pvclock areas).
2214 * To avoid that problem, do not allow visibility of distinct
2215 * system_timestamp/tsc_timestamp values simultaneously: use a master
2216 * copy of host monotonic time values. Update that master copy
2219 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2223 static void pvclock_update_vm_gtod_copy(struct kvm
*kvm
)
2225 #ifdef CONFIG_X86_64
2226 struct kvm_arch
*ka
= &kvm
->arch
;
2228 bool host_tsc_clocksource
, vcpus_matched
;
2230 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
2231 atomic_read(&kvm
->online_vcpus
));
2234 * If the host uses TSC clock, then passthrough TSC as stable
2237 host_tsc_clocksource
= kvm_get_time_and_clockread(
2238 &ka
->master_kernel_ns
,
2239 &ka
->master_cycle_now
);
2241 ka
->use_master_clock
= host_tsc_clocksource
&& vcpus_matched
2242 && !ka
->backwards_tsc_observed
2243 && !ka
->boot_vcpu_runs_old_kvmclock
;
2245 if (ka
->use_master_clock
)
2246 atomic_set(&kvm_guest_has_master_clock
, 1);
2248 vclock_mode
= pvclock_gtod_data
.clock
.vclock_mode
;
2249 trace_kvm_update_master_clock(ka
->use_master_clock
, vclock_mode
,
2254 void kvm_make_mclock_inprogress_request(struct kvm
*kvm
)
2256 kvm_make_all_cpus_request(kvm
, KVM_REQ_MCLOCK_INPROGRESS
);
2259 static void kvm_gen_update_masterclock(struct kvm
*kvm
)
2261 #ifdef CONFIG_X86_64
2263 struct kvm_vcpu
*vcpu
;
2264 struct kvm_arch
*ka
= &kvm
->arch
;
2266 spin_lock(&ka
->pvclock_gtod_sync_lock
);
2267 kvm_make_mclock_inprogress_request(kvm
);
2268 /* no guest entries from this point */
2269 pvclock_update_vm_gtod_copy(kvm
);
2271 kvm_for_each_vcpu(i
, vcpu
, kvm
)
2272 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
2274 /* guest entries allowed */
2275 kvm_for_each_vcpu(i
, vcpu
, kvm
)
2276 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS
, vcpu
);
2278 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
2282 u64
get_kvmclock_ns(struct kvm
*kvm
)
2284 struct kvm_arch
*ka
= &kvm
->arch
;
2285 struct pvclock_vcpu_time_info hv_clock
;
2288 spin_lock(&ka
->pvclock_gtod_sync_lock
);
2289 if (!ka
->use_master_clock
) {
2290 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
2291 return ktime_get_boottime_ns() + ka
->kvmclock_offset
;
2294 hv_clock
.tsc_timestamp
= ka
->master_cycle_now
;
2295 hv_clock
.system_time
= ka
->master_kernel_ns
+ ka
->kvmclock_offset
;
2296 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
2298 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2301 if (__this_cpu_read(cpu_tsc_khz
)) {
2302 kvm_get_time_scale(NSEC_PER_SEC
, __this_cpu_read(cpu_tsc_khz
) * 1000LL,
2303 &hv_clock
.tsc_shift
,
2304 &hv_clock
.tsc_to_system_mul
);
2305 ret
= __pvclock_read_cycles(&hv_clock
, rdtsc());
2307 ret
= ktime_get_boottime_ns() + ka
->kvmclock_offset
;
2314 static void kvm_setup_pvclock_page(struct kvm_vcpu
*v
)
2316 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
2317 struct pvclock_vcpu_time_info guest_hv_clock
;
2319 if (unlikely(kvm_read_guest_cached(v
->kvm
, &vcpu
->pv_time
,
2320 &guest_hv_clock
, sizeof(guest_hv_clock
))))
2323 /* This VCPU is paused, but it's legal for a guest to read another
2324 * VCPU's kvmclock, so we really have to follow the specification where
2325 * it says that version is odd if data is being modified, and even after
2328 * Version field updates must be kept separate. This is because
2329 * kvm_write_guest_cached might use a "rep movs" instruction, and
2330 * writes within a string instruction are weakly ordered. So there
2331 * are three writes overall.
2333 * As a small optimization, only write the version field in the first
2334 * and third write. The vcpu->pv_time cache is still valid, because the
2335 * version field is the first in the struct.
2337 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info
, version
) != 0);
2339 if (guest_hv_clock
.version
& 1)
2340 ++guest_hv_clock
.version
; /* first time write, random junk */
2342 vcpu
->hv_clock
.version
= guest_hv_clock
.version
+ 1;
2343 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
2345 sizeof(vcpu
->hv_clock
.version
));
2349 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2350 vcpu
->hv_clock
.flags
|= (guest_hv_clock
.flags
& PVCLOCK_GUEST_STOPPED
);
2352 if (vcpu
->pvclock_set_guest_stopped_request
) {
2353 vcpu
->hv_clock
.flags
|= PVCLOCK_GUEST_STOPPED
;
2354 vcpu
->pvclock_set_guest_stopped_request
= false;
2357 trace_kvm_pvclock_update(v
->vcpu_id
, &vcpu
->hv_clock
);
2359 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
2361 sizeof(vcpu
->hv_clock
));
2365 vcpu
->hv_clock
.version
++;
2366 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
2368 sizeof(vcpu
->hv_clock
.version
));
2371 static int kvm_guest_time_update(struct kvm_vcpu
*v
)
2373 unsigned long flags
, tgt_tsc_khz
;
2374 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
2375 struct kvm_arch
*ka
= &v
->kvm
->arch
;
2377 u64 tsc_timestamp
, host_tsc
;
2379 bool use_master_clock
;
2385 * If the host uses TSC clock, then passthrough TSC as stable
2388 spin_lock(&ka
->pvclock_gtod_sync_lock
);
2389 use_master_clock
= ka
->use_master_clock
;
2390 if (use_master_clock
) {
2391 host_tsc
= ka
->master_cycle_now
;
2392 kernel_ns
= ka
->master_kernel_ns
;
2394 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
2396 /* Keep irq disabled to prevent changes to the clock */
2397 local_irq_save(flags
);
2398 tgt_tsc_khz
= __this_cpu_read(cpu_tsc_khz
);
2399 if (unlikely(tgt_tsc_khz
== 0)) {
2400 local_irq_restore(flags
);
2401 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
2404 if (!use_master_clock
) {
2406 kernel_ns
= ktime_get_boottime_ns();
2409 tsc_timestamp
= kvm_read_l1_tsc(v
, host_tsc
);
2412 * We may have to catch up the TSC to match elapsed wall clock
2413 * time for two reasons, even if kvmclock is used.
2414 * 1) CPU could have been running below the maximum TSC rate
2415 * 2) Broken TSC compensation resets the base at each VCPU
2416 * entry to avoid unknown leaps of TSC even when running
2417 * again on the same CPU. This may cause apparent elapsed
2418 * time to disappear, and the guest to stand still or run
2421 if (vcpu
->tsc_catchup
) {
2422 u64 tsc
= compute_guest_tsc(v
, kernel_ns
);
2423 if (tsc
> tsc_timestamp
) {
2424 adjust_tsc_offset_guest(v
, tsc
- tsc_timestamp
);
2425 tsc_timestamp
= tsc
;
2429 local_irq_restore(flags
);
2431 /* With all the info we got, fill in the values */
2433 if (kvm_has_tsc_control
)
2434 tgt_tsc_khz
= kvm_scale_tsc(v
, tgt_tsc_khz
);
2436 if (unlikely(vcpu
->hw_tsc_khz
!= tgt_tsc_khz
)) {
2437 kvm_get_time_scale(NSEC_PER_SEC
, tgt_tsc_khz
* 1000LL,
2438 &vcpu
->hv_clock
.tsc_shift
,
2439 &vcpu
->hv_clock
.tsc_to_system_mul
);
2440 vcpu
->hw_tsc_khz
= tgt_tsc_khz
;
2443 vcpu
->hv_clock
.tsc_timestamp
= tsc_timestamp
;
2444 vcpu
->hv_clock
.system_time
= kernel_ns
+ v
->kvm
->arch
.kvmclock_offset
;
2445 vcpu
->last_guest_tsc
= tsc_timestamp
;
2447 /* If the host uses TSC clocksource, then it is stable */
2449 if (use_master_clock
)
2450 pvclock_flags
|= PVCLOCK_TSC_STABLE_BIT
;
2452 vcpu
->hv_clock
.flags
= pvclock_flags
;
2454 if (vcpu
->pv_time_enabled
)
2455 kvm_setup_pvclock_page(v
);
2456 if (v
== kvm_get_vcpu(v
->kvm
, 0))
2457 kvm_hv_setup_tsc_page(v
->kvm
, &vcpu
->hv_clock
);
2462 * kvmclock updates which are isolated to a given vcpu, such as
2463 * vcpu->cpu migration, should not allow system_timestamp from
2464 * the rest of the vcpus to remain static. Otherwise ntp frequency
2465 * correction applies to one vcpu's system_timestamp but not
2468 * So in those cases, request a kvmclock update for all vcpus.
2469 * We need to rate-limit these requests though, as they can
2470 * considerably slow guests that have a large number of vcpus.
2471 * The time for a remote vcpu to update its kvmclock is bound
2472 * by the delay we use to rate-limit the updates.
2475 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2477 static void kvmclock_update_fn(struct work_struct
*work
)
2480 struct delayed_work
*dwork
= to_delayed_work(work
);
2481 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
2482 kvmclock_update_work
);
2483 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
2484 struct kvm_vcpu
*vcpu
;
2486 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
2487 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
2488 kvm_vcpu_kick(vcpu
);
2492 static void kvm_gen_kvmclock_update(struct kvm_vcpu
*v
)
2494 struct kvm
*kvm
= v
->kvm
;
2496 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
2497 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
,
2498 KVMCLOCK_UPDATE_DELAY
);
2501 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2503 static void kvmclock_sync_fn(struct work_struct
*work
)
2505 struct delayed_work
*dwork
= to_delayed_work(work
);
2506 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
2507 kvmclock_sync_work
);
2508 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
2510 if (!kvmclock_periodic_sync
)
2513 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
, 0);
2514 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
2515 KVMCLOCK_SYNC_PERIOD
);
2519 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2521 static bool can_set_mci_status(struct kvm_vcpu
*vcpu
)
2523 /* McStatusWrEn enabled? */
2524 if (guest_cpuid_is_amd(vcpu
))
2525 return !!(vcpu
->arch
.msr_hwcr
& BIT_ULL(18));
2530 static int set_msr_mce(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2532 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2533 unsigned bank_num
= mcg_cap
& 0xff;
2534 u32 msr
= msr_info
->index
;
2535 u64 data
= msr_info
->data
;
2538 case MSR_IA32_MCG_STATUS
:
2539 vcpu
->arch
.mcg_status
= data
;
2541 case MSR_IA32_MCG_CTL
:
2542 if (!(mcg_cap
& MCG_CTL_P
) &&
2543 (data
|| !msr_info
->host_initiated
))
2545 if (data
!= 0 && data
!= ~(u64
)0)
2547 vcpu
->arch
.mcg_ctl
= data
;
2550 if (msr
>= MSR_IA32_MC0_CTL
&&
2551 msr
< MSR_IA32_MCx_CTL(bank_num
)) {
2552 u32 offset
= array_index_nospec(
2553 msr
- MSR_IA32_MC0_CTL
,
2554 MSR_IA32_MCx_CTL(bank_num
) - MSR_IA32_MC0_CTL
);
2556 /* only 0 or all 1s can be written to IA32_MCi_CTL
2557 * some Linux kernels though clear bit 10 in bank 4 to
2558 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2559 * this to avoid an uncatched #GP in the guest
2561 if ((offset
& 0x3) == 0 &&
2562 data
!= 0 && (data
| (1 << 10)) != ~(u64
)0)
2566 if (!msr_info
->host_initiated
&&
2567 (offset
& 0x3) == 1 && data
!= 0) {
2568 if (!can_set_mci_status(vcpu
))
2572 vcpu
->arch
.mce_banks
[offset
] = data
;
2580 static int xen_hvm_config(struct kvm_vcpu
*vcpu
, u64 data
)
2582 struct kvm
*kvm
= vcpu
->kvm
;
2583 int lm
= is_long_mode(vcpu
);
2584 u8
*blob_addr
= lm
? (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_64
2585 : (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_32
;
2586 u8 blob_size
= lm
? kvm
->arch
.xen_hvm_config
.blob_size_64
2587 : kvm
->arch
.xen_hvm_config
.blob_size_32
;
2588 u32 page_num
= data
& ~PAGE_MASK
;
2589 u64 page_addr
= data
& PAGE_MASK
;
2594 if (page_num
>= blob_size
)
2597 page
= memdup_user(blob_addr
+ (page_num
* PAGE_SIZE
), PAGE_SIZE
);
2602 if (kvm_vcpu_write_guest(vcpu
, page_addr
, page
, PAGE_SIZE
))
2611 static int kvm_pv_enable_async_pf(struct kvm_vcpu
*vcpu
, u64 data
)
2613 gpa_t gpa
= data
& ~0x3f;
2615 /* Bits 3:5 are reserved, Should be zero */
2619 vcpu
->arch
.apf
.msr_val
= data
;
2621 if (!(data
& KVM_ASYNC_PF_ENABLED
)) {
2622 kvm_clear_async_pf_completion_queue(vcpu
);
2623 kvm_async_pf_hash_reset(vcpu
);
2627 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, gpa
,
2631 vcpu
->arch
.apf
.send_user_only
= !(data
& KVM_ASYNC_PF_SEND_ALWAYS
);
2632 vcpu
->arch
.apf
.delivery_as_pf_vmexit
= data
& KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT
;
2633 kvm_async_pf_wakeup_all(vcpu
);
2637 static void kvmclock_reset(struct kvm_vcpu
*vcpu
)
2639 vcpu
->arch
.pv_time_enabled
= false;
2640 vcpu
->arch
.time
= 0;
2643 static void kvm_vcpu_flush_tlb(struct kvm_vcpu
*vcpu
, bool invalidate_gpa
)
2645 ++vcpu
->stat
.tlb_flush
;
2646 kvm_x86_ops
->tlb_flush(vcpu
, invalidate_gpa
);
2649 static void record_steal_time(struct kvm_vcpu
*vcpu
)
2651 struct kvm_host_map map
;
2652 struct kvm_steal_time
*st
;
2654 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
2657 /* -EAGAIN is returned in atomic context so we can just return. */
2658 if (kvm_map_gfn(vcpu
, vcpu
->arch
.st
.msr_val
>> PAGE_SHIFT
,
2659 &map
, &vcpu
->arch
.st
.cache
, false))
2663 offset_in_page(vcpu
->arch
.st
.msr_val
& KVM_STEAL_VALID_BITS
);
2666 * Doing a TLB flush here, on the guest's behalf, can avoid
2669 trace_kvm_pv_tlb_flush(vcpu
->vcpu_id
,
2670 st
->preempted
& KVM_VCPU_FLUSH_TLB
);
2671 if (xchg(&st
->preempted
, 0) & KVM_VCPU_FLUSH_TLB
)
2672 kvm_vcpu_flush_tlb(vcpu
, false);
2674 vcpu
->arch
.st
.preempted
= 0;
2676 if (st
->version
& 1)
2677 st
->version
+= 1; /* first time write, random junk */
2683 st
->steal
+= current
->sched_info
.run_delay
-
2684 vcpu
->arch
.st
.last_steal
;
2685 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
2691 kvm_unmap_gfn(vcpu
, &map
, &vcpu
->arch
.st
.cache
, true, false);
2694 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2697 u32 msr
= msr_info
->index
;
2698 u64 data
= msr_info
->data
;
2701 case MSR_AMD64_NB_CFG
:
2702 case MSR_IA32_UCODE_WRITE
:
2703 case MSR_VM_HSAVE_PA
:
2704 case MSR_AMD64_PATCH_LOADER
:
2705 case MSR_AMD64_BU_CFG2
:
2706 case MSR_AMD64_DC_CFG
:
2707 case MSR_F15H_EX_CFG
:
2710 case MSR_IA32_UCODE_REV
:
2711 if (msr_info
->host_initiated
)
2712 vcpu
->arch
.microcode_version
= data
;
2714 case MSR_IA32_ARCH_CAPABILITIES
:
2715 if (!msr_info
->host_initiated
)
2717 vcpu
->arch
.arch_capabilities
= data
;
2720 return set_efer(vcpu
, msr_info
);
2722 data
&= ~(u64
)0x40; /* ignore flush filter disable */
2723 data
&= ~(u64
)0x100; /* ignore ignne emulation enable */
2724 data
&= ~(u64
)0x8; /* ignore TLB cache disable */
2726 /* Handle McStatusWrEn */
2727 if (data
== BIT_ULL(18)) {
2728 vcpu
->arch
.msr_hwcr
= data
;
2729 } else if (data
!= 0) {
2730 vcpu_unimpl(vcpu
, "unimplemented HWCR wrmsr: 0x%llx\n",
2735 case MSR_FAM10H_MMIO_CONF_BASE
:
2737 vcpu_unimpl(vcpu
, "unimplemented MMIO_CONF_BASE wrmsr: "
2742 case MSR_IA32_DEBUGCTLMSR
:
2744 /* We support the non-activated case already */
2746 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
2747 /* Values other than LBR and BTF are vendor-specific,
2748 thus reserved and should throw a #GP */
2751 vcpu_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2754 case 0x200 ... 0x2ff:
2755 return kvm_mtrr_set_msr(vcpu
, msr
, data
);
2756 case MSR_IA32_APICBASE
:
2757 return kvm_set_apic_base(vcpu
, msr_info
);
2758 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2759 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
2760 case MSR_IA32_TSCDEADLINE
:
2761 kvm_set_lapic_tscdeadline_msr(vcpu
, data
);
2763 case MSR_IA32_TSC_ADJUST
:
2764 if (guest_cpuid_has(vcpu
, X86_FEATURE_TSC_ADJUST
)) {
2765 if (!msr_info
->host_initiated
) {
2766 s64 adj
= data
- vcpu
->arch
.ia32_tsc_adjust_msr
;
2767 adjust_tsc_offset_guest(vcpu
, adj
);
2769 vcpu
->arch
.ia32_tsc_adjust_msr
= data
;
2772 case MSR_IA32_MISC_ENABLE
:
2773 if (!kvm_check_has_quirk(vcpu
->kvm
, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT
) &&
2774 ((vcpu
->arch
.ia32_misc_enable_msr
^ data
) & MSR_IA32_MISC_ENABLE_MWAIT
)) {
2775 if (!guest_cpuid_has(vcpu
, X86_FEATURE_XMM3
))
2777 vcpu
->arch
.ia32_misc_enable_msr
= data
;
2778 kvm_update_cpuid(vcpu
);
2780 vcpu
->arch
.ia32_misc_enable_msr
= data
;
2783 case MSR_IA32_SMBASE
:
2784 if (!msr_info
->host_initiated
)
2786 vcpu
->arch
.smbase
= data
;
2788 case MSR_IA32_POWER_CTL
:
2789 vcpu
->arch
.msr_ia32_power_ctl
= data
;
2792 kvm_write_tsc(vcpu
, msr_info
);
2795 if (!msr_info
->host_initiated
&&
2796 !guest_cpuid_has(vcpu
, X86_FEATURE_XSAVES
))
2799 * We do support PT if kvm_x86_ops->pt_supported(), but we do
2800 * not support IA32_XSS[bit 8]. Guests will have to use
2801 * RDMSR/WRMSR rather than XSAVES/XRSTORS to save/restore PT
2806 vcpu
->arch
.ia32_xss
= data
;
2809 if (!msr_info
->host_initiated
)
2811 vcpu
->arch
.smi_count
= data
;
2813 case MSR_KVM_WALL_CLOCK_NEW
:
2814 case MSR_KVM_WALL_CLOCK
:
2815 vcpu
->kvm
->arch
.wall_clock
= data
;
2816 kvm_write_wall_clock(vcpu
->kvm
, data
);
2818 case MSR_KVM_SYSTEM_TIME_NEW
:
2819 case MSR_KVM_SYSTEM_TIME
: {
2820 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
2822 if (vcpu
->vcpu_id
== 0 && !msr_info
->host_initiated
) {
2823 bool tmp
= (msr
== MSR_KVM_SYSTEM_TIME
);
2825 if (ka
->boot_vcpu_runs_old_kvmclock
!= tmp
)
2826 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
2828 ka
->boot_vcpu_runs_old_kvmclock
= tmp
;
2831 vcpu
->arch
.time
= data
;
2832 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2834 /* we verify if the enable bit is set... */
2835 vcpu
->arch
.pv_time_enabled
= false;
2839 if (!kvm_gfn_to_hva_cache_init(vcpu
->kvm
,
2840 &vcpu
->arch
.pv_time
, data
& ~1ULL,
2841 sizeof(struct pvclock_vcpu_time_info
)))
2842 vcpu
->arch
.pv_time_enabled
= true;
2846 case MSR_KVM_ASYNC_PF_EN
:
2847 if (kvm_pv_enable_async_pf(vcpu
, data
))
2850 case MSR_KVM_STEAL_TIME
:
2852 if (unlikely(!sched_info_on()))
2855 if (data
& KVM_STEAL_RESERVED_MASK
)
2858 vcpu
->arch
.st
.msr_val
= data
;
2860 if (!(data
& KVM_MSR_ENABLED
))
2863 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2866 case MSR_KVM_PV_EOI_EN
:
2867 if (kvm_lapic_enable_pv_eoi(vcpu
, data
, sizeof(u8
)))
2871 case MSR_KVM_POLL_CONTROL
:
2872 /* only enable bit supported */
2873 if (data
& (-1ULL << 1))
2876 vcpu
->arch
.msr_kvm_poll_control
= data
;
2879 case MSR_IA32_MCG_CTL
:
2880 case MSR_IA32_MCG_STATUS
:
2881 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
2882 return set_msr_mce(vcpu
, msr_info
);
2884 case MSR_K7_PERFCTR0
... MSR_K7_PERFCTR3
:
2885 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR1
:
2886 pr
= true; /* fall through */
2887 case MSR_K7_EVNTSEL0
... MSR_K7_EVNTSEL3
:
2888 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL1
:
2889 if (kvm_pmu_is_valid_msr(vcpu
, msr
))
2890 return kvm_pmu_set_msr(vcpu
, msr_info
);
2892 if (pr
|| data
!= 0)
2893 vcpu_unimpl(vcpu
, "disabled perfctr wrmsr: "
2894 "0x%x data 0x%llx\n", msr
, data
);
2896 case MSR_K7_CLK_CTL
:
2898 * Ignore all writes to this no longer documented MSR.
2899 * Writes are only relevant for old K7 processors,
2900 * all pre-dating SVM, but a recommended workaround from
2901 * AMD for these chips. It is possible to specify the
2902 * affected processor models on the command line, hence
2903 * the need to ignore the workaround.
2906 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2907 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2908 case HV_X64_MSR_CRASH_CTL
:
2909 case HV_X64_MSR_STIMER0_CONFIG
... HV_X64_MSR_STIMER3_COUNT
:
2910 case HV_X64_MSR_REENLIGHTENMENT_CONTROL
:
2911 case HV_X64_MSR_TSC_EMULATION_CONTROL
:
2912 case HV_X64_MSR_TSC_EMULATION_STATUS
:
2913 return kvm_hv_set_msr_common(vcpu
, msr
, data
,
2914 msr_info
->host_initiated
);
2915 case MSR_IA32_BBL_CR_CTL3
:
2916 /* Drop writes to this legacy MSR -- see rdmsr
2917 * counterpart for further detail.
2919 if (report_ignored_msrs
)
2920 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data 0x%llx\n",
2923 case MSR_AMD64_OSVW_ID_LENGTH
:
2924 if (!guest_cpuid_has(vcpu
, X86_FEATURE_OSVW
))
2926 vcpu
->arch
.osvw
.length
= data
;
2928 case MSR_AMD64_OSVW_STATUS
:
2929 if (!guest_cpuid_has(vcpu
, X86_FEATURE_OSVW
))
2931 vcpu
->arch
.osvw
.status
= data
;
2933 case MSR_PLATFORM_INFO
:
2934 if (!msr_info
->host_initiated
||
2935 (!(data
& MSR_PLATFORM_INFO_CPUID_FAULT
) &&
2936 cpuid_fault_enabled(vcpu
)))
2938 vcpu
->arch
.msr_platform_info
= data
;
2940 case MSR_MISC_FEATURES_ENABLES
:
2941 if (data
& ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT
||
2942 (data
& MSR_MISC_FEATURES_ENABLES_CPUID_FAULT
&&
2943 !supports_cpuid_fault(vcpu
)))
2945 vcpu
->arch
.msr_misc_features_enables
= data
;
2948 if (msr
&& (msr
== vcpu
->kvm
->arch
.xen_hvm_config
.msr
))
2949 return xen_hvm_config(vcpu
, data
);
2950 if (kvm_pmu_is_valid_msr(vcpu
, msr
))
2951 return kvm_pmu_set_msr(vcpu
, msr_info
);
2953 vcpu_debug_ratelimited(vcpu
, "unhandled wrmsr: 0x%x data 0x%llx\n",
2957 if (report_ignored_msrs
)
2959 "ignored wrmsr: 0x%x data 0x%llx\n",
2966 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
2968 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
, bool host
)
2971 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2972 unsigned bank_num
= mcg_cap
& 0xff;
2975 case MSR_IA32_P5_MC_ADDR
:
2976 case MSR_IA32_P5_MC_TYPE
:
2979 case MSR_IA32_MCG_CAP
:
2980 data
= vcpu
->arch
.mcg_cap
;
2982 case MSR_IA32_MCG_CTL
:
2983 if (!(mcg_cap
& MCG_CTL_P
) && !host
)
2985 data
= vcpu
->arch
.mcg_ctl
;
2987 case MSR_IA32_MCG_STATUS
:
2988 data
= vcpu
->arch
.mcg_status
;
2991 if (msr
>= MSR_IA32_MC0_CTL
&&
2992 msr
< MSR_IA32_MCx_CTL(bank_num
)) {
2993 u32 offset
= array_index_nospec(
2994 msr
- MSR_IA32_MC0_CTL
,
2995 MSR_IA32_MCx_CTL(bank_num
) - MSR_IA32_MC0_CTL
);
2997 data
= vcpu
->arch
.mce_banks
[offset
];
3006 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
3008 switch (msr_info
->index
) {
3009 case MSR_IA32_PLATFORM_ID
:
3010 case MSR_IA32_EBL_CR_POWERON
:
3011 case MSR_IA32_DEBUGCTLMSR
:
3012 case MSR_IA32_LASTBRANCHFROMIP
:
3013 case MSR_IA32_LASTBRANCHTOIP
:
3014 case MSR_IA32_LASTINTFROMIP
:
3015 case MSR_IA32_LASTINTTOIP
:
3017 case MSR_K8_TSEG_ADDR
:
3018 case MSR_K8_TSEG_MASK
:
3019 case MSR_VM_HSAVE_PA
:
3020 case MSR_K8_INT_PENDING_MSG
:
3021 case MSR_AMD64_NB_CFG
:
3022 case MSR_FAM10H_MMIO_CONF_BASE
:
3023 case MSR_AMD64_BU_CFG2
:
3024 case MSR_IA32_PERF_CTL
:
3025 case MSR_AMD64_DC_CFG
:
3026 case MSR_F15H_EX_CFG
:
3029 case MSR_F15H_PERF_CTL0
... MSR_F15H_PERF_CTR5
:
3030 case MSR_K7_EVNTSEL0
... MSR_K7_EVNTSEL3
:
3031 case MSR_K7_PERFCTR0
... MSR_K7_PERFCTR3
:
3032 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR1
:
3033 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL1
:
3034 if (kvm_pmu_is_valid_msr(vcpu
, msr_info
->index
))
3035 return kvm_pmu_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
3038 case MSR_IA32_UCODE_REV
:
3039 msr_info
->data
= vcpu
->arch
.microcode_version
;
3041 case MSR_IA32_ARCH_CAPABILITIES
:
3042 if (!msr_info
->host_initiated
&&
3043 !guest_cpuid_has(vcpu
, X86_FEATURE_ARCH_CAPABILITIES
))
3045 msr_info
->data
= vcpu
->arch
.arch_capabilities
;
3047 case MSR_IA32_POWER_CTL
:
3048 msr_info
->data
= vcpu
->arch
.msr_ia32_power_ctl
;
3051 msr_info
->data
= kvm_scale_tsc(vcpu
, rdtsc()) + vcpu
->arch
.tsc_offset
;
3054 case 0x200 ... 0x2ff:
3055 return kvm_mtrr_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
3056 case 0xcd: /* fsb frequency */
3060 * MSR_EBC_FREQUENCY_ID
3061 * Conservative value valid for even the basic CPU models.
3062 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3063 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3064 * and 266MHz for model 3, or 4. Set Core Clock
3065 * Frequency to System Bus Frequency Ratio to 1 (bits
3066 * 31:24) even though these are only valid for CPU
3067 * models > 2, however guests may end up dividing or
3068 * multiplying by zero otherwise.
3070 case MSR_EBC_FREQUENCY_ID
:
3071 msr_info
->data
= 1 << 24;
3073 case MSR_IA32_APICBASE
:
3074 msr_info
->data
= kvm_get_apic_base(vcpu
);
3076 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
3077 return kvm_x2apic_msr_read(vcpu
, msr_info
->index
, &msr_info
->data
);
3079 case MSR_IA32_TSCDEADLINE
:
3080 msr_info
->data
= kvm_get_lapic_tscdeadline_msr(vcpu
);
3082 case MSR_IA32_TSC_ADJUST
:
3083 msr_info
->data
= (u64
)vcpu
->arch
.ia32_tsc_adjust_msr
;
3085 case MSR_IA32_MISC_ENABLE
:
3086 msr_info
->data
= vcpu
->arch
.ia32_misc_enable_msr
;
3088 case MSR_IA32_SMBASE
:
3089 if (!msr_info
->host_initiated
)
3091 msr_info
->data
= vcpu
->arch
.smbase
;
3094 msr_info
->data
= vcpu
->arch
.smi_count
;
3096 case MSR_IA32_PERF_STATUS
:
3097 /* TSC increment by tick */
3098 msr_info
->data
= 1000ULL;
3099 /* CPU multiplier */
3100 msr_info
->data
|= (((uint64_t)4ULL) << 40);
3103 msr_info
->data
= vcpu
->arch
.efer
;
3105 case MSR_KVM_WALL_CLOCK
:
3106 case MSR_KVM_WALL_CLOCK_NEW
:
3107 msr_info
->data
= vcpu
->kvm
->arch
.wall_clock
;
3109 case MSR_KVM_SYSTEM_TIME
:
3110 case MSR_KVM_SYSTEM_TIME_NEW
:
3111 msr_info
->data
= vcpu
->arch
.time
;
3113 case MSR_KVM_ASYNC_PF_EN
:
3114 msr_info
->data
= vcpu
->arch
.apf
.msr_val
;
3116 case MSR_KVM_STEAL_TIME
:
3117 msr_info
->data
= vcpu
->arch
.st
.msr_val
;
3119 case MSR_KVM_PV_EOI_EN
:
3120 msr_info
->data
= vcpu
->arch
.pv_eoi
.msr_val
;
3122 case MSR_KVM_POLL_CONTROL
:
3123 msr_info
->data
= vcpu
->arch
.msr_kvm_poll_control
;
3125 case MSR_IA32_P5_MC_ADDR
:
3126 case MSR_IA32_P5_MC_TYPE
:
3127 case MSR_IA32_MCG_CAP
:
3128 case MSR_IA32_MCG_CTL
:
3129 case MSR_IA32_MCG_STATUS
:
3130 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
3131 return get_msr_mce(vcpu
, msr_info
->index
, &msr_info
->data
,
3132 msr_info
->host_initiated
);
3134 if (!msr_info
->host_initiated
&&
3135 !guest_cpuid_has(vcpu
, X86_FEATURE_XSAVES
))
3137 msr_info
->data
= vcpu
->arch
.ia32_xss
;
3139 case MSR_K7_CLK_CTL
:
3141 * Provide expected ramp-up count for K7. All other
3142 * are set to zero, indicating minimum divisors for
3145 * This prevents guest kernels on AMD host with CPU
3146 * type 6, model 8 and higher from exploding due to
3147 * the rdmsr failing.
3149 msr_info
->data
= 0x20000000;
3151 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
3152 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
3153 case HV_X64_MSR_CRASH_CTL
:
3154 case HV_X64_MSR_STIMER0_CONFIG
... HV_X64_MSR_STIMER3_COUNT
:
3155 case HV_X64_MSR_REENLIGHTENMENT_CONTROL
:
3156 case HV_X64_MSR_TSC_EMULATION_CONTROL
:
3157 case HV_X64_MSR_TSC_EMULATION_STATUS
:
3158 return kvm_hv_get_msr_common(vcpu
,
3159 msr_info
->index
, &msr_info
->data
,
3160 msr_info
->host_initiated
);
3162 case MSR_IA32_BBL_CR_CTL3
:
3163 /* This legacy MSR exists but isn't fully documented in current
3164 * silicon. It is however accessed by winxp in very narrow
3165 * scenarios where it sets bit #19, itself documented as
3166 * a "reserved" bit. Best effort attempt to source coherent
3167 * read data here should the balance of the register be
3168 * interpreted by the guest:
3170 * L2 cache control register 3: 64GB range, 256KB size,
3171 * enabled, latency 0x1, configured
3173 msr_info
->data
= 0xbe702111;
3175 case MSR_AMD64_OSVW_ID_LENGTH
:
3176 if (!guest_cpuid_has(vcpu
, X86_FEATURE_OSVW
))
3178 msr_info
->data
= vcpu
->arch
.osvw
.length
;
3180 case MSR_AMD64_OSVW_STATUS
:
3181 if (!guest_cpuid_has(vcpu
, X86_FEATURE_OSVW
))
3183 msr_info
->data
= vcpu
->arch
.osvw
.status
;
3185 case MSR_PLATFORM_INFO
:
3186 if (!msr_info
->host_initiated
&&
3187 !vcpu
->kvm
->arch
.guest_can_read_msr_platform_info
)
3189 msr_info
->data
= vcpu
->arch
.msr_platform_info
;
3191 case MSR_MISC_FEATURES_ENABLES
:
3192 msr_info
->data
= vcpu
->arch
.msr_misc_features_enables
;
3195 msr_info
->data
= vcpu
->arch
.msr_hwcr
;
3198 if (kvm_pmu_is_valid_msr(vcpu
, msr_info
->index
))
3199 return kvm_pmu_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
3201 vcpu_debug_ratelimited(vcpu
, "unhandled rdmsr: 0x%x\n",
3205 if (report_ignored_msrs
)
3206 vcpu_unimpl(vcpu
, "ignored rdmsr: 0x%x\n",
3214 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
3217 * Read or write a bunch of msrs. All parameters are kernel addresses.
3219 * @return number of msrs set successfully.
3221 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
3222 struct kvm_msr_entry
*entries
,
3223 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
3224 unsigned index
, u64
*data
))
3228 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
3229 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
3236 * Read or write a bunch of msrs. Parameters are user addresses.
3238 * @return number of msrs set successfully.
3240 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
3241 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
3242 unsigned index
, u64
*data
),
3245 struct kvm_msrs msrs
;
3246 struct kvm_msr_entry
*entries
;
3251 if (copy_from_user(&msrs
, user_msrs
, sizeof(msrs
)))
3255 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
3258 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
3259 entries
= memdup_user(user_msrs
->entries
, size
);
3260 if (IS_ERR(entries
)) {
3261 r
= PTR_ERR(entries
);
3265 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
3270 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
3281 static inline bool kvm_can_mwait_in_guest(void)
3283 return boot_cpu_has(X86_FEATURE_MWAIT
) &&
3284 !boot_cpu_has_bug(X86_BUG_MONITOR
) &&
3285 boot_cpu_has(X86_FEATURE_ARAT
);
3288 int kvm_vm_ioctl_check_extension(struct kvm
*kvm
, long ext
)
3293 case KVM_CAP_IRQCHIP
:
3295 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
3296 case KVM_CAP_SET_TSS_ADDR
:
3297 case KVM_CAP_EXT_CPUID
:
3298 case KVM_CAP_EXT_EMUL_CPUID
:
3299 case KVM_CAP_CLOCKSOURCE
:
3301 case KVM_CAP_NOP_IO_DELAY
:
3302 case KVM_CAP_MP_STATE
:
3303 case KVM_CAP_SYNC_MMU
:
3304 case KVM_CAP_USER_NMI
:
3305 case KVM_CAP_REINJECT_CONTROL
:
3306 case KVM_CAP_IRQ_INJECT_STATUS
:
3307 case KVM_CAP_IOEVENTFD
:
3308 case KVM_CAP_IOEVENTFD_NO_LENGTH
:
3310 case KVM_CAP_PIT_STATE2
:
3311 case KVM_CAP_SET_IDENTITY_MAP_ADDR
:
3312 case KVM_CAP_XEN_HVM
:
3313 case KVM_CAP_VCPU_EVENTS
:
3314 case KVM_CAP_HYPERV
:
3315 case KVM_CAP_HYPERV_VAPIC
:
3316 case KVM_CAP_HYPERV_SPIN
:
3317 case KVM_CAP_HYPERV_SYNIC
:
3318 case KVM_CAP_HYPERV_SYNIC2
:
3319 case KVM_CAP_HYPERV_VP_INDEX
:
3320 case KVM_CAP_HYPERV_EVENTFD
:
3321 case KVM_CAP_HYPERV_TLBFLUSH
:
3322 case KVM_CAP_HYPERV_SEND_IPI
:
3323 case KVM_CAP_HYPERV_CPUID
:
3324 case KVM_CAP_PCI_SEGMENT
:
3325 case KVM_CAP_DEBUGREGS
:
3326 case KVM_CAP_X86_ROBUST_SINGLESTEP
:
3328 case KVM_CAP_ASYNC_PF
:
3329 case KVM_CAP_GET_TSC_KHZ
:
3330 case KVM_CAP_KVMCLOCK_CTRL
:
3331 case KVM_CAP_READONLY_MEM
:
3332 case KVM_CAP_HYPERV_TIME
:
3333 case KVM_CAP_IOAPIC_POLARITY_IGNORED
:
3334 case KVM_CAP_TSC_DEADLINE_TIMER
:
3335 case KVM_CAP_DISABLE_QUIRKS
:
3336 case KVM_CAP_SET_BOOT_CPU_ID
:
3337 case KVM_CAP_SPLIT_IRQCHIP
:
3338 case KVM_CAP_IMMEDIATE_EXIT
:
3339 case KVM_CAP_PMU_EVENT_FILTER
:
3340 case KVM_CAP_GET_MSR_FEATURES
:
3341 case KVM_CAP_MSR_PLATFORM_INFO
:
3342 case KVM_CAP_EXCEPTION_PAYLOAD
:
3345 case KVM_CAP_SYNC_REGS
:
3346 r
= KVM_SYNC_X86_VALID_FIELDS
;
3348 case KVM_CAP_ADJUST_CLOCK
:
3349 r
= KVM_CLOCK_TSC_STABLE
;
3351 case KVM_CAP_X86_DISABLE_EXITS
:
3352 r
|= KVM_X86_DISABLE_EXITS_HLT
| KVM_X86_DISABLE_EXITS_PAUSE
|
3353 KVM_X86_DISABLE_EXITS_CSTATE
;
3354 if(kvm_can_mwait_in_guest())
3355 r
|= KVM_X86_DISABLE_EXITS_MWAIT
;
3357 case KVM_CAP_X86_SMM
:
3358 /* SMBASE is usually relocated above 1M on modern chipsets,
3359 * and SMM handlers might indeed rely on 4G segment limits,
3360 * so do not report SMM to be available if real mode is
3361 * emulated via vm86 mode. Still, do not go to great lengths
3362 * to avoid userspace's usage of the feature, because it is a
3363 * fringe case that is not enabled except via specific settings
3364 * of the module parameters.
3366 r
= kvm_x86_ops
->has_emulated_msr(MSR_IA32_SMBASE
);
3369 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
3371 case KVM_CAP_NR_VCPUS
:
3372 r
= KVM_SOFT_MAX_VCPUS
;
3374 case KVM_CAP_MAX_VCPUS
:
3377 case KVM_CAP_MAX_VCPU_ID
:
3378 r
= KVM_MAX_VCPU_ID
;
3380 case KVM_CAP_PV_MMU
: /* obsolete */
3384 r
= KVM_MAX_MCE_BANKS
;
3387 r
= boot_cpu_has(X86_FEATURE_XSAVE
);
3389 case KVM_CAP_TSC_CONTROL
:
3390 r
= kvm_has_tsc_control
;
3392 case KVM_CAP_X2APIC_API
:
3393 r
= KVM_X2APIC_API_VALID_FLAGS
;
3395 case KVM_CAP_NESTED_STATE
:
3396 r
= kvm_x86_ops
->get_nested_state
?
3397 kvm_x86_ops
->get_nested_state(NULL
, NULL
, 0) : 0;
3399 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH
:
3400 r
= kvm_x86_ops
->enable_direct_tlbflush
!= NULL
;
3402 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS
:
3403 r
= kvm_x86_ops
->nested_enable_evmcs
!= NULL
;
3412 long kvm_arch_dev_ioctl(struct file
*filp
,
3413 unsigned int ioctl
, unsigned long arg
)
3415 void __user
*argp
= (void __user
*)arg
;
3419 case KVM_GET_MSR_INDEX_LIST
: {
3420 struct kvm_msr_list __user
*user_msr_list
= argp
;
3421 struct kvm_msr_list msr_list
;
3425 if (copy_from_user(&msr_list
, user_msr_list
, sizeof(msr_list
)))
3428 msr_list
.nmsrs
= num_msrs_to_save
+ num_emulated_msrs
;
3429 if (copy_to_user(user_msr_list
, &msr_list
, sizeof(msr_list
)))
3432 if (n
< msr_list
.nmsrs
)
3435 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
3436 num_msrs_to_save
* sizeof(u32
)))
3438 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
3440 num_emulated_msrs
* sizeof(u32
)))
3445 case KVM_GET_SUPPORTED_CPUID
:
3446 case KVM_GET_EMULATED_CPUID
: {
3447 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3448 struct kvm_cpuid2 cpuid
;
3451 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof(cpuid
)))
3454 r
= kvm_dev_ioctl_get_cpuid(&cpuid
, cpuid_arg
->entries
,
3460 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof(cpuid
)))
3465 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
3467 if (copy_to_user(argp
, &kvm_mce_cap_supported
,
3468 sizeof(kvm_mce_cap_supported
)))
3472 case KVM_GET_MSR_FEATURE_INDEX_LIST
: {
3473 struct kvm_msr_list __user
*user_msr_list
= argp
;
3474 struct kvm_msr_list msr_list
;
3478 if (copy_from_user(&msr_list
, user_msr_list
, sizeof(msr_list
)))
3481 msr_list
.nmsrs
= num_msr_based_features
;
3482 if (copy_to_user(user_msr_list
, &msr_list
, sizeof(msr_list
)))
3485 if (n
< msr_list
.nmsrs
)
3488 if (copy_to_user(user_msr_list
->indices
, &msr_based_features
,
3489 num_msr_based_features
* sizeof(u32
)))
3495 r
= msr_io(NULL
, argp
, do_get_msr_feature
, 1);
3505 static void wbinvd_ipi(void *garbage
)
3510 static bool need_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
3512 return kvm_arch_has_noncoherent_dma(vcpu
->kvm
);
3515 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
3517 /* Address WBINVD may be executed by guest */
3518 if (need_emulate_wbinvd(vcpu
)) {
3519 if (kvm_x86_ops
->has_wbinvd_exit())
3520 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
3521 else if (vcpu
->cpu
!= -1 && vcpu
->cpu
!= cpu
)
3522 smp_call_function_single(vcpu
->cpu
,
3523 wbinvd_ipi
, NULL
, 1);
3526 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
3528 /* Apply any externally detected TSC adjustments (due to suspend) */
3529 if (unlikely(vcpu
->arch
.tsc_offset_adjustment
)) {
3530 adjust_tsc_offset_host(vcpu
, vcpu
->arch
.tsc_offset_adjustment
);
3531 vcpu
->arch
.tsc_offset_adjustment
= 0;
3532 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
3535 if (unlikely(vcpu
->cpu
!= cpu
) || kvm_check_tsc_unstable()) {
3536 s64 tsc_delta
= !vcpu
->arch
.last_host_tsc
? 0 :
3537 rdtsc() - vcpu
->arch
.last_host_tsc
;
3539 mark_tsc_unstable("KVM discovered backwards TSC");
3541 if (kvm_check_tsc_unstable()) {
3542 u64 offset
= kvm_compute_tsc_offset(vcpu
,
3543 vcpu
->arch
.last_guest_tsc
);
3544 kvm_vcpu_write_tsc_offset(vcpu
, offset
);
3545 vcpu
->arch
.tsc_catchup
= 1;
3548 if (kvm_lapic_hv_timer_in_use(vcpu
))
3549 kvm_lapic_restart_hv_timer(vcpu
);
3552 * On a host with synchronized TSC, there is no need to update
3553 * kvmclock on vcpu->cpu migration
3555 if (!vcpu
->kvm
->arch
.use_master_clock
|| vcpu
->cpu
== -1)
3556 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
3557 if (vcpu
->cpu
!= cpu
)
3558 kvm_make_request(KVM_REQ_MIGRATE_TIMER
, vcpu
);
3562 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
3565 static void kvm_steal_time_set_preempted(struct kvm_vcpu
*vcpu
)
3567 struct kvm_host_map map
;
3568 struct kvm_steal_time
*st
;
3570 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
3573 if (vcpu
->arch
.st
.preempted
)
3576 if (kvm_map_gfn(vcpu
, vcpu
->arch
.st
.msr_val
>> PAGE_SHIFT
, &map
,
3577 &vcpu
->arch
.st
.cache
, true))
3581 offset_in_page(vcpu
->arch
.st
.msr_val
& KVM_STEAL_VALID_BITS
);
3583 st
->preempted
= vcpu
->arch
.st
.preempted
= KVM_VCPU_PREEMPTED
;
3585 kvm_unmap_gfn(vcpu
, &map
, &vcpu
->arch
.st
.cache
, true, true);
3588 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
3592 if (vcpu
->preempted
)
3593 vcpu
->arch
.preempted_in_kernel
= !kvm_x86_ops
->get_cpl(vcpu
);
3596 * Disable page faults because we're in atomic context here.
3597 * kvm_write_guest_offset_cached() would call might_fault()
3598 * that relies on pagefault_disable() to tell if there's a
3599 * bug. NOTE: the write to guest memory may not go through if
3600 * during postcopy live migration or if there's heavy guest
3603 pagefault_disable();
3605 * kvm_memslots() will be called by
3606 * kvm_write_guest_offset_cached() so take the srcu lock.
3608 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
3609 kvm_steal_time_set_preempted(vcpu
);
3610 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
3612 kvm_x86_ops
->vcpu_put(vcpu
);
3613 vcpu
->arch
.last_host_tsc
= rdtsc();
3615 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3616 * on every vmexit, but if not, we might have a stale dr6 from the
3617 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3622 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
3623 struct kvm_lapic_state
*s
)
3625 if (vcpu
->arch
.apicv_active
)
3626 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
3628 return kvm_apic_get_state(vcpu
, s
);
3631 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
3632 struct kvm_lapic_state
*s
)
3636 r
= kvm_apic_set_state(vcpu
, s
);
3639 update_cr8_intercept(vcpu
);
3644 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu
*vcpu
)
3646 return (!lapic_in_kernel(vcpu
) ||
3647 kvm_apic_accept_pic_intr(vcpu
));
3651 * if userspace requested an interrupt window, check that the
3652 * interrupt window is open.
3654 * No need to exit to userspace if we already have an interrupt queued.
3656 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu
*vcpu
)
3658 return kvm_arch_interrupt_allowed(vcpu
) &&
3659 !kvm_cpu_has_interrupt(vcpu
) &&
3660 !kvm_event_needs_reinjection(vcpu
) &&
3661 kvm_cpu_accept_dm_intr(vcpu
);
3664 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
3665 struct kvm_interrupt
*irq
)
3667 if (irq
->irq
>= KVM_NR_INTERRUPTS
)
3670 if (!irqchip_in_kernel(vcpu
->kvm
)) {
3671 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
3672 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3677 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3678 * fail for in-kernel 8259.
3680 if (pic_in_kernel(vcpu
->kvm
))
3683 if (vcpu
->arch
.pending_external_vector
!= -1)
3686 vcpu
->arch
.pending_external_vector
= irq
->irq
;
3687 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3691 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
3693 kvm_inject_nmi(vcpu
);
3698 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu
*vcpu
)
3700 kvm_make_request(KVM_REQ_SMI
, vcpu
);
3705 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
3706 struct kvm_tpr_access_ctl
*tac
)
3710 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
3714 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
3718 unsigned bank_num
= mcg_cap
& 0xff, bank
;
3721 if (!bank_num
|| bank_num
>= KVM_MAX_MCE_BANKS
)
3723 if (mcg_cap
& ~(kvm_mce_cap_supported
| 0xff | 0xff0000))
3726 vcpu
->arch
.mcg_cap
= mcg_cap
;
3727 /* Init IA32_MCG_CTL to all 1s */
3728 if (mcg_cap
& MCG_CTL_P
)
3729 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
3730 /* Init IA32_MCi_CTL to all 1s */
3731 for (bank
= 0; bank
< bank_num
; bank
++)
3732 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
3734 kvm_x86_ops
->setup_mce(vcpu
);
3739 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
3740 struct kvm_x86_mce
*mce
)
3742 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
3743 unsigned bank_num
= mcg_cap
& 0xff;
3744 u64
*banks
= vcpu
->arch
.mce_banks
;
3746 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
3749 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3750 * reporting is disabled
3752 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
3753 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
3755 banks
+= 4 * mce
->bank
;
3757 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3758 * reporting is disabled for the bank
3760 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
3762 if (mce
->status
& MCI_STATUS_UC
) {
3763 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
3764 !kvm_read_cr4_bits(vcpu
, X86_CR4_MCE
)) {
3765 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
3768 if (banks
[1] & MCI_STATUS_VAL
)
3769 mce
->status
|= MCI_STATUS_OVER
;
3770 banks
[2] = mce
->addr
;
3771 banks
[3] = mce
->misc
;
3772 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
3773 banks
[1] = mce
->status
;
3774 kvm_queue_exception(vcpu
, MC_VECTOR
);
3775 } else if (!(banks
[1] & MCI_STATUS_VAL
)
3776 || !(banks
[1] & MCI_STATUS_UC
)) {
3777 if (banks
[1] & MCI_STATUS_VAL
)
3778 mce
->status
|= MCI_STATUS_OVER
;
3779 banks
[2] = mce
->addr
;
3780 banks
[3] = mce
->misc
;
3781 banks
[1] = mce
->status
;
3783 banks
[1] |= MCI_STATUS_OVER
;
3787 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu
*vcpu
,
3788 struct kvm_vcpu_events
*events
)
3793 * The API doesn't provide the instruction length for software
3794 * exceptions, so don't report them. As long as the guest RIP
3795 * isn't advanced, we should expect to encounter the exception
3798 if (kvm_exception_is_soft(vcpu
->arch
.exception
.nr
)) {
3799 events
->exception
.injected
= 0;
3800 events
->exception
.pending
= 0;
3802 events
->exception
.injected
= vcpu
->arch
.exception
.injected
;
3803 events
->exception
.pending
= vcpu
->arch
.exception
.pending
;
3805 * For ABI compatibility, deliberately conflate
3806 * pending and injected exceptions when
3807 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3809 if (!vcpu
->kvm
->arch
.exception_payload_enabled
)
3810 events
->exception
.injected
|=
3811 vcpu
->arch
.exception
.pending
;
3813 events
->exception
.nr
= vcpu
->arch
.exception
.nr
;
3814 events
->exception
.has_error_code
= vcpu
->arch
.exception
.has_error_code
;
3815 events
->exception
.error_code
= vcpu
->arch
.exception
.error_code
;
3816 events
->exception_has_payload
= vcpu
->arch
.exception
.has_payload
;
3817 events
->exception_payload
= vcpu
->arch
.exception
.payload
;
3819 events
->interrupt
.injected
=
3820 vcpu
->arch
.interrupt
.injected
&& !vcpu
->arch
.interrupt
.soft
;
3821 events
->interrupt
.nr
= vcpu
->arch
.interrupt
.nr
;
3822 events
->interrupt
.soft
= 0;
3823 events
->interrupt
.shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
);
3825 events
->nmi
.injected
= vcpu
->arch
.nmi_injected
;
3826 events
->nmi
.pending
= vcpu
->arch
.nmi_pending
!= 0;
3827 events
->nmi
.masked
= kvm_x86_ops
->get_nmi_mask(vcpu
);
3828 events
->nmi
.pad
= 0;
3830 events
->sipi_vector
= 0; /* never valid when reporting to user space */
3832 events
->smi
.smm
= is_smm(vcpu
);
3833 events
->smi
.pending
= vcpu
->arch
.smi_pending
;
3834 events
->smi
.smm_inside_nmi
=
3835 !!(vcpu
->arch
.hflags
& HF_SMM_INSIDE_NMI_MASK
);
3836 events
->smi
.latched_init
= kvm_lapic_latched_init(vcpu
);
3838 events
->flags
= (KVM_VCPUEVENT_VALID_NMI_PENDING
3839 | KVM_VCPUEVENT_VALID_SHADOW
3840 | KVM_VCPUEVENT_VALID_SMM
);
3841 if (vcpu
->kvm
->arch
.exception_payload_enabled
)
3842 events
->flags
|= KVM_VCPUEVENT_VALID_PAYLOAD
;
3844 memset(&events
->reserved
, 0, sizeof(events
->reserved
));
3847 static void kvm_smm_changed(struct kvm_vcpu
*vcpu
);
3849 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu
*vcpu
,
3850 struct kvm_vcpu_events
*events
)
3852 if (events
->flags
& ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3853 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3854 | KVM_VCPUEVENT_VALID_SHADOW
3855 | KVM_VCPUEVENT_VALID_SMM
3856 | KVM_VCPUEVENT_VALID_PAYLOAD
))
3859 if (events
->flags
& KVM_VCPUEVENT_VALID_PAYLOAD
) {
3860 if (!vcpu
->kvm
->arch
.exception_payload_enabled
)
3862 if (events
->exception
.pending
)
3863 events
->exception
.injected
= 0;
3865 events
->exception_has_payload
= 0;
3867 events
->exception
.pending
= 0;
3868 events
->exception_has_payload
= 0;
3871 if ((events
->exception
.injected
|| events
->exception
.pending
) &&
3872 (events
->exception
.nr
> 31 || events
->exception
.nr
== NMI_VECTOR
))
3875 /* INITs are latched while in SMM */
3876 if (events
->flags
& KVM_VCPUEVENT_VALID_SMM
&&
3877 (events
->smi
.smm
|| events
->smi
.pending
) &&
3878 vcpu
->arch
.mp_state
== KVM_MP_STATE_INIT_RECEIVED
)
3882 vcpu
->arch
.exception
.injected
= events
->exception
.injected
;
3883 vcpu
->arch
.exception
.pending
= events
->exception
.pending
;
3884 vcpu
->arch
.exception
.nr
= events
->exception
.nr
;
3885 vcpu
->arch
.exception
.has_error_code
= events
->exception
.has_error_code
;
3886 vcpu
->arch
.exception
.error_code
= events
->exception
.error_code
;
3887 vcpu
->arch
.exception
.has_payload
= events
->exception_has_payload
;
3888 vcpu
->arch
.exception
.payload
= events
->exception_payload
;
3890 vcpu
->arch
.interrupt
.injected
= events
->interrupt
.injected
;
3891 vcpu
->arch
.interrupt
.nr
= events
->interrupt
.nr
;
3892 vcpu
->arch
.interrupt
.soft
= events
->interrupt
.soft
;
3893 if (events
->flags
& KVM_VCPUEVENT_VALID_SHADOW
)
3894 kvm_x86_ops
->set_interrupt_shadow(vcpu
,
3895 events
->interrupt
.shadow
);
3897 vcpu
->arch
.nmi_injected
= events
->nmi
.injected
;
3898 if (events
->flags
& KVM_VCPUEVENT_VALID_NMI_PENDING
)
3899 vcpu
->arch
.nmi_pending
= events
->nmi
.pending
;
3900 kvm_x86_ops
->set_nmi_mask(vcpu
, events
->nmi
.masked
);
3902 if (events
->flags
& KVM_VCPUEVENT_VALID_SIPI_VECTOR
&&
3903 lapic_in_kernel(vcpu
))
3904 vcpu
->arch
.apic
->sipi_vector
= events
->sipi_vector
;
3906 if (events
->flags
& KVM_VCPUEVENT_VALID_SMM
) {
3907 if (!!(vcpu
->arch
.hflags
& HF_SMM_MASK
) != events
->smi
.smm
) {
3908 if (events
->smi
.smm
)
3909 vcpu
->arch
.hflags
|= HF_SMM_MASK
;
3911 vcpu
->arch
.hflags
&= ~HF_SMM_MASK
;
3912 kvm_smm_changed(vcpu
);
3915 vcpu
->arch
.smi_pending
= events
->smi
.pending
;
3917 if (events
->smi
.smm
) {
3918 if (events
->smi
.smm_inside_nmi
)
3919 vcpu
->arch
.hflags
|= HF_SMM_INSIDE_NMI_MASK
;
3921 vcpu
->arch
.hflags
&= ~HF_SMM_INSIDE_NMI_MASK
;
3924 if (lapic_in_kernel(vcpu
)) {
3925 if (events
->smi
.latched_init
)
3926 set_bit(KVM_APIC_INIT
, &vcpu
->arch
.apic
->pending_events
);
3928 clear_bit(KVM_APIC_INIT
, &vcpu
->arch
.apic
->pending_events
);
3932 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3937 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu
*vcpu
,
3938 struct kvm_debugregs
*dbgregs
)
3942 memcpy(dbgregs
->db
, vcpu
->arch
.db
, sizeof(vcpu
->arch
.db
));
3943 kvm_get_dr(vcpu
, 6, &val
);
3945 dbgregs
->dr7
= vcpu
->arch
.dr7
;
3947 memset(&dbgregs
->reserved
, 0, sizeof(dbgregs
->reserved
));
3950 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu
*vcpu
,
3951 struct kvm_debugregs
*dbgregs
)
3956 if (dbgregs
->dr6
& ~0xffffffffull
)
3958 if (dbgregs
->dr7
& ~0xffffffffull
)
3961 memcpy(vcpu
->arch
.db
, dbgregs
->db
, sizeof(vcpu
->arch
.db
));
3962 kvm_update_dr0123(vcpu
);
3963 vcpu
->arch
.dr6
= dbgregs
->dr6
;
3964 kvm_update_dr6(vcpu
);
3965 vcpu
->arch
.dr7
= dbgregs
->dr7
;
3966 kvm_update_dr7(vcpu
);
3971 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3973 static void fill_xsave(u8
*dest
, struct kvm_vcpu
*vcpu
)
3975 struct xregs_state
*xsave
= &vcpu
->arch
.guest_fpu
->state
.xsave
;
3976 u64 xstate_bv
= xsave
->header
.xfeatures
;
3980 * Copy legacy XSAVE area, to avoid complications with CPUID
3981 * leaves 0 and 1 in the loop below.
3983 memcpy(dest
, xsave
, XSAVE_HDR_OFFSET
);
3986 xstate_bv
&= vcpu
->arch
.guest_supported_xcr0
| XFEATURE_MASK_FPSSE
;
3987 *(u64
*)(dest
+ XSAVE_HDR_OFFSET
) = xstate_bv
;
3990 * Copy each region from the possibly compacted offset to the
3991 * non-compacted offset.
3993 valid
= xstate_bv
& ~XFEATURE_MASK_FPSSE
;
3995 u64 xfeature_mask
= valid
& -valid
;
3996 int xfeature_nr
= fls64(xfeature_mask
) - 1;
3997 void *src
= get_xsave_addr(xsave
, xfeature_nr
);
4000 u32 size
, offset
, ecx
, edx
;
4001 cpuid_count(XSTATE_CPUID
, xfeature_nr
,
4002 &size
, &offset
, &ecx
, &edx
);
4003 if (xfeature_nr
== XFEATURE_PKRU
)
4004 memcpy(dest
+ offset
, &vcpu
->arch
.pkru
,
4005 sizeof(vcpu
->arch
.pkru
));
4007 memcpy(dest
+ offset
, src
, size
);
4011 valid
-= xfeature_mask
;
4015 static void load_xsave(struct kvm_vcpu
*vcpu
, u8
*src
)
4017 struct xregs_state
*xsave
= &vcpu
->arch
.guest_fpu
->state
.xsave
;
4018 u64 xstate_bv
= *(u64
*)(src
+ XSAVE_HDR_OFFSET
);
4022 * Copy legacy XSAVE area, to avoid complications with CPUID
4023 * leaves 0 and 1 in the loop below.
4025 memcpy(xsave
, src
, XSAVE_HDR_OFFSET
);
4027 /* Set XSTATE_BV and possibly XCOMP_BV. */
4028 xsave
->header
.xfeatures
= xstate_bv
;
4029 if (boot_cpu_has(X86_FEATURE_XSAVES
))
4030 xsave
->header
.xcomp_bv
= host_xcr0
| XSTATE_COMPACTION_ENABLED
;
4033 * Copy each region from the non-compacted offset to the
4034 * possibly compacted offset.
4036 valid
= xstate_bv
& ~XFEATURE_MASK_FPSSE
;
4038 u64 xfeature_mask
= valid
& -valid
;
4039 int xfeature_nr
= fls64(xfeature_mask
) - 1;
4040 void *dest
= get_xsave_addr(xsave
, xfeature_nr
);
4043 u32 size
, offset
, ecx
, edx
;
4044 cpuid_count(XSTATE_CPUID
, xfeature_nr
,
4045 &size
, &offset
, &ecx
, &edx
);
4046 if (xfeature_nr
== XFEATURE_PKRU
)
4047 memcpy(&vcpu
->arch
.pkru
, src
+ offset
,
4048 sizeof(vcpu
->arch
.pkru
));
4050 memcpy(dest
, src
+ offset
, size
);
4053 valid
-= xfeature_mask
;
4057 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu
*vcpu
,
4058 struct kvm_xsave
*guest_xsave
)
4060 if (boot_cpu_has(X86_FEATURE_XSAVE
)) {
4061 memset(guest_xsave
, 0, sizeof(struct kvm_xsave
));
4062 fill_xsave((u8
*) guest_xsave
->region
, vcpu
);
4064 memcpy(guest_xsave
->region
,
4065 &vcpu
->arch
.guest_fpu
->state
.fxsave
,
4066 sizeof(struct fxregs_state
));
4067 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)] =
4068 XFEATURE_MASK_FPSSE
;
4072 #define XSAVE_MXCSR_OFFSET 24
4074 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu
*vcpu
,
4075 struct kvm_xsave
*guest_xsave
)
4078 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)];
4079 u32 mxcsr
= *(u32
*)&guest_xsave
->region
[XSAVE_MXCSR_OFFSET
/ sizeof(u32
)];
4081 if (boot_cpu_has(X86_FEATURE_XSAVE
)) {
4083 * Here we allow setting states that are not present in
4084 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
4085 * with old userspace.
4087 if (xstate_bv
& ~kvm_supported_xcr0() ||
4088 mxcsr
& ~mxcsr_feature_mask
)
4090 load_xsave(vcpu
, (u8
*)guest_xsave
->region
);
4092 if (xstate_bv
& ~XFEATURE_MASK_FPSSE
||
4093 mxcsr
& ~mxcsr_feature_mask
)
4095 memcpy(&vcpu
->arch
.guest_fpu
->state
.fxsave
,
4096 guest_xsave
->region
, sizeof(struct fxregs_state
));
4101 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu
*vcpu
,
4102 struct kvm_xcrs
*guest_xcrs
)
4104 if (!boot_cpu_has(X86_FEATURE_XSAVE
)) {
4105 guest_xcrs
->nr_xcrs
= 0;
4109 guest_xcrs
->nr_xcrs
= 1;
4110 guest_xcrs
->flags
= 0;
4111 guest_xcrs
->xcrs
[0].xcr
= XCR_XFEATURE_ENABLED_MASK
;
4112 guest_xcrs
->xcrs
[0].value
= vcpu
->arch
.xcr0
;
4115 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu
*vcpu
,
4116 struct kvm_xcrs
*guest_xcrs
)
4120 if (!boot_cpu_has(X86_FEATURE_XSAVE
))
4123 if (guest_xcrs
->nr_xcrs
> KVM_MAX_XCRS
|| guest_xcrs
->flags
)
4126 for (i
= 0; i
< guest_xcrs
->nr_xcrs
; i
++)
4127 /* Only support XCR0 currently */
4128 if (guest_xcrs
->xcrs
[i
].xcr
== XCR_XFEATURE_ENABLED_MASK
) {
4129 r
= __kvm_set_xcr(vcpu
, XCR_XFEATURE_ENABLED_MASK
,
4130 guest_xcrs
->xcrs
[i
].value
);
4139 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4140 * stopped by the hypervisor. This function will be called from the host only.
4141 * EINVAL is returned when the host attempts to set the flag for a guest that
4142 * does not support pv clocks.
4144 static int kvm_set_guest_paused(struct kvm_vcpu
*vcpu
)
4146 if (!vcpu
->arch
.pv_time_enabled
)
4148 vcpu
->arch
.pvclock_set_guest_stopped_request
= true;
4149 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
4153 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu
*vcpu
,
4154 struct kvm_enable_cap
*cap
)
4157 uint16_t vmcs_version
;
4158 void __user
*user_ptr
;
4164 case KVM_CAP_HYPERV_SYNIC2
:
4169 case KVM_CAP_HYPERV_SYNIC
:
4170 if (!irqchip_in_kernel(vcpu
->kvm
))
4172 return kvm_hv_activate_synic(vcpu
, cap
->cap
==
4173 KVM_CAP_HYPERV_SYNIC2
);
4174 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS
:
4175 if (!kvm_x86_ops
->nested_enable_evmcs
)
4177 r
= kvm_x86_ops
->nested_enable_evmcs(vcpu
, &vmcs_version
);
4179 user_ptr
= (void __user
*)(uintptr_t)cap
->args
[0];
4180 if (copy_to_user(user_ptr
, &vmcs_version
,
4181 sizeof(vmcs_version
)))
4185 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH
:
4186 if (!kvm_x86_ops
->enable_direct_tlbflush
)
4189 return kvm_x86_ops
->enable_direct_tlbflush(vcpu
);
4196 long kvm_arch_vcpu_ioctl(struct file
*filp
,
4197 unsigned int ioctl
, unsigned long arg
)
4199 struct kvm_vcpu
*vcpu
= filp
->private_data
;
4200 void __user
*argp
= (void __user
*)arg
;
4203 struct kvm_lapic_state
*lapic
;
4204 struct kvm_xsave
*xsave
;
4205 struct kvm_xcrs
*xcrs
;
4213 case KVM_GET_LAPIC
: {
4215 if (!lapic_in_kernel(vcpu
))
4217 u
.lapic
= kzalloc(sizeof(struct kvm_lapic_state
),
4218 GFP_KERNEL_ACCOUNT
);
4223 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, u
.lapic
);
4227 if (copy_to_user(argp
, u
.lapic
, sizeof(struct kvm_lapic_state
)))
4232 case KVM_SET_LAPIC
: {
4234 if (!lapic_in_kernel(vcpu
))
4236 u
.lapic
= memdup_user(argp
, sizeof(*u
.lapic
));
4237 if (IS_ERR(u
.lapic
)) {
4238 r
= PTR_ERR(u
.lapic
);
4242 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, u
.lapic
);
4245 case KVM_INTERRUPT
: {
4246 struct kvm_interrupt irq
;
4249 if (copy_from_user(&irq
, argp
, sizeof(irq
)))
4251 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
4255 r
= kvm_vcpu_ioctl_nmi(vcpu
);
4259 r
= kvm_vcpu_ioctl_smi(vcpu
);
4262 case KVM_SET_CPUID
: {
4263 struct kvm_cpuid __user
*cpuid_arg
= argp
;
4264 struct kvm_cpuid cpuid
;
4267 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof(cpuid
)))
4269 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
4272 case KVM_SET_CPUID2
: {
4273 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
4274 struct kvm_cpuid2 cpuid
;
4277 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof(cpuid
)))
4279 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
4280 cpuid_arg
->entries
);
4283 case KVM_GET_CPUID2
: {
4284 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
4285 struct kvm_cpuid2 cpuid
;
4288 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof(cpuid
)))
4290 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
4291 cpuid_arg
->entries
);
4295 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof(cpuid
)))
4300 case KVM_GET_MSRS
: {
4301 int idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
4302 r
= msr_io(vcpu
, argp
, do_get_msr
, 1);
4303 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
4306 case KVM_SET_MSRS
: {
4307 int idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
4308 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
4309 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
4312 case KVM_TPR_ACCESS_REPORTING
: {
4313 struct kvm_tpr_access_ctl tac
;
4316 if (copy_from_user(&tac
, argp
, sizeof(tac
)))
4318 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
4322 if (copy_to_user(argp
, &tac
, sizeof(tac
)))
4327 case KVM_SET_VAPIC_ADDR
: {
4328 struct kvm_vapic_addr va
;
4332 if (!lapic_in_kernel(vcpu
))
4335 if (copy_from_user(&va
, argp
, sizeof(va
)))
4337 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
4338 r
= kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
4339 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
4342 case KVM_X86_SETUP_MCE
: {
4346 if (copy_from_user(&mcg_cap
, argp
, sizeof(mcg_cap
)))
4348 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
4351 case KVM_X86_SET_MCE
: {
4352 struct kvm_x86_mce mce
;
4355 if (copy_from_user(&mce
, argp
, sizeof(mce
)))
4357 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
4360 case KVM_GET_VCPU_EVENTS
: {
4361 struct kvm_vcpu_events events
;
4363 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu
, &events
);
4366 if (copy_to_user(argp
, &events
, sizeof(struct kvm_vcpu_events
)))
4371 case KVM_SET_VCPU_EVENTS
: {
4372 struct kvm_vcpu_events events
;
4375 if (copy_from_user(&events
, argp
, sizeof(struct kvm_vcpu_events
)))
4378 r
= kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu
, &events
);
4381 case KVM_GET_DEBUGREGS
: {
4382 struct kvm_debugregs dbgregs
;
4384 kvm_vcpu_ioctl_x86_get_debugregs(vcpu
, &dbgregs
);
4387 if (copy_to_user(argp
, &dbgregs
,
4388 sizeof(struct kvm_debugregs
)))
4393 case KVM_SET_DEBUGREGS
: {
4394 struct kvm_debugregs dbgregs
;
4397 if (copy_from_user(&dbgregs
, argp
,
4398 sizeof(struct kvm_debugregs
)))
4401 r
= kvm_vcpu_ioctl_x86_set_debugregs(vcpu
, &dbgregs
);
4404 case KVM_GET_XSAVE
: {
4405 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL_ACCOUNT
);
4410 kvm_vcpu_ioctl_x86_get_xsave(vcpu
, u
.xsave
);
4413 if (copy_to_user(argp
, u
.xsave
, sizeof(struct kvm_xsave
)))
4418 case KVM_SET_XSAVE
: {
4419 u
.xsave
= memdup_user(argp
, sizeof(*u
.xsave
));
4420 if (IS_ERR(u
.xsave
)) {
4421 r
= PTR_ERR(u
.xsave
);
4425 r
= kvm_vcpu_ioctl_x86_set_xsave(vcpu
, u
.xsave
);
4428 case KVM_GET_XCRS
: {
4429 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL_ACCOUNT
);
4434 kvm_vcpu_ioctl_x86_get_xcrs(vcpu
, u
.xcrs
);
4437 if (copy_to_user(argp
, u
.xcrs
,
4438 sizeof(struct kvm_xcrs
)))
4443 case KVM_SET_XCRS
: {
4444 u
.xcrs
= memdup_user(argp
, sizeof(*u
.xcrs
));
4445 if (IS_ERR(u
.xcrs
)) {
4446 r
= PTR_ERR(u
.xcrs
);
4450 r
= kvm_vcpu_ioctl_x86_set_xcrs(vcpu
, u
.xcrs
);
4453 case KVM_SET_TSC_KHZ
: {
4457 user_tsc_khz
= (u32
)arg
;
4459 if (user_tsc_khz
>= kvm_max_guest_tsc_khz
)
4462 if (user_tsc_khz
== 0)
4463 user_tsc_khz
= tsc_khz
;
4465 if (!kvm_set_tsc_khz(vcpu
, user_tsc_khz
))
4470 case KVM_GET_TSC_KHZ
: {
4471 r
= vcpu
->arch
.virtual_tsc_khz
;
4474 case KVM_KVMCLOCK_CTRL
: {
4475 r
= kvm_set_guest_paused(vcpu
);
4478 case KVM_ENABLE_CAP
: {
4479 struct kvm_enable_cap cap
;
4482 if (copy_from_user(&cap
, argp
, sizeof(cap
)))
4484 r
= kvm_vcpu_ioctl_enable_cap(vcpu
, &cap
);
4487 case KVM_GET_NESTED_STATE
: {
4488 struct kvm_nested_state __user
*user_kvm_nested_state
= argp
;
4492 if (!kvm_x86_ops
->get_nested_state
)
4495 BUILD_BUG_ON(sizeof(user_data_size
) != sizeof(user_kvm_nested_state
->size
));
4497 if (get_user(user_data_size
, &user_kvm_nested_state
->size
))
4500 r
= kvm_x86_ops
->get_nested_state(vcpu
, user_kvm_nested_state
,
4505 if (r
> user_data_size
) {
4506 if (put_user(r
, &user_kvm_nested_state
->size
))
4516 case KVM_SET_NESTED_STATE
: {
4517 struct kvm_nested_state __user
*user_kvm_nested_state
= argp
;
4518 struct kvm_nested_state kvm_state
;
4522 if (!kvm_x86_ops
->set_nested_state
)
4526 if (copy_from_user(&kvm_state
, user_kvm_nested_state
, sizeof(kvm_state
)))
4530 if (kvm_state
.size
< sizeof(kvm_state
))
4533 if (kvm_state
.flags
&
4534 ~(KVM_STATE_NESTED_RUN_PENDING
| KVM_STATE_NESTED_GUEST_MODE
4535 | KVM_STATE_NESTED_EVMCS
))
4538 /* nested_run_pending implies guest_mode. */
4539 if ((kvm_state
.flags
& KVM_STATE_NESTED_RUN_PENDING
)
4540 && !(kvm_state
.flags
& KVM_STATE_NESTED_GUEST_MODE
))
4543 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
4544 r
= kvm_x86_ops
->set_nested_state(vcpu
, user_kvm_nested_state
, &kvm_state
);
4545 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
4548 case KVM_GET_SUPPORTED_HV_CPUID
: {
4549 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
4550 struct kvm_cpuid2 cpuid
;
4553 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof(cpuid
)))
4556 r
= kvm_vcpu_ioctl_get_hv_cpuid(vcpu
, &cpuid
,
4557 cpuid_arg
->entries
);
4562 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof(cpuid
)))
4577 vm_fault_t
kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
4579 return VM_FAULT_SIGBUS
;
4582 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
4586 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
4588 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
4592 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm
*kvm
,
4595 return kvm_x86_ops
->set_identity_map_addr(kvm
, ident_addr
);
4598 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
4599 unsigned long kvm_nr_mmu_pages
)
4601 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
4604 mutex_lock(&kvm
->slots_lock
);
4606 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
4607 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
4609 mutex_unlock(&kvm
->slots_lock
);
4613 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
4615 return kvm
->arch
.n_max_mmu_pages
;
4618 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
4620 struct kvm_pic
*pic
= kvm
->arch
.vpic
;
4624 switch (chip
->chip_id
) {
4625 case KVM_IRQCHIP_PIC_MASTER
:
4626 memcpy(&chip
->chip
.pic
, &pic
->pics
[0],
4627 sizeof(struct kvm_pic_state
));
4629 case KVM_IRQCHIP_PIC_SLAVE
:
4630 memcpy(&chip
->chip
.pic
, &pic
->pics
[1],
4631 sizeof(struct kvm_pic_state
));
4633 case KVM_IRQCHIP_IOAPIC
:
4634 kvm_get_ioapic(kvm
, &chip
->chip
.ioapic
);
4643 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
4645 struct kvm_pic
*pic
= kvm
->arch
.vpic
;
4649 switch (chip
->chip_id
) {
4650 case KVM_IRQCHIP_PIC_MASTER
:
4651 spin_lock(&pic
->lock
);
4652 memcpy(&pic
->pics
[0], &chip
->chip
.pic
,
4653 sizeof(struct kvm_pic_state
));
4654 spin_unlock(&pic
->lock
);
4656 case KVM_IRQCHIP_PIC_SLAVE
:
4657 spin_lock(&pic
->lock
);
4658 memcpy(&pic
->pics
[1], &chip
->chip
.pic
,
4659 sizeof(struct kvm_pic_state
));
4660 spin_unlock(&pic
->lock
);
4662 case KVM_IRQCHIP_IOAPIC
:
4663 kvm_set_ioapic(kvm
, &chip
->chip
.ioapic
);
4669 kvm_pic_update_irq(pic
);
4673 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
4675 struct kvm_kpit_state
*kps
= &kvm
->arch
.vpit
->pit_state
;
4677 BUILD_BUG_ON(sizeof(*ps
) != sizeof(kps
->channels
));
4679 mutex_lock(&kps
->lock
);
4680 memcpy(ps
, &kps
->channels
, sizeof(*ps
));
4681 mutex_unlock(&kps
->lock
);
4685 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
4688 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
4690 mutex_lock(&pit
->pit_state
.lock
);
4691 memcpy(&pit
->pit_state
.channels
, ps
, sizeof(*ps
));
4692 for (i
= 0; i
< 3; i
++)
4693 kvm_pit_load_count(pit
, i
, ps
->channels
[i
].count
, 0);
4694 mutex_unlock(&pit
->pit_state
.lock
);
4698 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
4700 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
4701 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
4702 sizeof(ps
->channels
));
4703 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
4704 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
4705 memset(&ps
->reserved
, 0, sizeof(ps
->reserved
));
4709 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
4713 u32 prev_legacy
, cur_legacy
;
4714 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
4716 mutex_lock(&pit
->pit_state
.lock
);
4717 prev_legacy
= pit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
4718 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
4719 if (!prev_legacy
&& cur_legacy
)
4721 memcpy(&pit
->pit_state
.channels
, &ps
->channels
,
4722 sizeof(pit
->pit_state
.channels
));
4723 pit
->pit_state
.flags
= ps
->flags
;
4724 for (i
= 0; i
< 3; i
++)
4725 kvm_pit_load_count(pit
, i
, pit
->pit_state
.channels
[i
].count
,
4727 mutex_unlock(&pit
->pit_state
.lock
);
4731 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
4732 struct kvm_reinject_control
*control
)
4734 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
4736 /* pit->pit_state.lock was overloaded to prevent userspace from getting
4737 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4738 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
4740 mutex_lock(&pit
->pit_state
.lock
);
4741 kvm_pit_set_reinject(pit
, control
->pit_reinject
);
4742 mutex_unlock(&pit
->pit_state
.lock
);
4748 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4749 * @kvm: kvm instance
4750 * @log: slot id and address to which we copy the log
4752 * Steps 1-4 below provide general overview of dirty page logging. See
4753 * kvm_get_dirty_log_protect() function description for additional details.
4755 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4756 * always flush the TLB (step 4) even if previous step failed and the dirty
4757 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4758 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4759 * writes will be marked dirty for next log read.
4761 * 1. Take a snapshot of the bit and clear it if needed.
4762 * 2. Write protect the corresponding page.
4763 * 3. Copy the snapshot to the userspace.
4764 * 4. Flush TLB's if needed.
4766 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
)
4771 mutex_lock(&kvm
->slots_lock
);
4774 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4776 if (kvm_x86_ops
->flush_log_dirty
)
4777 kvm_x86_ops
->flush_log_dirty(kvm
);
4779 r
= kvm_get_dirty_log_protect(kvm
, log
, &flush
);
4782 * All the TLBs can be flushed out of mmu lock, see the comments in
4783 * kvm_mmu_slot_remove_write_access().
4785 lockdep_assert_held(&kvm
->slots_lock
);
4787 kvm_flush_remote_tlbs(kvm
);
4789 mutex_unlock(&kvm
->slots_lock
);
4793 int kvm_vm_ioctl_clear_dirty_log(struct kvm
*kvm
, struct kvm_clear_dirty_log
*log
)
4798 mutex_lock(&kvm
->slots_lock
);
4801 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4803 if (kvm_x86_ops
->flush_log_dirty
)
4804 kvm_x86_ops
->flush_log_dirty(kvm
);
4806 r
= kvm_clear_dirty_log_protect(kvm
, log
, &flush
);
4809 * All the TLBs can be flushed out of mmu lock, see the comments in
4810 * kvm_mmu_slot_remove_write_access().
4812 lockdep_assert_held(&kvm
->slots_lock
);
4814 kvm_flush_remote_tlbs(kvm
);
4816 mutex_unlock(&kvm
->slots_lock
);
4820 int kvm_vm_ioctl_irq_line(struct kvm
*kvm
, struct kvm_irq_level
*irq_event
,
4823 if (!irqchip_in_kernel(kvm
))
4826 irq_event
->status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
4827 irq_event
->irq
, irq_event
->level
,
4832 int kvm_vm_ioctl_enable_cap(struct kvm
*kvm
,
4833 struct kvm_enable_cap
*cap
)
4841 case KVM_CAP_DISABLE_QUIRKS
:
4842 kvm
->arch
.disabled_quirks
= cap
->args
[0];
4845 case KVM_CAP_SPLIT_IRQCHIP
: {
4846 mutex_lock(&kvm
->lock
);
4848 if (cap
->args
[0] > MAX_NR_RESERVED_IOAPIC_PINS
)
4849 goto split_irqchip_unlock
;
4851 if (irqchip_in_kernel(kvm
))
4852 goto split_irqchip_unlock
;
4853 if (kvm
->created_vcpus
)
4854 goto split_irqchip_unlock
;
4855 r
= kvm_setup_empty_irq_routing(kvm
);
4857 goto split_irqchip_unlock
;
4858 /* Pairs with irqchip_in_kernel. */
4860 kvm
->arch
.irqchip_mode
= KVM_IRQCHIP_SPLIT
;
4861 kvm
->arch
.nr_reserved_ioapic_pins
= cap
->args
[0];
4863 split_irqchip_unlock
:
4864 mutex_unlock(&kvm
->lock
);
4867 case KVM_CAP_X2APIC_API
:
4869 if (cap
->args
[0] & ~KVM_X2APIC_API_VALID_FLAGS
)
4872 if (cap
->args
[0] & KVM_X2APIC_API_USE_32BIT_IDS
)
4873 kvm
->arch
.x2apic_format
= true;
4874 if (cap
->args
[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK
)
4875 kvm
->arch
.x2apic_broadcast_quirk_disabled
= true;
4879 case KVM_CAP_X86_DISABLE_EXITS
:
4881 if (cap
->args
[0] & ~KVM_X86_DISABLE_VALID_EXITS
)
4884 if ((cap
->args
[0] & KVM_X86_DISABLE_EXITS_MWAIT
) &&
4885 kvm_can_mwait_in_guest())
4886 kvm
->arch
.mwait_in_guest
= true;
4887 if (cap
->args
[0] & KVM_X86_DISABLE_EXITS_HLT
)
4888 kvm
->arch
.hlt_in_guest
= true;
4889 if (cap
->args
[0] & KVM_X86_DISABLE_EXITS_PAUSE
)
4890 kvm
->arch
.pause_in_guest
= true;
4891 if (cap
->args
[0] & KVM_X86_DISABLE_EXITS_CSTATE
)
4892 kvm
->arch
.cstate_in_guest
= true;
4895 case KVM_CAP_MSR_PLATFORM_INFO
:
4896 kvm
->arch
.guest_can_read_msr_platform_info
= cap
->args
[0];
4899 case KVM_CAP_EXCEPTION_PAYLOAD
:
4900 kvm
->arch
.exception_payload_enabled
= cap
->args
[0];
4910 long kvm_arch_vm_ioctl(struct file
*filp
,
4911 unsigned int ioctl
, unsigned long arg
)
4913 struct kvm
*kvm
= filp
->private_data
;
4914 void __user
*argp
= (void __user
*)arg
;
4917 * This union makes it completely explicit to gcc-3.x
4918 * that these two variables' stack usage should be
4919 * combined, not added together.
4922 struct kvm_pit_state ps
;
4923 struct kvm_pit_state2 ps2
;
4924 struct kvm_pit_config pit_config
;
4928 case KVM_SET_TSS_ADDR
:
4929 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
4931 case KVM_SET_IDENTITY_MAP_ADDR
: {
4934 mutex_lock(&kvm
->lock
);
4936 if (kvm
->created_vcpus
)
4937 goto set_identity_unlock
;
4939 if (copy_from_user(&ident_addr
, argp
, sizeof(ident_addr
)))
4940 goto set_identity_unlock
;
4941 r
= kvm_vm_ioctl_set_identity_map_addr(kvm
, ident_addr
);
4942 set_identity_unlock
:
4943 mutex_unlock(&kvm
->lock
);
4946 case KVM_SET_NR_MMU_PAGES
:
4947 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
4949 case KVM_GET_NR_MMU_PAGES
:
4950 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
4952 case KVM_CREATE_IRQCHIP
: {
4953 mutex_lock(&kvm
->lock
);
4956 if (irqchip_in_kernel(kvm
))
4957 goto create_irqchip_unlock
;
4960 if (kvm
->created_vcpus
)
4961 goto create_irqchip_unlock
;
4963 r
= kvm_pic_init(kvm
);
4965 goto create_irqchip_unlock
;
4967 r
= kvm_ioapic_init(kvm
);
4969 kvm_pic_destroy(kvm
);
4970 goto create_irqchip_unlock
;
4973 r
= kvm_setup_default_irq_routing(kvm
);
4975 kvm_ioapic_destroy(kvm
);
4976 kvm_pic_destroy(kvm
);
4977 goto create_irqchip_unlock
;
4979 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4981 kvm
->arch
.irqchip_mode
= KVM_IRQCHIP_KERNEL
;
4982 create_irqchip_unlock
:
4983 mutex_unlock(&kvm
->lock
);
4986 case KVM_CREATE_PIT
:
4987 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
4989 case KVM_CREATE_PIT2
:
4991 if (copy_from_user(&u
.pit_config
, argp
,
4992 sizeof(struct kvm_pit_config
)))
4995 mutex_lock(&kvm
->lock
);
4998 goto create_pit_unlock
;
5000 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
5004 mutex_unlock(&kvm
->lock
);
5006 case KVM_GET_IRQCHIP
: {
5007 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5008 struct kvm_irqchip
*chip
;
5010 chip
= memdup_user(argp
, sizeof(*chip
));
5017 if (!irqchip_kernel(kvm
))
5018 goto get_irqchip_out
;
5019 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
5021 goto get_irqchip_out
;
5023 if (copy_to_user(argp
, chip
, sizeof(*chip
)))
5024 goto get_irqchip_out
;
5030 case KVM_SET_IRQCHIP
: {
5031 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5032 struct kvm_irqchip
*chip
;
5034 chip
= memdup_user(argp
, sizeof(*chip
));
5041 if (!irqchip_kernel(kvm
))
5042 goto set_irqchip_out
;
5043 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
5050 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
5053 if (!kvm
->arch
.vpit
)
5055 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
5059 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
5066 if (copy_from_user(&u
.ps
, argp
, sizeof(u
.ps
)))
5069 if (!kvm
->arch
.vpit
)
5071 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
5074 case KVM_GET_PIT2
: {
5076 if (!kvm
->arch
.vpit
)
5078 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
5082 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
5087 case KVM_SET_PIT2
: {
5089 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
5092 if (!kvm
->arch
.vpit
)
5094 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
5097 case KVM_REINJECT_CONTROL
: {
5098 struct kvm_reinject_control control
;
5100 if (copy_from_user(&control
, argp
, sizeof(control
)))
5103 if (!kvm
->arch
.vpit
)
5105 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
5108 case KVM_SET_BOOT_CPU_ID
:
5110 mutex_lock(&kvm
->lock
);
5111 if (kvm
->created_vcpus
)
5114 kvm
->arch
.bsp_vcpu_id
= arg
;
5115 mutex_unlock(&kvm
->lock
);
5117 case KVM_XEN_HVM_CONFIG
: {
5118 struct kvm_xen_hvm_config xhc
;
5120 if (copy_from_user(&xhc
, argp
, sizeof(xhc
)))
5125 memcpy(&kvm
->arch
.xen_hvm_config
, &xhc
, sizeof(xhc
));
5129 case KVM_SET_CLOCK
: {
5130 struct kvm_clock_data user_ns
;
5134 if (copy_from_user(&user_ns
, argp
, sizeof(user_ns
)))
5143 * TODO: userspace has to take care of races with VCPU_RUN, so
5144 * kvm_gen_update_masterclock() can be cut down to locked
5145 * pvclock_update_vm_gtod_copy().
5147 kvm_gen_update_masterclock(kvm
);
5148 now_ns
= get_kvmclock_ns(kvm
);
5149 kvm
->arch
.kvmclock_offset
+= user_ns
.clock
- now_ns
;
5150 kvm_make_all_cpus_request(kvm
, KVM_REQ_CLOCK_UPDATE
);
5153 case KVM_GET_CLOCK
: {
5154 struct kvm_clock_data user_ns
;
5157 now_ns
= get_kvmclock_ns(kvm
);
5158 user_ns
.clock
= now_ns
;
5159 user_ns
.flags
= kvm
->arch
.use_master_clock
? KVM_CLOCK_TSC_STABLE
: 0;
5160 memset(&user_ns
.pad
, 0, sizeof(user_ns
.pad
));
5163 if (copy_to_user(argp
, &user_ns
, sizeof(user_ns
)))
5168 case KVM_MEMORY_ENCRYPT_OP
: {
5170 if (kvm_x86_ops
->mem_enc_op
)
5171 r
= kvm_x86_ops
->mem_enc_op(kvm
, argp
);
5174 case KVM_MEMORY_ENCRYPT_REG_REGION
: {
5175 struct kvm_enc_region region
;
5178 if (copy_from_user(®ion
, argp
, sizeof(region
)))
5182 if (kvm_x86_ops
->mem_enc_reg_region
)
5183 r
= kvm_x86_ops
->mem_enc_reg_region(kvm
, ®ion
);
5186 case KVM_MEMORY_ENCRYPT_UNREG_REGION
: {
5187 struct kvm_enc_region region
;
5190 if (copy_from_user(®ion
, argp
, sizeof(region
)))
5194 if (kvm_x86_ops
->mem_enc_unreg_region
)
5195 r
= kvm_x86_ops
->mem_enc_unreg_region(kvm
, ®ion
);
5198 case KVM_HYPERV_EVENTFD
: {
5199 struct kvm_hyperv_eventfd hvevfd
;
5202 if (copy_from_user(&hvevfd
, argp
, sizeof(hvevfd
)))
5204 r
= kvm_vm_ioctl_hv_eventfd(kvm
, &hvevfd
);
5207 case KVM_SET_PMU_EVENT_FILTER
:
5208 r
= kvm_vm_ioctl_set_pmu_event_filter(kvm
, argp
);
5217 static void kvm_init_msr_list(void)
5219 struct x86_pmu_capability x86_pmu
;
5223 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED
!= 4,
5224 "Please update the fixed PMCs in msrs_to_saved_all[]");
5226 perf_get_x86_pmu_capability(&x86_pmu
);
5228 num_msrs_to_save
= 0;
5229 num_emulated_msrs
= 0;
5230 num_msr_based_features
= 0;
5232 for (i
= 0; i
< ARRAY_SIZE(msrs_to_save_all
); i
++) {
5233 if (rdmsr_safe(msrs_to_save_all
[i
], &dummy
[0], &dummy
[1]) < 0)
5237 * Even MSRs that are valid in the host may not be exposed
5238 * to the guests in some cases.
5240 switch (msrs_to_save_all
[i
]) {
5241 case MSR_IA32_BNDCFGS
:
5242 if (!kvm_mpx_supported())
5246 if (!kvm_x86_ops
->rdtscp_supported())
5249 case MSR_IA32_RTIT_CTL
:
5250 case MSR_IA32_RTIT_STATUS
:
5251 if (!kvm_x86_ops
->pt_supported())
5254 case MSR_IA32_RTIT_CR3_MATCH
:
5255 if (!kvm_x86_ops
->pt_supported() ||
5256 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering
))
5259 case MSR_IA32_RTIT_OUTPUT_BASE
:
5260 case MSR_IA32_RTIT_OUTPUT_MASK
:
5261 if (!kvm_x86_ops
->pt_supported() ||
5262 (!intel_pt_validate_hw_cap(PT_CAP_topa_output
) &&
5263 !intel_pt_validate_hw_cap(PT_CAP_single_range_output
)))
5266 case MSR_IA32_RTIT_ADDR0_A
... MSR_IA32_RTIT_ADDR3_B
: {
5267 if (!kvm_x86_ops
->pt_supported() ||
5268 msrs_to_save_all
[i
] - MSR_IA32_RTIT_ADDR0_A
>=
5269 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges
) * 2)
5272 case MSR_ARCH_PERFMON_PERFCTR0
... MSR_ARCH_PERFMON_PERFCTR0
+ 17:
5273 if (msrs_to_save_all
[i
] - MSR_ARCH_PERFMON_PERFCTR0
>=
5274 min(INTEL_PMC_MAX_GENERIC
, x86_pmu
.num_counters_gp
))
5277 case MSR_ARCH_PERFMON_EVENTSEL0
... MSR_ARCH_PERFMON_EVENTSEL0
+ 17:
5278 if (msrs_to_save_all
[i
] - MSR_ARCH_PERFMON_EVENTSEL0
>=
5279 min(INTEL_PMC_MAX_GENERIC
, x86_pmu
.num_counters_gp
))
5286 msrs_to_save
[num_msrs_to_save
++] = msrs_to_save_all
[i
];
5289 for (i
= 0; i
< ARRAY_SIZE(emulated_msrs_all
); i
++) {
5290 if (!kvm_x86_ops
->has_emulated_msr(emulated_msrs_all
[i
]))
5293 emulated_msrs
[num_emulated_msrs
++] = emulated_msrs_all
[i
];
5296 for (i
= 0; i
< ARRAY_SIZE(msr_based_features_all
); i
++) {
5297 struct kvm_msr_entry msr
;
5299 msr
.index
= msr_based_features_all
[i
];
5300 if (kvm_get_msr_feature(&msr
))
5303 msr_based_features
[num_msr_based_features
++] = msr_based_features_all
[i
];
5307 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
5315 if (!(lapic_in_kernel(vcpu
) &&
5316 !kvm_iodevice_write(vcpu
, &vcpu
->arch
.apic
->dev
, addr
, n
, v
))
5317 && kvm_io_bus_write(vcpu
, KVM_MMIO_BUS
, addr
, n
, v
))
5328 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
5335 if (!(lapic_in_kernel(vcpu
) &&
5336 !kvm_iodevice_read(vcpu
, &vcpu
->arch
.apic
->dev
,
5338 && kvm_io_bus_read(vcpu
, KVM_MMIO_BUS
, addr
, n
, v
))
5340 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, n
, addr
, v
);
5350 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
5351 struct kvm_segment
*var
, int seg
)
5353 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
5356 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
5357 struct kvm_segment
*var
, int seg
)
5359 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
5362 gpa_t
translate_nested_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u32 access
,
5363 struct x86_exception
*exception
)
5367 BUG_ON(!mmu_is_nested(vcpu
));
5369 /* NPT walks are always user-walks */
5370 access
|= PFERR_USER_MASK
;
5371 t_gpa
= vcpu
->arch
.mmu
->gva_to_gpa(vcpu
, gpa
, access
, exception
);
5376 gpa_t
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu
*vcpu
, gva_t gva
,
5377 struct x86_exception
*exception
)
5379 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
5380 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
5383 gpa_t
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu
*vcpu
, gva_t gva
,
5384 struct x86_exception
*exception
)
5386 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
5387 access
|= PFERR_FETCH_MASK
;
5388 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
5391 gpa_t
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu
*vcpu
, gva_t gva
,
5392 struct x86_exception
*exception
)
5394 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
5395 access
|= PFERR_WRITE_MASK
;
5396 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
5399 /* uses this to access any guest's mapped memory without checking CPL */
5400 gpa_t
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu
*vcpu
, gva_t gva
,
5401 struct x86_exception
*exception
)
5403 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, 0, exception
);
5406 static int kvm_read_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
5407 struct kvm_vcpu
*vcpu
, u32 access
,
5408 struct x86_exception
*exception
)
5411 int r
= X86EMUL_CONTINUE
;
5414 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
,
5416 unsigned offset
= addr
& (PAGE_SIZE
-1);
5417 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
5420 if (gpa
== UNMAPPED_GVA
)
5421 return X86EMUL_PROPAGATE_FAULT
;
5422 ret
= kvm_vcpu_read_guest_page(vcpu
, gpa
>> PAGE_SHIFT
, data
,
5425 r
= X86EMUL_IO_NEEDED
;
5437 /* used for instruction fetching */
5438 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt
*ctxt
,
5439 gva_t addr
, void *val
, unsigned int bytes
,
5440 struct x86_exception
*exception
)
5442 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5443 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
5447 /* Inline kvm_read_guest_virt_helper for speed. */
5448 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
|PFERR_FETCH_MASK
,
5450 if (unlikely(gpa
== UNMAPPED_GVA
))
5451 return X86EMUL_PROPAGATE_FAULT
;
5453 offset
= addr
& (PAGE_SIZE
-1);
5454 if (WARN_ON(offset
+ bytes
> PAGE_SIZE
))
5455 bytes
= (unsigned)PAGE_SIZE
- offset
;
5456 ret
= kvm_vcpu_read_guest_page(vcpu
, gpa
>> PAGE_SHIFT
, val
,
5458 if (unlikely(ret
< 0))
5459 return X86EMUL_IO_NEEDED
;
5461 return X86EMUL_CONTINUE
;
5464 int kvm_read_guest_virt(struct kvm_vcpu
*vcpu
,
5465 gva_t addr
, void *val
, unsigned int bytes
,
5466 struct x86_exception
*exception
)
5468 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
5471 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5472 * is returned, but our callers are not ready for that and they blindly
5473 * call kvm_inject_page_fault. Ensure that they at least do not leak
5474 * uninitialized kernel stack memory into cr2 and error code.
5476 memset(exception
, 0, sizeof(*exception
));
5477 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
,
5480 EXPORT_SYMBOL_GPL(kvm_read_guest_virt
);
5482 static int emulator_read_std(struct x86_emulate_ctxt
*ctxt
,
5483 gva_t addr
, void *val
, unsigned int bytes
,
5484 struct x86_exception
*exception
, bool system
)
5486 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5489 if (!system
&& kvm_x86_ops
->get_cpl(vcpu
) == 3)
5490 access
|= PFERR_USER_MASK
;
5492 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
, exception
);
5495 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt
*ctxt
,
5496 unsigned long addr
, void *val
, unsigned int bytes
)
5498 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5499 int r
= kvm_vcpu_read_guest(vcpu
, addr
, val
, bytes
);
5501 return r
< 0 ? X86EMUL_IO_NEEDED
: X86EMUL_CONTINUE
;
5504 static int kvm_write_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
5505 struct kvm_vcpu
*vcpu
, u32 access
,
5506 struct x86_exception
*exception
)
5509 int r
= X86EMUL_CONTINUE
;
5512 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
,
5515 unsigned offset
= addr
& (PAGE_SIZE
-1);
5516 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
5519 if (gpa
== UNMAPPED_GVA
)
5520 return X86EMUL_PROPAGATE_FAULT
;
5521 ret
= kvm_vcpu_write_guest(vcpu
, gpa
, data
, towrite
);
5523 r
= X86EMUL_IO_NEEDED
;
5535 static int emulator_write_std(struct x86_emulate_ctxt
*ctxt
, gva_t addr
, void *val
,
5536 unsigned int bytes
, struct x86_exception
*exception
,
5539 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5540 u32 access
= PFERR_WRITE_MASK
;
5542 if (!system
&& kvm_x86_ops
->get_cpl(vcpu
) == 3)
5543 access
|= PFERR_USER_MASK
;
5545 return kvm_write_guest_virt_helper(addr
, val
, bytes
, vcpu
,
5549 int kvm_write_guest_virt_system(struct kvm_vcpu
*vcpu
, gva_t addr
, void *val
,
5550 unsigned int bytes
, struct x86_exception
*exception
)
5552 /* kvm_write_guest_virt_system can pull in tons of pages. */
5553 vcpu
->arch
.l1tf_flush_l1d
= true;
5556 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5557 * is returned, but our callers are not ready for that and they blindly
5558 * call kvm_inject_page_fault. Ensure that they at least do not leak
5559 * uninitialized kernel stack memory into cr2 and error code.
5561 memset(exception
, 0, sizeof(*exception
));
5562 return kvm_write_guest_virt_helper(addr
, val
, bytes
, vcpu
,
5563 PFERR_WRITE_MASK
, exception
);
5565 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system
);
5567 int handle_ud(struct kvm_vcpu
*vcpu
)
5569 static const char kvm_emulate_prefix
[] = { __KVM_EMULATE_PREFIX
};
5570 int emul_type
= EMULTYPE_TRAP_UD
;
5571 char sig
[5]; /* ud2; .ascii "kvm" */
5572 struct x86_exception e
;
5574 if (force_emulation_prefix
&&
5575 kvm_read_guest_virt(vcpu
, kvm_get_linear_rip(vcpu
),
5576 sig
, sizeof(sig
), &e
) == 0 &&
5577 memcmp(sig
, kvm_emulate_prefix
, sizeof(sig
)) == 0) {
5578 kvm_rip_write(vcpu
, kvm_rip_read(vcpu
) + sizeof(sig
));
5579 emul_type
= EMULTYPE_TRAP_UD_FORCED
;
5582 return kvm_emulate_instruction(vcpu
, emul_type
);
5584 EXPORT_SYMBOL_GPL(handle_ud
);
5586 static int vcpu_is_mmio_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
5587 gpa_t gpa
, bool write
)
5589 /* For APIC access vmexit */
5590 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
5593 if (vcpu_match_mmio_gpa(vcpu
, gpa
)) {
5594 trace_vcpu_match_mmio(gva
, gpa
, write
, true);
5601 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
5602 gpa_t
*gpa
, struct x86_exception
*exception
,
5605 u32 access
= ((kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0)
5606 | (write
? PFERR_WRITE_MASK
: 0);
5609 * currently PKRU is only applied to ept enabled guest so
5610 * there is no pkey in EPT page table for L1 guest or EPT
5611 * shadow page table for L2 guest.
5613 if (vcpu_match_mmio_gva(vcpu
, gva
)
5614 && !permission_fault(vcpu
, vcpu
->arch
.walk_mmu
,
5615 vcpu
->arch
.mmio_access
, 0, access
)) {
5616 *gpa
= vcpu
->arch
.mmio_gfn
<< PAGE_SHIFT
|
5617 (gva
& (PAGE_SIZE
- 1));
5618 trace_vcpu_match_mmio(gva
, *gpa
, write
, false);
5622 *gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
5624 if (*gpa
== UNMAPPED_GVA
)
5627 return vcpu_is_mmio_gpa(vcpu
, gva
, *gpa
, write
);
5630 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
5631 const void *val
, int bytes
)
5635 ret
= kvm_vcpu_write_guest(vcpu
, gpa
, val
, bytes
);
5638 kvm_page_track_write(vcpu
, gpa
, val
, bytes
);
5642 struct read_write_emulator_ops
{
5643 int (*read_write_prepare
)(struct kvm_vcpu
*vcpu
, void *val
,
5645 int (*read_write_emulate
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
5646 void *val
, int bytes
);
5647 int (*read_write_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
5648 int bytes
, void *val
);
5649 int (*read_write_exit_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
5650 void *val
, int bytes
);
5654 static int read_prepare(struct kvm_vcpu
*vcpu
, void *val
, int bytes
)
5656 if (vcpu
->mmio_read_completed
) {
5657 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
5658 vcpu
->mmio_fragments
[0].gpa
, val
);
5659 vcpu
->mmio_read_completed
= 0;
5666 static int read_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
5667 void *val
, int bytes
)
5669 return !kvm_vcpu_read_guest(vcpu
, gpa
, val
, bytes
);
5672 static int write_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
5673 void *val
, int bytes
)
5675 return emulator_write_phys(vcpu
, gpa
, val
, bytes
);
5678 static int write_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
, int bytes
, void *val
)
5680 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, val
);
5681 return vcpu_mmio_write(vcpu
, gpa
, bytes
, val
);
5684 static int read_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
5685 void *val
, int bytes
)
5687 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, NULL
);
5688 return X86EMUL_IO_NEEDED
;
5691 static int write_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
5692 void *val
, int bytes
)
5694 struct kvm_mmio_fragment
*frag
= &vcpu
->mmio_fragments
[0];
5696 memcpy(vcpu
->run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
5697 return X86EMUL_CONTINUE
;
5700 static const struct read_write_emulator_ops read_emultor
= {
5701 .read_write_prepare
= read_prepare
,
5702 .read_write_emulate
= read_emulate
,
5703 .read_write_mmio
= vcpu_mmio_read
,
5704 .read_write_exit_mmio
= read_exit_mmio
,
5707 static const struct read_write_emulator_ops write_emultor
= {
5708 .read_write_emulate
= write_emulate
,
5709 .read_write_mmio
= write_mmio
,
5710 .read_write_exit_mmio
= write_exit_mmio
,
5714 static int emulator_read_write_onepage(unsigned long addr
, void *val
,
5716 struct x86_exception
*exception
,
5717 struct kvm_vcpu
*vcpu
,
5718 const struct read_write_emulator_ops
*ops
)
5722 bool write
= ops
->write
;
5723 struct kvm_mmio_fragment
*frag
;
5724 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5727 * If the exit was due to a NPF we may already have a GPA.
5728 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5729 * Note, this cannot be used on string operations since string
5730 * operation using rep will only have the initial GPA from the NPF
5733 if (vcpu
->arch
.gpa_available
&&
5734 emulator_can_use_gpa(ctxt
) &&
5735 (addr
& ~PAGE_MASK
) == (vcpu
->arch
.gpa_val
& ~PAGE_MASK
)) {
5736 gpa
= vcpu
->arch
.gpa_val
;
5737 ret
= vcpu_is_mmio_gpa(vcpu
, addr
, gpa
, write
);
5739 ret
= vcpu_mmio_gva_to_gpa(vcpu
, addr
, &gpa
, exception
, write
);
5741 return X86EMUL_PROPAGATE_FAULT
;
5744 if (!ret
&& ops
->read_write_emulate(vcpu
, gpa
, val
, bytes
))
5745 return X86EMUL_CONTINUE
;
5748 * Is this MMIO handled locally?
5750 handled
= ops
->read_write_mmio(vcpu
, gpa
, bytes
, val
);
5751 if (handled
== bytes
)
5752 return X86EMUL_CONTINUE
;
5758 WARN_ON(vcpu
->mmio_nr_fragments
>= KVM_MAX_MMIO_FRAGMENTS
);
5759 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_nr_fragments
++];
5763 return X86EMUL_CONTINUE
;
5766 static int emulator_read_write(struct x86_emulate_ctxt
*ctxt
,
5768 void *val
, unsigned int bytes
,
5769 struct x86_exception
*exception
,
5770 const struct read_write_emulator_ops
*ops
)
5772 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5776 if (ops
->read_write_prepare
&&
5777 ops
->read_write_prepare(vcpu
, val
, bytes
))
5778 return X86EMUL_CONTINUE
;
5780 vcpu
->mmio_nr_fragments
= 0;
5782 /* Crossing a page boundary? */
5783 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
5786 now
= -addr
& ~PAGE_MASK
;
5787 rc
= emulator_read_write_onepage(addr
, val
, now
, exception
,
5790 if (rc
!= X86EMUL_CONTINUE
)
5793 if (ctxt
->mode
!= X86EMUL_MODE_PROT64
)
5799 rc
= emulator_read_write_onepage(addr
, val
, bytes
, exception
,
5801 if (rc
!= X86EMUL_CONTINUE
)
5804 if (!vcpu
->mmio_nr_fragments
)
5807 gpa
= vcpu
->mmio_fragments
[0].gpa
;
5809 vcpu
->mmio_needed
= 1;
5810 vcpu
->mmio_cur_fragment
= 0;
5812 vcpu
->run
->mmio
.len
= min(8u, vcpu
->mmio_fragments
[0].len
);
5813 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= ops
->write
;
5814 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
5815 vcpu
->run
->mmio
.phys_addr
= gpa
;
5817 return ops
->read_write_exit_mmio(vcpu
, gpa
, val
, bytes
);
5820 static int emulator_read_emulated(struct x86_emulate_ctxt
*ctxt
,
5824 struct x86_exception
*exception
)
5826 return emulator_read_write(ctxt
, addr
, val
, bytes
,
5827 exception
, &read_emultor
);
5830 static int emulator_write_emulated(struct x86_emulate_ctxt
*ctxt
,
5834 struct x86_exception
*exception
)
5836 return emulator_read_write(ctxt
, addr
, (void *)val
, bytes
,
5837 exception
, &write_emultor
);
5840 #define CMPXCHG_TYPE(t, ptr, old, new) \
5841 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5843 #ifdef CONFIG_X86_64
5844 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5846 # define CMPXCHG64(ptr, old, new) \
5847 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5850 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt
*ctxt
,
5855 struct x86_exception
*exception
)
5857 struct kvm_host_map map
;
5858 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5863 /* guests cmpxchg8b have to be emulated atomically */
5864 if (bytes
> 8 || (bytes
& (bytes
- 1)))
5867 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, NULL
);
5869 if (gpa
== UNMAPPED_GVA
||
5870 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
5873 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
5876 if (kvm_vcpu_map(vcpu
, gpa_to_gfn(gpa
), &map
))
5879 kaddr
= map
.hva
+ offset_in_page(gpa
);
5883 exchanged
= CMPXCHG_TYPE(u8
, kaddr
, old
, new);
5886 exchanged
= CMPXCHG_TYPE(u16
, kaddr
, old
, new);
5889 exchanged
= CMPXCHG_TYPE(u32
, kaddr
, old
, new);
5892 exchanged
= CMPXCHG64(kaddr
, old
, new);
5898 kvm_vcpu_unmap(vcpu
, &map
, true);
5901 return X86EMUL_CMPXCHG_FAILED
;
5903 kvm_page_track_write(vcpu
, gpa
, new, bytes
);
5905 return X86EMUL_CONTINUE
;
5908 printk_once(KERN_WARNING
"kvm: emulating exchange as write\n");
5910 return emulator_write_emulated(ctxt
, addr
, new, bytes
, exception
);
5913 static int kernel_pio(struct kvm_vcpu
*vcpu
, void *pd
)
5917 for (i
= 0; i
< vcpu
->arch
.pio
.count
; i
++) {
5918 if (vcpu
->arch
.pio
.in
)
5919 r
= kvm_io_bus_read(vcpu
, KVM_PIO_BUS
, vcpu
->arch
.pio
.port
,
5920 vcpu
->arch
.pio
.size
, pd
);
5922 r
= kvm_io_bus_write(vcpu
, KVM_PIO_BUS
,
5923 vcpu
->arch
.pio
.port
, vcpu
->arch
.pio
.size
,
5927 pd
+= vcpu
->arch
.pio
.size
;
5932 static int emulator_pio_in_out(struct kvm_vcpu
*vcpu
, int size
,
5933 unsigned short port
, void *val
,
5934 unsigned int count
, bool in
)
5936 vcpu
->arch
.pio
.port
= port
;
5937 vcpu
->arch
.pio
.in
= in
;
5938 vcpu
->arch
.pio
.count
= count
;
5939 vcpu
->arch
.pio
.size
= size
;
5941 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
5942 vcpu
->arch
.pio
.count
= 0;
5946 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
5947 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
5948 vcpu
->run
->io
.size
= size
;
5949 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
5950 vcpu
->run
->io
.count
= count
;
5951 vcpu
->run
->io
.port
= port
;
5956 static int emulator_pio_in_emulated(struct x86_emulate_ctxt
*ctxt
,
5957 int size
, unsigned short port
, void *val
,
5960 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5963 if (vcpu
->arch
.pio
.count
)
5966 memset(vcpu
->arch
.pio_data
, 0, size
* count
);
5968 ret
= emulator_pio_in_out(vcpu
, size
, port
, val
, count
, true);
5971 memcpy(val
, vcpu
->arch
.pio_data
, size
* count
);
5972 trace_kvm_pio(KVM_PIO_IN
, port
, size
, count
, vcpu
->arch
.pio_data
);
5973 vcpu
->arch
.pio
.count
= 0;
5980 static int emulator_pio_out_emulated(struct x86_emulate_ctxt
*ctxt
,
5981 int size
, unsigned short port
,
5982 const void *val
, unsigned int count
)
5984 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5986 memcpy(vcpu
->arch
.pio_data
, val
, size
* count
);
5987 trace_kvm_pio(KVM_PIO_OUT
, port
, size
, count
, vcpu
->arch
.pio_data
);
5988 return emulator_pio_in_out(vcpu
, size
, port
, (void *)val
, count
, false);
5991 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
5993 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
5996 static void emulator_invlpg(struct x86_emulate_ctxt
*ctxt
, ulong address
)
5998 kvm_mmu_invlpg(emul_to_vcpu(ctxt
), address
);
6001 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu
*vcpu
)
6003 if (!need_emulate_wbinvd(vcpu
))
6004 return X86EMUL_CONTINUE
;
6006 if (kvm_x86_ops
->has_wbinvd_exit()) {
6007 int cpu
= get_cpu();
6009 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
6010 smp_call_function_many(vcpu
->arch
.wbinvd_dirty_mask
,
6011 wbinvd_ipi
, NULL
, 1);
6013 cpumask_clear(vcpu
->arch
.wbinvd_dirty_mask
);
6016 return X86EMUL_CONTINUE
;
6019 int kvm_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
6021 kvm_emulate_wbinvd_noskip(vcpu
);
6022 return kvm_skip_emulated_instruction(vcpu
);
6024 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd
);
6028 static void emulator_wbinvd(struct x86_emulate_ctxt
*ctxt
)
6030 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt
));
6033 static int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
,
6034 unsigned long *dest
)
6036 return kvm_get_dr(emul_to_vcpu(ctxt
), dr
, dest
);
6039 static int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
,
6040 unsigned long value
)
6043 return __kvm_set_dr(emul_to_vcpu(ctxt
), dr
, value
);
6046 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
6048 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
6051 static unsigned long emulator_get_cr(struct x86_emulate_ctxt
*ctxt
, int cr
)
6053 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
6054 unsigned long value
;
6058 value
= kvm_read_cr0(vcpu
);
6061 value
= vcpu
->arch
.cr2
;
6064 value
= kvm_read_cr3(vcpu
);
6067 value
= kvm_read_cr4(vcpu
);
6070 value
= kvm_get_cr8(vcpu
);
6073 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
6080 static int emulator_set_cr(struct x86_emulate_ctxt
*ctxt
, int cr
, ulong val
)
6082 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
6087 res
= kvm_set_cr0(vcpu
, mk_cr_64(kvm_read_cr0(vcpu
), val
));
6090 vcpu
->arch
.cr2
= val
;
6093 res
= kvm_set_cr3(vcpu
, val
);
6096 res
= kvm_set_cr4(vcpu
, mk_cr_64(kvm_read_cr4(vcpu
), val
));
6099 res
= kvm_set_cr8(vcpu
, val
);
6102 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
6109 static int emulator_get_cpl(struct x86_emulate_ctxt
*ctxt
)
6111 return kvm_x86_ops
->get_cpl(emul_to_vcpu(ctxt
));
6114 static void emulator_get_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
6116 kvm_x86_ops
->get_gdt(emul_to_vcpu(ctxt
), dt
);
6119 static void emulator_get_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
6121 kvm_x86_ops
->get_idt(emul_to_vcpu(ctxt
), dt
);
6124 static void emulator_set_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
6126 kvm_x86_ops
->set_gdt(emul_to_vcpu(ctxt
), dt
);
6129 static void emulator_set_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
6131 kvm_x86_ops
->set_idt(emul_to_vcpu(ctxt
), dt
);
6134 static unsigned long emulator_get_cached_segment_base(
6135 struct x86_emulate_ctxt
*ctxt
, int seg
)
6137 return get_segment_base(emul_to_vcpu(ctxt
), seg
);
6140 static bool emulator_get_segment(struct x86_emulate_ctxt
*ctxt
, u16
*selector
,
6141 struct desc_struct
*desc
, u32
*base3
,
6144 struct kvm_segment var
;
6146 kvm_get_segment(emul_to_vcpu(ctxt
), &var
, seg
);
6147 *selector
= var
.selector
;
6150 memset(desc
, 0, sizeof(*desc
));
6158 set_desc_limit(desc
, var
.limit
);
6159 set_desc_base(desc
, (unsigned long)var
.base
);
6160 #ifdef CONFIG_X86_64
6162 *base3
= var
.base
>> 32;
6164 desc
->type
= var
.type
;
6166 desc
->dpl
= var
.dpl
;
6167 desc
->p
= var
.present
;
6168 desc
->avl
= var
.avl
;
6176 static void emulator_set_segment(struct x86_emulate_ctxt
*ctxt
, u16 selector
,
6177 struct desc_struct
*desc
, u32 base3
,
6180 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
6181 struct kvm_segment var
;
6183 var
.selector
= selector
;
6184 var
.base
= get_desc_base(desc
);
6185 #ifdef CONFIG_X86_64
6186 var
.base
|= ((u64
)base3
) << 32;
6188 var
.limit
= get_desc_limit(desc
);
6190 var
.limit
= (var
.limit
<< 12) | 0xfff;
6191 var
.type
= desc
->type
;
6192 var
.dpl
= desc
->dpl
;
6197 var
.avl
= desc
->avl
;
6198 var
.present
= desc
->p
;
6199 var
.unusable
= !var
.present
;
6202 kvm_set_segment(vcpu
, &var
, seg
);
6206 static int emulator_get_msr(struct x86_emulate_ctxt
*ctxt
,
6207 u32 msr_index
, u64
*pdata
)
6209 return kvm_get_msr(emul_to_vcpu(ctxt
), msr_index
, pdata
);
6212 static int emulator_set_msr(struct x86_emulate_ctxt
*ctxt
,
6213 u32 msr_index
, u64 data
)
6215 return kvm_set_msr(emul_to_vcpu(ctxt
), msr_index
, data
);
6218 static u64
emulator_get_smbase(struct x86_emulate_ctxt
*ctxt
)
6220 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
6222 return vcpu
->arch
.smbase
;
6225 static void emulator_set_smbase(struct x86_emulate_ctxt
*ctxt
, u64 smbase
)
6227 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
6229 vcpu
->arch
.smbase
= smbase
;
6232 static int emulator_check_pmc(struct x86_emulate_ctxt
*ctxt
,
6235 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt
), pmc
);
6238 static int emulator_read_pmc(struct x86_emulate_ctxt
*ctxt
,
6239 u32 pmc
, u64
*pdata
)
6241 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt
), pmc
, pdata
);
6244 static void emulator_halt(struct x86_emulate_ctxt
*ctxt
)
6246 emul_to_vcpu(ctxt
)->arch
.halt_request
= 1;
6249 static int emulator_intercept(struct x86_emulate_ctxt
*ctxt
,
6250 struct x86_instruction_info
*info
,
6251 enum x86_intercept_stage stage
)
6253 return kvm_x86_ops
->check_intercept(emul_to_vcpu(ctxt
), info
, stage
);
6256 static bool emulator_get_cpuid(struct x86_emulate_ctxt
*ctxt
,
6257 u32
*eax
, u32
*ebx
, u32
*ecx
, u32
*edx
, bool check_limit
)
6259 return kvm_cpuid(emul_to_vcpu(ctxt
), eax
, ebx
, ecx
, edx
, check_limit
);
6262 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt
*ctxt
)
6264 return guest_cpuid_has(emul_to_vcpu(ctxt
), X86_FEATURE_LM
);
6267 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt
*ctxt
)
6269 return guest_cpuid_has(emul_to_vcpu(ctxt
), X86_FEATURE_MOVBE
);
6272 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt
*ctxt
)
6274 return guest_cpuid_has(emul_to_vcpu(ctxt
), X86_FEATURE_FXSR
);
6277 static ulong
emulator_read_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
)
6279 return kvm_register_read(emul_to_vcpu(ctxt
), reg
);
6282 static void emulator_write_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
, ulong val
)
6284 kvm_register_write(emul_to_vcpu(ctxt
), reg
, val
);
6287 static void emulator_set_nmi_mask(struct x86_emulate_ctxt
*ctxt
, bool masked
)
6289 kvm_x86_ops
->set_nmi_mask(emul_to_vcpu(ctxt
), masked
);
6292 static unsigned emulator_get_hflags(struct x86_emulate_ctxt
*ctxt
)
6294 return emul_to_vcpu(ctxt
)->arch
.hflags
;
6297 static void emulator_set_hflags(struct x86_emulate_ctxt
*ctxt
, unsigned emul_flags
)
6299 emul_to_vcpu(ctxt
)->arch
.hflags
= emul_flags
;
6302 static int emulator_pre_leave_smm(struct x86_emulate_ctxt
*ctxt
,
6303 const char *smstate
)
6305 return kvm_x86_ops
->pre_leave_smm(emul_to_vcpu(ctxt
), smstate
);
6308 static void emulator_post_leave_smm(struct x86_emulate_ctxt
*ctxt
)
6310 kvm_smm_changed(emul_to_vcpu(ctxt
));
6313 static int emulator_set_xcr(struct x86_emulate_ctxt
*ctxt
, u32 index
, u64 xcr
)
6315 return __kvm_set_xcr(emul_to_vcpu(ctxt
), index
, xcr
);
6318 static const struct x86_emulate_ops emulate_ops
= {
6319 .read_gpr
= emulator_read_gpr
,
6320 .write_gpr
= emulator_write_gpr
,
6321 .read_std
= emulator_read_std
,
6322 .write_std
= emulator_write_std
,
6323 .read_phys
= kvm_read_guest_phys_system
,
6324 .fetch
= kvm_fetch_guest_virt
,
6325 .read_emulated
= emulator_read_emulated
,
6326 .write_emulated
= emulator_write_emulated
,
6327 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
6328 .invlpg
= emulator_invlpg
,
6329 .pio_in_emulated
= emulator_pio_in_emulated
,
6330 .pio_out_emulated
= emulator_pio_out_emulated
,
6331 .get_segment
= emulator_get_segment
,
6332 .set_segment
= emulator_set_segment
,
6333 .get_cached_segment_base
= emulator_get_cached_segment_base
,
6334 .get_gdt
= emulator_get_gdt
,
6335 .get_idt
= emulator_get_idt
,
6336 .set_gdt
= emulator_set_gdt
,
6337 .set_idt
= emulator_set_idt
,
6338 .get_cr
= emulator_get_cr
,
6339 .set_cr
= emulator_set_cr
,
6340 .cpl
= emulator_get_cpl
,
6341 .get_dr
= emulator_get_dr
,
6342 .set_dr
= emulator_set_dr
,
6343 .get_smbase
= emulator_get_smbase
,
6344 .set_smbase
= emulator_set_smbase
,
6345 .set_msr
= emulator_set_msr
,
6346 .get_msr
= emulator_get_msr
,
6347 .check_pmc
= emulator_check_pmc
,
6348 .read_pmc
= emulator_read_pmc
,
6349 .halt
= emulator_halt
,
6350 .wbinvd
= emulator_wbinvd
,
6351 .fix_hypercall
= emulator_fix_hypercall
,
6352 .intercept
= emulator_intercept
,
6353 .get_cpuid
= emulator_get_cpuid
,
6354 .guest_has_long_mode
= emulator_guest_has_long_mode
,
6355 .guest_has_movbe
= emulator_guest_has_movbe
,
6356 .guest_has_fxsr
= emulator_guest_has_fxsr
,
6357 .set_nmi_mask
= emulator_set_nmi_mask
,
6358 .get_hflags
= emulator_get_hflags
,
6359 .set_hflags
= emulator_set_hflags
,
6360 .pre_leave_smm
= emulator_pre_leave_smm
,
6361 .post_leave_smm
= emulator_post_leave_smm
,
6362 .set_xcr
= emulator_set_xcr
,
6365 static void toggle_interruptibility(struct kvm_vcpu
*vcpu
, u32 mask
)
6367 u32 int_shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
);
6369 * an sti; sti; sequence only disable interrupts for the first
6370 * instruction. So, if the last instruction, be it emulated or
6371 * not, left the system with the INT_STI flag enabled, it
6372 * means that the last instruction is an sti. We should not
6373 * leave the flag on in this case. The same goes for mov ss
6375 if (int_shadow
& mask
)
6377 if (unlikely(int_shadow
|| mask
)) {
6378 kvm_x86_ops
->set_interrupt_shadow(vcpu
, mask
);
6380 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6384 static bool inject_emulated_exception(struct kvm_vcpu
*vcpu
)
6386 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
6387 if (ctxt
->exception
.vector
== PF_VECTOR
)
6388 return kvm_propagate_fault(vcpu
, &ctxt
->exception
);
6390 if (ctxt
->exception
.error_code_valid
)
6391 kvm_queue_exception_e(vcpu
, ctxt
->exception
.vector
,
6392 ctxt
->exception
.error_code
);
6394 kvm_queue_exception(vcpu
, ctxt
->exception
.vector
);
6398 static void init_emulate_ctxt(struct kvm_vcpu
*vcpu
)
6400 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
6403 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
6405 ctxt
->eflags
= kvm_get_rflags(vcpu
);
6406 ctxt
->tf
= (ctxt
->eflags
& X86_EFLAGS_TF
) != 0;
6408 ctxt
->eip
= kvm_rip_read(vcpu
);
6409 ctxt
->mode
= (!is_protmode(vcpu
)) ? X86EMUL_MODE_REAL
:
6410 (ctxt
->eflags
& X86_EFLAGS_VM
) ? X86EMUL_MODE_VM86
:
6411 (cs_l
&& is_long_mode(vcpu
)) ? X86EMUL_MODE_PROT64
:
6412 cs_db
? X86EMUL_MODE_PROT32
:
6413 X86EMUL_MODE_PROT16
;
6414 BUILD_BUG_ON(HF_GUEST_MASK
!= X86EMUL_GUEST_MASK
);
6415 BUILD_BUG_ON(HF_SMM_MASK
!= X86EMUL_SMM_MASK
);
6416 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK
!= X86EMUL_SMM_INSIDE_NMI_MASK
);
6418 init_decode_cache(ctxt
);
6419 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
6422 void kvm_inject_realmode_interrupt(struct kvm_vcpu
*vcpu
, int irq
, int inc_eip
)
6424 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
6427 init_emulate_ctxt(vcpu
);
6431 ctxt
->_eip
= ctxt
->eip
+ inc_eip
;
6432 ret
= emulate_int_real(ctxt
, irq
);
6434 if (ret
!= X86EMUL_CONTINUE
) {
6435 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
6437 ctxt
->eip
= ctxt
->_eip
;
6438 kvm_rip_write(vcpu
, ctxt
->eip
);
6439 kvm_set_rflags(vcpu
, ctxt
->eflags
);
6442 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt
);
6444 static int handle_emulation_failure(struct kvm_vcpu
*vcpu
, int emulation_type
)
6446 ++vcpu
->stat
.insn_emulation_fail
;
6447 trace_kvm_emulate_insn_failed(vcpu
);
6449 if (emulation_type
& EMULTYPE_VMWARE_GP
) {
6450 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
6454 if (emulation_type
& EMULTYPE_SKIP
) {
6455 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
6456 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
6457 vcpu
->run
->internal
.ndata
= 0;
6461 kvm_queue_exception(vcpu
, UD_VECTOR
);
6463 if (!is_guest_mode(vcpu
) && kvm_x86_ops
->get_cpl(vcpu
) == 0) {
6464 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
6465 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
6466 vcpu
->run
->internal
.ndata
= 0;
6473 static bool reexecute_instruction(struct kvm_vcpu
*vcpu
, gpa_t cr2_or_gpa
,
6474 bool write_fault_to_shadow_pgtable
,
6477 gpa_t gpa
= cr2_or_gpa
;
6480 if (!(emulation_type
& EMULTYPE_ALLOW_RETRY
))
6483 if (WARN_ON_ONCE(is_guest_mode(vcpu
)))
6486 if (!vcpu
->arch
.mmu
->direct_map
) {
6488 * Write permission should be allowed since only
6489 * write access need to be emulated.
6491 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2_or_gpa
, NULL
);
6494 * If the mapping is invalid in guest, let cpu retry
6495 * it to generate fault.
6497 if (gpa
== UNMAPPED_GVA
)
6502 * Do not retry the unhandleable instruction if it faults on the
6503 * readonly host memory, otherwise it will goto a infinite loop:
6504 * retry instruction -> write #PF -> emulation fail -> retry
6505 * instruction -> ...
6507 pfn
= gfn_to_pfn(vcpu
->kvm
, gpa_to_gfn(gpa
));
6510 * If the instruction failed on the error pfn, it can not be fixed,
6511 * report the error to userspace.
6513 if (is_error_noslot_pfn(pfn
))
6516 kvm_release_pfn_clean(pfn
);
6518 /* The instructions are well-emulated on direct mmu. */
6519 if (vcpu
->arch
.mmu
->direct_map
) {
6520 unsigned int indirect_shadow_pages
;
6522 spin_lock(&vcpu
->kvm
->mmu_lock
);
6523 indirect_shadow_pages
= vcpu
->kvm
->arch
.indirect_shadow_pages
;
6524 spin_unlock(&vcpu
->kvm
->mmu_lock
);
6526 if (indirect_shadow_pages
)
6527 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
6533 * if emulation was due to access to shadowed page table
6534 * and it failed try to unshadow page and re-enter the
6535 * guest to let CPU execute the instruction.
6537 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
6540 * If the access faults on its page table, it can not
6541 * be fixed by unprotecting shadow page and it should
6542 * be reported to userspace.
6544 return !write_fault_to_shadow_pgtable
;
6547 static bool retry_instruction(struct x86_emulate_ctxt
*ctxt
,
6548 gpa_t cr2_or_gpa
, int emulation_type
)
6550 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
6551 unsigned long last_retry_eip
, last_retry_addr
, gpa
= cr2_or_gpa
;
6553 last_retry_eip
= vcpu
->arch
.last_retry_eip
;
6554 last_retry_addr
= vcpu
->arch
.last_retry_addr
;
6557 * If the emulation is caused by #PF and it is non-page_table
6558 * writing instruction, it means the VM-EXIT is caused by shadow
6559 * page protected, we can zap the shadow page and retry this
6560 * instruction directly.
6562 * Note: if the guest uses a non-page-table modifying instruction
6563 * on the PDE that points to the instruction, then we will unmap
6564 * the instruction and go to an infinite loop. So, we cache the
6565 * last retried eip and the last fault address, if we meet the eip
6566 * and the address again, we can break out of the potential infinite
6569 vcpu
->arch
.last_retry_eip
= vcpu
->arch
.last_retry_addr
= 0;
6571 if (!(emulation_type
& EMULTYPE_ALLOW_RETRY
))
6574 if (WARN_ON_ONCE(is_guest_mode(vcpu
)))
6577 if (x86_page_table_writing_insn(ctxt
))
6580 if (ctxt
->eip
== last_retry_eip
&& last_retry_addr
== cr2_or_gpa
)
6583 vcpu
->arch
.last_retry_eip
= ctxt
->eip
;
6584 vcpu
->arch
.last_retry_addr
= cr2_or_gpa
;
6586 if (!vcpu
->arch
.mmu
->direct_map
)
6587 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2_or_gpa
, NULL
);
6589 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
6594 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
);
6595 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
);
6597 static void kvm_smm_changed(struct kvm_vcpu
*vcpu
)
6599 if (!(vcpu
->arch
.hflags
& HF_SMM_MASK
)) {
6600 /* This is a good place to trace that we are exiting SMM. */
6601 trace_kvm_enter_smm(vcpu
->vcpu_id
, vcpu
->arch
.smbase
, false);
6603 /* Process a latched INIT or SMI, if any. */
6604 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6607 kvm_mmu_reset_context(vcpu
);
6610 static int kvm_vcpu_check_hw_bp(unsigned long addr
, u32 type
, u32 dr7
,
6619 for (i
= 0; i
< 4; i
++, enable
>>= 2, rwlen
>>= 4)
6620 if ((enable
& 3) && (rwlen
& 15) == type
&& db
[i
] == addr
)
6625 static int kvm_vcpu_do_singlestep(struct kvm_vcpu
*vcpu
)
6627 struct kvm_run
*kvm_run
= vcpu
->run
;
6629 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
) {
6630 kvm_run
->debug
.arch
.dr6
= DR6_BS
| DR6_FIXED_1
| DR6_RTM
;
6631 kvm_run
->debug
.arch
.pc
= vcpu
->arch
.singlestep_rip
;
6632 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
6633 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
6636 kvm_queue_exception_p(vcpu
, DB_VECTOR
, DR6_BS
);
6640 int kvm_skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
6642 unsigned long rflags
= kvm_x86_ops
->get_rflags(vcpu
);
6645 r
= kvm_x86_ops
->skip_emulated_instruction(vcpu
);
6650 * rflags is the old, "raw" value of the flags. The new value has
6651 * not been saved yet.
6653 * This is correct even for TF set by the guest, because "the
6654 * processor will not generate this exception after the instruction
6655 * that sets the TF flag".
6657 if (unlikely(rflags
& X86_EFLAGS_TF
))
6658 r
= kvm_vcpu_do_singlestep(vcpu
);
6661 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction
);
6663 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu
*vcpu
, int *r
)
6665 if (unlikely(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) &&
6666 (vcpu
->arch
.guest_debug_dr7
& DR7_BP_EN_MASK
)) {
6667 struct kvm_run
*kvm_run
= vcpu
->run
;
6668 unsigned long eip
= kvm_get_linear_rip(vcpu
);
6669 u32 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
6670 vcpu
->arch
.guest_debug_dr7
,
6674 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
| DR6_RTM
;
6675 kvm_run
->debug
.arch
.pc
= eip
;
6676 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
6677 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
6683 if (unlikely(vcpu
->arch
.dr7
& DR7_BP_EN_MASK
) &&
6684 !(kvm_get_rflags(vcpu
) & X86_EFLAGS_RF
)) {
6685 unsigned long eip
= kvm_get_linear_rip(vcpu
);
6686 u32 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
6691 vcpu
->arch
.dr6
&= ~DR_TRAP_BITS
;
6692 vcpu
->arch
.dr6
|= dr6
| DR6_RTM
;
6693 kvm_queue_exception(vcpu
, DB_VECTOR
);
6702 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt
*ctxt
)
6704 switch (ctxt
->opcode_len
) {
6711 case 0xe6: /* OUT */
6715 case 0x6c: /* INS */
6717 case 0x6e: /* OUTS */
6724 case 0x33: /* RDPMC */
6733 int x86_emulate_instruction(struct kvm_vcpu
*vcpu
, gpa_t cr2_or_gpa
,
6734 int emulation_type
, void *insn
, int insn_len
)
6737 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
6738 bool writeback
= true;
6739 bool write_fault_to_spt
= vcpu
->arch
.write_fault_to_shadow_pgtable
;
6741 vcpu
->arch
.l1tf_flush_l1d
= true;
6744 * Clear write_fault_to_shadow_pgtable here to ensure it is
6747 vcpu
->arch
.write_fault_to_shadow_pgtable
= false;
6748 kvm_clear_exception_queue(vcpu
);
6750 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
6751 init_emulate_ctxt(vcpu
);
6754 * We will reenter on the same instruction since
6755 * we do not set complete_userspace_io. This does not
6756 * handle watchpoints yet, those would be handled in
6759 if (!(emulation_type
& EMULTYPE_SKIP
) &&
6760 kvm_vcpu_check_breakpoint(vcpu
, &r
))
6763 ctxt
->interruptibility
= 0;
6764 ctxt
->have_exception
= false;
6765 ctxt
->exception
.vector
= -1;
6766 ctxt
->perm_ok
= false;
6768 ctxt
->ud
= emulation_type
& EMULTYPE_TRAP_UD
;
6770 r
= x86_decode_insn(ctxt
, insn
, insn_len
);
6772 trace_kvm_emulate_insn_start(vcpu
);
6773 ++vcpu
->stat
.insn_emulation
;
6774 if (r
!= EMULATION_OK
) {
6775 if ((emulation_type
& EMULTYPE_TRAP_UD
) ||
6776 (emulation_type
& EMULTYPE_TRAP_UD_FORCED
)) {
6777 kvm_queue_exception(vcpu
, UD_VECTOR
);
6780 if (reexecute_instruction(vcpu
, cr2_or_gpa
,
6784 if (ctxt
->have_exception
) {
6786 * #UD should result in just EMULATION_FAILED, and trap-like
6787 * exception should not be encountered during decode.
6789 WARN_ON_ONCE(ctxt
->exception
.vector
== UD_VECTOR
||
6790 exception_type(ctxt
->exception
.vector
) == EXCPT_TRAP
);
6791 inject_emulated_exception(vcpu
);
6794 return handle_emulation_failure(vcpu
, emulation_type
);
6798 if ((emulation_type
& EMULTYPE_VMWARE_GP
) &&
6799 !is_vmware_backdoor_opcode(ctxt
)) {
6800 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
6805 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
6806 * for kvm_skip_emulated_instruction(). The caller is responsible for
6807 * updating interruptibility state and injecting single-step #DBs.
6809 if (emulation_type
& EMULTYPE_SKIP
) {
6810 kvm_rip_write(vcpu
, ctxt
->_eip
);
6811 if (ctxt
->eflags
& X86_EFLAGS_RF
)
6812 kvm_set_rflags(vcpu
, ctxt
->eflags
& ~X86_EFLAGS_RF
);
6816 if (retry_instruction(ctxt
, cr2_or_gpa
, emulation_type
))
6819 /* this is needed for vmware backdoor interface to work since it
6820 changes registers values during IO operation */
6821 if (vcpu
->arch
.emulate_regs_need_sync_from_vcpu
) {
6822 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
6823 emulator_invalidate_register_cache(ctxt
);
6827 /* Save the faulting GPA (cr2) in the address field */
6828 ctxt
->exception
.address
= cr2_or_gpa
;
6830 r
= x86_emulate_insn(ctxt
);
6832 if (r
== EMULATION_INTERCEPTED
)
6835 if (r
== EMULATION_FAILED
) {
6836 if (reexecute_instruction(vcpu
, cr2_or_gpa
, write_fault_to_spt
,
6840 return handle_emulation_failure(vcpu
, emulation_type
);
6843 if (ctxt
->have_exception
) {
6845 if (inject_emulated_exception(vcpu
))
6847 } else if (vcpu
->arch
.pio
.count
) {
6848 if (!vcpu
->arch
.pio
.in
) {
6849 /* FIXME: return into emulator if single-stepping. */
6850 vcpu
->arch
.pio
.count
= 0;
6853 vcpu
->arch
.complete_userspace_io
= complete_emulated_pio
;
6856 } else if (vcpu
->mmio_needed
) {
6857 ++vcpu
->stat
.mmio_exits
;
6859 if (!vcpu
->mmio_is_write
)
6862 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
6863 } else if (r
== EMULATION_RESTART
)
6869 unsigned long rflags
= kvm_x86_ops
->get_rflags(vcpu
);
6870 toggle_interruptibility(vcpu
, ctxt
->interruptibility
);
6871 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
6872 if (!ctxt
->have_exception
||
6873 exception_type(ctxt
->exception
.vector
) == EXCPT_TRAP
) {
6874 kvm_rip_write(vcpu
, ctxt
->eip
);
6876 r
= kvm_vcpu_do_singlestep(vcpu
);
6877 __kvm_set_rflags(vcpu
, ctxt
->eflags
);
6881 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6882 * do nothing, and it will be requested again as soon as
6883 * the shadow expires. But we still need to check here,
6884 * because POPF has no interrupt shadow.
6886 if (unlikely((ctxt
->eflags
& ~rflags
) & X86_EFLAGS_IF
))
6887 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6889 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= true;
6894 int kvm_emulate_instruction(struct kvm_vcpu
*vcpu
, int emulation_type
)
6896 return x86_emulate_instruction(vcpu
, 0, emulation_type
, NULL
, 0);
6898 EXPORT_SYMBOL_GPL(kvm_emulate_instruction
);
6900 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu
*vcpu
,
6901 void *insn
, int insn_len
)
6903 return x86_emulate_instruction(vcpu
, 0, 0, insn
, insn_len
);
6905 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer
);
6907 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu
*vcpu
)
6909 vcpu
->arch
.pio
.count
= 0;
6913 static int complete_fast_pio_out(struct kvm_vcpu
*vcpu
)
6915 vcpu
->arch
.pio
.count
= 0;
6917 if (unlikely(!kvm_is_linear_rip(vcpu
, vcpu
->arch
.pio
.linear_rip
)))
6920 return kvm_skip_emulated_instruction(vcpu
);
6923 static int kvm_fast_pio_out(struct kvm_vcpu
*vcpu
, int size
,
6924 unsigned short port
)
6926 unsigned long val
= kvm_rax_read(vcpu
);
6927 int ret
= emulator_pio_out_emulated(&vcpu
->arch
.emulate_ctxt
,
6928 size
, port
, &val
, 1);
6933 * Workaround userspace that relies on old KVM behavior of %rip being
6934 * incremented prior to exiting to userspace to handle "OUT 0x7e".
6937 kvm_check_has_quirk(vcpu
->kvm
, KVM_X86_QUIRK_OUT_7E_INC_RIP
)) {
6938 vcpu
->arch
.complete_userspace_io
=
6939 complete_fast_pio_out_port_0x7e
;
6940 kvm_skip_emulated_instruction(vcpu
);
6942 vcpu
->arch
.pio
.linear_rip
= kvm_get_linear_rip(vcpu
);
6943 vcpu
->arch
.complete_userspace_io
= complete_fast_pio_out
;
6948 static int complete_fast_pio_in(struct kvm_vcpu
*vcpu
)
6952 /* We should only ever be called with arch.pio.count equal to 1 */
6953 BUG_ON(vcpu
->arch
.pio
.count
!= 1);
6955 if (unlikely(!kvm_is_linear_rip(vcpu
, vcpu
->arch
.pio
.linear_rip
))) {
6956 vcpu
->arch
.pio
.count
= 0;
6960 /* For size less than 4 we merge, else we zero extend */
6961 val
= (vcpu
->arch
.pio
.size
< 4) ? kvm_rax_read(vcpu
) : 0;
6964 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6965 * the copy and tracing
6967 emulator_pio_in_emulated(&vcpu
->arch
.emulate_ctxt
, vcpu
->arch
.pio
.size
,
6968 vcpu
->arch
.pio
.port
, &val
, 1);
6969 kvm_rax_write(vcpu
, val
);
6971 return kvm_skip_emulated_instruction(vcpu
);
6974 static int kvm_fast_pio_in(struct kvm_vcpu
*vcpu
, int size
,
6975 unsigned short port
)
6980 /* For size less than 4 we merge, else we zero extend */
6981 val
= (size
< 4) ? kvm_rax_read(vcpu
) : 0;
6983 ret
= emulator_pio_in_emulated(&vcpu
->arch
.emulate_ctxt
, size
, port
,
6986 kvm_rax_write(vcpu
, val
);
6990 vcpu
->arch
.pio
.linear_rip
= kvm_get_linear_rip(vcpu
);
6991 vcpu
->arch
.complete_userspace_io
= complete_fast_pio_in
;
6996 int kvm_fast_pio(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
, int in
)
7001 ret
= kvm_fast_pio_in(vcpu
, size
, port
);
7003 ret
= kvm_fast_pio_out(vcpu
, size
, port
);
7004 return ret
&& kvm_skip_emulated_instruction(vcpu
);
7006 EXPORT_SYMBOL_GPL(kvm_fast_pio
);
7008 static int kvmclock_cpu_down_prep(unsigned int cpu
)
7010 __this_cpu_write(cpu_tsc_khz
, 0);
7014 static void tsc_khz_changed(void *data
)
7016 struct cpufreq_freqs
*freq
= data
;
7017 unsigned long khz
= 0;
7021 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
7022 khz
= cpufreq_quick_get(raw_smp_processor_id());
7025 __this_cpu_write(cpu_tsc_khz
, khz
);
7028 #ifdef CONFIG_X86_64
7029 static void kvm_hyperv_tsc_notifier(void)
7032 struct kvm_vcpu
*vcpu
;
7035 mutex_lock(&kvm_lock
);
7036 list_for_each_entry(kvm
, &vm_list
, vm_list
)
7037 kvm_make_mclock_inprogress_request(kvm
);
7039 hyperv_stop_tsc_emulation();
7041 /* TSC frequency always matches when on Hyper-V */
7042 for_each_present_cpu(cpu
)
7043 per_cpu(cpu_tsc_khz
, cpu
) = tsc_khz
;
7044 kvm_max_guest_tsc_khz
= tsc_khz
;
7046 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
7047 struct kvm_arch
*ka
= &kvm
->arch
;
7049 spin_lock(&ka
->pvclock_gtod_sync_lock
);
7051 pvclock_update_vm_gtod_copy(kvm
);
7053 kvm_for_each_vcpu(cpu
, vcpu
, kvm
)
7054 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
7056 kvm_for_each_vcpu(cpu
, vcpu
, kvm
)
7057 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS
, vcpu
);
7059 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
7061 mutex_unlock(&kvm_lock
);
7065 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs
*freq
, int cpu
)
7068 struct kvm_vcpu
*vcpu
;
7069 int i
, send_ipi
= 0;
7072 * We allow guests to temporarily run on slowing clocks,
7073 * provided we notify them after, or to run on accelerating
7074 * clocks, provided we notify them before. Thus time never
7077 * However, we have a problem. We can't atomically update
7078 * the frequency of a given CPU from this function; it is
7079 * merely a notifier, which can be called from any CPU.
7080 * Changing the TSC frequency at arbitrary points in time
7081 * requires a recomputation of local variables related to
7082 * the TSC for each VCPU. We must flag these local variables
7083 * to be updated and be sure the update takes place with the
7084 * new frequency before any guests proceed.
7086 * Unfortunately, the combination of hotplug CPU and frequency
7087 * change creates an intractable locking scenario; the order
7088 * of when these callouts happen is undefined with respect to
7089 * CPU hotplug, and they can race with each other. As such,
7090 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7091 * undefined; you can actually have a CPU frequency change take
7092 * place in between the computation of X and the setting of the
7093 * variable. To protect against this problem, all updates of
7094 * the per_cpu tsc_khz variable are done in an interrupt
7095 * protected IPI, and all callers wishing to update the value
7096 * must wait for a synchronous IPI to complete (which is trivial
7097 * if the caller is on the CPU already). This establishes the
7098 * necessary total order on variable updates.
7100 * Note that because a guest time update may take place
7101 * anytime after the setting of the VCPU's request bit, the
7102 * correct TSC value must be set before the request. However,
7103 * to ensure the update actually makes it to any guest which
7104 * starts running in hardware virtualization between the set
7105 * and the acquisition of the spinlock, we must also ping the
7106 * CPU after setting the request bit.
7110 smp_call_function_single(cpu
, tsc_khz_changed
, freq
, 1);
7112 mutex_lock(&kvm_lock
);
7113 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
7114 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
7115 if (vcpu
->cpu
!= cpu
)
7117 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
7118 if (vcpu
->cpu
!= raw_smp_processor_id())
7122 mutex_unlock(&kvm_lock
);
7124 if (freq
->old
< freq
->new && send_ipi
) {
7126 * We upscale the frequency. Must make the guest
7127 * doesn't see old kvmclock values while running with
7128 * the new frequency, otherwise we risk the guest sees
7129 * time go backwards.
7131 * In case we update the frequency for another cpu
7132 * (which might be in guest context) send an interrupt
7133 * to kick the cpu out of guest context. Next time
7134 * guest context is entered kvmclock will be updated,
7135 * so the guest will not see stale values.
7137 smp_call_function_single(cpu
, tsc_khz_changed
, freq
, 1);
7141 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
7144 struct cpufreq_freqs
*freq
= data
;
7147 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
7149 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
7152 for_each_cpu(cpu
, freq
->policy
->cpus
)
7153 __kvmclock_cpufreq_notifier(freq
, cpu
);
7158 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
7159 .notifier_call
= kvmclock_cpufreq_notifier
7162 static int kvmclock_cpu_online(unsigned int cpu
)
7164 tsc_khz_changed(NULL
);
7168 static void kvm_timer_init(void)
7170 max_tsc_khz
= tsc_khz
;
7172 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
7173 #ifdef CONFIG_CPU_FREQ
7174 struct cpufreq_policy policy
;
7177 memset(&policy
, 0, sizeof(policy
));
7179 cpufreq_get_policy(&policy
, cpu
);
7180 if (policy
.cpuinfo
.max_freq
)
7181 max_tsc_khz
= policy
.cpuinfo
.max_freq
;
7184 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
7185 CPUFREQ_TRANSITION_NOTIFIER
);
7188 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE
, "x86/kvm/clk:online",
7189 kvmclock_cpu_online
, kvmclock_cpu_down_prep
);
7192 DEFINE_PER_CPU(struct kvm_vcpu
*, current_vcpu
);
7193 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu
);
7195 int kvm_is_in_guest(void)
7197 return __this_cpu_read(current_vcpu
) != NULL
;
7200 static int kvm_is_user_mode(void)
7204 if (__this_cpu_read(current_vcpu
))
7205 user_mode
= kvm_x86_ops
->get_cpl(__this_cpu_read(current_vcpu
));
7207 return user_mode
!= 0;
7210 static unsigned long kvm_get_guest_ip(void)
7212 unsigned long ip
= 0;
7214 if (__this_cpu_read(current_vcpu
))
7215 ip
= kvm_rip_read(__this_cpu_read(current_vcpu
));
7220 static void kvm_handle_intel_pt_intr(void)
7222 struct kvm_vcpu
*vcpu
= __this_cpu_read(current_vcpu
);
7224 kvm_make_request(KVM_REQ_PMI
, vcpu
);
7225 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT
,
7226 (unsigned long *)&vcpu
->arch
.pmu
.global_status
);
7229 static struct perf_guest_info_callbacks kvm_guest_cbs
= {
7230 .is_in_guest
= kvm_is_in_guest
,
7231 .is_user_mode
= kvm_is_user_mode
,
7232 .get_guest_ip
= kvm_get_guest_ip
,
7233 .handle_intel_pt_intr
= kvm_handle_intel_pt_intr
,
7236 #ifdef CONFIG_X86_64
7237 static void pvclock_gtod_update_fn(struct work_struct
*work
)
7241 struct kvm_vcpu
*vcpu
;
7244 mutex_lock(&kvm_lock
);
7245 list_for_each_entry(kvm
, &vm_list
, vm_list
)
7246 kvm_for_each_vcpu(i
, vcpu
, kvm
)
7247 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
7248 atomic_set(&kvm_guest_has_master_clock
, 0);
7249 mutex_unlock(&kvm_lock
);
7252 static DECLARE_WORK(pvclock_gtod_work
, pvclock_gtod_update_fn
);
7255 * Notification about pvclock gtod data update.
7257 static int pvclock_gtod_notify(struct notifier_block
*nb
, unsigned long unused
,
7260 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
7261 struct timekeeper
*tk
= priv
;
7263 update_pvclock_gtod(tk
);
7265 /* disable master clock if host does not trust, or does not
7266 * use, TSC based clocksource.
7268 if (!gtod_is_based_on_tsc(gtod
->clock
.vclock_mode
) &&
7269 atomic_read(&kvm_guest_has_master_clock
) != 0)
7270 queue_work(system_long_wq
, &pvclock_gtod_work
);
7275 static struct notifier_block pvclock_gtod_notifier
= {
7276 .notifier_call
= pvclock_gtod_notify
,
7280 int kvm_arch_init(void *opaque
)
7283 struct kvm_x86_ops
*ops
= opaque
;
7286 printk(KERN_ERR
"kvm: already loaded the other module\n");
7291 if (!ops
->cpu_has_kvm_support()) {
7292 printk(KERN_ERR
"kvm: no hardware support\n");
7296 if (ops
->disabled_by_bios()) {
7297 printk(KERN_ERR
"kvm: disabled by bios\n");
7303 * KVM explicitly assumes that the guest has an FPU and
7304 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7305 * vCPU's FPU state as a fxregs_state struct.
7307 if (!boot_cpu_has(X86_FEATURE_FPU
) || !boot_cpu_has(X86_FEATURE_FXSR
)) {
7308 printk(KERN_ERR
"kvm: inadequate fpu\n");
7314 x86_fpu_cache
= kmem_cache_create("x86_fpu", sizeof(struct fpu
),
7315 __alignof__(struct fpu
), SLAB_ACCOUNT
,
7317 if (!x86_fpu_cache
) {
7318 printk(KERN_ERR
"kvm: failed to allocate cache for x86 fpu\n");
7322 shared_msrs
= alloc_percpu(struct kvm_shared_msrs
);
7324 printk(KERN_ERR
"kvm: failed to allocate percpu kvm_shared_msrs\n");
7325 goto out_free_x86_fpu_cache
;
7328 r
= kvm_mmu_module_init();
7330 goto out_free_percpu
;
7334 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
7335 PT_DIRTY_MASK
, PT64_NX_MASK
, 0,
7336 PT_PRESENT_MASK
, 0, sme_me_mask
);
7339 perf_register_guest_info_callbacks(&kvm_guest_cbs
);
7341 if (boot_cpu_has(X86_FEATURE_XSAVE
))
7342 host_xcr0
= xgetbv(XCR_XFEATURE_ENABLED_MASK
);
7345 if (pi_inject_timer
== -1)
7346 pi_inject_timer
= housekeeping_enabled(HK_FLAG_TIMER
);
7347 #ifdef CONFIG_X86_64
7348 pvclock_gtod_register_notifier(&pvclock_gtod_notifier
);
7350 if (hypervisor_is_type(X86_HYPER_MS_HYPERV
))
7351 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier
);
7357 free_percpu(shared_msrs
);
7358 out_free_x86_fpu_cache
:
7359 kmem_cache_destroy(x86_fpu_cache
);
7364 void kvm_arch_exit(void)
7366 #ifdef CONFIG_X86_64
7367 if (hypervisor_is_type(X86_HYPER_MS_HYPERV
))
7368 clear_hv_tscchange_cb();
7371 perf_unregister_guest_info_callbacks(&kvm_guest_cbs
);
7373 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
7374 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
7375 CPUFREQ_TRANSITION_NOTIFIER
);
7376 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE
);
7377 #ifdef CONFIG_X86_64
7378 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier
);
7381 kvm_mmu_module_exit();
7382 free_percpu(shared_msrs
);
7383 kmem_cache_destroy(x86_fpu_cache
);
7386 int kvm_vcpu_halt(struct kvm_vcpu
*vcpu
)
7388 ++vcpu
->stat
.halt_exits
;
7389 if (lapic_in_kernel(vcpu
)) {
7390 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
7393 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
7397 EXPORT_SYMBOL_GPL(kvm_vcpu_halt
);
7399 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
7401 int ret
= kvm_skip_emulated_instruction(vcpu
);
7403 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7404 * KVM_EXIT_DEBUG here.
7406 return kvm_vcpu_halt(vcpu
) && ret
;
7408 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
7410 #ifdef CONFIG_X86_64
7411 static int kvm_pv_clock_pairing(struct kvm_vcpu
*vcpu
, gpa_t paddr
,
7412 unsigned long clock_type
)
7414 struct kvm_clock_pairing clock_pairing
;
7415 struct timespec64 ts
;
7419 if (clock_type
!= KVM_CLOCK_PAIRING_WALLCLOCK
)
7420 return -KVM_EOPNOTSUPP
;
7422 if (kvm_get_walltime_and_clockread(&ts
, &cycle
) == false)
7423 return -KVM_EOPNOTSUPP
;
7425 clock_pairing
.sec
= ts
.tv_sec
;
7426 clock_pairing
.nsec
= ts
.tv_nsec
;
7427 clock_pairing
.tsc
= kvm_read_l1_tsc(vcpu
, cycle
);
7428 clock_pairing
.flags
= 0;
7429 memset(&clock_pairing
.pad
, 0, sizeof(clock_pairing
.pad
));
7432 if (kvm_write_guest(vcpu
->kvm
, paddr
, &clock_pairing
,
7433 sizeof(struct kvm_clock_pairing
)))
7441 * kvm_pv_kick_cpu_op: Kick a vcpu.
7443 * @apicid - apicid of vcpu to be kicked.
7445 static void kvm_pv_kick_cpu_op(struct kvm
*kvm
, unsigned long flags
, int apicid
)
7447 struct kvm_lapic_irq lapic_irq
;
7449 lapic_irq
.shorthand
= APIC_DEST_NOSHORT
;
7450 lapic_irq
.dest_mode
= APIC_DEST_PHYSICAL
;
7451 lapic_irq
.level
= 0;
7452 lapic_irq
.dest_id
= apicid
;
7453 lapic_irq
.msi_redir_hint
= false;
7455 lapic_irq
.delivery_mode
= APIC_DM_REMRD
;
7456 kvm_irq_delivery_to_apic(kvm
, NULL
, &lapic_irq
, NULL
);
7459 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu
*vcpu
)
7461 if (!lapic_in_kernel(vcpu
)) {
7462 WARN_ON_ONCE(vcpu
->arch
.apicv_active
);
7465 if (!vcpu
->arch
.apicv_active
)
7468 vcpu
->arch
.apicv_active
= false;
7469 kvm_x86_ops
->refresh_apicv_exec_ctrl(vcpu
);
7472 static void kvm_sched_yield(struct kvm
*kvm
, unsigned long dest_id
)
7474 struct kvm_vcpu
*target
= NULL
;
7475 struct kvm_apic_map
*map
;
7478 map
= rcu_dereference(kvm
->arch
.apic_map
);
7480 if (likely(map
) && dest_id
<= map
->max_apic_id
&& map
->phys_map
[dest_id
])
7481 target
= map
->phys_map
[dest_id
]->vcpu
;
7485 if (target
&& READ_ONCE(target
->ready
))
7486 kvm_vcpu_yield_to(target
);
7489 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
7491 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
7494 if (kvm_hv_hypercall_enabled(vcpu
->kvm
))
7495 return kvm_hv_hypercall(vcpu
);
7497 nr
= kvm_rax_read(vcpu
);
7498 a0
= kvm_rbx_read(vcpu
);
7499 a1
= kvm_rcx_read(vcpu
);
7500 a2
= kvm_rdx_read(vcpu
);
7501 a3
= kvm_rsi_read(vcpu
);
7503 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
7505 op_64_bit
= is_64_bit_mode(vcpu
);
7514 if (kvm_x86_ops
->get_cpl(vcpu
) != 0) {
7520 case KVM_HC_VAPIC_POLL_IRQ
:
7523 case KVM_HC_KICK_CPU
:
7524 kvm_pv_kick_cpu_op(vcpu
->kvm
, a0
, a1
);
7525 kvm_sched_yield(vcpu
->kvm
, a1
);
7528 #ifdef CONFIG_X86_64
7529 case KVM_HC_CLOCK_PAIRING
:
7530 ret
= kvm_pv_clock_pairing(vcpu
, a0
, a1
);
7533 case KVM_HC_SEND_IPI
:
7534 ret
= kvm_pv_send_ipi(vcpu
->kvm
, a0
, a1
, a2
, a3
, op_64_bit
);
7536 case KVM_HC_SCHED_YIELD
:
7537 kvm_sched_yield(vcpu
->kvm
, a0
);
7547 kvm_rax_write(vcpu
, ret
);
7549 ++vcpu
->stat
.hypercalls
;
7550 return kvm_skip_emulated_instruction(vcpu
);
7552 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
7554 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
)
7556 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
7557 char instruction
[3];
7558 unsigned long rip
= kvm_rip_read(vcpu
);
7560 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
7562 return emulator_write_emulated(ctxt
, rip
, instruction
, 3,
7566 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
)
7568 return vcpu
->run
->request_interrupt_window
&&
7569 likely(!pic_in_kernel(vcpu
->kvm
));
7572 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
)
7574 struct kvm_run
*kvm_run
= vcpu
->run
;
7576 kvm_run
->if_flag
= (kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
7577 kvm_run
->flags
= is_smm(vcpu
) ? KVM_RUN_X86_SMM
: 0;
7578 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
7579 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
7580 kvm_run
->ready_for_interrupt_injection
=
7581 pic_in_kernel(vcpu
->kvm
) ||
7582 kvm_vcpu_ready_for_interrupt_injection(vcpu
);
7585 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
7589 if (!kvm_x86_ops
->update_cr8_intercept
)
7592 if (!lapic_in_kernel(vcpu
))
7595 if (vcpu
->arch
.apicv_active
)
7598 if (!vcpu
->arch
.apic
->vapic_addr
)
7599 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
7606 tpr
= kvm_lapic_get_cr8(vcpu
);
7608 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
7611 static int inject_pending_event(struct kvm_vcpu
*vcpu
, bool req_int_win
)
7615 /* try to reinject previous events if any */
7617 if (vcpu
->arch
.exception
.injected
)
7618 kvm_x86_ops
->queue_exception(vcpu
);
7620 * Do not inject an NMI or interrupt if there is a pending
7621 * exception. Exceptions and interrupts are recognized at
7622 * instruction boundaries, i.e. the start of an instruction.
7623 * Trap-like exceptions, e.g. #DB, have higher priority than
7624 * NMIs and interrupts, i.e. traps are recognized before an
7625 * NMI/interrupt that's pending on the same instruction.
7626 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7627 * priority, but are only generated (pended) during instruction
7628 * execution, i.e. a pending fault-like exception means the
7629 * fault occurred on the *previous* instruction and must be
7630 * serviced prior to recognizing any new events in order to
7631 * fully complete the previous instruction.
7633 else if (!vcpu
->arch
.exception
.pending
) {
7634 if (vcpu
->arch
.nmi_injected
)
7635 kvm_x86_ops
->set_nmi(vcpu
);
7636 else if (vcpu
->arch
.interrupt
.injected
)
7637 kvm_x86_ops
->set_irq(vcpu
);
7641 * Call check_nested_events() even if we reinjected a previous event
7642 * in order for caller to determine if it should require immediate-exit
7643 * from L2 to L1 due to pending L1 events which require exit
7646 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
) {
7647 r
= kvm_x86_ops
->check_nested_events(vcpu
, req_int_win
);
7652 /* try to inject new event if pending */
7653 if (vcpu
->arch
.exception
.pending
) {
7654 trace_kvm_inj_exception(vcpu
->arch
.exception
.nr
,
7655 vcpu
->arch
.exception
.has_error_code
,
7656 vcpu
->arch
.exception
.error_code
);
7658 WARN_ON_ONCE(vcpu
->arch
.exception
.injected
);
7659 vcpu
->arch
.exception
.pending
= false;
7660 vcpu
->arch
.exception
.injected
= true;
7662 if (exception_type(vcpu
->arch
.exception
.nr
) == EXCPT_FAULT
)
7663 __kvm_set_rflags(vcpu
, kvm_get_rflags(vcpu
) |
7666 if (vcpu
->arch
.exception
.nr
== DB_VECTOR
) {
7668 * This code assumes that nSVM doesn't use
7669 * check_nested_events(). If it does, the
7670 * DR6/DR7 changes should happen before L1
7671 * gets a #VMEXIT for an intercepted #DB in
7672 * L2. (Under VMX, on the other hand, the
7673 * DR6/DR7 changes should not happen in the
7674 * event of a VM-exit to L1 for an intercepted
7677 kvm_deliver_exception_payload(vcpu
);
7678 if (vcpu
->arch
.dr7
& DR7_GD
) {
7679 vcpu
->arch
.dr7
&= ~DR7_GD
;
7680 kvm_update_dr7(vcpu
);
7684 kvm_x86_ops
->queue_exception(vcpu
);
7687 /* Don't consider new event if we re-injected an event */
7688 if (kvm_event_needs_reinjection(vcpu
))
7691 if (vcpu
->arch
.smi_pending
&& !is_smm(vcpu
) &&
7692 kvm_x86_ops
->smi_allowed(vcpu
)) {
7693 vcpu
->arch
.smi_pending
= false;
7694 ++vcpu
->arch
.smi_count
;
7696 } else if (vcpu
->arch
.nmi_pending
&& kvm_x86_ops
->nmi_allowed(vcpu
)) {
7697 --vcpu
->arch
.nmi_pending
;
7698 vcpu
->arch
.nmi_injected
= true;
7699 kvm_x86_ops
->set_nmi(vcpu
);
7700 } else if (kvm_cpu_has_injectable_intr(vcpu
)) {
7702 * Because interrupts can be injected asynchronously, we are
7703 * calling check_nested_events again here to avoid a race condition.
7704 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7705 * proposal and current concerns. Perhaps we should be setting
7706 * KVM_REQ_EVENT only on certain events and not unconditionally?
7708 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
) {
7709 r
= kvm_x86_ops
->check_nested_events(vcpu
, req_int_win
);
7713 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
7714 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
7716 kvm_x86_ops
->set_irq(vcpu
);
7723 static void process_nmi(struct kvm_vcpu
*vcpu
)
7728 * x86 is limited to one NMI running, and one NMI pending after it.
7729 * If an NMI is already in progress, limit further NMIs to just one.
7730 * Otherwise, allow two (and we'll inject the first one immediately).
7732 if (kvm_x86_ops
->get_nmi_mask(vcpu
) || vcpu
->arch
.nmi_injected
)
7735 vcpu
->arch
.nmi_pending
+= atomic_xchg(&vcpu
->arch
.nmi_queued
, 0);
7736 vcpu
->arch
.nmi_pending
= min(vcpu
->arch
.nmi_pending
, limit
);
7737 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7740 static u32
enter_smm_get_segment_flags(struct kvm_segment
*seg
)
7743 flags
|= seg
->g
<< 23;
7744 flags
|= seg
->db
<< 22;
7745 flags
|= seg
->l
<< 21;
7746 flags
|= seg
->avl
<< 20;
7747 flags
|= seg
->present
<< 15;
7748 flags
|= seg
->dpl
<< 13;
7749 flags
|= seg
->s
<< 12;
7750 flags
|= seg
->type
<< 8;
7754 static void enter_smm_save_seg_32(struct kvm_vcpu
*vcpu
, char *buf
, int n
)
7756 struct kvm_segment seg
;
7759 kvm_get_segment(vcpu
, &seg
, n
);
7760 put_smstate(u32
, buf
, 0x7fa8 + n
* 4, seg
.selector
);
7763 offset
= 0x7f84 + n
* 12;
7765 offset
= 0x7f2c + (n
- 3) * 12;
7767 put_smstate(u32
, buf
, offset
+ 8, seg
.base
);
7768 put_smstate(u32
, buf
, offset
+ 4, seg
.limit
);
7769 put_smstate(u32
, buf
, offset
, enter_smm_get_segment_flags(&seg
));
7772 #ifdef CONFIG_X86_64
7773 static void enter_smm_save_seg_64(struct kvm_vcpu
*vcpu
, char *buf
, int n
)
7775 struct kvm_segment seg
;
7779 kvm_get_segment(vcpu
, &seg
, n
);
7780 offset
= 0x7e00 + n
* 16;
7782 flags
= enter_smm_get_segment_flags(&seg
) >> 8;
7783 put_smstate(u16
, buf
, offset
, seg
.selector
);
7784 put_smstate(u16
, buf
, offset
+ 2, flags
);
7785 put_smstate(u32
, buf
, offset
+ 4, seg
.limit
);
7786 put_smstate(u64
, buf
, offset
+ 8, seg
.base
);
7790 static void enter_smm_save_state_32(struct kvm_vcpu
*vcpu
, char *buf
)
7793 struct kvm_segment seg
;
7797 put_smstate(u32
, buf
, 0x7ffc, kvm_read_cr0(vcpu
));
7798 put_smstate(u32
, buf
, 0x7ff8, kvm_read_cr3(vcpu
));
7799 put_smstate(u32
, buf
, 0x7ff4, kvm_get_rflags(vcpu
));
7800 put_smstate(u32
, buf
, 0x7ff0, kvm_rip_read(vcpu
));
7802 for (i
= 0; i
< 8; i
++)
7803 put_smstate(u32
, buf
, 0x7fd0 + i
* 4, kvm_register_read(vcpu
, i
));
7805 kvm_get_dr(vcpu
, 6, &val
);
7806 put_smstate(u32
, buf
, 0x7fcc, (u32
)val
);
7807 kvm_get_dr(vcpu
, 7, &val
);
7808 put_smstate(u32
, buf
, 0x7fc8, (u32
)val
);
7810 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_TR
);
7811 put_smstate(u32
, buf
, 0x7fc4, seg
.selector
);
7812 put_smstate(u32
, buf
, 0x7f64, seg
.base
);
7813 put_smstate(u32
, buf
, 0x7f60, seg
.limit
);
7814 put_smstate(u32
, buf
, 0x7f5c, enter_smm_get_segment_flags(&seg
));
7816 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_LDTR
);
7817 put_smstate(u32
, buf
, 0x7fc0, seg
.selector
);
7818 put_smstate(u32
, buf
, 0x7f80, seg
.base
);
7819 put_smstate(u32
, buf
, 0x7f7c, seg
.limit
);
7820 put_smstate(u32
, buf
, 0x7f78, enter_smm_get_segment_flags(&seg
));
7822 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
7823 put_smstate(u32
, buf
, 0x7f74, dt
.address
);
7824 put_smstate(u32
, buf
, 0x7f70, dt
.size
);
7826 kvm_x86_ops
->get_idt(vcpu
, &dt
);
7827 put_smstate(u32
, buf
, 0x7f58, dt
.address
);
7828 put_smstate(u32
, buf
, 0x7f54, dt
.size
);
7830 for (i
= 0; i
< 6; i
++)
7831 enter_smm_save_seg_32(vcpu
, buf
, i
);
7833 put_smstate(u32
, buf
, 0x7f14, kvm_read_cr4(vcpu
));
7836 put_smstate(u32
, buf
, 0x7efc, 0x00020000);
7837 put_smstate(u32
, buf
, 0x7ef8, vcpu
->arch
.smbase
);
7840 #ifdef CONFIG_X86_64
7841 static void enter_smm_save_state_64(struct kvm_vcpu
*vcpu
, char *buf
)
7844 struct kvm_segment seg
;
7848 for (i
= 0; i
< 16; i
++)
7849 put_smstate(u64
, buf
, 0x7ff8 - i
* 8, kvm_register_read(vcpu
, i
));
7851 put_smstate(u64
, buf
, 0x7f78, kvm_rip_read(vcpu
));
7852 put_smstate(u32
, buf
, 0x7f70, kvm_get_rflags(vcpu
));
7854 kvm_get_dr(vcpu
, 6, &val
);
7855 put_smstate(u64
, buf
, 0x7f68, val
);
7856 kvm_get_dr(vcpu
, 7, &val
);
7857 put_smstate(u64
, buf
, 0x7f60, val
);
7859 put_smstate(u64
, buf
, 0x7f58, kvm_read_cr0(vcpu
));
7860 put_smstate(u64
, buf
, 0x7f50, kvm_read_cr3(vcpu
));
7861 put_smstate(u64
, buf
, 0x7f48, kvm_read_cr4(vcpu
));
7863 put_smstate(u32
, buf
, 0x7f00, vcpu
->arch
.smbase
);
7866 put_smstate(u32
, buf
, 0x7efc, 0x00020064);
7868 put_smstate(u64
, buf
, 0x7ed0, vcpu
->arch
.efer
);
7870 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_TR
);
7871 put_smstate(u16
, buf
, 0x7e90, seg
.selector
);
7872 put_smstate(u16
, buf
, 0x7e92, enter_smm_get_segment_flags(&seg
) >> 8);
7873 put_smstate(u32
, buf
, 0x7e94, seg
.limit
);
7874 put_smstate(u64
, buf
, 0x7e98, seg
.base
);
7876 kvm_x86_ops
->get_idt(vcpu
, &dt
);
7877 put_smstate(u32
, buf
, 0x7e84, dt
.size
);
7878 put_smstate(u64
, buf
, 0x7e88, dt
.address
);
7880 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_LDTR
);
7881 put_smstate(u16
, buf
, 0x7e70, seg
.selector
);
7882 put_smstate(u16
, buf
, 0x7e72, enter_smm_get_segment_flags(&seg
) >> 8);
7883 put_smstate(u32
, buf
, 0x7e74, seg
.limit
);
7884 put_smstate(u64
, buf
, 0x7e78, seg
.base
);
7886 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
7887 put_smstate(u32
, buf
, 0x7e64, dt
.size
);
7888 put_smstate(u64
, buf
, 0x7e68, dt
.address
);
7890 for (i
= 0; i
< 6; i
++)
7891 enter_smm_save_seg_64(vcpu
, buf
, i
);
7895 static void enter_smm(struct kvm_vcpu
*vcpu
)
7897 struct kvm_segment cs
, ds
;
7902 trace_kvm_enter_smm(vcpu
->vcpu_id
, vcpu
->arch
.smbase
, true);
7903 memset(buf
, 0, 512);
7904 #ifdef CONFIG_X86_64
7905 if (guest_cpuid_has(vcpu
, X86_FEATURE_LM
))
7906 enter_smm_save_state_64(vcpu
, buf
);
7909 enter_smm_save_state_32(vcpu
, buf
);
7912 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7913 * vCPU state (e.g. leave guest mode) after we've saved the state into
7914 * the SMM state-save area.
7916 kvm_x86_ops
->pre_enter_smm(vcpu
, buf
);
7918 vcpu
->arch
.hflags
|= HF_SMM_MASK
;
7919 kvm_vcpu_write_guest(vcpu
, vcpu
->arch
.smbase
+ 0xfe00, buf
, sizeof(buf
));
7921 if (kvm_x86_ops
->get_nmi_mask(vcpu
))
7922 vcpu
->arch
.hflags
|= HF_SMM_INSIDE_NMI_MASK
;
7924 kvm_x86_ops
->set_nmi_mask(vcpu
, true);
7926 kvm_set_rflags(vcpu
, X86_EFLAGS_FIXED
);
7927 kvm_rip_write(vcpu
, 0x8000);
7929 cr0
= vcpu
->arch
.cr0
& ~(X86_CR0_PE
| X86_CR0_EM
| X86_CR0_TS
| X86_CR0_PG
);
7930 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
7931 vcpu
->arch
.cr0
= cr0
;
7933 kvm_x86_ops
->set_cr4(vcpu
, 0);
7935 /* Undocumented: IDT limit is set to zero on entry to SMM. */
7936 dt
.address
= dt
.size
= 0;
7937 kvm_x86_ops
->set_idt(vcpu
, &dt
);
7939 __kvm_set_dr(vcpu
, 7, DR7_FIXED_1
);
7941 cs
.selector
= (vcpu
->arch
.smbase
>> 4) & 0xffff;
7942 cs
.base
= vcpu
->arch
.smbase
;
7947 cs
.limit
= ds
.limit
= 0xffffffff;
7948 cs
.type
= ds
.type
= 0x3;
7949 cs
.dpl
= ds
.dpl
= 0;
7954 cs
.avl
= ds
.avl
= 0;
7955 cs
.present
= ds
.present
= 1;
7956 cs
.unusable
= ds
.unusable
= 0;
7957 cs
.padding
= ds
.padding
= 0;
7959 kvm_set_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7960 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_DS
);
7961 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_ES
);
7962 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_FS
);
7963 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_GS
);
7964 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_SS
);
7966 #ifdef CONFIG_X86_64
7967 if (guest_cpuid_has(vcpu
, X86_FEATURE_LM
))
7968 kvm_x86_ops
->set_efer(vcpu
, 0);
7971 kvm_update_cpuid(vcpu
);
7972 kvm_mmu_reset_context(vcpu
);
7975 static void process_smi(struct kvm_vcpu
*vcpu
)
7977 vcpu
->arch
.smi_pending
= true;
7978 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7981 void kvm_make_scan_ioapic_request_mask(struct kvm
*kvm
,
7982 unsigned long *vcpu_bitmap
)
7986 zalloc_cpumask_var(&cpus
, GFP_ATOMIC
);
7988 kvm_make_vcpus_request_mask(kvm
, KVM_REQ_SCAN_IOAPIC
,
7991 free_cpumask_var(cpus
);
7994 void kvm_make_scan_ioapic_request(struct kvm
*kvm
)
7996 kvm_make_all_cpus_request(kvm
, KVM_REQ_SCAN_IOAPIC
);
7999 static void vcpu_scan_ioapic(struct kvm_vcpu
*vcpu
)
8001 if (!kvm_apic_present(vcpu
))
8004 bitmap_zero(vcpu
->arch
.ioapic_handled_vectors
, 256);
8006 if (irqchip_split(vcpu
->kvm
))
8007 kvm_scan_ioapic_routes(vcpu
, vcpu
->arch
.ioapic_handled_vectors
);
8009 if (vcpu
->arch
.apicv_active
)
8010 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
8011 if (ioapic_in_kernel(vcpu
->kvm
))
8012 kvm_ioapic_scan_entry(vcpu
, vcpu
->arch
.ioapic_handled_vectors
);
8015 if (is_guest_mode(vcpu
))
8016 vcpu
->arch
.load_eoi_exitmap_pending
= true;
8018 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP
, vcpu
);
8021 static void vcpu_load_eoi_exitmap(struct kvm_vcpu
*vcpu
)
8023 u64 eoi_exit_bitmap
[4];
8025 if (!kvm_apic_hw_enabled(vcpu
->arch
.apic
))
8028 bitmap_or((ulong
*)eoi_exit_bitmap
, vcpu
->arch
.ioapic_handled_vectors
,
8029 vcpu_to_synic(vcpu
)->vec_bitmap
, 256);
8030 kvm_x86_ops
->load_eoi_exitmap(vcpu
, eoi_exit_bitmap
);
8033 int kvm_arch_mmu_notifier_invalidate_range(struct kvm
*kvm
,
8034 unsigned long start
, unsigned long end
,
8037 unsigned long apic_address
;
8040 * The physical address of apic access page is stored in the VMCS.
8041 * Update it when it becomes invalid.
8043 apic_address
= gfn_to_hva(kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
);
8044 if (start
<= apic_address
&& apic_address
< end
)
8045 kvm_make_all_cpus_request(kvm
, KVM_REQ_APIC_PAGE_RELOAD
);
8050 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu
*vcpu
)
8052 struct page
*page
= NULL
;
8054 if (!lapic_in_kernel(vcpu
))
8057 if (!kvm_x86_ops
->set_apic_access_page_addr
)
8060 page
= gfn_to_page(vcpu
->kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
);
8061 if (is_error_page(page
))
8063 kvm_x86_ops
->set_apic_access_page_addr(vcpu
, page_to_phys(page
));
8066 * Do not pin apic access page in memory, the MMU notifier
8067 * will call us again if it is migrated or swapped out.
8072 void __kvm_request_immediate_exit(struct kvm_vcpu
*vcpu
)
8074 smp_send_reschedule(vcpu
->cpu
);
8076 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit
);
8079 * Returns 1 to let vcpu_run() continue the guest execution loop without
8080 * exiting to the userspace. Otherwise, the value will be returned to the
8083 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
)
8087 dm_request_for_irq_injection(vcpu
) &&
8088 kvm_cpu_accept_dm_intr(vcpu
);
8089 enum exit_fastpath_completion exit_fastpath
= EXIT_FASTPATH_NONE
;
8091 bool req_immediate_exit
= false;
8093 if (kvm_request_pending(vcpu
)) {
8094 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES
, vcpu
)) {
8095 if (unlikely(!kvm_x86_ops
->get_vmcs12_pages(vcpu
))) {
8100 if (kvm_check_request(KVM_REQ_MMU_RELOAD
, vcpu
))
8101 kvm_mmu_unload(vcpu
);
8102 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER
, vcpu
))
8103 __kvm_migrate_timers(vcpu
);
8104 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
))
8105 kvm_gen_update_masterclock(vcpu
->kvm
);
8106 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
))
8107 kvm_gen_kvmclock_update(vcpu
);
8108 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE
, vcpu
)) {
8109 r
= kvm_guest_time_update(vcpu
);
8113 if (kvm_check_request(KVM_REQ_MMU_SYNC
, vcpu
))
8114 kvm_mmu_sync_roots(vcpu
);
8115 if (kvm_check_request(KVM_REQ_LOAD_CR3
, vcpu
))
8116 kvm_mmu_load_cr3(vcpu
);
8117 if (kvm_check_request(KVM_REQ_TLB_FLUSH
, vcpu
))
8118 kvm_vcpu_flush_tlb(vcpu
, true);
8119 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS
, vcpu
)) {
8120 vcpu
->run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
8124 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT
, vcpu
)) {
8125 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
8126 vcpu
->mmio_needed
= 0;
8130 if (kvm_check_request(KVM_REQ_APF_HALT
, vcpu
)) {
8131 /* Page is swapped out. Do synthetic halt */
8132 vcpu
->arch
.apf
.halted
= true;
8136 if (kvm_check_request(KVM_REQ_STEAL_UPDATE
, vcpu
))
8137 record_steal_time(vcpu
);
8138 if (kvm_check_request(KVM_REQ_SMI
, vcpu
))
8140 if (kvm_check_request(KVM_REQ_NMI
, vcpu
))
8142 if (kvm_check_request(KVM_REQ_PMU
, vcpu
))
8143 kvm_pmu_handle_event(vcpu
);
8144 if (kvm_check_request(KVM_REQ_PMI
, vcpu
))
8145 kvm_pmu_deliver_pmi(vcpu
);
8146 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT
, vcpu
)) {
8147 BUG_ON(vcpu
->arch
.pending_ioapic_eoi
> 255);
8148 if (test_bit(vcpu
->arch
.pending_ioapic_eoi
,
8149 vcpu
->arch
.ioapic_handled_vectors
)) {
8150 vcpu
->run
->exit_reason
= KVM_EXIT_IOAPIC_EOI
;
8151 vcpu
->run
->eoi
.vector
=
8152 vcpu
->arch
.pending_ioapic_eoi
;
8157 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC
, vcpu
))
8158 vcpu_scan_ioapic(vcpu
);
8159 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP
, vcpu
))
8160 vcpu_load_eoi_exitmap(vcpu
);
8161 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD
, vcpu
))
8162 kvm_vcpu_reload_apic_access_page(vcpu
);
8163 if (kvm_check_request(KVM_REQ_HV_CRASH
, vcpu
)) {
8164 vcpu
->run
->exit_reason
= KVM_EXIT_SYSTEM_EVENT
;
8165 vcpu
->run
->system_event
.type
= KVM_SYSTEM_EVENT_CRASH
;
8169 if (kvm_check_request(KVM_REQ_HV_RESET
, vcpu
)) {
8170 vcpu
->run
->exit_reason
= KVM_EXIT_SYSTEM_EVENT
;
8171 vcpu
->run
->system_event
.type
= KVM_SYSTEM_EVENT_RESET
;
8175 if (kvm_check_request(KVM_REQ_HV_EXIT
, vcpu
)) {
8176 vcpu
->run
->exit_reason
= KVM_EXIT_HYPERV
;
8177 vcpu
->run
->hyperv
= vcpu
->arch
.hyperv
.exit
;
8183 * KVM_REQ_HV_STIMER has to be processed after
8184 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8185 * depend on the guest clock being up-to-date
8187 if (kvm_check_request(KVM_REQ_HV_STIMER
, vcpu
))
8188 kvm_hv_process_stimers(vcpu
);
8191 if (kvm_check_request(KVM_REQ_EVENT
, vcpu
) || req_int_win
) {
8192 ++vcpu
->stat
.req_event
;
8193 kvm_apic_accept_events(vcpu
);
8194 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_INIT_RECEIVED
) {
8199 if (inject_pending_event(vcpu
, req_int_win
) != 0)
8200 req_immediate_exit
= true;
8202 /* Enable SMI/NMI/IRQ window open exits if needed.
8204 * SMIs have three cases:
8205 * 1) They can be nested, and then there is nothing to
8206 * do here because RSM will cause a vmexit anyway.
8207 * 2) There is an ISA-specific reason why SMI cannot be
8208 * injected, and the moment when this changes can be
8210 * 3) Or the SMI can be pending because
8211 * inject_pending_event has completed the injection
8212 * of an IRQ or NMI from the previous vmexit, and
8213 * then we request an immediate exit to inject the
8216 if (vcpu
->arch
.smi_pending
&& !is_smm(vcpu
))
8217 if (!kvm_x86_ops
->enable_smi_window(vcpu
))
8218 req_immediate_exit
= true;
8219 if (vcpu
->arch
.nmi_pending
)
8220 kvm_x86_ops
->enable_nmi_window(vcpu
);
8221 if (kvm_cpu_has_injectable_intr(vcpu
) || req_int_win
)
8222 kvm_x86_ops
->enable_irq_window(vcpu
);
8223 WARN_ON(vcpu
->arch
.exception
.pending
);
8226 if (kvm_lapic_enabled(vcpu
)) {
8227 update_cr8_intercept(vcpu
);
8228 kvm_lapic_sync_to_vapic(vcpu
);
8232 r
= kvm_mmu_reload(vcpu
);
8234 goto cancel_injection
;
8239 kvm_x86_ops
->prepare_guest_switch(vcpu
);
8242 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
8243 * IPI are then delayed after guest entry, which ensures that they
8244 * result in virtual interrupt delivery.
8246 local_irq_disable();
8247 vcpu
->mode
= IN_GUEST_MODE
;
8249 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
8252 * 1) We should set ->mode before checking ->requests. Please see
8253 * the comment in kvm_vcpu_exiting_guest_mode().
8255 * 2) For APICv, we should set ->mode before checking PID.ON. This
8256 * pairs with the memory barrier implicit in pi_test_and_set_on
8257 * (see vmx_deliver_posted_interrupt).
8259 * 3) This also orders the write to mode from any reads to the page
8260 * tables done while the VCPU is running. Please see the comment
8261 * in kvm_flush_remote_tlbs.
8263 smp_mb__after_srcu_read_unlock();
8266 * This handles the case where a posted interrupt was
8267 * notified with kvm_vcpu_kick.
8269 if (kvm_lapic_enabled(vcpu
) && vcpu
->arch
.apicv_active
)
8270 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
8272 if (vcpu
->mode
== EXITING_GUEST_MODE
|| kvm_request_pending(vcpu
)
8273 || need_resched() || signal_pending(current
)) {
8274 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
8278 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
8280 goto cancel_injection
;
8283 if (req_immediate_exit
) {
8284 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
8285 kvm_x86_ops
->request_immediate_exit(vcpu
);
8288 trace_kvm_entry(vcpu
->vcpu_id
);
8289 guest_enter_irqoff();
8291 fpregs_assert_state_consistent();
8292 if (test_thread_flag(TIF_NEED_FPU_LOAD
))
8293 switch_fpu_return();
8295 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
8297 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
8298 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
8299 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
8300 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
8301 set_debugreg(vcpu
->arch
.dr6
, 6);
8302 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_RELOAD
;
8305 kvm_x86_ops
->run(vcpu
);
8308 * Do this here before restoring debug registers on the host. And
8309 * since we do this before handling the vmexit, a DR access vmexit
8310 * can (a) read the correct value of the debug registers, (b) set
8311 * KVM_DEBUGREG_WONT_EXIT again.
8313 if (unlikely(vcpu
->arch
.switch_db_regs
& KVM_DEBUGREG_WONT_EXIT
)) {
8314 WARN_ON(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
);
8315 kvm_x86_ops
->sync_dirty_debug_regs(vcpu
);
8316 kvm_update_dr0123(vcpu
);
8317 kvm_update_dr6(vcpu
);
8318 kvm_update_dr7(vcpu
);
8319 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_RELOAD
;
8323 * If the guest has used debug registers, at least dr7
8324 * will be disabled while returning to the host.
8325 * If we don't have active breakpoints in the host, we don't
8326 * care about the messed up debug address registers. But if
8327 * we have some of them active, restore the old state.
8329 if (hw_breakpoint_active())
8330 hw_breakpoint_restore();
8332 vcpu
->arch
.last_guest_tsc
= kvm_read_l1_tsc(vcpu
, rdtsc());
8334 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
8337 kvm_x86_ops
->handle_exit_irqoff(vcpu
, &exit_fastpath
);
8340 * Consume any pending interrupts, including the possible source of
8341 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8342 * An instruction is required after local_irq_enable() to fully unblock
8343 * interrupts on processors that implement an interrupt shadow, the
8344 * stat.exits increment will do nicely.
8346 kvm_before_interrupt(vcpu
);
8349 local_irq_disable();
8350 kvm_after_interrupt(vcpu
);
8352 guest_exit_irqoff();
8353 if (lapic_in_kernel(vcpu
)) {
8354 s64 delta
= vcpu
->arch
.apic
->lapic_timer
.advance_expire_delta
;
8355 if (delta
!= S64_MIN
) {
8356 trace_kvm_wait_lapic_expire(vcpu
->vcpu_id
, delta
);
8357 vcpu
->arch
.apic
->lapic_timer
.advance_expire_delta
= S64_MIN
;
8364 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
8367 * Profile KVM exit RIPs:
8369 if (unlikely(prof_on
== KVM_PROFILING
)) {
8370 unsigned long rip
= kvm_rip_read(vcpu
);
8371 profile_hit(KVM_PROFILING
, (void *)rip
);
8374 if (unlikely(vcpu
->arch
.tsc_always_catchup
))
8375 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
8377 if (vcpu
->arch
.apic_attention
)
8378 kvm_lapic_sync_from_vapic(vcpu
);
8380 vcpu
->arch
.gpa_available
= false;
8381 r
= kvm_x86_ops
->handle_exit(vcpu
, exit_fastpath
);
8385 kvm_x86_ops
->cancel_injection(vcpu
);
8386 if (unlikely(vcpu
->arch
.apic_attention
))
8387 kvm_lapic_sync_from_vapic(vcpu
);
8392 static inline int vcpu_block(struct kvm
*kvm
, struct kvm_vcpu
*vcpu
)
8394 if (!kvm_arch_vcpu_runnable(vcpu
) &&
8395 (!kvm_x86_ops
->pre_block
|| kvm_x86_ops
->pre_block(vcpu
) == 0)) {
8396 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
8397 kvm_vcpu_block(vcpu
);
8398 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
8400 if (kvm_x86_ops
->post_block
)
8401 kvm_x86_ops
->post_block(vcpu
);
8403 if (!kvm_check_request(KVM_REQ_UNHALT
, vcpu
))
8407 kvm_apic_accept_events(vcpu
);
8408 switch(vcpu
->arch
.mp_state
) {
8409 case KVM_MP_STATE_HALTED
:
8410 vcpu
->arch
.pv
.pv_unhalted
= false;
8411 vcpu
->arch
.mp_state
=
8412 KVM_MP_STATE_RUNNABLE
;
8414 case KVM_MP_STATE_RUNNABLE
:
8415 vcpu
->arch
.apf
.halted
= false;
8417 case KVM_MP_STATE_INIT_RECEIVED
:
8426 static inline bool kvm_vcpu_running(struct kvm_vcpu
*vcpu
)
8428 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
)
8429 kvm_x86_ops
->check_nested_events(vcpu
, false);
8431 return (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
8432 !vcpu
->arch
.apf
.halted
);
8435 static int vcpu_run(struct kvm_vcpu
*vcpu
)
8438 struct kvm
*kvm
= vcpu
->kvm
;
8440 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
8441 vcpu
->arch
.l1tf_flush_l1d
= true;
8444 if (kvm_vcpu_running(vcpu
)) {
8445 r
= vcpu_enter_guest(vcpu
);
8447 r
= vcpu_block(kvm
, vcpu
);
8453 kvm_clear_request(KVM_REQ_PENDING_TIMER
, vcpu
);
8454 if (kvm_cpu_has_pending_timer(vcpu
))
8455 kvm_inject_pending_timer_irqs(vcpu
);
8457 if (dm_request_for_irq_injection(vcpu
) &&
8458 kvm_vcpu_ready_for_interrupt_injection(vcpu
)) {
8460 vcpu
->run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
8461 ++vcpu
->stat
.request_irq_exits
;
8465 kvm_check_async_pf_completion(vcpu
);
8467 if (signal_pending(current
)) {
8469 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
8470 ++vcpu
->stat
.signal_exits
;
8473 if (need_resched()) {
8474 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
8476 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
8480 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
8485 static inline int complete_emulated_io(struct kvm_vcpu
*vcpu
)
8489 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
8490 r
= kvm_emulate_instruction(vcpu
, EMULTYPE_NO_DECODE
);
8491 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
8495 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
)
8497 BUG_ON(!vcpu
->arch
.pio
.count
);
8499 return complete_emulated_io(vcpu
);
8503 * Implements the following, as a state machine:
8507 * for each mmio piece in the fragment
8515 * for each mmio piece in the fragment
8520 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
)
8522 struct kvm_run
*run
= vcpu
->run
;
8523 struct kvm_mmio_fragment
*frag
;
8526 BUG_ON(!vcpu
->mmio_needed
);
8528 /* Complete previous fragment */
8529 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_cur_fragment
];
8530 len
= min(8u, frag
->len
);
8531 if (!vcpu
->mmio_is_write
)
8532 memcpy(frag
->data
, run
->mmio
.data
, len
);
8534 if (frag
->len
<= 8) {
8535 /* Switch to the next fragment. */
8537 vcpu
->mmio_cur_fragment
++;
8539 /* Go forward to the next mmio piece. */
8545 if (vcpu
->mmio_cur_fragment
>= vcpu
->mmio_nr_fragments
) {
8546 vcpu
->mmio_needed
= 0;
8548 /* FIXME: return into emulator if single-stepping. */
8549 if (vcpu
->mmio_is_write
)
8551 vcpu
->mmio_read_completed
= 1;
8552 return complete_emulated_io(vcpu
);
8555 run
->exit_reason
= KVM_EXIT_MMIO
;
8556 run
->mmio
.phys_addr
= frag
->gpa
;
8557 if (vcpu
->mmio_is_write
)
8558 memcpy(run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
8559 run
->mmio
.len
= min(8u, frag
->len
);
8560 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
8561 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
8565 static void kvm_save_current_fpu(struct fpu
*fpu
)
8568 * If the target FPU state is not resident in the CPU registers, just
8569 * memcpy() from current, else save CPU state directly to the target.
8571 if (test_thread_flag(TIF_NEED_FPU_LOAD
))
8572 memcpy(&fpu
->state
, ¤t
->thread
.fpu
.state
,
8573 fpu_kernel_xstate_size
);
8575 copy_fpregs_to_fpstate(fpu
);
8578 /* Swap (qemu) user FPU context for the guest FPU context. */
8579 static void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
8583 kvm_save_current_fpu(vcpu
->arch
.user_fpu
);
8585 /* PKRU is separately restored in kvm_x86_ops->run. */
8586 __copy_kernel_to_fpregs(&vcpu
->arch
.guest_fpu
->state
,
8587 ~XFEATURE_MASK_PKRU
);
8589 fpregs_mark_activate();
8595 /* When vcpu_run ends, restore user space FPU context. */
8596 static void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
8600 kvm_save_current_fpu(vcpu
->arch
.guest_fpu
);
8602 copy_kernel_to_fpregs(&vcpu
->arch
.user_fpu
->state
);
8604 fpregs_mark_activate();
8607 ++vcpu
->stat
.fpu_reload
;
8611 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
8616 kvm_sigset_activate(vcpu
);
8617 kvm_load_guest_fpu(vcpu
);
8619 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
8620 if (kvm_run
->immediate_exit
) {
8624 kvm_vcpu_block(vcpu
);
8625 kvm_apic_accept_events(vcpu
);
8626 kvm_clear_request(KVM_REQ_UNHALT
, vcpu
);
8628 if (signal_pending(current
)) {
8630 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
8631 ++vcpu
->stat
.signal_exits
;
8636 if (vcpu
->run
->kvm_valid_regs
& ~KVM_SYNC_X86_VALID_FIELDS
) {
8641 if (vcpu
->run
->kvm_dirty_regs
) {
8642 r
= sync_regs(vcpu
);
8647 /* re-sync apic's tpr */
8648 if (!lapic_in_kernel(vcpu
)) {
8649 if (kvm_set_cr8(vcpu
, kvm_run
->cr8
) != 0) {
8655 if (unlikely(vcpu
->arch
.complete_userspace_io
)) {
8656 int (*cui
)(struct kvm_vcpu
*) = vcpu
->arch
.complete_userspace_io
;
8657 vcpu
->arch
.complete_userspace_io
= NULL
;
8662 WARN_ON(vcpu
->arch
.pio
.count
|| vcpu
->mmio_needed
);
8664 if (kvm_run
->immediate_exit
)
8670 kvm_put_guest_fpu(vcpu
);
8671 if (vcpu
->run
->kvm_valid_regs
)
8673 post_kvm_run_save(vcpu
);
8674 kvm_sigset_deactivate(vcpu
);
8680 static void __get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
8682 if (vcpu
->arch
.emulate_regs_need_sync_to_vcpu
) {
8684 * We are here if userspace calls get_regs() in the middle of
8685 * instruction emulation. Registers state needs to be copied
8686 * back from emulation context to vcpu. Userspace shouldn't do
8687 * that usually, but some bad designed PV devices (vmware
8688 * backdoor interface) need this to work
8690 emulator_writeback_register_cache(&vcpu
->arch
.emulate_ctxt
);
8691 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
8693 regs
->rax
= kvm_rax_read(vcpu
);
8694 regs
->rbx
= kvm_rbx_read(vcpu
);
8695 regs
->rcx
= kvm_rcx_read(vcpu
);
8696 regs
->rdx
= kvm_rdx_read(vcpu
);
8697 regs
->rsi
= kvm_rsi_read(vcpu
);
8698 regs
->rdi
= kvm_rdi_read(vcpu
);
8699 regs
->rsp
= kvm_rsp_read(vcpu
);
8700 regs
->rbp
= kvm_rbp_read(vcpu
);
8701 #ifdef CONFIG_X86_64
8702 regs
->r8
= kvm_r8_read(vcpu
);
8703 regs
->r9
= kvm_r9_read(vcpu
);
8704 regs
->r10
= kvm_r10_read(vcpu
);
8705 regs
->r11
= kvm_r11_read(vcpu
);
8706 regs
->r12
= kvm_r12_read(vcpu
);
8707 regs
->r13
= kvm_r13_read(vcpu
);
8708 regs
->r14
= kvm_r14_read(vcpu
);
8709 regs
->r15
= kvm_r15_read(vcpu
);
8712 regs
->rip
= kvm_rip_read(vcpu
);
8713 regs
->rflags
= kvm_get_rflags(vcpu
);
8716 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
8719 __get_regs(vcpu
, regs
);
8724 static void __set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
8726 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= true;
8727 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
8729 kvm_rax_write(vcpu
, regs
->rax
);
8730 kvm_rbx_write(vcpu
, regs
->rbx
);
8731 kvm_rcx_write(vcpu
, regs
->rcx
);
8732 kvm_rdx_write(vcpu
, regs
->rdx
);
8733 kvm_rsi_write(vcpu
, regs
->rsi
);
8734 kvm_rdi_write(vcpu
, regs
->rdi
);
8735 kvm_rsp_write(vcpu
, regs
->rsp
);
8736 kvm_rbp_write(vcpu
, regs
->rbp
);
8737 #ifdef CONFIG_X86_64
8738 kvm_r8_write(vcpu
, regs
->r8
);
8739 kvm_r9_write(vcpu
, regs
->r9
);
8740 kvm_r10_write(vcpu
, regs
->r10
);
8741 kvm_r11_write(vcpu
, regs
->r11
);
8742 kvm_r12_write(vcpu
, regs
->r12
);
8743 kvm_r13_write(vcpu
, regs
->r13
);
8744 kvm_r14_write(vcpu
, regs
->r14
);
8745 kvm_r15_write(vcpu
, regs
->r15
);
8748 kvm_rip_write(vcpu
, regs
->rip
);
8749 kvm_set_rflags(vcpu
, regs
->rflags
| X86_EFLAGS_FIXED
);
8751 vcpu
->arch
.exception
.pending
= false;
8753 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
8756 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
8759 __set_regs(vcpu
, regs
);
8764 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
8766 struct kvm_segment cs
;
8768 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
8772 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
8774 static void __get_sregs(struct kvm_vcpu
*vcpu
, struct kvm_sregs
*sregs
)
8778 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
8779 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
8780 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
8781 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
8782 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
8783 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
8785 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
8786 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
8788 kvm_x86_ops
->get_idt(vcpu
, &dt
);
8789 sregs
->idt
.limit
= dt
.size
;
8790 sregs
->idt
.base
= dt
.address
;
8791 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
8792 sregs
->gdt
.limit
= dt
.size
;
8793 sregs
->gdt
.base
= dt
.address
;
8795 sregs
->cr0
= kvm_read_cr0(vcpu
);
8796 sregs
->cr2
= vcpu
->arch
.cr2
;
8797 sregs
->cr3
= kvm_read_cr3(vcpu
);
8798 sregs
->cr4
= kvm_read_cr4(vcpu
);
8799 sregs
->cr8
= kvm_get_cr8(vcpu
);
8800 sregs
->efer
= vcpu
->arch
.efer
;
8801 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
8803 memset(sregs
->interrupt_bitmap
, 0, sizeof(sregs
->interrupt_bitmap
));
8805 if (vcpu
->arch
.interrupt
.injected
&& !vcpu
->arch
.interrupt
.soft
)
8806 set_bit(vcpu
->arch
.interrupt
.nr
,
8807 (unsigned long *)sregs
->interrupt_bitmap
);
8810 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
8811 struct kvm_sregs
*sregs
)
8814 __get_sregs(vcpu
, sregs
);
8819 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
8820 struct kvm_mp_state
*mp_state
)
8823 if (kvm_mpx_supported())
8824 kvm_load_guest_fpu(vcpu
);
8826 kvm_apic_accept_events(vcpu
);
8827 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
&&
8828 vcpu
->arch
.pv
.pv_unhalted
)
8829 mp_state
->mp_state
= KVM_MP_STATE_RUNNABLE
;
8831 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
8833 if (kvm_mpx_supported())
8834 kvm_put_guest_fpu(vcpu
);
8839 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
8840 struct kvm_mp_state
*mp_state
)
8846 if (!lapic_in_kernel(vcpu
) &&
8847 mp_state
->mp_state
!= KVM_MP_STATE_RUNNABLE
)
8851 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
8852 * INIT state; latched init should be reported using
8853 * KVM_SET_VCPU_EVENTS, so reject it here.
8855 if ((kvm_vcpu_latch_init(vcpu
) || vcpu
->arch
.smi_pending
) &&
8856 (mp_state
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
||
8857 mp_state
->mp_state
== KVM_MP_STATE_INIT_RECEIVED
))
8860 if (mp_state
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
) {
8861 vcpu
->arch
.mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
8862 set_bit(KVM_APIC_SIPI
, &vcpu
->arch
.apic
->pending_events
);
8864 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
8865 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
8873 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int idt_index
,
8874 int reason
, bool has_error_code
, u32 error_code
)
8876 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
8879 init_emulate_ctxt(vcpu
);
8881 ret
= emulator_task_switch(ctxt
, tss_selector
, idt_index
, reason
,
8882 has_error_code
, error_code
);
8884 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
8885 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
8886 vcpu
->run
->internal
.ndata
= 0;
8890 kvm_rip_write(vcpu
, ctxt
->eip
);
8891 kvm_set_rflags(vcpu
, ctxt
->eflags
);
8892 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
8895 EXPORT_SYMBOL_GPL(kvm_task_switch
);
8897 static int kvm_valid_sregs(struct kvm_vcpu
*vcpu
, struct kvm_sregs
*sregs
)
8899 if ((sregs
->efer
& EFER_LME
) && (sregs
->cr0
& X86_CR0_PG
)) {
8901 * When EFER.LME and CR0.PG are set, the processor is in
8902 * 64-bit mode (though maybe in a 32-bit code segment).
8903 * CR4.PAE and EFER.LMA must be set.
8905 if (!(sregs
->cr4
& X86_CR4_PAE
)
8906 || !(sregs
->efer
& EFER_LMA
))
8910 * Not in 64-bit mode: EFER.LMA is clear and the code
8911 * segment cannot be 64-bit.
8913 if (sregs
->efer
& EFER_LMA
|| sregs
->cs
.l
)
8917 return kvm_valid_cr4(vcpu
, sregs
->cr4
);
8920 static int __set_sregs(struct kvm_vcpu
*vcpu
, struct kvm_sregs
*sregs
)
8922 struct msr_data apic_base_msr
;
8923 int mmu_reset_needed
= 0;
8924 int cpuid_update_needed
= 0;
8925 int pending_vec
, max_bits
, idx
;
8929 if (kvm_valid_sregs(vcpu
, sregs
))
8932 apic_base_msr
.data
= sregs
->apic_base
;
8933 apic_base_msr
.host_initiated
= true;
8934 if (kvm_set_apic_base(vcpu
, &apic_base_msr
))
8937 dt
.size
= sregs
->idt
.limit
;
8938 dt
.address
= sregs
->idt
.base
;
8939 kvm_x86_ops
->set_idt(vcpu
, &dt
);
8940 dt
.size
= sregs
->gdt
.limit
;
8941 dt
.address
= sregs
->gdt
.base
;
8942 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
8944 vcpu
->arch
.cr2
= sregs
->cr2
;
8945 mmu_reset_needed
|= kvm_read_cr3(vcpu
) != sregs
->cr3
;
8946 vcpu
->arch
.cr3
= sregs
->cr3
;
8947 kvm_register_mark_available(vcpu
, VCPU_EXREG_CR3
);
8949 kvm_set_cr8(vcpu
, sregs
->cr8
);
8951 mmu_reset_needed
|= vcpu
->arch
.efer
!= sregs
->efer
;
8952 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
8954 mmu_reset_needed
|= kvm_read_cr0(vcpu
) != sregs
->cr0
;
8955 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
8956 vcpu
->arch
.cr0
= sregs
->cr0
;
8958 mmu_reset_needed
|= kvm_read_cr4(vcpu
) != sregs
->cr4
;
8959 cpuid_update_needed
|= ((kvm_read_cr4(vcpu
) ^ sregs
->cr4
) &
8960 (X86_CR4_OSXSAVE
| X86_CR4_PKE
));
8961 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
8962 if (cpuid_update_needed
)
8963 kvm_update_cpuid(vcpu
);
8965 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
8966 if (is_pae_paging(vcpu
)) {
8967 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
8968 mmu_reset_needed
= 1;
8970 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
8972 if (mmu_reset_needed
)
8973 kvm_mmu_reset_context(vcpu
);
8975 max_bits
= KVM_NR_INTERRUPTS
;
8976 pending_vec
= find_first_bit(
8977 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
8978 if (pending_vec
< max_bits
) {
8979 kvm_queue_interrupt(vcpu
, pending_vec
, false);
8980 pr_debug("Set back pending irq %d\n", pending_vec
);
8983 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
8984 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
8985 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
8986 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
8987 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
8988 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
8990 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
8991 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
8993 update_cr8_intercept(vcpu
);
8995 /* Older userspace won't unhalt the vcpu on reset. */
8996 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
8997 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
8999 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
9001 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
9008 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
9009 struct kvm_sregs
*sregs
)
9014 ret
= __set_sregs(vcpu
, sregs
);
9019 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
9020 struct kvm_guest_debug
*dbg
)
9022 unsigned long rflags
;
9027 if (dbg
->control
& (KVM_GUESTDBG_INJECT_DB
| KVM_GUESTDBG_INJECT_BP
)) {
9029 if (vcpu
->arch
.exception
.pending
)
9031 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
9032 kvm_queue_exception(vcpu
, DB_VECTOR
);
9034 kvm_queue_exception(vcpu
, BP_VECTOR
);
9038 * Read rflags as long as potentially injected trace flags are still
9041 rflags
= kvm_get_rflags(vcpu
);
9043 vcpu
->guest_debug
= dbg
->control
;
9044 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
))
9045 vcpu
->guest_debug
= 0;
9047 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
9048 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
9049 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
9050 vcpu
->arch
.guest_debug_dr7
= dbg
->arch
.debugreg
[7];
9052 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
9053 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
9055 kvm_update_dr7(vcpu
);
9057 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
9058 vcpu
->arch
.singlestep_rip
= kvm_rip_read(vcpu
) +
9059 get_segment_base(vcpu
, VCPU_SREG_CS
);
9062 * Trigger an rflags update that will inject or remove the trace
9065 kvm_set_rflags(vcpu
, rflags
);
9067 kvm_x86_ops
->update_bp_intercept(vcpu
);
9077 * Translate a guest virtual address to a guest physical address.
9079 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
9080 struct kvm_translation
*tr
)
9082 unsigned long vaddr
= tr
->linear_address
;
9088 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
9089 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, vaddr
, NULL
);
9090 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
9091 tr
->physical_address
= gpa
;
9092 tr
->valid
= gpa
!= UNMAPPED_GVA
;
9100 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
9102 struct fxregs_state
*fxsave
;
9106 fxsave
= &vcpu
->arch
.guest_fpu
->state
.fxsave
;
9107 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
9108 fpu
->fcw
= fxsave
->cwd
;
9109 fpu
->fsw
= fxsave
->swd
;
9110 fpu
->ftwx
= fxsave
->twd
;
9111 fpu
->last_opcode
= fxsave
->fop
;
9112 fpu
->last_ip
= fxsave
->rip
;
9113 fpu
->last_dp
= fxsave
->rdp
;
9114 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof(fxsave
->xmm_space
));
9120 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
9122 struct fxregs_state
*fxsave
;
9126 fxsave
= &vcpu
->arch
.guest_fpu
->state
.fxsave
;
9128 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
9129 fxsave
->cwd
= fpu
->fcw
;
9130 fxsave
->swd
= fpu
->fsw
;
9131 fxsave
->twd
= fpu
->ftwx
;
9132 fxsave
->fop
= fpu
->last_opcode
;
9133 fxsave
->rip
= fpu
->last_ip
;
9134 fxsave
->rdp
= fpu
->last_dp
;
9135 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof(fxsave
->xmm_space
));
9141 static void store_regs(struct kvm_vcpu
*vcpu
)
9143 BUILD_BUG_ON(sizeof(struct kvm_sync_regs
) > SYNC_REGS_SIZE_BYTES
);
9145 if (vcpu
->run
->kvm_valid_regs
& KVM_SYNC_X86_REGS
)
9146 __get_regs(vcpu
, &vcpu
->run
->s
.regs
.regs
);
9148 if (vcpu
->run
->kvm_valid_regs
& KVM_SYNC_X86_SREGS
)
9149 __get_sregs(vcpu
, &vcpu
->run
->s
.regs
.sregs
);
9151 if (vcpu
->run
->kvm_valid_regs
& KVM_SYNC_X86_EVENTS
)
9152 kvm_vcpu_ioctl_x86_get_vcpu_events(
9153 vcpu
, &vcpu
->run
->s
.regs
.events
);
9156 static int sync_regs(struct kvm_vcpu
*vcpu
)
9158 if (vcpu
->run
->kvm_dirty_regs
& ~KVM_SYNC_X86_VALID_FIELDS
)
9161 if (vcpu
->run
->kvm_dirty_regs
& KVM_SYNC_X86_REGS
) {
9162 __set_regs(vcpu
, &vcpu
->run
->s
.regs
.regs
);
9163 vcpu
->run
->kvm_dirty_regs
&= ~KVM_SYNC_X86_REGS
;
9165 if (vcpu
->run
->kvm_dirty_regs
& KVM_SYNC_X86_SREGS
) {
9166 if (__set_sregs(vcpu
, &vcpu
->run
->s
.regs
.sregs
))
9168 vcpu
->run
->kvm_dirty_regs
&= ~KVM_SYNC_X86_SREGS
;
9170 if (vcpu
->run
->kvm_dirty_regs
& KVM_SYNC_X86_EVENTS
) {
9171 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9172 vcpu
, &vcpu
->run
->s
.regs
.events
))
9174 vcpu
->run
->kvm_dirty_regs
&= ~KVM_SYNC_X86_EVENTS
;
9180 static void fx_init(struct kvm_vcpu
*vcpu
)
9182 fpstate_init(&vcpu
->arch
.guest_fpu
->state
);
9183 if (boot_cpu_has(X86_FEATURE_XSAVES
))
9184 vcpu
->arch
.guest_fpu
->state
.xsave
.header
.xcomp_bv
=
9185 host_xcr0
| XSTATE_COMPACTION_ENABLED
;
9188 * Ensure guest xcr0 is valid for loading
9190 vcpu
->arch
.xcr0
= XFEATURE_MASK_FP
;
9192 vcpu
->arch
.cr0
|= X86_CR0_ET
;
9195 int kvm_arch_vcpu_precreate(struct kvm
*kvm
, unsigned int id
)
9197 if (kvm_check_tsc_unstable() && atomic_read(&kvm
->online_vcpus
) != 0)
9198 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9199 "guest TSC will not be reliable\n");
9204 int kvm_arch_vcpu_create(struct kvm_vcpu
*vcpu
)
9209 vcpu
->arch
.emulate_ctxt
.ops
= &emulate_ops
;
9210 if (!irqchip_in_kernel(vcpu
->kvm
) || kvm_vcpu_is_reset_bsp(vcpu
))
9211 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
9213 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
9215 kvm_set_tsc_khz(vcpu
, max_tsc_khz
);
9217 r
= kvm_mmu_create(vcpu
);
9221 if (irqchip_in_kernel(vcpu
->kvm
)) {
9222 vcpu
->arch
.apicv_active
= kvm_x86_ops
->get_enable_apicv(vcpu
->kvm
);
9223 r
= kvm_create_lapic(vcpu
, lapic_timer_advance_ns
);
9225 goto fail_mmu_destroy
;
9227 static_key_slow_inc(&kvm_no_apic_vcpu
);
9231 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
9233 goto fail_free_lapic
;
9234 vcpu
->arch
.pio_data
= page_address(page
);
9236 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
9237 GFP_KERNEL_ACCOUNT
);
9238 if (!vcpu
->arch
.mce_banks
)
9239 goto fail_free_pio_data
;
9240 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
9242 if (!zalloc_cpumask_var(&vcpu
->arch
.wbinvd_dirty_mask
,
9243 GFP_KERNEL_ACCOUNT
))
9244 goto fail_free_mce_banks
;
9246 vcpu
->arch
.user_fpu
= kmem_cache_zalloc(x86_fpu_cache
,
9247 GFP_KERNEL_ACCOUNT
);
9248 if (!vcpu
->arch
.user_fpu
) {
9249 pr_err("kvm: failed to allocate userspace's fpu\n");
9250 goto free_wbinvd_dirty_mask
;
9253 vcpu
->arch
.guest_fpu
= kmem_cache_zalloc(x86_fpu_cache
,
9254 GFP_KERNEL_ACCOUNT
);
9255 if (!vcpu
->arch
.guest_fpu
) {
9256 pr_err("kvm: failed to allocate vcpu's fpu\n");
9261 vcpu
->arch
.guest_xstate_size
= XSAVE_HDR_SIZE
+ XSAVE_HDR_OFFSET
;
9263 vcpu
->arch
.maxphyaddr
= cpuid_query_maxphyaddr(vcpu
);
9265 vcpu
->arch
.pat
= MSR_IA32_CR_PAT_DEFAULT
;
9267 kvm_async_pf_hash_reset(vcpu
);
9270 vcpu
->arch
.pending_external_vector
= -1;
9271 vcpu
->arch
.preempted_in_kernel
= false;
9273 kvm_hv_vcpu_init(vcpu
);
9275 r
= kvm_x86_ops
->vcpu_create(vcpu
);
9277 goto free_guest_fpu
;
9279 vcpu
->arch
.arch_capabilities
= kvm_get_arch_capabilities();
9280 vcpu
->arch
.msr_platform_info
= MSR_PLATFORM_INFO_CPUID_FAULT
;
9281 kvm_vcpu_mtrr_init(vcpu
);
9283 kvm_vcpu_reset(vcpu
, false);
9284 kvm_init_mmu(vcpu
, false);
9289 kmem_cache_free(x86_fpu_cache
, vcpu
->arch
.guest_fpu
);
9291 kmem_cache_free(x86_fpu_cache
, vcpu
->arch
.user_fpu
);
9292 free_wbinvd_dirty_mask
:
9293 free_cpumask_var(vcpu
->arch
.wbinvd_dirty_mask
);
9294 fail_free_mce_banks
:
9295 kfree(vcpu
->arch
.mce_banks
);
9297 free_page((unsigned long)vcpu
->arch
.pio_data
);
9299 kvm_free_lapic(vcpu
);
9301 kvm_mmu_destroy(vcpu
);
9305 void kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
9307 struct msr_data msr
;
9308 struct kvm
*kvm
= vcpu
->kvm
;
9310 kvm_hv_vcpu_postcreate(vcpu
);
9312 if (mutex_lock_killable(&vcpu
->mutex
))
9316 msr
.index
= MSR_IA32_TSC
;
9317 msr
.host_initiated
= true;
9318 kvm_write_tsc(vcpu
, &msr
);
9321 /* poll control enabled by default */
9322 vcpu
->arch
.msr_kvm_poll_control
= 1;
9324 mutex_unlock(&vcpu
->mutex
);
9326 if (!kvmclock_periodic_sync
)
9329 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
9330 KVMCLOCK_SYNC_PERIOD
);
9333 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
9335 struct gfn_to_pfn_cache
*cache
= &vcpu
->arch
.st
.cache
;
9338 kvm_release_pfn(cache
->pfn
, cache
->dirty
, cache
);
9340 kvmclock_reset(vcpu
);
9342 kvm_x86_ops
->vcpu_free(vcpu
);
9344 free_cpumask_var(vcpu
->arch
.wbinvd_dirty_mask
);
9345 kmem_cache_free(x86_fpu_cache
, vcpu
->arch
.user_fpu
);
9346 kmem_cache_free(x86_fpu_cache
, vcpu
->arch
.guest_fpu
);
9348 kvm_hv_vcpu_uninit(vcpu
);
9349 kvm_pmu_destroy(vcpu
);
9350 kfree(vcpu
->arch
.mce_banks
);
9351 kvm_free_lapic(vcpu
);
9352 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
9353 kvm_mmu_destroy(vcpu
);
9354 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
9355 free_page((unsigned long)vcpu
->arch
.pio_data
);
9356 if (!lapic_in_kernel(vcpu
))
9357 static_key_slow_dec(&kvm_no_apic_vcpu
);
9360 void kvm_vcpu_reset(struct kvm_vcpu
*vcpu
, bool init_event
)
9362 kvm_lapic_reset(vcpu
, init_event
);
9364 vcpu
->arch
.hflags
= 0;
9366 vcpu
->arch
.smi_pending
= 0;
9367 vcpu
->arch
.smi_count
= 0;
9368 atomic_set(&vcpu
->arch
.nmi_queued
, 0);
9369 vcpu
->arch
.nmi_pending
= 0;
9370 vcpu
->arch
.nmi_injected
= false;
9371 kvm_clear_interrupt_queue(vcpu
);
9372 kvm_clear_exception_queue(vcpu
);
9374 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
9375 kvm_update_dr0123(vcpu
);
9376 vcpu
->arch
.dr6
= DR6_INIT
;
9377 kvm_update_dr6(vcpu
);
9378 vcpu
->arch
.dr7
= DR7_FIXED_1
;
9379 kvm_update_dr7(vcpu
);
9383 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
9384 vcpu
->arch
.apf
.msr_val
= 0;
9385 vcpu
->arch
.st
.msr_val
= 0;
9387 kvmclock_reset(vcpu
);
9389 kvm_clear_async_pf_completion_queue(vcpu
);
9390 kvm_async_pf_hash_reset(vcpu
);
9391 vcpu
->arch
.apf
.halted
= false;
9393 if (kvm_mpx_supported()) {
9394 void *mpx_state_buffer
;
9397 * To avoid have the INIT path from kvm_apic_has_events() that be
9398 * called with loaded FPU and does not let userspace fix the state.
9401 kvm_put_guest_fpu(vcpu
);
9402 mpx_state_buffer
= get_xsave_addr(&vcpu
->arch
.guest_fpu
->state
.xsave
,
9404 if (mpx_state_buffer
)
9405 memset(mpx_state_buffer
, 0, sizeof(struct mpx_bndreg_state
));
9406 mpx_state_buffer
= get_xsave_addr(&vcpu
->arch
.guest_fpu
->state
.xsave
,
9408 if (mpx_state_buffer
)
9409 memset(mpx_state_buffer
, 0, sizeof(struct mpx_bndcsr
));
9411 kvm_load_guest_fpu(vcpu
);
9415 kvm_pmu_reset(vcpu
);
9416 vcpu
->arch
.smbase
= 0x30000;
9418 vcpu
->arch
.msr_misc_features_enables
= 0;
9420 vcpu
->arch
.xcr0
= XFEATURE_MASK_FP
;
9423 memset(vcpu
->arch
.regs
, 0, sizeof(vcpu
->arch
.regs
));
9424 vcpu
->arch
.regs_avail
= ~0;
9425 vcpu
->arch
.regs_dirty
= ~0;
9427 vcpu
->arch
.ia32_xss
= 0;
9429 kvm_x86_ops
->vcpu_reset(vcpu
, init_event
);
9432 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu
*vcpu
, u8 vector
)
9434 struct kvm_segment cs
;
9436 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
9437 cs
.selector
= vector
<< 8;
9438 cs
.base
= vector
<< 12;
9439 kvm_set_segment(vcpu
, &cs
, VCPU_SREG_CS
);
9440 kvm_rip_write(vcpu
, 0);
9443 int kvm_arch_hardware_enable(void)
9446 struct kvm_vcpu
*vcpu
;
9451 bool stable
, backwards_tsc
= false;
9453 kvm_shared_msr_cpu_online();
9454 ret
= kvm_x86_ops
->hardware_enable();
9458 local_tsc
= rdtsc();
9459 stable
= !kvm_check_tsc_unstable();
9460 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
9461 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
9462 if (!stable
&& vcpu
->cpu
== smp_processor_id())
9463 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
9464 if (stable
&& vcpu
->arch
.last_host_tsc
> local_tsc
) {
9465 backwards_tsc
= true;
9466 if (vcpu
->arch
.last_host_tsc
> max_tsc
)
9467 max_tsc
= vcpu
->arch
.last_host_tsc
;
9473 * Sometimes, even reliable TSCs go backwards. This happens on
9474 * platforms that reset TSC during suspend or hibernate actions, but
9475 * maintain synchronization. We must compensate. Fortunately, we can
9476 * detect that condition here, which happens early in CPU bringup,
9477 * before any KVM threads can be running. Unfortunately, we can't
9478 * bring the TSCs fully up to date with real time, as we aren't yet far
9479 * enough into CPU bringup that we know how much real time has actually
9480 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9481 * variables that haven't been updated yet.
9483 * So we simply find the maximum observed TSC above, then record the
9484 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
9485 * the adjustment will be applied. Note that we accumulate
9486 * adjustments, in case multiple suspend cycles happen before some VCPU
9487 * gets a chance to run again. In the event that no KVM threads get a
9488 * chance to run, we will miss the entire elapsed period, as we'll have
9489 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9490 * loose cycle time. This isn't too big a deal, since the loss will be
9491 * uniform across all VCPUs (not to mention the scenario is extremely
9492 * unlikely). It is possible that a second hibernate recovery happens
9493 * much faster than a first, causing the observed TSC here to be
9494 * smaller; this would require additional padding adjustment, which is
9495 * why we set last_host_tsc to the local tsc observed here.
9497 * N.B. - this code below runs only on platforms with reliable TSC,
9498 * as that is the only way backwards_tsc is set above. Also note
9499 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9500 * have the same delta_cyc adjustment applied if backwards_tsc
9501 * is detected. Note further, this adjustment is only done once,
9502 * as we reset last_host_tsc on all VCPUs to stop this from being
9503 * called multiple times (one for each physical CPU bringup).
9505 * Platforms with unreliable TSCs don't have to deal with this, they
9506 * will be compensated by the logic in vcpu_load, which sets the TSC to
9507 * catchup mode. This will catchup all VCPUs to real time, but cannot
9508 * guarantee that they stay in perfect synchronization.
9510 if (backwards_tsc
) {
9511 u64 delta_cyc
= max_tsc
- local_tsc
;
9512 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
9513 kvm
->arch
.backwards_tsc_observed
= true;
9514 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
9515 vcpu
->arch
.tsc_offset_adjustment
+= delta_cyc
;
9516 vcpu
->arch
.last_host_tsc
= local_tsc
;
9517 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
9521 * We have to disable TSC offset matching.. if you were
9522 * booting a VM while issuing an S4 host suspend....
9523 * you may have some problem. Solving this issue is
9524 * left as an exercise to the reader.
9526 kvm
->arch
.last_tsc_nsec
= 0;
9527 kvm
->arch
.last_tsc_write
= 0;
9534 void kvm_arch_hardware_disable(void)
9536 kvm_x86_ops
->hardware_disable();
9537 drop_user_return_notifiers();
9540 int kvm_arch_hardware_setup(void)
9544 r
= kvm_x86_ops
->hardware_setup();
9548 cr4_reserved_bits
= kvm_host_cr4_reserved_bits(&boot_cpu_data
);
9550 if (kvm_has_tsc_control
) {
9552 * Make sure the user can only configure tsc_khz values that
9553 * fit into a signed integer.
9554 * A min value is not calculated because it will always
9555 * be 1 on all machines.
9557 u64 max
= min(0x7fffffffULL
,
9558 __scale_tsc(kvm_max_tsc_scaling_ratio
, tsc_khz
));
9559 kvm_max_guest_tsc_khz
= max
;
9561 kvm_default_tsc_scaling_ratio
= 1ULL << kvm_tsc_scaling_ratio_frac_bits
;
9564 if (boot_cpu_has(X86_FEATURE_XSAVES
))
9565 rdmsrl(MSR_IA32_XSS
, host_xss
);
9567 kvm_init_msr_list();
9571 void kvm_arch_hardware_unsetup(void)
9573 kvm_x86_ops
->hardware_unsetup();
9576 int kvm_arch_check_processor_compat(void)
9578 struct cpuinfo_x86
*c
= &cpu_data(smp_processor_id());
9580 WARN_ON(!irqs_disabled());
9582 if (kvm_host_cr4_reserved_bits(c
) != cr4_reserved_bits
)
9585 return kvm_x86_ops
->check_processor_compatibility();
9588 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu
*vcpu
)
9590 return vcpu
->kvm
->arch
.bsp_vcpu_id
== vcpu
->vcpu_id
;
9592 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp
);
9594 bool kvm_vcpu_is_bsp(struct kvm_vcpu
*vcpu
)
9596 return (vcpu
->arch
.apic_base
& MSR_IA32_APICBASE_BSP
) != 0;
9599 struct static_key kvm_no_apic_vcpu __read_mostly
;
9600 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu
);
9602 void kvm_arch_sched_in(struct kvm_vcpu
*vcpu
, int cpu
)
9604 struct kvm_pmu
*pmu
= vcpu_to_pmu(vcpu
);
9606 vcpu
->arch
.l1tf_flush_l1d
= true;
9607 if (pmu
->version
&& unlikely(pmu
->event_count
)) {
9608 pmu
->need_cleanup
= true;
9609 kvm_make_request(KVM_REQ_PMU
, vcpu
);
9611 kvm_x86_ops
->sched_in(vcpu
, cpu
);
9614 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
9619 INIT_HLIST_HEAD(&kvm
->arch
.mask_notifier_list
);
9620 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
9621 INIT_LIST_HEAD(&kvm
->arch
.zapped_obsolete_pages
);
9622 INIT_LIST_HEAD(&kvm
->arch
.lpage_disallowed_mmu_pages
);
9623 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
9624 atomic_set(&kvm
->arch
.noncoherent_dma_count
, 0);
9626 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9627 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
9628 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9629 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID
,
9630 &kvm
->arch
.irq_sources_bitmap
);
9632 raw_spin_lock_init(&kvm
->arch
.tsc_write_lock
);
9633 mutex_init(&kvm
->arch
.apic_map_lock
);
9634 spin_lock_init(&kvm
->arch
.pvclock_gtod_sync_lock
);
9636 kvm
->arch
.kvmclock_offset
= -ktime_get_boottime_ns();
9637 pvclock_update_vm_gtod_copy(kvm
);
9639 kvm
->arch
.guest_can_read_msr_platform_info
= true;
9641 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_update_work
, kvmclock_update_fn
);
9642 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_sync_work
, kvmclock_sync_fn
);
9644 kvm_hv_init_vm(kvm
);
9645 kvm_page_track_init(kvm
);
9646 kvm_mmu_init_vm(kvm
);
9648 return kvm_x86_ops
->vm_init(kvm
);
9651 int kvm_arch_post_init_vm(struct kvm
*kvm
)
9653 return kvm_mmu_post_init_vm(kvm
);
9656 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
9659 kvm_mmu_unload(vcpu
);
9663 static void kvm_free_vcpus(struct kvm
*kvm
)
9666 struct kvm_vcpu
*vcpu
;
9669 * Unpin any mmu pages first.
9671 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
9672 kvm_clear_async_pf_completion_queue(vcpu
);
9673 kvm_unload_vcpu_mmu(vcpu
);
9675 kvm_for_each_vcpu(i
, vcpu
, kvm
)
9676 kvm_vcpu_destroy(vcpu
);
9678 mutex_lock(&kvm
->lock
);
9679 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
9680 kvm
->vcpus
[i
] = NULL
;
9682 atomic_set(&kvm
->online_vcpus
, 0);
9683 mutex_unlock(&kvm
->lock
);
9686 void kvm_arch_sync_events(struct kvm
*kvm
)
9688 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_sync_work
);
9689 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_update_work
);
9693 int __x86_set_memory_region(struct kvm
*kvm
, int id
, gpa_t gpa
, u32 size
)
9697 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
9698 struct kvm_memory_slot
*slot
, old
;
9700 /* Called with kvm->slots_lock held. */
9701 if (WARN_ON(id
>= KVM_MEM_SLOTS_NUM
))
9704 slot
= id_to_memslot(slots
, id
);
9710 * MAP_SHARED to prevent internal slot pages from being moved
9713 hva
= vm_mmap(NULL
, 0, size
, PROT_READ
| PROT_WRITE
,
9714 MAP_SHARED
| MAP_ANONYMOUS
, 0);
9715 if (IS_ERR((void *)hva
))
9716 return PTR_ERR((void *)hva
);
9725 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
9726 struct kvm_userspace_memory_region m
;
9728 m
.slot
= id
| (i
<< 16);
9730 m
.guest_phys_addr
= gpa
;
9731 m
.userspace_addr
= hva
;
9732 m
.memory_size
= size
;
9733 r
= __kvm_set_memory_region(kvm
, &m
);
9739 vm_munmap(old
.userspace_addr
, old
.npages
* PAGE_SIZE
);
9743 EXPORT_SYMBOL_GPL(__x86_set_memory_region
);
9745 void kvm_arch_pre_destroy_vm(struct kvm
*kvm
)
9747 kvm_mmu_pre_destroy_vm(kvm
);
9750 void kvm_arch_destroy_vm(struct kvm
*kvm
)
9752 if (current
->mm
== kvm
->mm
) {
9754 * Free memory regions allocated on behalf of userspace,
9755 * unless the the memory map has changed due to process exit
9758 mutex_lock(&kvm
->slots_lock
);
9759 __x86_set_memory_region(kvm
, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
,
9761 __x86_set_memory_region(kvm
, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
,
9763 __x86_set_memory_region(kvm
, TSS_PRIVATE_MEMSLOT
, 0, 0);
9764 mutex_unlock(&kvm
->slots_lock
);
9766 if (kvm_x86_ops
->vm_destroy
)
9767 kvm_x86_ops
->vm_destroy(kvm
);
9768 kvm_pic_destroy(kvm
);
9769 kvm_ioapic_destroy(kvm
);
9770 kvm_free_vcpus(kvm
);
9771 kvfree(rcu_dereference_check(kvm
->arch
.apic_map
, 1));
9772 kfree(srcu_dereference_check(kvm
->arch
.pmu_event_filter
, &kvm
->srcu
, 1));
9773 kvm_mmu_uninit_vm(kvm
);
9774 kvm_page_track_cleanup(kvm
);
9775 kvm_hv_destroy_vm(kvm
);
9778 void kvm_arch_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
9779 struct kvm_memory_slot
*dont
)
9783 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
9784 if (!dont
|| free
->arch
.rmap
[i
] != dont
->arch
.rmap
[i
]) {
9785 kvfree(free
->arch
.rmap
[i
]);
9786 free
->arch
.rmap
[i
] = NULL
;
9791 if (!dont
|| free
->arch
.lpage_info
[i
- 1] !=
9792 dont
->arch
.lpage_info
[i
- 1]) {
9793 kvfree(free
->arch
.lpage_info
[i
- 1]);
9794 free
->arch
.lpage_info
[i
- 1] = NULL
;
9798 kvm_page_track_free_memslot(free
, dont
);
9801 int kvm_arch_create_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*slot
,
9802 unsigned long npages
)
9806 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
9807 struct kvm_lpage_info
*linfo
;
9812 lpages
= gfn_to_index(slot
->base_gfn
+ npages
- 1,
9813 slot
->base_gfn
, level
) + 1;
9815 slot
->arch
.rmap
[i
] =
9816 kvcalloc(lpages
, sizeof(*slot
->arch
.rmap
[i
]),
9817 GFP_KERNEL_ACCOUNT
);
9818 if (!slot
->arch
.rmap
[i
])
9823 linfo
= kvcalloc(lpages
, sizeof(*linfo
), GFP_KERNEL_ACCOUNT
);
9827 slot
->arch
.lpage_info
[i
- 1] = linfo
;
9829 if (slot
->base_gfn
& (KVM_PAGES_PER_HPAGE(level
) - 1))
9830 linfo
[0].disallow_lpage
= 1;
9831 if ((slot
->base_gfn
+ npages
) & (KVM_PAGES_PER_HPAGE(level
) - 1))
9832 linfo
[lpages
- 1].disallow_lpage
= 1;
9833 ugfn
= slot
->userspace_addr
>> PAGE_SHIFT
;
9835 * If the gfn and userspace address are not aligned wrt each
9836 * other, or if explicitly asked to, disable large page
9837 * support for this slot
9839 if ((slot
->base_gfn
^ ugfn
) & (KVM_PAGES_PER_HPAGE(level
) - 1) ||
9840 !kvm_largepages_enabled()) {
9843 for (j
= 0; j
< lpages
; ++j
)
9844 linfo
[j
].disallow_lpage
= 1;
9848 if (kvm_page_track_create_memslot(slot
, npages
))
9854 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
9855 kvfree(slot
->arch
.rmap
[i
]);
9856 slot
->arch
.rmap
[i
] = NULL
;
9860 kvfree(slot
->arch
.lpage_info
[i
- 1]);
9861 slot
->arch
.lpage_info
[i
- 1] = NULL
;
9866 void kvm_arch_memslots_updated(struct kvm
*kvm
, u64 gen
)
9868 struct kvm_vcpu
*vcpu
;
9872 * memslots->generation has been incremented.
9873 * mmio generation may have reached its maximum value.
9875 kvm_mmu_invalidate_mmio_sptes(kvm
, gen
);
9877 /* Force re-initialization of steal_time cache */
9878 kvm_for_each_vcpu(i
, vcpu
, kvm
)
9879 kvm_vcpu_kick(vcpu
);
9882 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
9883 struct kvm_memory_slot
*memslot
,
9884 const struct kvm_userspace_memory_region
*mem
,
9885 enum kvm_mr_change change
)
9890 static void kvm_mmu_slot_apply_flags(struct kvm
*kvm
,
9891 struct kvm_memory_slot
*new)
9893 /* Still write protect RO slot */
9894 if (new->flags
& KVM_MEM_READONLY
) {
9895 kvm_mmu_slot_remove_write_access(kvm
, new);
9900 * Call kvm_x86_ops dirty logging hooks when they are valid.
9902 * kvm_x86_ops->slot_disable_log_dirty is called when:
9904 * - KVM_MR_CREATE with dirty logging is disabled
9905 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9907 * The reason is, in case of PML, we need to set D-bit for any slots
9908 * with dirty logging disabled in order to eliminate unnecessary GPA
9909 * logging in PML buffer (and potential PML buffer full VMEXIT). This
9910 * guarantees leaving PML enabled during guest's lifetime won't have
9911 * any additional overhead from PML when guest is running with dirty
9912 * logging disabled for memory slots.
9914 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9915 * to dirty logging mode.
9917 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9919 * In case of write protect:
9921 * Write protect all pages for dirty logging.
9923 * All the sptes including the large sptes which point to this
9924 * slot are set to readonly. We can not create any new large
9925 * spte on this slot until the end of the logging.
9927 * See the comments in fast_page_fault().
9929 if (new->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
9930 if (kvm_x86_ops
->slot_enable_log_dirty
)
9931 kvm_x86_ops
->slot_enable_log_dirty(kvm
, new);
9933 kvm_mmu_slot_remove_write_access(kvm
, new);
9935 if (kvm_x86_ops
->slot_disable_log_dirty
)
9936 kvm_x86_ops
->slot_disable_log_dirty(kvm
, new);
9940 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
9941 const struct kvm_userspace_memory_region
*mem
,
9942 const struct kvm_memory_slot
*old
,
9943 const struct kvm_memory_slot
*new,
9944 enum kvm_mr_change change
)
9946 if (!kvm
->arch
.n_requested_mmu_pages
)
9947 kvm_mmu_change_mmu_pages(kvm
,
9948 kvm_mmu_calculate_default_mmu_pages(kvm
));
9951 * Dirty logging tracks sptes in 4k granularity, meaning that large
9952 * sptes have to be split. If live migration is successful, the guest
9953 * in the source machine will be destroyed and large sptes will be
9954 * created in the destination. However, if the guest continues to run
9955 * in the source machine (for example if live migration fails), small
9956 * sptes will remain around and cause bad performance.
9958 * Scan sptes if dirty logging has been stopped, dropping those
9959 * which can be collapsed into a single large-page spte. Later
9960 * page faults will create the large-page sptes.
9962 * There is no need to do this in any of the following cases:
9963 * CREATE: No dirty mappings will already exist.
9964 * MOVE/DELETE: The old mappings will already have been cleaned up by
9965 * kvm_arch_flush_shadow_memslot()
9967 if (change
== KVM_MR_FLAGS_ONLY
&&
9968 (old
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) &&
9969 !(new->flags
& KVM_MEM_LOG_DIRTY_PAGES
))
9970 kvm_mmu_zap_collapsible_sptes(kvm
, new);
9973 * Set up write protection and/or dirty logging for the new slot.
9975 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9976 * been zapped so no dirty logging staff is needed for old slot. For
9977 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9978 * new and it's also covered when dealing with the new slot.
9980 * FIXME: const-ify all uses of struct kvm_memory_slot.
9982 if (change
!= KVM_MR_DELETE
)
9983 kvm_mmu_slot_apply_flags(kvm
, (struct kvm_memory_slot
*) new);
9986 void kvm_arch_flush_shadow_all(struct kvm
*kvm
)
9988 kvm_mmu_zap_all(kvm
);
9991 void kvm_arch_flush_shadow_memslot(struct kvm
*kvm
,
9992 struct kvm_memory_slot
*slot
)
9994 kvm_page_track_flush_slot(kvm
, slot
);
9997 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu
*vcpu
)
9999 return (is_guest_mode(vcpu
) &&
10000 kvm_x86_ops
->guest_apic_has_interrupt
&&
10001 kvm_x86_ops
->guest_apic_has_interrupt(vcpu
));
10004 static inline bool kvm_vcpu_has_events(struct kvm_vcpu
*vcpu
)
10006 if (!list_empty_careful(&vcpu
->async_pf
.done
))
10009 if (kvm_apic_has_events(vcpu
))
10012 if (vcpu
->arch
.pv
.pv_unhalted
)
10015 if (vcpu
->arch
.exception
.pending
)
10018 if (kvm_test_request(KVM_REQ_NMI
, vcpu
) ||
10019 (vcpu
->arch
.nmi_pending
&&
10020 kvm_x86_ops
->nmi_allowed(vcpu
)))
10023 if (kvm_test_request(KVM_REQ_SMI
, vcpu
) ||
10024 (vcpu
->arch
.smi_pending
&& !is_smm(vcpu
)))
10027 if (kvm_arch_interrupt_allowed(vcpu
) &&
10028 (kvm_cpu_has_interrupt(vcpu
) ||
10029 kvm_guest_apic_has_interrupt(vcpu
)))
10032 if (kvm_hv_has_stimer_pending(vcpu
))
10038 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
10040 return kvm_vcpu_running(vcpu
) || kvm_vcpu_has_events(vcpu
);
10043 bool kvm_arch_dy_runnable(struct kvm_vcpu
*vcpu
)
10045 if (READ_ONCE(vcpu
->arch
.pv
.pv_unhalted
))
10048 if (kvm_test_request(KVM_REQ_NMI
, vcpu
) ||
10049 kvm_test_request(KVM_REQ_SMI
, vcpu
) ||
10050 kvm_test_request(KVM_REQ_EVENT
, vcpu
))
10053 if (vcpu
->arch
.apicv_active
&& kvm_x86_ops
->dy_apicv_has_pending_interrupt(vcpu
))
10059 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu
*vcpu
)
10061 return vcpu
->arch
.preempted_in_kernel
;
10064 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
10066 return kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
;
10069 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
10071 return kvm_x86_ops
->interrupt_allowed(vcpu
);
10074 unsigned long kvm_get_linear_rip(struct kvm_vcpu
*vcpu
)
10076 if (is_64_bit_mode(vcpu
))
10077 return kvm_rip_read(vcpu
);
10078 return (u32
)(get_segment_base(vcpu
, VCPU_SREG_CS
) +
10079 kvm_rip_read(vcpu
));
10081 EXPORT_SYMBOL_GPL(kvm_get_linear_rip
);
10083 bool kvm_is_linear_rip(struct kvm_vcpu
*vcpu
, unsigned long linear_rip
)
10085 return kvm_get_linear_rip(vcpu
) == linear_rip
;
10087 EXPORT_SYMBOL_GPL(kvm_is_linear_rip
);
10089 unsigned long kvm_get_rflags(struct kvm_vcpu
*vcpu
)
10091 unsigned long rflags
;
10093 rflags
= kvm_x86_ops
->get_rflags(vcpu
);
10094 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
10095 rflags
&= ~X86_EFLAGS_TF
;
10098 EXPORT_SYMBOL_GPL(kvm_get_rflags
);
10100 static void __kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
10102 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
&&
10103 kvm_is_linear_rip(vcpu
, vcpu
->arch
.singlestep_rip
))
10104 rflags
|= X86_EFLAGS_TF
;
10105 kvm_x86_ops
->set_rflags(vcpu
, rflags
);
10108 void kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
10110 __kvm_set_rflags(vcpu
, rflags
);
10111 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
10113 EXPORT_SYMBOL_GPL(kvm_set_rflags
);
10115 void kvm_arch_async_page_ready(struct kvm_vcpu
*vcpu
, struct kvm_async_pf
*work
)
10119 if ((vcpu
->arch
.mmu
->direct_map
!= work
->arch
.direct_map
) ||
10123 r
= kvm_mmu_reload(vcpu
);
10127 if (!vcpu
->arch
.mmu
->direct_map
&&
10128 work
->arch
.cr3
!= vcpu
->arch
.mmu
->get_cr3(vcpu
))
10131 vcpu
->arch
.mmu
->page_fault(vcpu
, work
->cr2_or_gpa
, 0, true);
10134 static inline u32
kvm_async_pf_hash_fn(gfn_t gfn
)
10136 return hash_32(gfn
& 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU
));
10139 static inline u32
kvm_async_pf_next_probe(u32 key
)
10141 return (key
+ 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU
) - 1);
10144 static void kvm_add_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
10146 u32 key
= kvm_async_pf_hash_fn(gfn
);
10148 while (vcpu
->arch
.apf
.gfns
[key
] != ~0)
10149 key
= kvm_async_pf_next_probe(key
);
10151 vcpu
->arch
.apf
.gfns
[key
] = gfn
;
10154 static u32
kvm_async_pf_gfn_slot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
10157 u32 key
= kvm_async_pf_hash_fn(gfn
);
10159 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
) &&
10160 (vcpu
->arch
.apf
.gfns
[key
] != gfn
&&
10161 vcpu
->arch
.apf
.gfns
[key
] != ~0); i
++)
10162 key
= kvm_async_pf_next_probe(key
);
10167 bool kvm_find_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
10169 return vcpu
->arch
.apf
.gfns
[kvm_async_pf_gfn_slot(vcpu
, gfn
)] == gfn
;
10172 static void kvm_del_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
10176 i
= j
= kvm_async_pf_gfn_slot(vcpu
, gfn
);
10178 vcpu
->arch
.apf
.gfns
[i
] = ~0;
10180 j
= kvm_async_pf_next_probe(j
);
10181 if (vcpu
->arch
.apf
.gfns
[j
] == ~0)
10183 k
= kvm_async_pf_hash_fn(vcpu
->arch
.apf
.gfns
[j
]);
10185 * k lies cyclically in ]i,j]
10187 * |....j i.k.| or |.k..j i...|
10189 } while ((i
<= j
) ? (i
< k
&& k
<= j
) : (i
< k
|| k
<= j
));
10190 vcpu
->arch
.apf
.gfns
[i
] = vcpu
->arch
.apf
.gfns
[j
];
10195 static int apf_put_user(struct kvm_vcpu
*vcpu
, u32 val
)
10198 return kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, &val
,
10202 static int apf_get_user(struct kvm_vcpu
*vcpu
, u32
*val
)
10205 return kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, val
,
10209 static bool kvm_can_deliver_async_pf(struct kvm_vcpu
*vcpu
)
10211 if (!vcpu
->arch
.apf
.delivery_as_pf_vmexit
&& is_guest_mode(vcpu
))
10214 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) ||
10215 (vcpu
->arch
.apf
.send_user_only
&&
10216 kvm_x86_ops
->get_cpl(vcpu
) == 0))
10222 bool kvm_can_do_async_pf(struct kvm_vcpu
*vcpu
)
10224 if (unlikely(!lapic_in_kernel(vcpu
) ||
10225 kvm_event_needs_reinjection(vcpu
) ||
10226 vcpu
->arch
.exception
.pending
))
10229 if (kvm_hlt_in_guest(vcpu
->kvm
) && !kvm_can_deliver_async_pf(vcpu
))
10233 * If interrupts are off we cannot even use an artificial
10236 return kvm_x86_ops
->interrupt_allowed(vcpu
);
10239 void kvm_arch_async_page_not_present(struct kvm_vcpu
*vcpu
,
10240 struct kvm_async_pf
*work
)
10242 struct x86_exception fault
;
10244 trace_kvm_async_pf_not_present(work
->arch
.token
, work
->cr2_or_gpa
);
10245 kvm_add_async_pf_gfn(vcpu
, work
->arch
.gfn
);
10247 if (kvm_can_deliver_async_pf(vcpu
) &&
10248 !apf_put_user(vcpu
, KVM_PV_REASON_PAGE_NOT_PRESENT
)) {
10249 fault
.vector
= PF_VECTOR
;
10250 fault
.error_code_valid
= true;
10251 fault
.error_code
= 0;
10252 fault
.nested_page_fault
= false;
10253 fault
.address
= work
->arch
.token
;
10254 fault
.async_page_fault
= true;
10255 kvm_inject_page_fault(vcpu
, &fault
);
10258 * It is not possible to deliver a paravirtualized asynchronous
10259 * page fault, but putting the guest in an artificial halt state
10260 * can be beneficial nevertheless: if an interrupt arrives, we
10261 * can deliver it timely and perhaps the guest will schedule
10262 * another process. When the instruction that triggered a page
10263 * fault is retried, hopefully the page will be ready in the host.
10265 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
10269 void kvm_arch_async_page_present(struct kvm_vcpu
*vcpu
,
10270 struct kvm_async_pf
*work
)
10272 struct x86_exception fault
;
10275 if (work
->wakeup_all
)
10276 work
->arch
.token
= ~0; /* broadcast wakeup */
10278 kvm_del_async_pf_gfn(vcpu
, work
->arch
.gfn
);
10279 trace_kvm_async_pf_ready(work
->arch
.token
, work
->cr2_or_gpa
);
10281 if (vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
&&
10282 !apf_get_user(vcpu
, &val
)) {
10283 if (val
== KVM_PV_REASON_PAGE_NOT_PRESENT
&&
10284 vcpu
->arch
.exception
.pending
&&
10285 vcpu
->arch
.exception
.nr
== PF_VECTOR
&&
10286 !apf_put_user(vcpu
, 0)) {
10287 vcpu
->arch
.exception
.injected
= false;
10288 vcpu
->arch
.exception
.pending
= false;
10289 vcpu
->arch
.exception
.nr
= 0;
10290 vcpu
->arch
.exception
.has_error_code
= false;
10291 vcpu
->arch
.exception
.error_code
= 0;
10292 vcpu
->arch
.exception
.has_payload
= false;
10293 vcpu
->arch
.exception
.payload
= 0;
10294 } else if (!apf_put_user(vcpu
, KVM_PV_REASON_PAGE_READY
)) {
10295 fault
.vector
= PF_VECTOR
;
10296 fault
.error_code_valid
= true;
10297 fault
.error_code
= 0;
10298 fault
.nested_page_fault
= false;
10299 fault
.address
= work
->arch
.token
;
10300 fault
.async_page_fault
= true;
10301 kvm_inject_page_fault(vcpu
, &fault
);
10304 vcpu
->arch
.apf
.halted
= false;
10305 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
10308 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu
*vcpu
)
10310 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
))
10313 return kvm_can_do_async_pf(vcpu
);
10316 void kvm_arch_start_assignment(struct kvm
*kvm
)
10318 atomic_inc(&kvm
->arch
.assigned_device_count
);
10320 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment
);
10322 void kvm_arch_end_assignment(struct kvm
*kvm
)
10324 atomic_dec(&kvm
->arch
.assigned_device_count
);
10326 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment
);
10328 bool kvm_arch_has_assigned_device(struct kvm
*kvm
)
10330 return atomic_read(&kvm
->arch
.assigned_device_count
);
10332 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device
);
10334 void kvm_arch_register_noncoherent_dma(struct kvm
*kvm
)
10336 atomic_inc(&kvm
->arch
.noncoherent_dma_count
);
10338 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma
);
10340 void kvm_arch_unregister_noncoherent_dma(struct kvm
*kvm
)
10342 atomic_dec(&kvm
->arch
.noncoherent_dma_count
);
10344 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma
);
10346 bool kvm_arch_has_noncoherent_dma(struct kvm
*kvm
)
10348 return atomic_read(&kvm
->arch
.noncoherent_dma_count
);
10350 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma
);
10352 bool kvm_arch_has_irq_bypass(void)
10357 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer
*cons
,
10358 struct irq_bypass_producer
*prod
)
10360 struct kvm_kernel_irqfd
*irqfd
=
10361 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
10363 irqfd
->producer
= prod
;
10365 return kvm_x86_ops
->update_pi_irte(irqfd
->kvm
,
10366 prod
->irq
, irqfd
->gsi
, 1);
10369 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer
*cons
,
10370 struct irq_bypass_producer
*prod
)
10373 struct kvm_kernel_irqfd
*irqfd
=
10374 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
10376 WARN_ON(irqfd
->producer
!= prod
);
10377 irqfd
->producer
= NULL
;
10380 * When producer of consumer is unregistered, we change back to
10381 * remapped mode, so we can re-use the current implementation
10382 * when the irq is masked/disabled or the consumer side (KVM
10383 * int this case doesn't want to receive the interrupts.
10385 ret
= kvm_x86_ops
->update_pi_irte(irqfd
->kvm
, prod
->irq
, irqfd
->gsi
, 0);
10387 printk(KERN_INFO
"irq bypass consumer (token %p) unregistration"
10388 " fails: %d\n", irqfd
->consumer
.token
, ret
);
10391 int kvm_arch_update_irqfd_routing(struct kvm
*kvm
, unsigned int host_irq
,
10392 uint32_t guest_irq
, bool set
)
10394 return kvm_x86_ops
->update_pi_irte(kvm
, host_irq
, guest_irq
, set
);
10397 bool kvm_vector_hashing_enabled(void)
10399 return vector_hashing
;
10402 bool kvm_arch_no_poll(struct kvm_vcpu
*vcpu
)
10404 return (vcpu
->arch
.msr_kvm_poll_control
& 1) == 0;
10406 EXPORT_SYMBOL_GPL(kvm_arch_no_poll
);
10408 u64
kvm_spec_ctrl_valid_bits(struct kvm_vcpu
*vcpu
)
10410 uint64_t bits
= SPEC_CTRL_IBRS
| SPEC_CTRL_STIBP
| SPEC_CTRL_SSBD
;
10412 /* The STIBP bit doesn't fault even if it's not advertised */
10413 if (!guest_cpuid_has(vcpu
, X86_FEATURE_SPEC_CTRL
) &&
10414 !guest_cpuid_has(vcpu
, X86_FEATURE_AMD_IBRS
))
10415 bits
&= ~(SPEC_CTRL_IBRS
| SPEC_CTRL_STIBP
);
10416 if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL
) &&
10417 !boot_cpu_has(X86_FEATURE_AMD_IBRS
))
10418 bits
&= ~(SPEC_CTRL_IBRS
| SPEC_CTRL_STIBP
);
10420 if (!guest_cpuid_has(vcpu
, X86_FEATURE_SPEC_CTRL_SSBD
) &&
10421 !guest_cpuid_has(vcpu
, X86_FEATURE_AMD_SSBD
))
10422 bits
&= ~SPEC_CTRL_SSBD
;
10423 if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD
) &&
10424 !boot_cpu_has(X86_FEATURE_AMD_SSBD
))
10425 bits
&= ~SPEC_CTRL_SSBD
;
10429 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_valid_bits
);
10431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
10432 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio
);
10433 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
10434 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
10435 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
10436 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);
10437 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun
);
10438 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit
);
10439 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject
);
10440 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit
);
10441 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed
);
10442 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga
);
10443 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit
);
10444 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts
);
10445 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset
);
10446 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update
);
10447 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full
);
10448 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update
);
10449 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access
);
10450 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi
);