1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1995 Linus Torvalds
4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9 #include <linux/kdebug.h> /* oops_begin/end, ... */
10 #include <linux/extable.h> /* search_exception_tables */
11 #include <linux/memblock.h> /* max_low_pfn */
12 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
13 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
14 #include <linux/perf_event.h> /* perf_sw_event */
15 #include <linux/hugetlb.h> /* hstate_index_to_shift */
16 #include <linux/prefetch.h> /* prefetchw */
17 #include <linux/context_tracking.h> /* exception_enter(), ... */
18 #include <linux/uaccess.h> /* faulthandler_disabled() */
19 #include <linux/efi.h> /* efi_recover_from_page_fault()*/
20 #include <linux/mm_types.h>
22 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
23 #include <asm/traps.h> /* dotraplinkage, ... */
24 #include <asm/pgalloc.h> /* pgd_*(), ... */
25 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
26 #include <asm/vsyscall.h> /* emulate_vsyscall */
27 #include <asm/vm86.h> /* struct vm86 */
28 #include <asm/mmu_context.h> /* vma_pkey() */
29 #include <asm/efi.h> /* efi_recover_from_page_fault()*/
30 #include <asm/desc.h> /* store_idt(), ... */
31 #include <asm/cpu_entry_area.h> /* exception stack */
32 #include <asm/pgtable_areas.h> /* VMALLOC_START, ... */
34 #define CREATE_TRACE_POINTS
35 #include <asm/trace/exceptions.h>
38 * Returns 0 if mmiotrace is disabled, or if the fault is not
39 * handled by mmiotrace:
41 static nokprobe_inline
int
42 kmmio_fault(struct pt_regs
*regs
, unsigned long addr
)
44 if (unlikely(is_kmmio_active()))
45 if (kmmio_handler(regs
, addr
) == 1)
55 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
56 * Check that here and ignore it.
60 * Sometimes the CPU reports invalid exceptions on prefetch.
61 * Check that here and ignore it.
63 * Opcode checker based on code by Richard Brunner.
66 check_prefetch_opcode(struct pt_regs
*regs
, unsigned char *instr
,
67 unsigned char opcode
, int *prefetch
)
69 unsigned char instr_hi
= opcode
& 0xf0;
70 unsigned char instr_lo
= opcode
& 0x0f;
76 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
77 * In X86_64 long mode, the CPU will signal invalid
78 * opcode if some of these prefixes are present so
79 * X86_64 will never get here anyway
81 return ((instr_lo
& 7) == 0x6);
85 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
86 * Need to figure out under what instruction mode the
87 * instruction was issued. Could check the LDT for lm,
88 * but for now it's good enough to assume that long
89 * mode only uses well known segments or kernel.
91 return (!user_mode(regs
) || user_64bit_mode(regs
));
94 /* 0x64 thru 0x67 are valid prefixes in all modes. */
95 return (instr_lo
& 0xC) == 0x4;
97 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
98 return !instr_lo
|| (instr_lo
>>1) == 1;
100 /* Prefetch instruction is 0x0F0D or 0x0F18 */
101 if (probe_kernel_address(instr
, opcode
))
104 *prefetch
= (instr_lo
== 0xF) &&
105 (opcode
== 0x0D || opcode
== 0x18);
113 is_prefetch(struct pt_regs
*regs
, unsigned long error_code
, unsigned long addr
)
115 unsigned char *max_instr
;
116 unsigned char *instr
;
120 * If it was a exec (instruction fetch) fault on NX page, then
121 * do not ignore the fault:
123 if (error_code
& X86_PF_INSTR
)
126 instr
= (void *)convert_ip_to_linear(current
, regs
);
127 max_instr
= instr
+ 15;
129 if (user_mode(regs
) && instr
>= (unsigned char *)TASK_SIZE_MAX
)
132 while (instr
< max_instr
) {
133 unsigned char opcode
;
135 if (probe_kernel_address(instr
, opcode
))
140 if (!check_prefetch_opcode(regs
, instr
, opcode
, &prefetch
))
146 DEFINE_SPINLOCK(pgd_lock
);
150 static inline pmd_t
*vmalloc_sync_one(pgd_t
*pgd
, unsigned long address
)
152 unsigned index
= pgd_index(address
);
159 pgd_k
= init_mm
.pgd
+ index
;
161 if (!pgd_present(*pgd_k
))
165 * set_pgd(pgd, *pgd_k); here would be useless on PAE
166 * and redundant with the set_pmd() on non-PAE. As would
169 p4d
= p4d_offset(pgd
, address
);
170 p4d_k
= p4d_offset(pgd_k
, address
);
171 if (!p4d_present(*p4d_k
))
174 pud
= pud_offset(p4d
, address
);
175 pud_k
= pud_offset(p4d_k
, address
);
176 if (!pud_present(*pud_k
))
179 pmd
= pmd_offset(pud
, address
);
180 pmd_k
= pmd_offset(pud_k
, address
);
182 if (pmd_present(*pmd
) != pmd_present(*pmd_k
))
183 set_pmd(pmd
, *pmd_k
);
185 if (!pmd_present(*pmd_k
))
188 BUG_ON(pmd_pfn(*pmd
) != pmd_pfn(*pmd_k
));
193 void vmalloc_sync_all(void)
195 unsigned long address
;
197 if (SHARED_KERNEL_PMD
)
200 for (address
= VMALLOC_START
& PMD_MASK
;
201 address
>= TASK_SIZE_MAX
&& address
< VMALLOC_END
;
202 address
+= PMD_SIZE
) {
205 spin_lock(&pgd_lock
);
206 list_for_each_entry(page
, &pgd_list
, lru
) {
207 spinlock_t
*pgt_lock
;
209 /* the pgt_lock only for Xen */
210 pgt_lock
= &pgd_page_get_mm(page
)->page_table_lock
;
213 vmalloc_sync_one(page_address(page
), address
);
214 spin_unlock(pgt_lock
);
216 spin_unlock(&pgd_lock
);
223 * Handle a fault on the vmalloc or module mapping area
225 static noinline
int vmalloc_fault(unsigned long address
)
227 unsigned long pgd_paddr
;
231 /* Make sure we are in vmalloc area: */
232 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
236 * Synchronize this task's top level page-table
237 * with the 'reference' page table.
239 * Do _not_ use "current" here. We might be inside
240 * an interrupt in the middle of a task switch..
242 pgd_paddr
= read_cr3_pa();
243 pmd_k
= vmalloc_sync_one(__va(pgd_paddr
), address
);
247 if (pmd_large(*pmd_k
))
250 pte_k
= pte_offset_kernel(pmd_k
, address
);
251 if (!pte_present(*pte_k
))
256 NOKPROBE_SYMBOL(vmalloc_fault
);
259 * Did it hit the DOS screen memory VA from vm86 mode?
262 check_v8086_mode(struct pt_regs
*regs
, unsigned long address
,
263 struct task_struct
*tsk
)
268 if (!v8086_mode(regs
) || !tsk
->thread
.vm86
)
271 bit
= (address
- 0xA0000) >> PAGE_SHIFT
;
273 tsk
->thread
.vm86
->screen_bitmap
|= 1 << bit
;
277 static bool low_pfn(unsigned long pfn
)
279 return pfn
< max_low_pfn
;
282 static void dump_pagetable(unsigned long address
)
284 pgd_t
*base
= __va(read_cr3_pa());
285 pgd_t
*pgd
= &base
[pgd_index(address
)];
291 #ifdef CONFIG_X86_PAE
292 pr_info("*pdpt = %016Lx ", pgd_val(*pgd
));
293 if (!low_pfn(pgd_val(*pgd
) >> PAGE_SHIFT
) || !pgd_present(*pgd
))
295 #define pr_pde pr_cont
297 #define pr_pde pr_info
299 p4d
= p4d_offset(pgd
, address
);
300 pud
= pud_offset(p4d
, address
);
301 pmd
= pmd_offset(pud
, address
);
302 pr_pde("*pde = %0*Lx ", sizeof(*pmd
) * 2, (u64
)pmd_val(*pmd
));
306 * We must not directly access the pte in the highpte
307 * case if the page table is located in highmem.
308 * And let's rather not kmap-atomic the pte, just in case
309 * it's allocated already:
311 if (!low_pfn(pmd_pfn(*pmd
)) || !pmd_present(*pmd
) || pmd_large(*pmd
))
314 pte
= pte_offset_kernel(pmd
, address
);
315 pr_cont("*pte = %0*Lx ", sizeof(*pte
) * 2, (u64
)pte_val(*pte
));
320 #else /* CONFIG_X86_64: */
322 void vmalloc_sync_all(void)
324 sync_global_pgds(VMALLOC_START
& PGDIR_MASK
, VMALLOC_END
);
330 * Handle a fault on the vmalloc area
332 static noinline
int vmalloc_fault(unsigned long address
)
340 /* Make sure we are in vmalloc area: */
341 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
345 * Copy kernel mappings over when needed. This can also
346 * happen within a race in page table update. In the later
349 pgd
= (pgd_t
*)__va(read_cr3_pa()) + pgd_index(address
);
350 pgd_k
= pgd_offset_k(address
);
351 if (pgd_none(*pgd_k
))
354 if (pgtable_l5_enabled()) {
355 if (pgd_none(*pgd
)) {
356 set_pgd(pgd
, *pgd_k
);
357 arch_flush_lazy_mmu_mode();
359 BUG_ON(pgd_page_vaddr(*pgd
) != pgd_page_vaddr(*pgd_k
));
363 /* With 4-level paging, copying happens on the p4d level. */
364 p4d
= p4d_offset(pgd
, address
);
365 p4d_k
= p4d_offset(pgd_k
, address
);
366 if (p4d_none(*p4d_k
))
369 if (p4d_none(*p4d
) && !pgtable_l5_enabled()) {
370 set_p4d(p4d
, *p4d_k
);
371 arch_flush_lazy_mmu_mode();
373 BUG_ON(p4d_pfn(*p4d
) != p4d_pfn(*p4d_k
));
376 BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS
< 4);
378 pud
= pud_offset(p4d
, address
);
385 pmd
= pmd_offset(pud
, address
);
392 pte
= pte_offset_kernel(pmd
, address
);
393 if (!pte_present(*pte
))
398 NOKPROBE_SYMBOL(vmalloc_fault
);
400 #ifdef CONFIG_CPU_SUP_AMD
401 static const char errata93_warning
[] =
403 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
404 "******* Working around it, but it may cause SEGVs or burn power.\n"
405 "******* Please consider a BIOS update.\n"
406 "******* Disabling USB legacy in the BIOS may also help.\n";
410 * No vm86 mode in 64-bit mode:
413 check_v8086_mode(struct pt_regs
*regs
, unsigned long address
,
414 struct task_struct
*tsk
)
418 static int bad_address(void *p
)
422 return probe_kernel_address((unsigned long *)p
, dummy
);
425 static void dump_pagetable(unsigned long address
)
427 pgd_t
*base
= __va(read_cr3_pa());
428 pgd_t
*pgd
= base
+ pgd_index(address
);
434 if (bad_address(pgd
))
437 pr_info("PGD %lx ", pgd_val(*pgd
));
439 if (!pgd_present(*pgd
))
442 p4d
= p4d_offset(pgd
, address
);
443 if (bad_address(p4d
))
446 pr_cont("P4D %lx ", p4d_val(*p4d
));
447 if (!p4d_present(*p4d
) || p4d_large(*p4d
))
450 pud
= pud_offset(p4d
, address
);
451 if (bad_address(pud
))
454 pr_cont("PUD %lx ", pud_val(*pud
));
455 if (!pud_present(*pud
) || pud_large(*pud
))
458 pmd
= pmd_offset(pud
, address
);
459 if (bad_address(pmd
))
462 pr_cont("PMD %lx ", pmd_val(*pmd
));
463 if (!pmd_present(*pmd
) || pmd_large(*pmd
))
466 pte
= pte_offset_kernel(pmd
, address
);
467 if (bad_address(pte
))
470 pr_cont("PTE %lx", pte_val(*pte
));
478 #endif /* CONFIG_X86_64 */
481 * Workaround for K8 erratum #93 & buggy BIOS.
483 * BIOS SMM functions are required to use a specific workaround
484 * to avoid corruption of the 64bit RIP register on C stepping K8.
486 * A lot of BIOS that didn't get tested properly miss this.
488 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
489 * Try to work around it here.
491 * Note we only handle faults in kernel here.
492 * Does nothing on 32-bit.
494 static int is_errata93(struct pt_regs
*regs
, unsigned long address
)
496 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
497 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_AMD
498 || boot_cpu_data
.x86
!= 0xf)
501 if (address
!= regs
->ip
)
504 if ((address
>> 32) != 0)
507 address
|= 0xffffffffUL
<< 32;
508 if ((address
>= (u64
)_stext
&& address
<= (u64
)_etext
) ||
509 (address
>= MODULES_VADDR
&& address
<= MODULES_END
)) {
510 printk_once(errata93_warning
);
519 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
520 * to illegal addresses >4GB.
522 * We catch this in the page fault handler because these addresses
523 * are not reachable. Just detect this case and return. Any code
524 * segment in LDT is compatibility mode.
526 static int is_errata100(struct pt_regs
*regs
, unsigned long address
)
529 if ((regs
->cs
== __USER32_CS
|| (regs
->cs
& (1<<2))) && (address
>> 32))
535 static int is_f00f_bug(struct pt_regs
*regs
, unsigned long address
)
537 #ifdef CONFIG_X86_F00F_BUG
541 * Pentium F0 0F C7 C8 bug workaround:
543 if (boot_cpu_has_bug(X86_BUG_F00F
)) {
544 nr
= (address
- idt_descr
.address
) >> 3;
547 do_invalid_op(regs
, 0);
555 static void show_ldttss(const struct desc_ptr
*gdt
, const char *name
, u16 index
)
557 u32 offset
= (index
>> 3) * sizeof(struct desc_struct
);
559 struct ldttss_desc desc
;
562 pr_alert("%s: NULL\n", name
);
566 if (offset
+ sizeof(struct ldttss_desc
) >= gdt
->size
) {
567 pr_alert("%s: 0x%hx -- out of bounds\n", name
, index
);
571 if (probe_kernel_read(&desc
, (void *)(gdt
->address
+ offset
),
572 sizeof(struct ldttss_desc
))) {
573 pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
578 addr
= desc
.base0
| (desc
.base1
<< 16) | ((unsigned long)desc
.base2
<< 24);
580 addr
|= ((u64
)desc
.base3
<< 32);
582 pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
583 name
, index
, addr
, (desc
.limit0
| (desc
.limit1
<< 16)));
587 show_fault_oops(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
)
589 if (!oops_may_print())
592 if (error_code
& X86_PF_INSTR
) {
597 pgd
= __va(read_cr3_pa());
598 pgd
+= pgd_index(address
);
600 pte
= lookup_address_in_pgd(pgd
, address
, &level
);
602 if (pte
&& pte_present(*pte
) && !pte_exec(*pte
))
603 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
604 from_kuid(&init_user_ns
, current_uid()));
605 if (pte
&& pte_present(*pte
) && pte_exec(*pte
) &&
606 (pgd_flags(*pgd
) & _PAGE_USER
) &&
607 (__read_cr4() & X86_CR4_SMEP
))
608 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
609 from_kuid(&init_user_ns
, current_uid()));
612 if (address
< PAGE_SIZE
&& !user_mode(regs
))
613 pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
616 pr_alert("BUG: unable to handle page fault for address: %px\n",
619 pr_alert("#PF: %s %s in %s mode\n",
620 (error_code
& X86_PF_USER
) ? "user" : "supervisor",
621 (error_code
& X86_PF_INSTR
) ? "instruction fetch" :
622 (error_code
& X86_PF_WRITE
) ? "write access" :
624 user_mode(regs
) ? "user" : "kernel");
625 pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code
,
626 !(error_code
& X86_PF_PROT
) ? "not-present page" :
627 (error_code
& X86_PF_RSVD
) ? "reserved bit violation" :
628 (error_code
& X86_PF_PK
) ? "protection keys violation" :
629 "permissions violation");
631 if (!(error_code
& X86_PF_USER
) && user_mode(regs
)) {
632 struct desc_ptr idt
, gdt
;
636 * This can happen for quite a few reasons. The more obvious
637 * ones are faults accessing the GDT, or LDT. Perhaps
638 * surprisingly, if the CPU tries to deliver a benign or
639 * contributory exception from user code and gets a page fault
640 * during delivery, the page fault can be delivered as though
641 * it originated directly from user code. This could happen
642 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
643 * kernel or IST stack.
647 /* Usable even on Xen PV -- it's just slow. */
648 native_store_gdt(&gdt
);
650 pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
651 idt
.address
, idt
.size
, gdt
.address
, gdt
.size
);
654 show_ldttss(&gdt
, "LDTR", ldtr
);
657 show_ldttss(&gdt
, "TR", tr
);
660 dump_pagetable(address
);
664 pgtable_bad(struct pt_regs
*regs
, unsigned long error_code
,
665 unsigned long address
)
667 struct task_struct
*tsk
;
671 flags
= oops_begin();
675 printk(KERN_ALERT
"%s: Corrupted page table at address %lx\n",
677 dump_pagetable(address
);
679 if (__die("Bad pagetable", regs
, error_code
))
682 oops_end(flags
, regs
, sig
);
685 static void set_signal_archinfo(unsigned long address
,
686 unsigned long error_code
)
688 struct task_struct
*tsk
= current
;
691 * To avoid leaking information about the kernel page
692 * table layout, pretend that user-mode accesses to
693 * kernel addresses are always protection faults.
695 * NB: This means that failed vsyscalls with vsyscall=none
696 * will have the PROT bit. This doesn't leak any
697 * information and does not appear to cause any problems.
699 if (address
>= TASK_SIZE_MAX
)
700 error_code
|= X86_PF_PROT
;
702 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
703 tsk
->thread
.error_code
= error_code
| X86_PF_USER
;
704 tsk
->thread
.cr2
= address
;
708 no_context(struct pt_regs
*regs
, unsigned long error_code
,
709 unsigned long address
, int signal
, int si_code
)
711 struct task_struct
*tsk
= current
;
715 if (user_mode(regs
)) {
717 * This is an implicit supervisor-mode access from user
718 * mode. Bypass all the kernel-mode recovery code and just
724 /* Are we prepared to handle this kernel fault? */
725 if (fixup_exception(regs
, X86_TRAP_PF
, error_code
, address
)) {
727 * Any interrupt that takes a fault gets the fixup. This makes
728 * the below recursive fault logic only apply to a faults from
735 * Per the above we're !in_interrupt(), aka. task context.
737 * In this case we need to make sure we're not recursively
738 * faulting through the emulate_vsyscall() logic.
740 if (current
->thread
.sig_on_uaccess_err
&& signal
) {
741 set_signal_archinfo(address
, error_code
);
743 /* XXX: hwpoison faults will set the wrong code. */
744 force_sig_fault(signal
, si_code
, (void __user
*)address
);
748 * Barring that, we can do the fixup and be happy.
753 #ifdef CONFIG_VMAP_STACK
755 * Stack overflow? During boot, we can fault near the initial
756 * stack in the direct map, but that's not an overflow -- check
757 * that we're in vmalloc space to avoid this.
759 if (is_vmalloc_addr((void *)address
) &&
760 (((unsigned long)tsk
->stack
- 1 - address
< PAGE_SIZE
) ||
761 address
- ((unsigned long)tsk
->stack
+ THREAD_SIZE
) < PAGE_SIZE
)) {
762 unsigned long stack
= __this_cpu_ist_top_va(DF
) - sizeof(void *);
764 * We're likely to be running with very little stack space
765 * left. It's plausible that we'd hit this condition but
766 * double-fault even before we get this far, in which case
767 * we're fine: the double-fault handler will deal with it.
769 * We don't want to make it all the way into the oops code
770 * and then double-fault, though, because we're likely to
771 * break the console driver and lose most of the stack dump.
773 asm volatile ("movq %[stack], %%rsp\n\t"
774 "call handle_stack_overflow\n\t"
776 : ASM_CALL_CONSTRAINT
777 : "D" ("kernel stack overflow (page fault)"),
778 "S" (regs
), "d" (address
),
779 [stack
] "rm" (stack
));
787 * Valid to do another page fault here, because if this fault
788 * had been triggered by is_prefetch fixup_exception would have
793 * Hall of shame of CPU/BIOS bugs.
795 if (is_prefetch(regs
, error_code
, address
))
798 if (is_errata93(regs
, address
))
802 * Buggy firmware could access regions which might page fault, try to
803 * recover from such faults.
805 if (IS_ENABLED(CONFIG_EFI
))
806 efi_recover_from_page_fault(address
);
810 * Oops. The kernel tried to access some bad page. We'll have to
811 * terminate things with extreme prejudice:
813 flags
= oops_begin();
815 show_fault_oops(regs
, error_code
, address
);
817 if (task_stack_end_corrupted(tsk
))
818 printk(KERN_EMERG
"Thread overran stack, or stack corrupted\n");
821 if (__die("Oops", regs
, error_code
))
824 /* Executive summary in case the body of the oops scrolled away */
825 printk(KERN_DEFAULT
"CR2: %016lx\n", address
);
827 oops_end(flags
, regs
, sig
);
831 * Print out info about fatal segfaults, if the show_unhandled_signals
835 show_signal_msg(struct pt_regs
*regs
, unsigned long error_code
,
836 unsigned long address
, struct task_struct
*tsk
)
838 const char *loglvl
= task_pid_nr(tsk
) > 1 ? KERN_INFO
: KERN_EMERG
;
840 if (!unhandled_signal(tsk
, SIGSEGV
))
843 if (!printk_ratelimit())
846 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
847 loglvl
, tsk
->comm
, task_pid_nr(tsk
), address
,
848 (void *)regs
->ip
, (void *)regs
->sp
, error_code
);
850 print_vma_addr(KERN_CONT
" in ", regs
->ip
);
852 printk(KERN_CONT
"\n");
854 show_opcodes(regs
, loglvl
);
858 * The (legacy) vsyscall page is the long page in the kernel portion
859 * of the address space that has user-accessible permissions.
861 static bool is_vsyscall_vaddr(unsigned long vaddr
)
863 return unlikely((vaddr
& PAGE_MASK
) == VSYSCALL_ADDR
);
867 __bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long error_code
,
868 unsigned long address
, u32 pkey
, int si_code
)
870 struct task_struct
*tsk
= current
;
872 /* User mode accesses just cause a SIGSEGV */
873 if (user_mode(regs
) && (error_code
& X86_PF_USER
)) {
875 * It's possible to have interrupts off here:
880 * Valid to do another page fault here because this one came
883 if (is_prefetch(regs
, error_code
, address
))
886 if (is_errata100(regs
, address
))
890 * To avoid leaking information about the kernel page table
891 * layout, pretend that user-mode accesses to kernel addresses
892 * are always protection faults.
894 if (address
>= TASK_SIZE_MAX
)
895 error_code
|= X86_PF_PROT
;
897 if (likely(show_unhandled_signals
))
898 show_signal_msg(regs
, error_code
, address
, tsk
);
900 set_signal_archinfo(address
, error_code
);
902 if (si_code
== SEGV_PKUERR
)
903 force_sig_pkuerr((void __user
*)address
, pkey
);
905 force_sig_fault(SIGSEGV
, si_code
, (void __user
*)address
);
910 if (is_f00f_bug(regs
, address
))
913 no_context(regs
, error_code
, address
, SIGSEGV
, si_code
);
917 bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long error_code
,
918 unsigned long address
)
920 __bad_area_nosemaphore(regs
, error_code
, address
, 0, SEGV_MAPERR
);
924 __bad_area(struct pt_regs
*regs
, unsigned long error_code
,
925 unsigned long address
, u32 pkey
, int si_code
)
927 struct mm_struct
*mm
= current
->mm
;
929 * Something tried to access memory that isn't in our memory map..
930 * Fix it, but check if it's kernel or user first..
932 up_read(&mm
->mmap_sem
);
934 __bad_area_nosemaphore(regs
, error_code
, address
, pkey
, si_code
);
938 bad_area(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
)
940 __bad_area(regs
, error_code
, address
, 0, SEGV_MAPERR
);
943 static inline bool bad_area_access_from_pkeys(unsigned long error_code
,
944 struct vm_area_struct
*vma
)
946 /* This code is always called on the current mm */
947 bool foreign
= false;
949 if (!boot_cpu_has(X86_FEATURE_OSPKE
))
951 if (error_code
& X86_PF_PK
)
953 /* this checks permission keys on the VMA: */
954 if (!arch_vma_access_permitted(vma
, (error_code
& X86_PF_WRITE
),
955 (error_code
& X86_PF_INSTR
), foreign
))
961 bad_area_access_error(struct pt_regs
*regs
, unsigned long error_code
,
962 unsigned long address
, struct vm_area_struct
*vma
)
965 * This OSPKE check is not strictly necessary at runtime.
966 * But, doing it this way allows compiler optimizations
967 * if pkeys are compiled out.
969 if (bad_area_access_from_pkeys(error_code
, vma
)) {
971 * A protection key fault means that the PKRU value did not allow
972 * access to some PTE. Userspace can figure out what PKRU was
973 * from the XSAVE state. This function captures the pkey from
974 * the vma and passes it to userspace so userspace can discover
975 * which protection key was set on the PTE.
977 * If we get here, we know that the hardware signaled a X86_PF_PK
978 * fault and that there was a VMA once we got in the fault
979 * handler. It does *not* guarantee that the VMA we find here
980 * was the one that we faulted on.
982 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
983 * 2. T1 : set PKRU to deny access to pkey=4, touches page
985 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
986 * 5. T1 : enters fault handler, takes mmap_sem, etc...
987 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
988 * faulted on a pte with its pkey=4.
990 u32 pkey
= vma_pkey(vma
);
992 __bad_area(regs
, error_code
, address
, pkey
, SEGV_PKUERR
);
994 __bad_area(regs
, error_code
, address
, 0, SEGV_ACCERR
);
999 do_sigbus(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
,
1002 /* Kernel mode? Handle exceptions or die: */
1003 if (!(error_code
& X86_PF_USER
)) {
1004 no_context(regs
, error_code
, address
, SIGBUS
, BUS_ADRERR
);
1008 /* User-space => ok to do another page fault: */
1009 if (is_prefetch(regs
, error_code
, address
))
1012 set_signal_archinfo(address
, error_code
);
1014 #ifdef CONFIG_MEMORY_FAILURE
1015 if (fault
& (VM_FAULT_HWPOISON
|VM_FAULT_HWPOISON_LARGE
)) {
1016 struct task_struct
*tsk
= current
;
1020 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1021 tsk
->comm
, tsk
->pid
, address
);
1022 if (fault
& VM_FAULT_HWPOISON_LARGE
)
1023 lsb
= hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault
));
1024 if (fault
& VM_FAULT_HWPOISON
)
1026 force_sig_mceerr(BUS_MCEERR_AR
, (void __user
*)address
, lsb
);
1030 force_sig_fault(SIGBUS
, BUS_ADRERR
, (void __user
*)address
);
1033 static noinline
void
1034 mm_fault_error(struct pt_regs
*regs
, unsigned long error_code
,
1035 unsigned long address
, vm_fault_t fault
)
1037 if (fatal_signal_pending(current
) && !(error_code
& X86_PF_USER
)) {
1038 no_context(regs
, error_code
, address
, 0, 0);
1042 if (fault
& VM_FAULT_OOM
) {
1043 /* Kernel mode? Handle exceptions or die: */
1044 if (!(error_code
& X86_PF_USER
)) {
1045 no_context(regs
, error_code
, address
,
1046 SIGSEGV
, SEGV_MAPERR
);
1051 * We ran out of memory, call the OOM killer, and return the
1052 * userspace (which will retry the fault, or kill us if we got
1055 pagefault_out_of_memory();
1057 if (fault
& (VM_FAULT_SIGBUS
|VM_FAULT_HWPOISON
|
1058 VM_FAULT_HWPOISON_LARGE
))
1059 do_sigbus(regs
, error_code
, address
, fault
);
1060 else if (fault
& VM_FAULT_SIGSEGV
)
1061 bad_area_nosemaphore(regs
, error_code
, address
);
1067 static int spurious_kernel_fault_check(unsigned long error_code
, pte_t
*pte
)
1069 if ((error_code
& X86_PF_WRITE
) && !pte_write(*pte
))
1072 if ((error_code
& X86_PF_INSTR
) && !pte_exec(*pte
))
1079 * Handle a spurious fault caused by a stale TLB entry.
1081 * This allows us to lazily refresh the TLB when increasing the
1082 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1083 * eagerly is very expensive since that implies doing a full
1084 * cross-processor TLB flush, even if no stale TLB entries exist
1085 * on other processors.
1087 * Spurious faults may only occur if the TLB contains an entry with
1088 * fewer permission than the page table entry. Non-present (P = 0)
1089 * and reserved bit (R = 1) faults are never spurious.
1091 * There are no security implications to leaving a stale TLB when
1092 * increasing the permissions on a page.
1094 * Returns non-zero if a spurious fault was handled, zero otherwise.
1096 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1097 * (Optional Invalidation).
1100 spurious_kernel_fault(unsigned long error_code
, unsigned long address
)
1110 * Only writes to RO or instruction fetches from NX may cause
1113 * These could be from user or supervisor accesses but the TLB
1114 * is only lazily flushed after a kernel mapping protection
1115 * change, so user accesses are not expected to cause spurious
1118 if (error_code
!= (X86_PF_WRITE
| X86_PF_PROT
) &&
1119 error_code
!= (X86_PF_INSTR
| X86_PF_PROT
))
1122 pgd
= init_mm
.pgd
+ pgd_index(address
);
1123 if (!pgd_present(*pgd
))
1126 p4d
= p4d_offset(pgd
, address
);
1127 if (!p4d_present(*p4d
))
1130 if (p4d_large(*p4d
))
1131 return spurious_kernel_fault_check(error_code
, (pte_t
*) p4d
);
1133 pud
= pud_offset(p4d
, address
);
1134 if (!pud_present(*pud
))
1137 if (pud_large(*pud
))
1138 return spurious_kernel_fault_check(error_code
, (pte_t
*) pud
);
1140 pmd
= pmd_offset(pud
, address
);
1141 if (!pmd_present(*pmd
))
1144 if (pmd_large(*pmd
))
1145 return spurious_kernel_fault_check(error_code
, (pte_t
*) pmd
);
1147 pte
= pte_offset_kernel(pmd
, address
);
1148 if (!pte_present(*pte
))
1151 ret
= spurious_kernel_fault_check(error_code
, pte
);
1156 * Make sure we have permissions in PMD.
1157 * If not, then there's a bug in the page tables:
1159 ret
= spurious_kernel_fault_check(error_code
, (pte_t
*) pmd
);
1160 WARN_ONCE(!ret
, "PMD has incorrect permission bits\n");
1164 NOKPROBE_SYMBOL(spurious_kernel_fault
);
1166 int show_unhandled_signals
= 1;
1169 access_error(unsigned long error_code
, struct vm_area_struct
*vma
)
1171 /* This is only called for the current mm, so: */
1172 bool foreign
= false;
1175 * Read or write was blocked by protection keys. This is
1176 * always an unconditional error and can never result in
1177 * a follow-up action to resolve the fault, like a COW.
1179 if (error_code
& X86_PF_PK
)
1183 * Make sure to check the VMA so that we do not perform
1184 * faults just to hit a X86_PF_PK as soon as we fill in a
1187 if (!arch_vma_access_permitted(vma
, (error_code
& X86_PF_WRITE
),
1188 (error_code
& X86_PF_INSTR
), foreign
))
1191 if (error_code
& X86_PF_WRITE
) {
1192 /* write, present and write, not present: */
1193 if (unlikely(!(vma
->vm_flags
& VM_WRITE
)))
1198 /* read, present: */
1199 if (unlikely(error_code
& X86_PF_PROT
))
1202 /* read, not present: */
1203 if (unlikely(!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
))))
1209 static int fault_in_kernel_space(unsigned long address
)
1212 * On 64-bit systems, the vsyscall page is at an address above
1213 * TASK_SIZE_MAX, but is not considered part of the kernel
1216 if (IS_ENABLED(CONFIG_X86_64
) && is_vsyscall_vaddr(address
))
1219 return address
>= TASK_SIZE_MAX
;
1223 * Called for all faults where 'address' is part of the kernel address
1224 * space. Might get called for faults that originate from *code* that
1225 * ran in userspace or the kernel.
1228 do_kern_addr_fault(struct pt_regs
*regs
, unsigned long hw_error_code
,
1229 unsigned long address
)
1232 * Protection keys exceptions only happen on user pages. We
1233 * have no user pages in the kernel portion of the address
1234 * space, so do not expect them here.
1236 WARN_ON_ONCE(hw_error_code
& X86_PF_PK
);
1239 * We can fault-in kernel-space virtual memory on-demand. The
1240 * 'reference' page table is init_mm.pgd.
1242 * NOTE! We MUST NOT take any locks for this case. We may
1243 * be in an interrupt or a critical region, and should
1244 * only copy the information from the master page table,
1247 * Before doing this on-demand faulting, ensure that the
1248 * fault is not any of the following:
1249 * 1. A fault on a PTE with a reserved bit set.
1250 * 2. A fault caused by a user-mode access. (Do not demand-
1251 * fault kernel memory due to user-mode accesses).
1252 * 3. A fault caused by a page-level protection violation.
1253 * (A demand fault would be on a non-present page which
1254 * would have X86_PF_PROT==0).
1256 if (!(hw_error_code
& (X86_PF_RSVD
| X86_PF_USER
| X86_PF_PROT
))) {
1257 if (vmalloc_fault(address
) >= 0)
1261 /* Was the fault spurious, caused by lazy TLB invalidation? */
1262 if (spurious_kernel_fault(hw_error_code
, address
))
1265 /* kprobes don't want to hook the spurious faults: */
1266 if (kprobe_page_fault(regs
, X86_TRAP_PF
))
1270 * Note, despite being a "bad area", there are quite a few
1271 * acceptable reasons to get here, such as erratum fixups
1272 * and handling kernel code that can fault, like get_user().
1274 * Don't take the mm semaphore here. If we fixup a prefetch
1275 * fault we could otherwise deadlock:
1277 bad_area_nosemaphore(regs
, hw_error_code
, address
);
1279 NOKPROBE_SYMBOL(do_kern_addr_fault
);
1281 /* Handle faults in the user portion of the address space */
1283 void do_user_addr_fault(struct pt_regs
*regs
,
1284 unsigned long hw_error_code
,
1285 unsigned long address
)
1287 struct vm_area_struct
*vma
;
1288 struct task_struct
*tsk
;
1289 struct mm_struct
*mm
;
1290 vm_fault_t fault
, major
= 0;
1291 unsigned int flags
= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
1296 /* kprobes don't want to hook the spurious faults: */
1297 if (unlikely(kprobe_page_fault(regs
, X86_TRAP_PF
)))
1301 * Reserved bits are never expected to be set on
1302 * entries in the user portion of the page tables.
1304 if (unlikely(hw_error_code
& X86_PF_RSVD
))
1305 pgtable_bad(regs
, hw_error_code
, address
);
1308 * If SMAP is on, check for invalid kernel (supervisor) access to user
1309 * pages in the user address space. The odd case here is WRUSS,
1310 * which, according to the preliminary documentation, does not respect
1311 * SMAP and will have the USER bit set so, in all cases, SMAP
1312 * enforcement appears to be consistent with the USER bit.
1314 if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP
) &&
1315 !(hw_error_code
& X86_PF_USER
) &&
1316 !(regs
->flags
& X86_EFLAGS_AC
)))
1318 bad_area_nosemaphore(regs
, hw_error_code
, address
);
1323 * If we're in an interrupt, have no user context or are running
1324 * in a region with pagefaults disabled then we must not take the fault
1326 if (unlikely(faulthandler_disabled() || !mm
)) {
1327 bad_area_nosemaphore(regs
, hw_error_code
, address
);
1332 * It's safe to allow irq's after cr2 has been saved and the
1333 * vmalloc fault has been handled.
1335 * User-mode registers count as a user access even for any
1336 * potential system fault or CPU buglet:
1338 if (user_mode(regs
)) {
1340 flags
|= FAULT_FLAG_USER
;
1342 if (regs
->flags
& X86_EFLAGS_IF
)
1346 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, regs
, address
);
1348 if (hw_error_code
& X86_PF_WRITE
)
1349 flags
|= FAULT_FLAG_WRITE
;
1350 if (hw_error_code
& X86_PF_INSTR
)
1351 flags
|= FAULT_FLAG_INSTRUCTION
;
1353 #ifdef CONFIG_X86_64
1355 * Faults in the vsyscall page might need emulation. The
1356 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1357 * considered to be part of the user address space.
1359 * The vsyscall page does not have a "real" VMA, so do this
1360 * emulation before we go searching for VMAs.
1362 * PKRU never rejects instruction fetches, so we don't need
1363 * to consider the PF_PK bit.
1365 if (is_vsyscall_vaddr(address
)) {
1366 if (emulate_vsyscall(hw_error_code
, regs
, address
))
1372 * Kernel-mode access to the user address space should only occur
1373 * on well-defined single instructions listed in the exception
1374 * tables. But, an erroneous kernel fault occurring outside one of
1375 * those areas which also holds mmap_sem might deadlock attempting
1376 * to validate the fault against the address space.
1378 * Only do the expensive exception table search when we might be at
1379 * risk of a deadlock. This happens if we
1380 * 1. Failed to acquire mmap_sem, and
1381 * 2. The access did not originate in userspace.
1383 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
1384 if (!user_mode(regs
) && !search_exception_tables(regs
->ip
)) {
1386 * Fault from code in kernel from
1387 * which we do not expect faults.
1389 bad_area_nosemaphore(regs
, hw_error_code
, address
);
1393 down_read(&mm
->mmap_sem
);
1396 * The above down_read_trylock() might have succeeded in
1397 * which case we'll have missed the might_sleep() from
1403 vma
= find_vma(mm
, address
);
1404 if (unlikely(!vma
)) {
1405 bad_area(regs
, hw_error_code
, address
);
1408 if (likely(vma
->vm_start
<= address
))
1410 if (unlikely(!(vma
->vm_flags
& VM_GROWSDOWN
))) {
1411 bad_area(regs
, hw_error_code
, address
);
1414 if (unlikely(expand_stack(vma
, address
))) {
1415 bad_area(regs
, hw_error_code
, address
);
1420 * Ok, we have a good vm_area for this memory access, so
1421 * we can handle it..
1424 if (unlikely(access_error(hw_error_code
, vma
))) {
1425 bad_area_access_error(regs
, hw_error_code
, address
, vma
);
1430 * If for any reason at all we couldn't handle the fault,
1431 * make sure we exit gracefully rather than endlessly redo
1432 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1433 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1435 * Note that handle_userfault() may also release and reacquire mmap_sem
1436 * (and not return with VM_FAULT_RETRY), when returning to userland to
1437 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1438 * (potentially after handling any pending signal during the return to
1439 * userland). The return to userland is identified whenever
1440 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1442 fault
= handle_mm_fault(vma
, address
, flags
);
1443 major
|= fault
& VM_FAULT_MAJOR
;
1446 * If we need to retry the mmap_sem has already been released,
1447 * and if there is a fatal signal pending there is no guarantee
1448 * that we made any progress. Handle this case first.
1450 if (unlikely(fault
& VM_FAULT_RETRY
)) {
1451 /* Retry at most once */
1452 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
1453 flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
1454 flags
|= FAULT_FLAG_TRIED
;
1455 if (!fatal_signal_pending(tsk
))
1459 /* User mode? Just return to handle the fatal exception */
1460 if (flags
& FAULT_FLAG_USER
)
1463 /* Not returning to user mode? Handle exceptions or die: */
1464 no_context(regs
, hw_error_code
, address
, SIGBUS
, BUS_ADRERR
);
1468 up_read(&mm
->mmap_sem
);
1469 if (unlikely(fault
& VM_FAULT_ERROR
)) {
1470 mm_fault_error(regs
, hw_error_code
, address
, fault
);
1475 * Major/minor page fault accounting. If any of the events
1476 * returned VM_FAULT_MAJOR, we account it as a major fault.
1480 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
, 1, regs
, address
);
1483 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
, 1, regs
, address
);
1486 check_v8086_mode(regs
, address
, tsk
);
1488 NOKPROBE_SYMBOL(do_user_addr_fault
);
1490 static __always_inline
void
1491 trace_page_fault_entries(struct pt_regs
*regs
, unsigned long error_code
,
1492 unsigned long address
)
1494 if (!trace_pagefault_enabled())
1497 if (user_mode(regs
))
1498 trace_page_fault_user(address
, regs
, error_code
);
1500 trace_page_fault_kernel(address
, regs
, error_code
);
1504 do_page_fault(struct pt_regs
*regs
, unsigned long hw_error_code
,
1505 unsigned long address
)
1507 prefetchw(¤t
->mm
->mmap_sem
);
1508 trace_page_fault_entries(regs
, hw_error_code
, address
);
1510 if (unlikely(kmmio_fault(regs
, address
)))
1513 /* Was the fault on kernel-controlled part of the address space? */
1514 if (unlikely(fault_in_kernel_space(address
)))
1515 do_kern_addr_fault(regs
, hw_error_code
, address
);
1517 do_user_addr_fault(regs
, hw_error_code
, address
);
1519 NOKPROBE_SYMBOL(do_page_fault
);