2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/swapfile.h>
7 #include <linux/swapops.h>
8 #include <linux/kmemleak.h>
9 #include <linux/sched/task.h>
11 #include <asm/set_memory.h>
12 #include <asm/e820/api.h>
15 #include <asm/page_types.h>
16 #include <asm/sections.h>
17 #include <asm/setup.h>
18 #include <asm/tlbflush.h>
20 #include <asm/proto.h>
21 #include <asm/dma.h> /* for MAX_DMA_PFN */
22 #include <asm/microcode.h>
23 #include <asm/kaslr.h>
24 #include <asm/hypervisor.h>
25 #include <asm/cpufeature.h>
27 #include <asm/text-patching.h>
30 * We need to define the tracepoints somewhere, and tlb.c
31 * is only compied when SMP=y.
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/tlb.h>
36 #include "mm_internal.h"
39 * Tables translating between page_cache_type_t and pte encoding.
41 * The default values are defined statically as minimal supported mode;
42 * WC and WT fall back to UC-. pat_init() updates these values to support
43 * more cache modes, WC and WT, when it is safe to do so. See pat_init()
44 * for the details. Note, __early_ioremap() used during early boot-time
45 * takes pgprot_t (pte encoding) and does not use these tables.
47 * Index into __cachemode2pte_tbl[] is the cachemode.
49 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
50 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
52 uint16_t __cachemode2pte_tbl
[_PAGE_CACHE_MODE_NUM
] = {
53 [_PAGE_CACHE_MODE_WB
] = 0 | 0 ,
54 [_PAGE_CACHE_MODE_WC
] = 0 | _PAGE_PCD
,
55 [_PAGE_CACHE_MODE_UC_MINUS
] = 0 | _PAGE_PCD
,
56 [_PAGE_CACHE_MODE_UC
] = _PAGE_PWT
| _PAGE_PCD
,
57 [_PAGE_CACHE_MODE_WT
] = 0 | _PAGE_PCD
,
58 [_PAGE_CACHE_MODE_WP
] = 0 | _PAGE_PCD
,
60 EXPORT_SYMBOL(__cachemode2pte_tbl
);
62 uint8_t __pte2cachemode_tbl
[8] = {
63 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB
,
64 [__pte2cm_idx(_PAGE_PWT
| 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS
,
65 [__pte2cm_idx( 0 | _PAGE_PCD
| 0 )] = _PAGE_CACHE_MODE_UC_MINUS
,
66 [__pte2cm_idx(_PAGE_PWT
| _PAGE_PCD
| 0 )] = _PAGE_CACHE_MODE_UC
,
67 [__pte2cm_idx( 0 | 0 | _PAGE_PAT
)] = _PAGE_CACHE_MODE_WB
,
68 [__pte2cm_idx(_PAGE_PWT
| 0 | _PAGE_PAT
)] = _PAGE_CACHE_MODE_UC_MINUS
,
69 [__pte2cm_idx(0 | _PAGE_PCD
| _PAGE_PAT
)] = _PAGE_CACHE_MODE_UC_MINUS
,
70 [__pte2cm_idx(_PAGE_PWT
| _PAGE_PCD
| _PAGE_PAT
)] = _PAGE_CACHE_MODE_UC
,
72 EXPORT_SYMBOL(__pte2cachemode_tbl
);
74 static unsigned long __initdata pgt_buf_start
;
75 static unsigned long __initdata pgt_buf_end
;
76 static unsigned long __initdata pgt_buf_top
;
78 static unsigned long min_pfn_mapped
;
80 static bool __initdata can_use_brk_pgt
= true;
83 * Pages returned are already directly mapped.
85 * Changing that is likely to break Xen, see commit:
87 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
89 * for detailed information.
91 __ref
void *alloc_low_pages(unsigned int num
)
99 order
= get_order((unsigned long)num
<< PAGE_SHIFT
);
100 return (void *)__get_free_pages(GFP_ATOMIC
| __GFP_ZERO
, order
);
103 if ((pgt_buf_end
+ num
) > pgt_buf_top
|| !can_use_brk_pgt
) {
104 unsigned long ret
= 0;
106 if (min_pfn_mapped
< max_pfn_mapped
) {
107 ret
= memblock_find_in_range(
108 min_pfn_mapped
<< PAGE_SHIFT
,
109 max_pfn_mapped
<< PAGE_SHIFT
,
110 PAGE_SIZE
* num
, PAGE_SIZE
);
113 memblock_reserve(ret
, PAGE_SIZE
* num
);
114 else if (can_use_brk_pgt
)
115 ret
= __pa(extend_brk(PAGE_SIZE
* num
, PAGE_SIZE
));
118 panic("alloc_low_pages: can not alloc memory");
120 pfn
= ret
>> PAGE_SHIFT
;
124 printk(KERN_DEBUG
"BRK [%#010lx, %#010lx] PGTABLE\n",
125 pfn
<< PAGE_SHIFT
, (pgt_buf_end
<< PAGE_SHIFT
) - 1);
128 for (i
= 0; i
< num
; i
++) {
131 adr
= __va((pfn
+ i
) << PAGE_SHIFT
);
135 return __va(pfn
<< PAGE_SHIFT
);
139 * By default need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS.
140 * With KASLR memory randomization, depending on the machine e820 memory
141 * and the PUD alignment. We may need twice more pages when KASLR memory
142 * randomization is enabled.
144 #ifndef CONFIG_RANDOMIZE_MEMORY
145 #define INIT_PGD_PAGE_COUNT 6
147 #define INIT_PGD_PAGE_COUNT 12
149 #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
150 RESERVE_BRK(early_pgt_alloc
, INIT_PGT_BUF_SIZE
);
151 void __init
early_alloc_pgt_buf(void)
153 unsigned long tables
= INIT_PGT_BUF_SIZE
;
156 base
= __pa(extend_brk(tables
, PAGE_SIZE
));
158 pgt_buf_start
= base
>> PAGE_SHIFT
;
159 pgt_buf_end
= pgt_buf_start
;
160 pgt_buf_top
= pgt_buf_start
+ (tables
>> PAGE_SHIFT
);
165 early_param_on_off("gbpages", "nogbpages", direct_gbpages
, CONFIG_X86_DIRECT_GBPAGES
);
170 unsigned page_size_mask
;
173 static int page_size_mask
;
175 static void __init
probe_page_size_mask(void)
178 * For pagealloc debugging, identity mapping will use small pages.
179 * This will simplify cpa(), which otherwise needs to support splitting
180 * large pages into small in interrupt context, etc.
182 if (boot_cpu_has(X86_FEATURE_PSE
) && !debug_pagealloc_enabled())
183 page_size_mask
|= 1 << PG_LEVEL_2M
;
187 /* Enable PSE if available */
188 if (boot_cpu_has(X86_FEATURE_PSE
))
189 cr4_set_bits_and_update_boot(X86_CR4_PSE
);
191 /* Enable PGE if available */
192 __supported_pte_mask
&= ~_PAGE_GLOBAL
;
193 if (boot_cpu_has(X86_FEATURE_PGE
)) {
194 cr4_set_bits_and_update_boot(X86_CR4_PGE
);
195 __supported_pte_mask
|= _PAGE_GLOBAL
;
198 /* By the default is everything supported: */
199 __default_kernel_pte_mask
= __supported_pte_mask
;
200 /* Except when with PTI where the kernel is mostly non-Global: */
201 if (cpu_feature_enabled(X86_FEATURE_PTI
))
202 __default_kernel_pte_mask
&= ~_PAGE_GLOBAL
;
204 /* Enable 1 GB linear kernel mappings if available: */
205 if (direct_gbpages
&& boot_cpu_has(X86_FEATURE_GBPAGES
)) {
206 printk(KERN_INFO
"Using GB pages for direct mapping\n");
207 page_size_mask
|= 1 << PG_LEVEL_1G
;
213 static void setup_pcid(void)
215 if (!IS_ENABLED(CONFIG_X86_64
))
218 if (!boot_cpu_has(X86_FEATURE_PCID
))
221 if (boot_cpu_has(X86_FEATURE_PGE
)) {
223 * This can't be cr4_set_bits_and_update_boot() -- the
224 * trampoline code can't handle CR4.PCIDE and it wouldn't
225 * do any good anyway. Despite the name,
226 * cr4_set_bits_and_update_boot() doesn't actually cause
227 * the bits in question to remain set all the way through
228 * the secondary boot asm.
230 * Instead, we brute-force it and set CR4.PCIDE manually in
233 cr4_set_bits(X86_CR4_PCIDE
);
236 * INVPCID's single-context modes (2/3) only work if we set
237 * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable
238 * on systems that have X86_CR4_PCIDE clear, or that have
239 * no INVPCID support at all.
241 if (boot_cpu_has(X86_FEATURE_INVPCID
))
242 setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE
);
245 * flush_tlb_all(), as currently implemented, won't work if
246 * PCID is on but PGE is not. Since that combination
247 * doesn't exist on real hardware, there's no reason to try
248 * to fully support it, but it's polite to avoid corrupting
249 * data if we're on an improperly configured VM.
251 setup_clear_cpu_cap(X86_FEATURE_PCID
);
256 #define NR_RANGE_MR 3
257 #else /* CONFIG_X86_64 */
258 #define NR_RANGE_MR 5
261 static int __meminit
save_mr(struct map_range
*mr
, int nr_range
,
262 unsigned long start_pfn
, unsigned long end_pfn
,
263 unsigned long page_size_mask
)
265 if (start_pfn
< end_pfn
) {
266 if (nr_range
>= NR_RANGE_MR
)
267 panic("run out of range for init_memory_mapping\n");
268 mr
[nr_range
].start
= start_pfn
<<PAGE_SHIFT
;
269 mr
[nr_range
].end
= end_pfn
<<PAGE_SHIFT
;
270 mr
[nr_range
].page_size_mask
= page_size_mask
;
278 * adjust the page_size_mask for small range to go with
279 * big page size instead small one if nearby are ram too.
281 static void __ref
adjust_range_page_size_mask(struct map_range
*mr
,
286 for (i
= 0; i
< nr_range
; i
++) {
287 if ((page_size_mask
& (1<<PG_LEVEL_2M
)) &&
288 !(mr
[i
].page_size_mask
& (1<<PG_LEVEL_2M
))) {
289 unsigned long start
= round_down(mr
[i
].start
, PMD_SIZE
);
290 unsigned long end
= round_up(mr
[i
].end
, PMD_SIZE
);
293 if ((end
>> PAGE_SHIFT
) > max_low_pfn
)
297 if (memblock_is_region_memory(start
, end
- start
))
298 mr
[i
].page_size_mask
|= 1<<PG_LEVEL_2M
;
300 if ((page_size_mask
& (1<<PG_LEVEL_1G
)) &&
301 !(mr
[i
].page_size_mask
& (1<<PG_LEVEL_1G
))) {
302 unsigned long start
= round_down(mr
[i
].start
, PUD_SIZE
);
303 unsigned long end
= round_up(mr
[i
].end
, PUD_SIZE
);
305 if (memblock_is_region_memory(start
, end
- start
))
306 mr
[i
].page_size_mask
|= 1<<PG_LEVEL_1G
;
311 static const char *page_size_string(struct map_range
*mr
)
313 static const char str_1g
[] = "1G";
314 static const char str_2m
[] = "2M";
315 static const char str_4m
[] = "4M";
316 static const char str_4k
[] = "4k";
318 if (mr
->page_size_mask
& (1<<PG_LEVEL_1G
))
321 * 32-bit without PAE has a 4M large page size.
322 * PG_LEVEL_2M is misnamed, but we can at least
323 * print out the right size in the string.
325 if (IS_ENABLED(CONFIG_X86_32
) &&
326 !IS_ENABLED(CONFIG_X86_PAE
) &&
327 mr
->page_size_mask
& (1<<PG_LEVEL_2M
))
330 if (mr
->page_size_mask
& (1<<PG_LEVEL_2M
))
336 static int __meminit
split_mem_range(struct map_range
*mr
, int nr_range
,
340 unsigned long start_pfn
, end_pfn
, limit_pfn
;
344 limit_pfn
= PFN_DOWN(end
);
346 /* head if not big page alignment ? */
347 pfn
= start_pfn
= PFN_DOWN(start
);
350 * Don't use a large page for the first 2/4MB of memory
351 * because there are often fixed size MTRRs in there
352 * and overlapping MTRRs into large pages can cause
356 end_pfn
= PFN_DOWN(PMD_SIZE
);
358 end_pfn
= round_up(pfn
, PFN_DOWN(PMD_SIZE
));
359 #else /* CONFIG_X86_64 */
360 end_pfn
= round_up(pfn
, PFN_DOWN(PMD_SIZE
));
362 if (end_pfn
> limit_pfn
)
364 if (start_pfn
< end_pfn
) {
365 nr_range
= save_mr(mr
, nr_range
, start_pfn
, end_pfn
, 0);
369 /* big page (2M) range */
370 start_pfn
= round_up(pfn
, PFN_DOWN(PMD_SIZE
));
372 end_pfn
= round_down(limit_pfn
, PFN_DOWN(PMD_SIZE
));
373 #else /* CONFIG_X86_64 */
374 end_pfn
= round_up(pfn
, PFN_DOWN(PUD_SIZE
));
375 if (end_pfn
> round_down(limit_pfn
, PFN_DOWN(PMD_SIZE
)))
376 end_pfn
= round_down(limit_pfn
, PFN_DOWN(PMD_SIZE
));
379 if (start_pfn
< end_pfn
) {
380 nr_range
= save_mr(mr
, nr_range
, start_pfn
, end_pfn
,
381 page_size_mask
& (1<<PG_LEVEL_2M
));
386 /* big page (1G) range */
387 start_pfn
= round_up(pfn
, PFN_DOWN(PUD_SIZE
));
388 end_pfn
= round_down(limit_pfn
, PFN_DOWN(PUD_SIZE
));
389 if (start_pfn
< end_pfn
) {
390 nr_range
= save_mr(mr
, nr_range
, start_pfn
, end_pfn
,
392 ((1<<PG_LEVEL_2M
)|(1<<PG_LEVEL_1G
)));
396 /* tail is not big page (1G) alignment */
397 start_pfn
= round_up(pfn
, PFN_DOWN(PMD_SIZE
));
398 end_pfn
= round_down(limit_pfn
, PFN_DOWN(PMD_SIZE
));
399 if (start_pfn
< end_pfn
) {
400 nr_range
= save_mr(mr
, nr_range
, start_pfn
, end_pfn
,
401 page_size_mask
& (1<<PG_LEVEL_2M
));
406 /* tail is not big page (2M) alignment */
409 nr_range
= save_mr(mr
, nr_range
, start_pfn
, end_pfn
, 0);
412 adjust_range_page_size_mask(mr
, nr_range
);
414 /* try to merge same page size and continuous */
415 for (i
= 0; nr_range
> 1 && i
< nr_range
- 1; i
++) {
416 unsigned long old_start
;
417 if (mr
[i
].end
!= mr
[i
+1].start
||
418 mr
[i
].page_size_mask
!= mr
[i
+1].page_size_mask
)
421 old_start
= mr
[i
].start
;
422 memmove(&mr
[i
], &mr
[i
+1],
423 (nr_range
- 1 - i
) * sizeof(struct map_range
));
424 mr
[i
--].start
= old_start
;
428 for (i
= 0; i
< nr_range
; i
++)
429 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
430 mr
[i
].start
, mr
[i
].end
- 1,
431 page_size_string(&mr
[i
]));
436 struct range pfn_mapped
[E820_MAX_ENTRIES
];
439 static void add_pfn_range_mapped(unsigned long start_pfn
, unsigned long end_pfn
)
441 nr_pfn_mapped
= add_range_with_merge(pfn_mapped
, E820_MAX_ENTRIES
,
442 nr_pfn_mapped
, start_pfn
, end_pfn
);
443 nr_pfn_mapped
= clean_sort_range(pfn_mapped
, E820_MAX_ENTRIES
);
445 max_pfn_mapped
= max(max_pfn_mapped
, end_pfn
);
447 if (start_pfn
< (1UL<<(32-PAGE_SHIFT
)))
448 max_low_pfn_mapped
= max(max_low_pfn_mapped
,
449 min(end_pfn
, 1UL<<(32-PAGE_SHIFT
)));
452 bool pfn_range_is_mapped(unsigned long start_pfn
, unsigned long end_pfn
)
456 for (i
= 0; i
< nr_pfn_mapped
; i
++)
457 if ((start_pfn
>= pfn_mapped
[i
].start
) &&
458 (end_pfn
<= pfn_mapped
[i
].end
))
465 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
466 * This runs before bootmem is initialized and gets pages directly from
467 * the physical memory. To access them they are temporarily mapped.
469 unsigned long __ref
init_memory_mapping(unsigned long start
,
472 struct map_range mr
[NR_RANGE_MR
];
473 unsigned long ret
= 0;
476 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
479 memset(mr
, 0, sizeof(mr
));
480 nr_range
= split_mem_range(mr
, 0, start
, end
);
482 for (i
= 0; i
< nr_range
; i
++)
483 ret
= kernel_physical_mapping_init(mr
[i
].start
, mr
[i
].end
,
484 mr
[i
].page_size_mask
);
486 add_pfn_range_mapped(start
>> PAGE_SHIFT
, ret
>> PAGE_SHIFT
);
488 return ret
>> PAGE_SHIFT
;
492 * We need to iterate through the E820 memory map and create direct mappings
493 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
494 * create direct mappings for all pfns from [0 to max_low_pfn) and
495 * [4GB to max_pfn) because of possible memory holes in high addresses
496 * that cannot be marked as UC by fixed/variable range MTRRs.
497 * Depending on the alignment of E820 ranges, this may possibly result
498 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
500 * init_mem_mapping() calls init_range_memory_mapping() with big range.
501 * That range would have hole in the middle or ends, and only ram parts
502 * will be mapped in init_range_memory_mapping().
504 static unsigned long __init
init_range_memory_mapping(
505 unsigned long r_start
,
508 unsigned long start_pfn
, end_pfn
;
509 unsigned long mapped_ram_size
= 0;
512 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, NULL
) {
513 u64 start
= clamp_val(PFN_PHYS(start_pfn
), r_start
, r_end
);
514 u64 end
= clamp_val(PFN_PHYS(end_pfn
), r_start
, r_end
);
519 * if it is overlapping with brk pgt, we need to
520 * alloc pgt buf from memblock instead.
522 can_use_brk_pgt
= max(start
, (u64
)pgt_buf_end
<<PAGE_SHIFT
) >=
523 min(end
, (u64
)pgt_buf_top
<<PAGE_SHIFT
);
524 init_memory_mapping(start
, end
);
525 mapped_ram_size
+= end
- start
;
526 can_use_brk_pgt
= true;
529 return mapped_ram_size
;
532 static unsigned long __init
get_new_step_size(unsigned long step_size
)
535 * Initial mapped size is PMD_SIZE (2M).
536 * We can not set step_size to be PUD_SIZE (1G) yet.
537 * In worse case, when we cross the 1G boundary, and
538 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
539 * to map 1G range with PTE. Hence we use one less than the
540 * difference of page table level shifts.
542 * Don't need to worry about overflow in the top-down case, on 32bit,
543 * when step_size is 0, round_down() returns 0 for start, and that
544 * turns it into 0x100000000ULL.
545 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
546 * needs to be taken into consideration by the code below.
548 return step_size
<< (PMD_SHIFT
- PAGE_SHIFT
- 1);
552 * memory_map_top_down - Map [map_start, map_end) top down
553 * @map_start: start address of the target memory range
554 * @map_end: end address of the target memory range
556 * This function will setup direct mapping for memory range
557 * [map_start, map_end) in top-down. That said, the page tables
558 * will be allocated at the end of the memory, and we map the
559 * memory in top-down.
561 static void __init
memory_map_top_down(unsigned long map_start
,
562 unsigned long map_end
)
564 unsigned long real_end
, start
, last_start
;
565 unsigned long step_size
;
567 unsigned long mapped_ram_size
= 0;
569 /* xen has big range in reserved near end of ram, skip it at first.*/
570 addr
= memblock_find_in_range(map_start
, map_end
, PMD_SIZE
, PMD_SIZE
);
571 real_end
= addr
+ PMD_SIZE
;
573 /* step_size need to be small so pgt_buf from BRK could cover it */
574 step_size
= PMD_SIZE
;
575 max_pfn_mapped
= 0; /* will get exact value next */
576 min_pfn_mapped
= real_end
>> PAGE_SHIFT
;
577 last_start
= start
= real_end
;
580 * We start from the top (end of memory) and go to the bottom.
581 * The memblock_find_in_range() gets us a block of RAM from the
582 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
585 while (last_start
> map_start
) {
586 if (last_start
> step_size
) {
587 start
= round_down(last_start
- 1, step_size
);
588 if (start
< map_start
)
592 mapped_ram_size
+= init_range_memory_mapping(start
,
595 min_pfn_mapped
= last_start
>> PAGE_SHIFT
;
596 if (mapped_ram_size
>= step_size
)
597 step_size
= get_new_step_size(step_size
);
600 if (real_end
< map_end
)
601 init_range_memory_mapping(real_end
, map_end
);
605 * memory_map_bottom_up - Map [map_start, map_end) bottom up
606 * @map_start: start address of the target memory range
607 * @map_end: end address of the target memory range
609 * This function will setup direct mapping for memory range
610 * [map_start, map_end) in bottom-up. Since we have limited the
611 * bottom-up allocation above the kernel, the page tables will
612 * be allocated just above the kernel and we map the memory
613 * in [map_start, map_end) in bottom-up.
615 static void __init
memory_map_bottom_up(unsigned long map_start
,
616 unsigned long map_end
)
618 unsigned long next
, start
;
619 unsigned long mapped_ram_size
= 0;
620 /* step_size need to be small so pgt_buf from BRK could cover it */
621 unsigned long step_size
= PMD_SIZE
;
624 min_pfn_mapped
= start
>> PAGE_SHIFT
;
627 * We start from the bottom (@map_start) and go to the top (@map_end).
628 * The memblock_find_in_range() gets us a block of RAM from the
629 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
632 while (start
< map_end
) {
633 if (step_size
&& map_end
- start
> step_size
) {
634 next
= round_up(start
+ 1, step_size
);
641 mapped_ram_size
+= init_range_memory_mapping(start
, next
);
644 if (mapped_ram_size
>= step_size
)
645 step_size
= get_new_step_size(step_size
);
649 void __init
init_mem_mapping(void)
653 pti_check_boottime_disable();
654 probe_page_size_mask();
658 end
= max_pfn
<< PAGE_SHIFT
;
660 end
= max_low_pfn
<< PAGE_SHIFT
;
663 /* the ISA range is always mapped regardless of memory holes */
664 init_memory_mapping(0, ISA_END_ADDRESS
);
666 /* Init the trampoline, possibly with KASLR memory offset */
670 * If the allocation is in bottom-up direction, we setup direct mapping
671 * in bottom-up, otherwise we setup direct mapping in top-down.
673 if (memblock_bottom_up()) {
674 unsigned long kernel_end
= __pa_symbol(_end
);
677 * we need two separate calls here. This is because we want to
678 * allocate page tables above the kernel. So we first map
679 * [kernel_end, end) to make memory above the kernel be mapped
680 * as soon as possible. And then use page tables allocated above
681 * the kernel to map [ISA_END_ADDRESS, kernel_end).
683 memory_map_bottom_up(kernel_end
, end
);
684 memory_map_bottom_up(ISA_END_ADDRESS
, kernel_end
);
686 memory_map_top_down(ISA_END_ADDRESS
, end
);
690 if (max_pfn
> max_low_pfn
) {
691 /* can we preseve max_low_pfn ?*/
692 max_low_pfn
= max_pfn
;
695 early_ioremap_page_table_range_init();
698 load_cr3(swapper_pg_dir
);
701 x86_init
.hyper
.init_mem_mapping();
703 early_memtest(0, max_pfn_mapped
<< PAGE_SHIFT
);
707 * Initialize an mm_struct to be used during poking and a pointer to be used
710 void __init
poking_init(void)
715 poking_mm
= copy_init_mm();
719 * Randomize the poking address, but make sure that the following page
720 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
721 * and adjust the address if the PMD ends after the first one.
723 poking_addr
= TASK_UNMAPPED_BASE
;
724 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE
))
725 poking_addr
+= (kaslr_get_random_long("Poking") & PAGE_MASK
) %
726 (TASK_SIZE
- TASK_UNMAPPED_BASE
- 3 * PAGE_SIZE
);
728 if (((poking_addr
+ PAGE_SIZE
) & ~PMD_MASK
) == 0)
729 poking_addr
+= PAGE_SIZE
;
732 * We need to trigger the allocation of the page-tables that will be
733 * needed for poking now. Later, poking may be performed in an atomic
734 * section, which might cause allocation to fail.
736 ptep
= get_locked_pte(poking_mm
, poking_addr
, &ptl
);
738 pte_unmap_unlock(ptep
, ptl
);
742 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
743 * is valid. The argument is a physical page number.
745 * On x86, access has to be given to the first megabyte of RAM because that
746 * area traditionally contains BIOS code and data regions used by X, dosemu,
747 * and similar apps. Since they map the entire memory range, the whole range
748 * must be allowed (for mapping), but any areas that would otherwise be
749 * disallowed are flagged as being "zero filled" instead of rejected.
750 * Access has to be given to non-kernel-ram areas as well, these contain the
751 * PCI mmio resources as well as potential bios/acpi data regions.
753 int devmem_is_allowed(unsigned long pagenr
)
755 if (region_intersects(PFN_PHYS(pagenr
), PAGE_SIZE
,
756 IORESOURCE_SYSTEM_RAM
, IORES_DESC_NONE
)
757 != REGION_DISJOINT
) {
759 * For disallowed memory regions in the low 1MB range,
760 * request that the page be shown as all zeros.
769 * This must follow RAM test, since System RAM is considered a
770 * restricted resource under CONFIG_STRICT_IOMEM.
772 if (iomem_is_exclusive(pagenr
<< PAGE_SHIFT
)) {
773 /* Low 1MB bypasses iomem restrictions. */
783 void free_init_pages(const char *what
, unsigned long begin
, unsigned long end
)
785 unsigned long begin_aligned
, end_aligned
;
787 /* Make sure boundaries are page aligned */
788 begin_aligned
= PAGE_ALIGN(begin
);
789 end_aligned
= end
& PAGE_MASK
;
791 if (WARN_ON(begin_aligned
!= begin
|| end_aligned
!= end
)) {
792 begin
= begin_aligned
;
800 * If debugging page accesses then do not free this memory but
801 * mark them not present - any buggy init-section access will
802 * create a kernel page fault:
804 if (debug_pagealloc_enabled()) {
805 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
808 * Inform kmemleak about the hole in the memory since the
809 * corresponding pages will be unmapped.
811 kmemleak_free_part((void *)begin
, end
- begin
);
812 set_memory_np(begin
, (end
- begin
) >> PAGE_SHIFT
);
815 * We just marked the kernel text read only above, now that
816 * we are going to free part of that, we need to make that
817 * writeable and non-executable first.
819 set_memory_nx(begin
, (end
- begin
) >> PAGE_SHIFT
);
820 set_memory_rw(begin
, (end
- begin
) >> PAGE_SHIFT
);
822 free_reserved_area((void *)begin
, (void *)end
,
823 POISON_FREE_INITMEM
, what
);
828 * begin/end can be in the direct map or the "high kernel mapping"
829 * used for the kernel image only. free_init_pages() will do the
830 * right thing for either kind of address.
832 void free_kernel_image_pages(const char *what
, void *begin
, void *end
)
834 unsigned long begin_ul
= (unsigned long)begin
;
835 unsigned long end_ul
= (unsigned long)end
;
836 unsigned long len_pages
= (end_ul
- begin_ul
) >> PAGE_SHIFT
;
838 free_init_pages(what
, begin_ul
, end_ul
);
841 * PTI maps some of the kernel into userspace. For performance,
842 * this includes some kernel areas that do not contain secrets.
843 * Those areas might be adjacent to the parts of the kernel image
844 * being freed, which may contain secrets. Remove the "high kernel
845 * image mapping" for these freed areas, ensuring they are not even
846 * potentially vulnerable to Meltdown regardless of the specific
847 * optimizations PTI is currently using.
849 * The "noalias" prevents unmapping the direct map alias which is
850 * needed to access the freed pages.
852 * This is only valid for 64bit kernels. 32bit has only one mapping
853 * which can't be treated in this way for obvious reasons.
855 if (IS_ENABLED(CONFIG_X86_64
) && cpu_feature_enabled(X86_FEATURE_PTI
))
856 set_memory_np_noalias(begin_ul
, len_pages
);
859 void __weak
mem_encrypt_free_decrypted_mem(void) { }
861 void __ref
free_initmem(void)
863 e820__reallocate_tables();
865 mem_encrypt_free_decrypted_mem();
867 free_kernel_image_pages("unused kernel image (initmem)",
868 &__init_begin
, &__init_end
);
871 #ifdef CONFIG_BLK_DEV_INITRD
872 void __init
free_initrd_mem(unsigned long start
, unsigned long end
)
875 * end could be not aligned, and We can not align that,
876 * decompresser could be confused by aligned initrd_end
877 * We already reserve the end partial page before in
878 * - i386_start_kernel()
879 * - x86_64_start_kernel()
880 * - relocate_initrd()
881 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
883 free_init_pages("initrd", start
, PAGE_ALIGN(end
));
888 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
889 * and pass it to the MM layer - to help it set zone watermarks more
892 * Done on 64-bit systems only for the time being, although 32-bit systems
893 * might benefit from this as well.
895 void __init
memblock_find_dma_reserve(void)
898 u64 nr_pages
= 0, nr_free_pages
= 0;
899 unsigned long start_pfn
, end_pfn
;
900 phys_addr_t start_addr
, end_addr
;
905 * Iterate over all memory ranges (free and reserved ones alike),
906 * to calculate the total number of pages in the first 16 MB of RAM:
909 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, NULL
) {
910 start_pfn
= min(start_pfn
, MAX_DMA_PFN
);
911 end_pfn
= min(end_pfn
, MAX_DMA_PFN
);
913 nr_pages
+= end_pfn
- start_pfn
;
917 * Iterate over free memory ranges to calculate the number of free
918 * pages in the DMA zone, while not counting potential partial
919 * pages at the beginning or the end of the range:
922 for_each_free_mem_range(u
, NUMA_NO_NODE
, MEMBLOCK_NONE
, &start_addr
, &end_addr
, NULL
) {
923 start_pfn
= min_t(unsigned long, PFN_UP(start_addr
), MAX_DMA_PFN
);
924 end_pfn
= min_t(unsigned long, PFN_DOWN(end_addr
), MAX_DMA_PFN
);
926 if (start_pfn
< end_pfn
)
927 nr_free_pages
+= end_pfn
- start_pfn
;
930 set_dma_reserve(nr_pages
- nr_free_pages
);
934 void __init
zone_sizes_init(void)
936 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
938 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
940 #ifdef CONFIG_ZONE_DMA
941 max_zone_pfns
[ZONE_DMA
] = min(MAX_DMA_PFN
, max_low_pfn
);
943 #ifdef CONFIG_ZONE_DMA32
944 max_zone_pfns
[ZONE_DMA32
] = min(MAX_DMA32_PFN
, max_low_pfn
);
946 max_zone_pfns
[ZONE_NORMAL
] = max_low_pfn
;
947 #ifdef CONFIG_HIGHMEM
948 max_zone_pfns
[ZONE_HIGHMEM
] = max_pfn
;
951 free_area_init_nodes(max_zone_pfns
);
954 __visible
DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state
, cpu_tlbstate
) = {
955 .loaded_mm
= &init_mm
,
957 .cr4
= ~0UL, /* fail hard if we screw up cr4 shadow initialization */
959 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate
);
961 void update_cache_mode_entry(unsigned entry
, enum page_cache_mode cache
)
963 /* entry 0 MUST be WB (hardwired to speed up translations) */
964 BUG_ON(!entry
&& cache
!= _PAGE_CACHE_MODE_WB
);
966 __cachemode2pte_tbl
[cache
] = __cm_idx2pte(entry
);
967 __pte2cachemode_tbl
[entry
] = cache
;
971 unsigned long max_swapfile_size(void)
975 pages
= generic_max_swapfile_size();
977 if (boot_cpu_has_bug(X86_BUG_L1TF
) && l1tf_mitigation
!= L1TF_MITIGATION_OFF
) {
978 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
979 unsigned long long l1tf_limit
= l1tf_pfn_limit();
981 * We encode swap offsets also with 3 bits below those for pfn
982 * which makes the usable limit higher.
984 #if CONFIG_PGTABLE_LEVELS > 2
985 l1tf_limit
<<= PAGE_SHIFT
- SWP_OFFSET_FIRST_BIT
;
987 pages
= min_t(unsigned long long, l1tf_limit
, pages
);