ARM: dma-api: fix max_pfn off-by-one error in __dma_supported()
[linux/fpc-iii.git] / arch / x86 / mm / init.c
blobe7bb483557c9f62a927563f2c748979a0ca1941e
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/swapfile.h>
7 #include <linux/swapops.h>
8 #include <linux/kmemleak.h>
9 #include <linux/sched/task.h>
11 #include <asm/set_memory.h>
12 #include <asm/e820/api.h>
13 #include <asm/init.h>
14 #include <asm/page.h>
15 #include <asm/page_types.h>
16 #include <asm/sections.h>
17 #include <asm/setup.h>
18 #include <asm/tlbflush.h>
19 #include <asm/tlb.h>
20 #include <asm/proto.h>
21 #include <asm/dma.h> /* for MAX_DMA_PFN */
22 #include <asm/microcode.h>
23 #include <asm/kaslr.h>
24 #include <asm/hypervisor.h>
25 #include <asm/cpufeature.h>
26 #include <asm/pti.h>
27 #include <asm/text-patching.h>
30 * We need to define the tracepoints somewhere, and tlb.c
31 * is only compied when SMP=y.
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/tlb.h>
36 #include "mm_internal.h"
39 * Tables translating between page_cache_type_t and pte encoding.
41 * The default values are defined statically as minimal supported mode;
42 * WC and WT fall back to UC-. pat_init() updates these values to support
43 * more cache modes, WC and WT, when it is safe to do so. See pat_init()
44 * for the details. Note, __early_ioremap() used during early boot-time
45 * takes pgprot_t (pte encoding) and does not use these tables.
47 * Index into __cachemode2pte_tbl[] is the cachemode.
49 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
50 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
52 uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
53 [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
54 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
55 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
56 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
57 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
58 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
60 EXPORT_SYMBOL(__cachemode2pte_tbl);
62 uint8_t __pte2cachemode_tbl[8] = {
63 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
64 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
65 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
66 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
67 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
68 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
69 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
70 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
72 EXPORT_SYMBOL(__pte2cachemode_tbl);
74 static unsigned long __initdata pgt_buf_start;
75 static unsigned long __initdata pgt_buf_end;
76 static unsigned long __initdata pgt_buf_top;
78 static unsigned long min_pfn_mapped;
80 static bool __initdata can_use_brk_pgt = true;
83 * Pages returned are already directly mapped.
85 * Changing that is likely to break Xen, see commit:
87 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
89 * for detailed information.
91 __ref void *alloc_low_pages(unsigned int num)
93 unsigned long pfn;
94 int i;
96 if (after_bootmem) {
97 unsigned int order;
99 order = get_order((unsigned long)num << PAGE_SHIFT);
100 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
103 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
104 unsigned long ret = 0;
106 if (min_pfn_mapped < max_pfn_mapped) {
107 ret = memblock_find_in_range(
108 min_pfn_mapped << PAGE_SHIFT,
109 max_pfn_mapped << PAGE_SHIFT,
110 PAGE_SIZE * num , PAGE_SIZE);
112 if (ret)
113 memblock_reserve(ret, PAGE_SIZE * num);
114 else if (can_use_brk_pgt)
115 ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
117 if (!ret)
118 panic("alloc_low_pages: can not alloc memory");
120 pfn = ret >> PAGE_SHIFT;
121 } else {
122 pfn = pgt_buf_end;
123 pgt_buf_end += num;
124 printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
125 pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
128 for (i = 0; i < num; i++) {
129 void *adr;
131 adr = __va((pfn + i) << PAGE_SHIFT);
132 clear_page(adr);
135 return __va(pfn << PAGE_SHIFT);
139 * By default need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS.
140 * With KASLR memory randomization, depending on the machine e820 memory
141 * and the PUD alignment. We may need twice more pages when KASLR memory
142 * randomization is enabled.
144 #ifndef CONFIG_RANDOMIZE_MEMORY
145 #define INIT_PGD_PAGE_COUNT 6
146 #else
147 #define INIT_PGD_PAGE_COUNT 12
148 #endif
149 #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
150 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
151 void __init early_alloc_pgt_buf(void)
153 unsigned long tables = INIT_PGT_BUF_SIZE;
154 phys_addr_t base;
156 base = __pa(extend_brk(tables, PAGE_SIZE));
158 pgt_buf_start = base >> PAGE_SHIFT;
159 pgt_buf_end = pgt_buf_start;
160 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
163 int after_bootmem;
165 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
167 struct map_range {
168 unsigned long start;
169 unsigned long end;
170 unsigned page_size_mask;
173 static int page_size_mask;
175 static void __init probe_page_size_mask(void)
178 * For pagealloc debugging, identity mapping will use small pages.
179 * This will simplify cpa(), which otherwise needs to support splitting
180 * large pages into small in interrupt context, etc.
182 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
183 page_size_mask |= 1 << PG_LEVEL_2M;
184 else
185 direct_gbpages = 0;
187 /* Enable PSE if available */
188 if (boot_cpu_has(X86_FEATURE_PSE))
189 cr4_set_bits_and_update_boot(X86_CR4_PSE);
191 /* Enable PGE if available */
192 __supported_pte_mask &= ~_PAGE_GLOBAL;
193 if (boot_cpu_has(X86_FEATURE_PGE)) {
194 cr4_set_bits_and_update_boot(X86_CR4_PGE);
195 __supported_pte_mask |= _PAGE_GLOBAL;
198 /* By the default is everything supported: */
199 __default_kernel_pte_mask = __supported_pte_mask;
200 /* Except when with PTI where the kernel is mostly non-Global: */
201 if (cpu_feature_enabled(X86_FEATURE_PTI))
202 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
204 /* Enable 1 GB linear kernel mappings if available: */
205 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
206 printk(KERN_INFO "Using GB pages for direct mapping\n");
207 page_size_mask |= 1 << PG_LEVEL_1G;
208 } else {
209 direct_gbpages = 0;
213 static void setup_pcid(void)
215 if (!IS_ENABLED(CONFIG_X86_64))
216 return;
218 if (!boot_cpu_has(X86_FEATURE_PCID))
219 return;
221 if (boot_cpu_has(X86_FEATURE_PGE)) {
223 * This can't be cr4_set_bits_and_update_boot() -- the
224 * trampoline code can't handle CR4.PCIDE and it wouldn't
225 * do any good anyway. Despite the name,
226 * cr4_set_bits_and_update_boot() doesn't actually cause
227 * the bits in question to remain set all the way through
228 * the secondary boot asm.
230 * Instead, we brute-force it and set CR4.PCIDE manually in
231 * start_secondary().
233 cr4_set_bits(X86_CR4_PCIDE);
236 * INVPCID's single-context modes (2/3) only work if we set
237 * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable
238 * on systems that have X86_CR4_PCIDE clear, or that have
239 * no INVPCID support at all.
241 if (boot_cpu_has(X86_FEATURE_INVPCID))
242 setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
243 } else {
245 * flush_tlb_all(), as currently implemented, won't work if
246 * PCID is on but PGE is not. Since that combination
247 * doesn't exist on real hardware, there's no reason to try
248 * to fully support it, but it's polite to avoid corrupting
249 * data if we're on an improperly configured VM.
251 setup_clear_cpu_cap(X86_FEATURE_PCID);
255 #ifdef CONFIG_X86_32
256 #define NR_RANGE_MR 3
257 #else /* CONFIG_X86_64 */
258 #define NR_RANGE_MR 5
259 #endif
261 static int __meminit save_mr(struct map_range *mr, int nr_range,
262 unsigned long start_pfn, unsigned long end_pfn,
263 unsigned long page_size_mask)
265 if (start_pfn < end_pfn) {
266 if (nr_range >= NR_RANGE_MR)
267 panic("run out of range for init_memory_mapping\n");
268 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
269 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
270 mr[nr_range].page_size_mask = page_size_mask;
271 nr_range++;
274 return nr_range;
278 * adjust the page_size_mask for small range to go with
279 * big page size instead small one if nearby are ram too.
281 static void __ref adjust_range_page_size_mask(struct map_range *mr,
282 int nr_range)
284 int i;
286 for (i = 0; i < nr_range; i++) {
287 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
288 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
289 unsigned long start = round_down(mr[i].start, PMD_SIZE);
290 unsigned long end = round_up(mr[i].end, PMD_SIZE);
292 #ifdef CONFIG_X86_32
293 if ((end >> PAGE_SHIFT) > max_low_pfn)
294 continue;
295 #endif
297 if (memblock_is_region_memory(start, end - start))
298 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
300 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
301 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
302 unsigned long start = round_down(mr[i].start, PUD_SIZE);
303 unsigned long end = round_up(mr[i].end, PUD_SIZE);
305 if (memblock_is_region_memory(start, end - start))
306 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
311 static const char *page_size_string(struct map_range *mr)
313 static const char str_1g[] = "1G";
314 static const char str_2m[] = "2M";
315 static const char str_4m[] = "4M";
316 static const char str_4k[] = "4k";
318 if (mr->page_size_mask & (1<<PG_LEVEL_1G))
319 return str_1g;
321 * 32-bit without PAE has a 4M large page size.
322 * PG_LEVEL_2M is misnamed, but we can at least
323 * print out the right size in the string.
325 if (IS_ENABLED(CONFIG_X86_32) &&
326 !IS_ENABLED(CONFIG_X86_PAE) &&
327 mr->page_size_mask & (1<<PG_LEVEL_2M))
328 return str_4m;
330 if (mr->page_size_mask & (1<<PG_LEVEL_2M))
331 return str_2m;
333 return str_4k;
336 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
337 unsigned long start,
338 unsigned long end)
340 unsigned long start_pfn, end_pfn, limit_pfn;
341 unsigned long pfn;
342 int i;
344 limit_pfn = PFN_DOWN(end);
346 /* head if not big page alignment ? */
347 pfn = start_pfn = PFN_DOWN(start);
348 #ifdef CONFIG_X86_32
350 * Don't use a large page for the first 2/4MB of memory
351 * because there are often fixed size MTRRs in there
352 * and overlapping MTRRs into large pages can cause
353 * slowdowns.
355 if (pfn == 0)
356 end_pfn = PFN_DOWN(PMD_SIZE);
357 else
358 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
359 #else /* CONFIG_X86_64 */
360 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
361 #endif
362 if (end_pfn > limit_pfn)
363 end_pfn = limit_pfn;
364 if (start_pfn < end_pfn) {
365 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
366 pfn = end_pfn;
369 /* big page (2M) range */
370 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
371 #ifdef CONFIG_X86_32
372 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
373 #else /* CONFIG_X86_64 */
374 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
375 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
376 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
377 #endif
379 if (start_pfn < end_pfn) {
380 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
381 page_size_mask & (1<<PG_LEVEL_2M));
382 pfn = end_pfn;
385 #ifdef CONFIG_X86_64
386 /* big page (1G) range */
387 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
388 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
389 if (start_pfn < end_pfn) {
390 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
391 page_size_mask &
392 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
393 pfn = end_pfn;
396 /* tail is not big page (1G) alignment */
397 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
398 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
399 if (start_pfn < end_pfn) {
400 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
401 page_size_mask & (1<<PG_LEVEL_2M));
402 pfn = end_pfn;
404 #endif
406 /* tail is not big page (2M) alignment */
407 start_pfn = pfn;
408 end_pfn = limit_pfn;
409 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
411 if (!after_bootmem)
412 adjust_range_page_size_mask(mr, nr_range);
414 /* try to merge same page size and continuous */
415 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
416 unsigned long old_start;
417 if (mr[i].end != mr[i+1].start ||
418 mr[i].page_size_mask != mr[i+1].page_size_mask)
419 continue;
420 /* move it */
421 old_start = mr[i].start;
422 memmove(&mr[i], &mr[i+1],
423 (nr_range - 1 - i) * sizeof(struct map_range));
424 mr[i--].start = old_start;
425 nr_range--;
428 for (i = 0; i < nr_range; i++)
429 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
430 mr[i].start, mr[i].end - 1,
431 page_size_string(&mr[i]));
433 return nr_range;
436 struct range pfn_mapped[E820_MAX_ENTRIES];
437 int nr_pfn_mapped;
439 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
441 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
442 nr_pfn_mapped, start_pfn, end_pfn);
443 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
445 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
447 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
448 max_low_pfn_mapped = max(max_low_pfn_mapped,
449 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
452 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
454 int i;
456 for (i = 0; i < nr_pfn_mapped; i++)
457 if ((start_pfn >= pfn_mapped[i].start) &&
458 (end_pfn <= pfn_mapped[i].end))
459 return true;
461 return false;
465 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
466 * This runs before bootmem is initialized and gets pages directly from
467 * the physical memory. To access them they are temporarily mapped.
469 unsigned long __ref init_memory_mapping(unsigned long start,
470 unsigned long end)
472 struct map_range mr[NR_RANGE_MR];
473 unsigned long ret = 0;
474 int nr_range, i;
476 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
477 start, end - 1);
479 memset(mr, 0, sizeof(mr));
480 nr_range = split_mem_range(mr, 0, start, end);
482 for (i = 0; i < nr_range; i++)
483 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
484 mr[i].page_size_mask);
486 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
488 return ret >> PAGE_SHIFT;
492 * We need to iterate through the E820 memory map and create direct mappings
493 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
494 * create direct mappings for all pfns from [0 to max_low_pfn) and
495 * [4GB to max_pfn) because of possible memory holes in high addresses
496 * that cannot be marked as UC by fixed/variable range MTRRs.
497 * Depending on the alignment of E820 ranges, this may possibly result
498 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
500 * init_mem_mapping() calls init_range_memory_mapping() with big range.
501 * That range would have hole in the middle or ends, and only ram parts
502 * will be mapped in init_range_memory_mapping().
504 static unsigned long __init init_range_memory_mapping(
505 unsigned long r_start,
506 unsigned long r_end)
508 unsigned long start_pfn, end_pfn;
509 unsigned long mapped_ram_size = 0;
510 int i;
512 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
513 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
514 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
515 if (start >= end)
516 continue;
519 * if it is overlapping with brk pgt, we need to
520 * alloc pgt buf from memblock instead.
522 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
523 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
524 init_memory_mapping(start, end);
525 mapped_ram_size += end - start;
526 can_use_brk_pgt = true;
529 return mapped_ram_size;
532 static unsigned long __init get_new_step_size(unsigned long step_size)
535 * Initial mapped size is PMD_SIZE (2M).
536 * We can not set step_size to be PUD_SIZE (1G) yet.
537 * In worse case, when we cross the 1G boundary, and
538 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
539 * to map 1G range with PTE. Hence we use one less than the
540 * difference of page table level shifts.
542 * Don't need to worry about overflow in the top-down case, on 32bit,
543 * when step_size is 0, round_down() returns 0 for start, and that
544 * turns it into 0x100000000ULL.
545 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
546 * needs to be taken into consideration by the code below.
548 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
552 * memory_map_top_down - Map [map_start, map_end) top down
553 * @map_start: start address of the target memory range
554 * @map_end: end address of the target memory range
556 * This function will setup direct mapping for memory range
557 * [map_start, map_end) in top-down. That said, the page tables
558 * will be allocated at the end of the memory, and we map the
559 * memory in top-down.
561 static void __init memory_map_top_down(unsigned long map_start,
562 unsigned long map_end)
564 unsigned long real_end, start, last_start;
565 unsigned long step_size;
566 unsigned long addr;
567 unsigned long mapped_ram_size = 0;
569 /* xen has big range in reserved near end of ram, skip it at first.*/
570 addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
571 real_end = addr + PMD_SIZE;
573 /* step_size need to be small so pgt_buf from BRK could cover it */
574 step_size = PMD_SIZE;
575 max_pfn_mapped = 0; /* will get exact value next */
576 min_pfn_mapped = real_end >> PAGE_SHIFT;
577 last_start = start = real_end;
580 * We start from the top (end of memory) and go to the bottom.
581 * The memblock_find_in_range() gets us a block of RAM from the
582 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
583 * for page table.
585 while (last_start > map_start) {
586 if (last_start > step_size) {
587 start = round_down(last_start - 1, step_size);
588 if (start < map_start)
589 start = map_start;
590 } else
591 start = map_start;
592 mapped_ram_size += init_range_memory_mapping(start,
593 last_start);
594 last_start = start;
595 min_pfn_mapped = last_start >> PAGE_SHIFT;
596 if (mapped_ram_size >= step_size)
597 step_size = get_new_step_size(step_size);
600 if (real_end < map_end)
601 init_range_memory_mapping(real_end, map_end);
605 * memory_map_bottom_up - Map [map_start, map_end) bottom up
606 * @map_start: start address of the target memory range
607 * @map_end: end address of the target memory range
609 * This function will setup direct mapping for memory range
610 * [map_start, map_end) in bottom-up. Since we have limited the
611 * bottom-up allocation above the kernel, the page tables will
612 * be allocated just above the kernel and we map the memory
613 * in [map_start, map_end) in bottom-up.
615 static void __init memory_map_bottom_up(unsigned long map_start,
616 unsigned long map_end)
618 unsigned long next, start;
619 unsigned long mapped_ram_size = 0;
620 /* step_size need to be small so pgt_buf from BRK could cover it */
621 unsigned long step_size = PMD_SIZE;
623 start = map_start;
624 min_pfn_mapped = start >> PAGE_SHIFT;
627 * We start from the bottom (@map_start) and go to the top (@map_end).
628 * The memblock_find_in_range() gets us a block of RAM from the
629 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
630 * for page table.
632 while (start < map_end) {
633 if (step_size && map_end - start > step_size) {
634 next = round_up(start + 1, step_size);
635 if (next > map_end)
636 next = map_end;
637 } else {
638 next = map_end;
641 mapped_ram_size += init_range_memory_mapping(start, next);
642 start = next;
644 if (mapped_ram_size >= step_size)
645 step_size = get_new_step_size(step_size);
649 void __init init_mem_mapping(void)
651 unsigned long end;
653 pti_check_boottime_disable();
654 probe_page_size_mask();
655 setup_pcid();
657 #ifdef CONFIG_X86_64
658 end = max_pfn << PAGE_SHIFT;
659 #else
660 end = max_low_pfn << PAGE_SHIFT;
661 #endif
663 /* the ISA range is always mapped regardless of memory holes */
664 init_memory_mapping(0, ISA_END_ADDRESS);
666 /* Init the trampoline, possibly with KASLR memory offset */
667 init_trampoline();
670 * If the allocation is in bottom-up direction, we setup direct mapping
671 * in bottom-up, otherwise we setup direct mapping in top-down.
673 if (memblock_bottom_up()) {
674 unsigned long kernel_end = __pa_symbol(_end);
677 * we need two separate calls here. This is because we want to
678 * allocate page tables above the kernel. So we first map
679 * [kernel_end, end) to make memory above the kernel be mapped
680 * as soon as possible. And then use page tables allocated above
681 * the kernel to map [ISA_END_ADDRESS, kernel_end).
683 memory_map_bottom_up(kernel_end, end);
684 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
685 } else {
686 memory_map_top_down(ISA_END_ADDRESS, end);
689 #ifdef CONFIG_X86_64
690 if (max_pfn > max_low_pfn) {
691 /* can we preseve max_low_pfn ?*/
692 max_low_pfn = max_pfn;
694 #else
695 early_ioremap_page_table_range_init();
696 #endif
698 load_cr3(swapper_pg_dir);
699 __flush_tlb_all();
701 x86_init.hyper.init_mem_mapping();
703 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
707 * Initialize an mm_struct to be used during poking and a pointer to be used
708 * during patching.
710 void __init poking_init(void)
712 spinlock_t *ptl;
713 pte_t *ptep;
715 poking_mm = copy_init_mm();
716 BUG_ON(!poking_mm);
719 * Randomize the poking address, but make sure that the following page
720 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
721 * and adjust the address if the PMD ends after the first one.
723 poking_addr = TASK_UNMAPPED_BASE;
724 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
725 poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
726 (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
728 if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
729 poking_addr += PAGE_SIZE;
732 * We need to trigger the allocation of the page-tables that will be
733 * needed for poking now. Later, poking may be performed in an atomic
734 * section, which might cause allocation to fail.
736 ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
737 BUG_ON(!ptep);
738 pte_unmap_unlock(ptep, ptl);
742 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
743 * is valid. The argument is a physical page number.
745 * On x86, access has to be given to the first megabyte of RAM because that
746 * area traditionally contains BIOS code and data regions used by X, dosemu,
747 * and similar apps. Since they map the entire memory range, the whole range
748 * must be allowed (for mapping), but any areas that would otherwise be
749 * disallowed are flagged as being "zero filled" instead of rejected.
750 * Access has to be given to non-kernel-ram areas as well, these contain the
751 * PCI mmio resources as well as potential bios/acpi data regions.
753 int devmem_is_allowed(unsigned long pagenr)
755 if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
756 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
757 != REGION_DISJOINT) {
759 * For disallowed memory regions in the low 1MB range,
760 * request that the page be shown as all zeros.
762 if (pagenr < 256)
763 return 2;
765 return 0;
769 * This must follow RAM test, since System RAM is considered a
770 * restricted resource under CONFIG_STRICT_IOMEM.
772 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
773 /* Low 1MB bypasses iomem restrictions. */
774 if (pagenr < 256)
775 return 1;
777 return 0;
780 return 1;
783 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
785 unsigned long begin_aligned, end_aligned;
787 /* Make sure boundaries are page aligned */
788 begin_aligned = PAGE_ALIGN(begin);
789 end_aligned = end & PAGE_MASK;
791 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
792 begin = begin_aligned;
793 end = end_aligned;
796 if (begin >= end)
797 return;
800 * If debugging page accesses then do not free this memory but
801 * mark them not present - any buggy init-section access will
802 * create a kernel page fault:
804 if (debug_pagealloc_enabled()) {
805 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
806 begin, end - 1);
808 * Inform kmemleak about the hole in the memory since the
809 * corresponding pages will be unmapped.
811 kmemleak_free_part((void *)begin, end - begin);
812 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
813 } else {
815 * We just marked the kernel text read only above, now that
816 * we are going to free part of that, we need to make that
817 * writeable and non-executable first.
819 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
820 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
822 free_reserved_area((void *)begin, (void *)end,
823 POISON_FREE_INITMEM, what);
828 * begin/end can be in the direct map or the "high kernel mapping"
829 * used for the kernel image only. free_init_pages() will do the
830 * right thing for either kind of address.
832 void free_kernel_image_pages(const char *what, void *begin, void *end)
834 unsigned long begin_ul = (unsigned long)begin;
835 unsigned long end_ul = (unsigned long)end;
836 unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
838 free_init_pages(what, begin_ul, end_ul);
841 * PTI maps some of the kernel into userspace. For performance,
842 * this includes some kernel areas that do not contain secrets.
843 * Those areas might be adjacent to the parts of the kernel image
844 * being freed, which may contain secrets. Remove the "high kernel
845 * image mapping" for these freed areas, ensuring they are not even
846 * potentially vulnerable to Meltdown regardless of the specific
847 * optimizations PTI is currently using.
849 * The "noalias" prevents unmapping the direct map alias which is
850 * needed to access the freed pages.
852 * This is only valid for 64bit kernels. 32bit has only one mapping
853 * which can't be treated in this way for obvious reasons.
855 if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
856 set_memory_np_noalias(begin_ul, len_pages);
859 void __weak mem_encrypt_free_decrypted_mem(void) { }
861 void __ref free_initmem(void)
863 e820__reallocate_tables();
865 mem_encrypt_free_decrypted_mem();
867 free_kernel_image_pages("unused kernel image (initmem)",
868 &__init_begin, &__init_end);
871 #ifdef CONFIG_BLK_DEV_INITRD
872 void __init free_initrd_mem(unsigned long start, unsigned long end)
875 * end could be not aligned, and We can not align that,
876 * decompresser could be confused by aligned initrd_end
877 * We already reserve the end partial page before in
878 * - i386_start_kernel()
879 * - x86_64_start_kernel()
880 * - relocate_initrd()
881 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
883 free_init_pages("initrd", start, PAGE_ALIGN(end));
885 #endif
888 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
889 * and pass it to the MM layer - to help it set zone watermarks more
890 * accurately.
892 * Done on 64-bit systems only for the time being, although 32-bit systems
893 * might benefit from this as well.
895 void __init memblock_find_dma_reserve(void)
897 #ifdef CONFIG_X86_64
898 u64 nr_pages = 0, nr_free_pages = 0;
899 unsigned long start_pfn, end_pfn;
900 phys_addr_t start_addr, end_addr;
901 int i;
902 u64 u;
905 * Iterate over all memory ranges (free and reserved ones alike),
906 * to calculate the total number of pages in the first 16 MB of RAM:
908 nr_pages = 0;
909 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
910 start_pfn = min(start_pfn, MAX_DMA_PFN);
911 end_pfn = min(end_pfn, MAX_DMA_PFN);
913 nr_pages += end_pfn - start_pfn;
917 * Iterate over free memory ranges to calculate the number of free
918 * pages in the DMA zone, while not counting potential partial
919 * pages at the beginning or the end of the range:
921 nr_free_pages = 0;
922 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
923 start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
924 end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
926 if (start_pfn < end_pfn)
927 nr_free_pages += end_pfn - start_pfn;
930 set_dma_reserve(nr_pages - nr_free_pages);
931 #endif
934 void __init zone_sizes_init(void)
936 unsigned long max_zone_pfns[MAX_NR_ZONES];
938 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
940 #ifdef CONFIG_ZONE_DMA
941 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
942 #endif
943 #ifdef CONFIG_ZONE_DMA32
944 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
945 #endif
946 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
947 #ifdef CONFIG_HIGHMEM
948 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
949 #endif
951 free_area_init_nodes(max_zone_pfns);
954 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
955 .loaded_mm = &init_mm,
956 .next_asid = 1,
957 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
959 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate);
961 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
963 /* entry 0 MUST be WB (hardwired to speed up translations) */
964 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
966 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
967 __pte2cachemode_tbl[entry] = cache;
970 #ifdef CONFIG_SWAP
971 unsigned long max_swapfile_size(void)
973 unsigned long pages;
975 pages = generic_max_swapfile_size();
977 if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
978 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
979 unsigned long long l1tf_limit = l1tf_pfn_limit();
981 * We encode swap offsets also with 3 bits below those for pfn
982 * which makes the usable limit higher.
984 #if CONFIG_PGTABLE_LEVELS > 2
985 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
986 #endif
987 pages = min_t(unsigned long long, l1tf_limit, pages);
989 return pages;
991 #endif