ARM: dma-api: fix max_pfn off-by-one error in __dma_supported()
[linux/fpc-iii.git] / arch / x86 / mm / init_64.c
blobabbdecb75fad8fe2d7b1f671fefc18b0c27e6e40
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/x86_64/mm/init.c
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
7 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
8 */
10 #include <linux/signal.h>
11 #include <linux/sched.h>
12 #include <linux/kernel.h>
13 #include <linux/errno.h>
14 #include <linux/string.h>
15 #include <linux/types.h>
16 #include <linux/ptrace.h>
17 #include <linux/mman.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/smp.h>
21 #include <linux/init.h>
22 #include <linux/initrd.h>
23 #include <linux/pagemap.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/memory.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/memremap.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
37 #include <asm/processor.h>
38 #include <asm/bios_ebda.h>
39 #include <linux/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820/api.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/set_memory.h>
54 #include <asm/init.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
58 #include "mm_internal.h"
60 #include "ident_map.c"
62 #define DEFINE_POPULATE(fname, type1, type2, init) \
63 static inline void fname##_init(struct mm_struct *mm, \
64 type1##_t *arg1, type2##_t *arg2, bool init) \
65 { \
66 if (init) \
67 fname##_safe(mm, arg1, arg2); \
68 else \
69 fname(mm, arg1, arg2); \
72 DEFINE_POPULATE(p4d_populate, p4d, pud, init)
73 DEFINE_POPULATE(pgd_populate, pgd, p4d, init)
74 DEFINE_POPULATE(pud_populate, pud, pmd, init)
75 DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init)
77 #define DEFINE_ENTRY(type1, type2, init) \
78 static inline void set_##type1##_init(type1##_t *arg1, \
79 type2##_t arg2, bool init) \
80 { \
81 if (init) \
82 set_##type1##_safe(arg1, arg2); \
83 else \
84 set_##type1(arg1, arg2); \
87 DEFINE_ENTRY(p4d, p4d, init)
88 DEFINE_ENTRY(pud, pud, init)
89 DEFINE_ENTRY(pmd, pmd, init)
90 DEFINE_ENTRY(pte, pte, init)
94 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
95 * physical space so we can cache the place of the first one and move
96 * around without checking the pgd every time.
99 /* Bits supported by the hardware: */
100 pteval_t __supported_pte_mask __read_mostly = ~0;
101 /* Bits allowed in normal kernel mappings: */
102 pteval_t __default_kernel_pte_mask __read_mostly = ~0;
103 EXPORT_SYMBOL_GPL(__supported_pte_mask);
104 /* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
105 EXPORT_SYMBOL(__default_kernel_pte_mask);
107 int force_personality32;
110 * noexec32=on|off
111 * Control non executable heap for 32bit processes.
112 * To control the stack too use noexec=off
114 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
115 * off PROT_READ implies PROT_EXEC
117 static int __init nonx32_setup(char *str)
119 if (!strcmp(str, "on"))
120 force_personality32 &= ~READ_IMPLIES_EXEC;
121 else if (!strcmp(str, "off"))
122 force_personality32 |= READ_IMPLIES_EXEC;
123 return 1;
125 __setup("noexec32=", nonx32_setup);
127 static void sync_global_pgds_l5(unsigned long start, unsigned long end)
129 unsigned long addr;
131 for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
132 const pgd_t *pgd_ref = pgd_offset_k(addr);
133 struct page *page;
135 /* Check for overflow */
136 if (addr < start)
137 break;
139 if (pgd_none(*pgd_ref))
140 continue;
142 spin_lock(&pgd_lock);
143 list_for_each_entry(page, &pgd_list, lru) {
144 pgd_t *pgd;
145 spinlock_t *pgt_lock;
147 pgd = (pgd_t *)page_address(page) + pgd_index(addr);
148 /* the pgt_lock only for Xen */
149 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
150 spin_lock(pgt_lock);
152 if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
153 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
155 if (pgd_none(*pgd))
156 set_pgd(pgd, *pgd_ref);
158 spin_unlock(pgt_lock);
160 spin_unlock(&pgd_lock);
164 static void sync_global_pgds_l4(unsigned long start, unsigned long end)
166 unsigned long addr;
168 for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
169 pgd_t *pgd_ref = pgd_offset_k(addr);
170 const p4d_t *p4d_ref;
171 struct page *page;
174 * With folded p4d, pgd_none() is always false, we need to
175 * handle synchonization on p4d level.
177 MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
178 p4d_ref = p4d_offset(pgd_ref, addr);
180 if (p4d_none(*p4d_ref))
181 continue;
183 spin_lock(&pgd_lock);
184 list_for_each_entry(page, &pgd_list, lru) {
185 pgd_t *pgd;
186 p4d_t *p4d;
187 spinlock_t *pgt_lock;
189 pgd = (pgd_t *)page_address(page) + pgd_index(addr);
190 p4d = p4d_offset(pgd, addr);
191 /* the pgt_lock only for Xen */
192 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
193 spin_lock(pgt_lock);
195 if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
196 BUG_ON(p4d_page_vaddr(*p4d)
197 != p4d_page_vaddr(*p4d_ref));
199 if (p4d_none(*p4d))
200 set_p4d(p4d, *p4d_ref);
202 spin_unlock(pgt_lock);
204 spin_unlock(&pgd_lock);
209 * When memory was added make sure all the processes MM have
210 * suitable PGD entries in the local PGD level page.
212 void sync_global_pgds(unsigned long start, unsigned long end)
214 if (pgtable_l5_enabled())
215 sync_global_pgds_l5(start, end);
216 else
217 sync_global_pgds_l4(start, end);
221 * NOTE: This function is marked __ref because it calls __init function
222 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
224 static __ref void *spp_getpage(void)
226 void *ptr;
228 if (after_bootmem)
229 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
230 else
231 ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
233 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
234 panic("set_pte_phys: cannot allocate page data %s\n",
235 after_bootmem ? "after bootmem" : "");
238 pr_debug("spp_getpage %p\n", ptr);
240 return ptr;
243 static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
245 if (pgd_none(*pgd)) {
246 p4d_t *p4d = (p4d_t *)spp_getpage();
247 pgd_populate(&init_mm, pgd, p4d);
248 if (p4d != p4d_offset(pgd, 0))
249 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
250 p4d, p4d_offset(pgd, 0));
252 return p4d_offset(pgd, vaddr);
255 static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
257 if (p4d_none(*p4d)) {
258 pud_t *pud = (pud_t *)spp_getpage();
259 p4d_populate(&init_mm, p4d, pud);
260 if (pud != pud_offset(p4d, 0))
261 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
262 pud, pud_offset(p4d, 0));
264 return pud_offset(p4d, vaddr);
267 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
269 if (pud_none(*pud)) {
270 pmd_t *pmd = (pmd_t *) spp_getpage();
271 pud_populate(&init_mm, pud, pmd);
272 if (pmd != pmd_offset(pud, 0))
273 printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
274 pmd, pmd_offset(pud, 0));
276 return pmd_offset(pud, vaddr);
279 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
281 if (pmd_none(*pmd)) {
282 pte_t *pte = (pte_t *) spp_getpage();
283 pmd_populate_kernel(&init_mm, pmd, pte);
284 if (pte != pte_offset_kernel(pmd, 0))
285 printk(KERN_ERR "PAGETABLE BUG #03!\n");
287 return pte_offset_kernel(pmd, vaddr);
290 static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
292 pmd_t *pmd = fill_pmd(pud, vaddr);
293 pte_t *pte = fill_pte(pmd, vaddr);
295 set_pte(pte, new_pte);
298 * It's enough to flush this one mapping.
299 * (PGE mappings get flushed as well)
301 __flush_tlb_one_kernel(vaddr);
304 void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
306 p4d_t *p4d = p4d_page + p4d_index(vaddr);
307 pud_t *pud = fill_pud(p4d, vaddr);
309 __set_pte_vaddr(pud, vaddr, new_pte);
312 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
314 pud_t *pud = pud_page + pud_index(vaddr);
316 __set_pte_vaddr(pud, vaddr, new_pte);
319 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
321 pgd_t *pgd;
322 p4d_t *p4d_page;
324 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
326 pgd = pgd_offset_k(vaddr);
327 if (pgd_none(*pgd)) {
328 printk(KERN_ERR
329 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
330 return;
333 p4d_page = p4d_offset(pgd, 0);
334 set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
337 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
339 pgd_t *pgd;
340 p4d_t *p4d;
341 pud_t *pud;
343 pgd = pgd_offset_k(vaddr);
344 p4d = fill_p4d(pgd, vaddr);
345 pud = fill_pud(p4d, vaddr);
346 return fill_pmd(pud, vaddr);
349 pte_t * __init populate_extra_pte(unsigned long vaddr)
351 pmd_t *pmd;
353 pmd = populate_extra_pmd(vaddr);
354 return fill_pte(pmd, vaddr);
358 * Create large page table mappings for a range of physical addresses.
360 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
361 enum page_cache_mode cache)
363 pgd_t *pgd;
364 p4d_t *p4d;
365 pud_t *pud;
366 pmd_t *pmd;
367 pgprot_t prot;
369 pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
370 pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
371 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
372 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
373 pgd = pgd_offset_k((unsigned long)__va(phys));
374 if (pgd_none(*pgd)) {
375 p4d = (p4d_t *) spp_getpage();
376 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
377 _PAGE_USER));
379 p4d = p4d_offset(pgd, (unsigned long)__va(phys));
380 if (p4d_none(*p4d)) {
381 pud = (pud_t *) spp_getpage();
382 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
383 _PAGE_USER));
385 pud = pud_offset(p4d, (unsigned long)__va(phys));
386 if (pud_none(*pud)) {
387 pmd = (pmd_t *) spp_getpage();
388 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
389 _PAGE_USER));
391 pmd = pmd_offset(pud, phys);
392 BUG_ON(!pmd_none(*pmd));
393 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
397 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
399 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
402 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
404 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
408 * The head.S code sets up the kernel high mapping:
410 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
412 * phys_base holds the negative offset to the kernel, which is added
413 * to the compile time generated pmds. This results in invalid pmds up
414 * to the point where we hit the physaddr 0 mapping.
416 * We limit the mappings to the region from _text to _brk_end. _brk_end
417 * is rounded up to the 2MB boundary. This catches the invalid pmds as
418 * well, as they are located before _text:
420 void __init cleanup_highmap(void)
422 unsigned long vaddr = __START_KERNEL_map;
423 unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
424 unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
425 pmd_t *pmd = level2_kernel_pgt;
428 * Native path, max_pfn_mapped is not set yet.
429 * Xen has valid max_pfn_mapped set in
430 * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
432 if (max_pfn_mapped)
433 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
435 for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
436 if (pmd_none(*pmd))
437 continue;
438 if (vaddr < (unsigned long) _text || vaddr > end)
439 set_pmd(pmd, __pmd(0));
444 * Create PTE level page table mapping for physical addresses.
445 * It returns the last physical address mapped.
447 static unsigned long __meminit
448 phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
449 pgprot_t prot, bool init)
451 unsigned long pages = 0, paddr_next;
452 unsigned long paddr_last = paddr_end;
453 pte_t *pte;
454 int i;
456 pte = pte_page + pte_index(paddr);
457 i = pte_index(paddr);
459 for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
460 paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
461 if (paddr >= paddr_end) {
462 if (!after_bootmem &&
463 !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
464 E820_TYPE_RAM) &&
465 !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
466 E820_TYPE_RESERVED_KERN))
467 set_pte_init(pte, __pte(0), init);
468 continue;
472 * We will re-use the existing mapping.
473 * Xen for example has some special requirements, like mapping
474 * pagetable pages as RO. So assume someone who pre-setup
475 * these mappings are more intelligent.
477 if (!pte_none(*pte)) {
478 if (!after_bootmem)
479 pages++;
480 continue;
483 if (0)
484 pr_info(" pte=%p addr=%lx pte=%016lx\n", pte, paddr,
485 pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
486 pages++;
487 set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init);
488 paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
491 update_page_count(PG_LEVEL_4K, pages);
493 return paddr_last;
497 * Create PMD level page table mapping for physical addresses. The virtual
498 * and physical address have to be aligned at this level.
499 * It returns the last physical address mapped.
501 static unsigned long __meminit
502 phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
503 unsigned long page_size_mask, pgprot_t prot, bool init)
505 unsigned long pages = 0, paddr_next;
506 unsigned long paddr_last = paddr_end;
508 int i = pmd_index(paddr);
510 for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
511 pmd_t *pmd = pmd_page + pmd_index(paddr);
512 pte_t *pte;
513 pgprot_t new_prot = prot;
515 paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
516 if (paddr >= paddr_end) {
517 if (!after_bootmem &&
518 !e820__mapped_any(paddr & PMD_MASK, paddr_next,
519 E820_TYPE_RAM) &&
520 !e820__mapped_any(paddr & PMD_MASK, paddr_next,
521 E820_TYPE_RESERVED_KERN))
522 set_pmd_init(pmd, __pmd(0), init);
523 continue;
526 if (!pmd_none(*pmd)) {
527 if (!pmd_large(*pmd)) {
528 spin_lock(&init_mm.page_table_lock);
529 pte = (pte_t *)pmd_page_vaddr(*pmd);
530 paddr_last = phys_pte_init(pte, paddr,
531 paddr_end, prot,
532 init);
533 spin_unlock(&init_mm.page_table_lock);
534 continue;
537 * If we are ok with PG_LEVEL_2M mapping, then we will
538 * use the existing mapping,
540 * Otherwise, we will split the large page mapping but
541 * use the same existing protection bits except for
542 * large page, so that we don't violate Intel's TLB
543 * Application note (317080) which says, while changing
544 * the page sizes, new and old translations should
545 * not differ with respect to page frame and
546 * attributes.
548 if (page_size_mask & (1 << PG_LEVEL_2M)) {
549 if (!after_bootmem)
550 pages++;
551 paddr_last = paddr_next;
552 continue;
554 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
557 if (page_size_mask & (1<<PG_LEVEL_2M)) {
558 pages++;
559 spin_lock(&init_mm.page_table_lock);
560 set_pte_init((pte_t *)pmd,
561 pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
562 __pgprot(pgprot_val(prot) | _PAGE_PSE)),
563 init);
564 spin_unlock(&init_mm.page_table_lock);
565 paddr_last = paddr_next;
566 continue;
569 pte = alloc_low_page();
570 paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init);
572 spin_lock(&init_mm.page_table_lock);
573 pmd_populate_kernel_init(&init_mm, pmd, pte, init);
574 spin_unlock(&init_mm.page_table_lock);
576 update_page_count(PG_LEVEL_2M, pages);
577 return paddr_last;
581 * Create PUD level page table mapping for physical addresses. The virtual
582 * and physical address do not have to be aligned at this level. KASLR can
583 * randomize virtual addresses up to this level.
584 * It returns the last physical address mapped.
586 static unsigned long __meminit
587 phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
588 unsigned long page_size_mask, bool init)
590 unsigned long pages = 0, paddr_next;
591 unsigned long paddr_last = paddr_end;
592 unsigned long vaddr = (unsigned long)__va(paddr);
593 int i = pud_index(vaddr);
595 for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
596 pud_t *pud;
597 pmd_t *pmd;
598 pgprot_t prot = PAGE_KERNEL;
600 vaddr = (unsigned long)__va(paddr);
601 pud = pud_page + pud_index(vaddr);
602 paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
604 if (paddr >= paddr_end) {
605 if (!after_bootmem &&
606 !e820__mapped_any(paddr & PUD_MASK, paddr_next,
607 E820_TYPE_RAM) &&
608 !e820__mapped_any(paddr & PUD_MASK, paddr_next,
609 E820_TYPE_RESERVED_KERN))
610 set_pud_init(pud, __pud(0), init);
611 continue;
614 if (!pud_none(*pud)) {
615 if (!pud_large(*pud)) {
616 pmd = pmd_offset(pud, 0);
617 paddr_last = phys_pmd_init(pmd, paddr,
618 paddr_end,
619 page_size_mask,
620 prot, init);
621 continue;
624 * If we are ok with PG_LEVEL_1G mapping, then we will
625 * use the existing mapping.
627 * Otherwise, we will split the gbpage mapping but use
628 * the same existing protection bits except for large
629 * page, so that we don't violate Intel's TLB
630 * Application note (317080) which says, while changing
631 * the page sizes, new and old translations should
632 * not differ with respect to page frame and
633 * attributes.
635 if (page_size_mask & (1 << PG_LEVEL_1G)) {
636 if (!after_bootmem)
637 pages++;
638 paddr_last = paddr_next;
639 continue;
641 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
644 if (page_size_mask & (1<<PG_LEVEL_1G)) {
645 pages++;
646 spin_lock(&init_mm.page_table_lock);
647 set_pte_init((pte_t *)pud,
648 pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
649 PAGE_KERNEL_LARGE),
650 init);
651 spin_unlock(&init_mm.page_table_lock);
652 paddr_last = paddr_next;
653 continue;
656 pmd = alloc_low_page();
657 paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
658 page_size_mask, prot, init);
660 spin_lock(&init_mm.page_table_lock);
661 pud_populate_init(&init_mm, pud, pmd, init);
662 spin_unlock(&init_mm.page_table_lock);
665 update_page_count(PG_LEVEL_1G, pages);
667 return paddr_last;
670 static unsigned long __meminit
671 phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
672 unsigned long page_size_mask, bool init)
674 unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last;
676 paddr_last = paddr_end;
677 vaddr = (unsigned long)__va(paddr);
678 vaddr_end = (unsigned long)__va(paddr_end);
680 if (!pgtable_l5_enabled())
681 return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end,
682 page_size_mask, init);
684 for (; vaddr < vaddr_end; vaddr = vaddr_next) {
685 p4d_t *p4d = p4d_page + p4d_index(vaddr);
686 pud_t *pud;
688 vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE;
689 paddr = __pa(vaddr);
691 if (paddr >= paddr_end) {
692 paddr_next = __pa(vaddr_next);
693 if (!after_bootmem &&
694 !e820__mapped_any(paddr & P4D_MASK, paddr_next,
695 E820_TYPE_RAM) &&
696 !e820__mapped_any(paddr & P4D_MASK, paddr_next,
697 E820_TYPE_RESERVED_KERN))
698 set_p4d_init(p4d, __p4d(0), init);
699 continue;
702 if (!p4d_none(*p4d)) {
703 pud = pud_offset(p4d, 0);
704 paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
705 page_size_mask, init);
706 continue;
709 pud = alloc_low_page();
710 paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
711 page_size_mask, init);
713 spin_lock(&init_mm.page_table_lock);
714 p4d_populate_init(&init_mm, p4d, pud, init);
715 spin_unlock(&init_mm.page_table_lock);
718 return paddr_last;
721 static unsigned long __meminit
722 __kernel_physical_mapping_init(unsigned long paddr_start,
723 unsigned long paddr_end,
724 unsigned long page_size_mask,
725 bool init)
727 bool pgd_changed = false;
728 unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
730 paddr_last = paddr_end;
731 vaddr = (unsigned long)__va(paddr_start);
732 vaddr_end = (unsigned long)__va(paddr_end);
733 vaddr_start = vaddr;
735 for (; vaddr < vaddr_end; vaddr = vaddr_next) {
736 pgd_t *pgd = pgd_offset_k(vaddr);
737 p4d_t *p4d;
739 vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
741 if (pgd_val(*pgd)) {
742 p4d = (p4d_t *)pgd_page_vaddr(*pgd);
743 paddr_last = phys_p4d_init(p4d, __pa(vaddr),
744 __pa(vaddr_end),
745 page_size_mask,
746 init);
747 continue;
750 p4d = alloc_low_page();
751 paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
752 page_size_mask, init);
754 spin_lock(&init_mm.page_table_lock);
755 if (pgtable_l5_enabled())
756 pgd_populate_init(&init_mm, pgd, p4d, init);
757 else
758 p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr),
759 (pud_t *) p4d, init);
761 spin_unlock(&init_mm.page_table_lock);
762 pgd_changed = true;
765 if (pgd_changed)
766 sync_global_pgds(vaddr_start, vaddr_end - 1);
768 return paddr_last;
773 * Create page table mapping for the physical memory for specific physical
774 * addresses. Note that it can only be used to populate non-present entries.
775 * The virtual and physical addresses have to be aligned on PMD level
776 * down. It returns the last physical address mapped.
778 unsigned long __meminit
779 kernel_physical_mapping_init(unsigned long paddr_start,
780 unsigned long paddr_end,
781 unsigned long page_size_mask)
783 return __kernel_physical_mapping_init(paddr_start, paddr_end,
784 page_size_mask, true);
788 * This function is similar to kernel_physical_mapping_init() above with the
789 * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe()
790 * when updating the mapping. The caller is responsible to flush the TLBs after
791 * the function returns.
793 unsigned long __meminit
794 kernel_physical_mapping_change(unsigned long paddr_start,
795 unsigned long paddr_end,
796 unsigned long page_size_mask)
798 return __kernel_physical_mapping_init(paddr_start, paddr_end,
799 page_size_mask, false);
802 #ifndef CONFIG_NUMA
803 void __init initmem_init(void)
805 memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
807 #endif
809 void __init paging_init(void)
811 sparse_memory_present_with_active_regions(MAX_NUMNODES);
812 sparse_init();
815 * clear the default setting with node 0
816 * note: don't use nodes_clear here, that is really clearing when
817 * numa support is not compiled in, and later node_set_state
818 * will not set it back.
820 node_clear_state(0, N_MEMORY);
821 if (N_MEMORY != N_NORMAL_MEMORY)
822 node_clear_state(0, N_NORMAL_MEMORY);
824 zone_sizes_init();
828 * Memory hotplug specific functions
830 #ifdef CONFIG_MEMORY_HOTPLUG
832 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
833 * updating.
835 static void update_end_of_memory_vars(u64 start, u64 size)
837 unsigned long end_pfn = PFN_UP(start + size);
839 if (end_pfn > max_pfn) {
840 max_pfn = end_pfn;
841 max_low_pfn = end_pfn;
842 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
846 int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
847 struct mhp_restrictions *restrictions)
849 int ret;
851 ret = __add_pages(nid, start_pfn, nr_pages, restrictions);
852 WARN_ON_ONCE(ret);
854 /* update max_pfn, max_low_pfn and high_memory */
855 update_end_of_memory_vars(start_pfn << PAGE_SHIFT,
856 nr_pages << PAGE_SHIFT);
858 return ret;
861 int arch_add_memory(int nid, u64 start, u64 size,
862 struct mhp_restrictions *restrictions)
864 unsigned long start_pfn = start >> PAGE_SHIFT;
865 unsigned long nr_pages = size >> PAGE_SHIFT;
867 init_memory_mapping(start, start + size);
869 return add_pages(nid, start_pfn, nr_pages, restrictions);
872 #define PAGE_INUSE 0xFD
874 static void __meminit free_pagetable(struct page *page, int order)
876 unsigned long magic;
877 unsigned int nr_pages = 1 << order;
879 /* bootmem page has reserved flag */
880 if (PageReserved(page)) {
881 __ClearPageReserved(page);
883 magic = (unsigned long)page->freelist;
884 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
885 while (nr_pages--)
886 put_page_bootmem(page++);
887 } else
888 while (nr_pages--)
889 free_reserved_page(page++);
890 } else
891 free_pages((unsigned long)page_address(page), order);
894 static void __meminit free_hugepage_table(struct page *page,
895 struct vmem_altmap *altmap)
897 if (altmap)
898 vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
899 else
900 free_pagetable(page, get_order(PMD_SIZE));
903 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
905 pte_t *pte;
906 int i;
908 for (i = 0; i < PTRS_PER_PTE; i++) {
909 pte = pte_start + i;
910 if (!pte_none(*pte))
911 return;
914 /* free a pte talbe */
915 free_pagetable(pmd_page(*pmd), 0);
916 spin_lock(&init_mm.page_table_lock);
917 pmd_clear(pmd);
918 spin_unlock(&init_mm.page_table_lock);
921 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
923 pmd_t *pmd;
924 int i;
926 for (i = 0; i < PTRS_PER_PMD; i++) {
927 pmd = pmd_start + i;
928 if (!pmd_none(*pmd))
929 return;
932 /* free a pmd talbe */
933 free_pagetable(pud_page(*pud), 0);
934 spin_lock(&init_mm.page_table_lock);
935 pud_clear(pud);
936 spin_unlock(&init_mm.page_table_lock);
939 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
941 pud_t *pud;
942 int i;
944 for (i = 0; i < PTRS_PER_PUD; i++) {
945 pud = pud_start + i;
946 if (!pud_none(*pud))
947 return;
950 /* free a pud talbe */
951 free_pagetable(p4d_page(*p4d), 0);
952 spin_lock(&init_mm.page_table_lock);
953 p4d_clear(p4d);
954 spin_unlock(&init_mm.page_table_lock);
957 static void __meminit
958 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
959 bool direct)
961 unsigned long next, pages = 0;
962 pte_t *pte;
963 void *page_addr;
964 phys_addr_t phys_addr;
966 pte = pte_start + pte_index(addr);
967 for (; addr < end; addr = next, pte++) {
968 next = (addr + PAGE_SIZE) & PAGE_MASK;
969 if (next > end)
970 next = end;
972 if (!pte_present(*pte))
973 continue;
976 * We mapped [0,1G) memory as identity mapping when
977 * initializing, in arch/x86/kernel/head_64.S. These
978 * pagetables cannot be removed.
980 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
981 if (phys_addr < (phys_addr_t)0x40000000)
982 return;
984 if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
986 * Do not free direct mapping pages since they were
987 * freed when offlining, or simplely not in use.
989 if (!direct)
990 free_pagetable(pte_page(*pte), 0);
992 spin_lock(&init_mm.page_table_lock);
993 pte_clear(&init_mm, addr, pte);
994 spin_unlock(&init_mm.page_table_lock);
996 /* For non-direct mapping, pages means nothing. */
997 pages++;
998 } else {
1000 * If we are here, we are freeing vmemmap pages since
1001 * direct mapped memory ranges to be freed are aligned.
1003 * If we are not removing the whole page, it means
1004 * other page structs in this page are being used and
1005 * we canot remove them. So fill the unused page_structs
1006 * with 0xFD, and remove the page when it is wholly
1007 * filled with 0xFD.
1009 memset((void *)addr, PAGE_INUSE, next - addr);
1011 page_addr = page_address(pte_page(*pte));
1012 if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
1013 free_pagetable(pte_page(*pte), 0);
1015 spin_lock(&init_mm.page_table_lock);
1016 pte_clear(&init_mm, addr, pte);
1017 spin_unlock(&init_mm.page_table_lock);
1022 /* Call free_pte_table() in remove_pmd_table(). */
1023 flush_tlb_all();
1024 if (direct)
1025 update_page_count(PG_LEVEL_4K, -pages);
1028 static void __meminit
1029 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
1030 bool direct, struct vmem_altmap *altmap)
1032 unsigned long next, pages = 0;
1033 pte_t *pte_base;
1034 pmd_t *pmd;
1035 void *page_addr;
1037 pmd = pmd_start + pmd_index(addr);
1038 for (; addr < end; addr = next, pmd++) {
1039 next = pmd_addr_end(addr, end);
1041 if (!pmd_present(*pmd))
1042 continue;
1044 if (pmd_large(*pmd)) {
1045 if (IS_ALIGNED(addr, PMD_SIZE) &&
1046 IS_ALIGNED(next, PMD_SIZE)) {
1047 if (!direct)
1048 free_hugepage_table(pmd_page(*pmd),
1049 altmap);
1051 spin_lock(&init_mm.page_table_lock);
1052 pmd_clear(pmd);
1053 spin_unlock(&init_mm.page_table_lock);
1054 pages++;
1055 } else {
1056 /* If here, we are freeing vmemmap pages. */
1057 memset((void *)addr, PAGE_INUSE, next - addr);
1059 page_addr = page_address(pmd_page(*pmd));
1060 if (!memchr_inv(page_addr, PAGE_INUSE,
1061 PMD_SIZE)) {
1062 free_hugepage_table(pmd_page(*pmd),
1063 altmap);
1065 spin_lock(&init_mm.page_table_lock);
1066 pmd_clear(pmd);
1067 spin_unlock(&init_mm.page_table_lock);
1071 continue;
1074 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
1075 remove_pte_table(pte_base, addr, next, direct);
1076 free_pte_table(pte_base, pmd);
1079 /* Call free_pmd_table() in remove_pud_table(). */
1080 if (direct)
1081 update_page_count(PG_LEVEL_2M, -pages);
1084 static void __meminit
1085 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
1086 struct vmem_altmap *altmap, bool direct)
1088 unsigned long next, pages = 0;
1089 pmd_t *pmd_base;
1090 pud_t *pud;
1091 void *page_addr;
1093 pud = pud_start + pud_index(addr);
1094 for (; addr < end; addr = next, pud++) {
1095 next = pud_addr_end(addr, end);
1097 if (!pud_present(*pud))
1098 continue;
1100 if (pud_large(*pud)) {
1101 if (IS_ALIGNED(addr, PUD_SIZE) &&
1102 IS_ALIGNED(next, PUD_SIZE)) {
1103 if (!direct)
1104 free_pagetable(pud_page(*pud),
1105 get_order(PUD_SIZE));
1107 spin_lock(&init_mm.page_table_lock);
1108 pud_clear(pud);
1109 spin_unlock(&init_mm.page_table_lock);
1110 pages++;
1111 } else {
1112 /* If here, we are freeing vmemmap pages. */
1113 memset((void *)addr, PAGE_INUSE, next - addr);
1115 page_addr = page_address(pud_page(*pud));
1116 if (!memchr_inv(page_addr, PAGE_INUSE,
1117 PUD_SIZE)) {
1118 free_pagetable(pud_page(*pud),
1119 get_order(PUD_SIZE));
1121 spin_lock(&init_mm.page_table_lock);
1122 pud_clear(pud);
1123 spin_unlock(&init_mm.page_table_lock);
1127 continue;
1130 pmd_base = pmd_offset(pud, 0);
1131 remove_pmd_table(pmd_base, addr, next, direct, altmap);
1132 free_pmd_table(pmd_base, pud);
1135 if (direct)
1136 update_page_count(PG_LEVEL_1G, -pages);
1139 static void __meminit
1140 remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
1141 struct vmem_altmap *altmap, bool direct)
1143 unsigned long next, pages = 0;
1144 pud_t *pud_base;
1145 p4d_t *p4d;
1147 p4d = p4d_start + p4d_index(addr);
1148 for (; addr < end; addr = next, p4d++) {
1149 next = p4d_addr_end(addr, end);
1151 if (!p4d_present(*p4d))
1152 continue;
1154 BUILD_BUG_ON(p4d_large(*p4d));
1156 pud_base = pud_offset(p4d, 0);
1157 remove_pud_table(pud_base, addr, next, altmap, direct);
1159 * For 4-level page tables we do not want to free PUDs, but in the
1160 * 5-level case we should free them. This code will have to change
1161 * to adapt for boot-time switching between 4 and 5 level page tables.
1163 if (pgtable_l5_enabled())
1164 free_pud_table(pud_base, p4d);
1167 if (direct)
1168 update_page_count(PG_LEVEL_512G, -pages);
1171 /* start and end are both virtual address. */
1172 static void __meminit
1173 remove_pagetable(unsigned long start, unsigned long end, bool direct,
1174 struct vmem_altmap *altmap)
1176 unsigned long next;
1177 unsigned long addr;
1178 pgd_t *pgd;
1179 p4d_t *p4d;
1181 for (addr = start; addr < end; addr = next) {
1182 next = pgd_addr_end(addr, end);
1184 pgd = pgd_offset_k(addr);
1185 if (!pgd_present(*pgd))
1186 continue;
1188 p4d = p4d_offset(pgd, 0);
1189 remove_p4d_table(p4d, addr, next, altmap, direct);
1192 flush_tlb_all();
1195 void __ref vmemmap_free(unsigned long start, unsigned long end,
1196 struct vmem_altmap *altmap)
1198 remove_pagetable(start, end, false, altmap);
1201 static void __meminit
1202 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1204 start = (unsigned long)__va(start);
1205 end = (unsigned long)__va(end);
1207 remove_pagetable(start, end, true, NULL);
1210 void __ref arch_remove_memory(int nid, u64 start, u64 size,
1211 struct vmem_altmap *altmap)
1213 unsigned long start_pfn = start >> PAGE_SHIFT;
1214 unsigned long nr_pages = size >> PAGE_SHIFT;
1216 __remove_pages(start_pfn, nr_pages, altmap);
1217 kernel_physical_mapping_remove(start, start + size);
1219 #endif /* CONFIG_MEMORY_HOTPLUG */
1221 static struct kcore_list kcore_vsyscall;
1223 static void __init register_page_bootmem_info(void)
1225 #ifdef CONFIG_NUMA
1226 int i;
1228 for_each_online_node(i)
1229 register_page_bootmem_info_node(NODE_DATA(i));
1230 #endif
1233 void __init mem_init(void)
1235 pci_iommu_alloc();
1237 /* clear_bss() already clear the empty_zero_page */
1239 /* this will put all memory onto the freelists */
1240 memblock_free_all();
1241 after_bootmem = 1;
1242 x86_init.hyper.init_after_bootmem();
1245 * Must be done after boot memory is put on freelist, because here we
1246 * might set fields in deferred struct pages that have not yet been
1247 * initialized, and memblock_free_all() initializes all the reserved
1248 * deferred pages for us.
1250 register_page_bootmem_info();
1252 /* Register memory areas for /proc/kcore */
1253 if (get_gate_vma(&init_mm))
1254 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
1256 mem_init_print_info(NULL);
1259 int kernel_set_to_readonly;
1261 void mark_rodata_ro(void)
1263 unsigned long start = PFN_ALIGN(_text);
1264 unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1265 unsigned long end = (unsigned long)__end_rodata_hpage_align;
1266 unsigned long text_end = PFN_ALIGN(_etext);
1267 unsigned long rodata_end = PFN_ALIGN(__end_rodata);
1268 unsigned long all_end;
1270 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1271 (end - start) >> 10);
1272 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1274 kernel_set_to_readonly = 1;
1277 * The rodata/data/bss/brk section (but not the kernel text!)
1278 * should also be not-executable.
1280 * We align all_end to PMD_SIZE because the existing mapping
1281 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1282 * split the PMD and the reminder between _brk_end and the end
1283 * of the PMD will remain mapped executable.
1285 * Any PMD which was setup after the one which covers _brk_end
1286 * has been zapped already via cleanup_highmem().
1288 all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1289 set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1291 #ifdef CONFIG_CPA_DEBUG
1292 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1293 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1295 printk(KERN_INFO "Testing CPA: again\n");
1296 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1297 #endif
1299 free_kernel_image_pages("unused kernel image (text/rodata gap)",
1300 (void *)text_end, (void *)rodata_start);
1301 free_kernel_image_pages("unused kernel image (rodata/data gap)",
1302 (void *)rodata_end, (void *)_sdata);
1304 debug_checkwx();
1307 int kern_addr_valid(unsigned long addr)
1309 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1310 pgd_t *pgd;
1311 p4d_t *p4d;
1312 pud_t *pud;
1313 pmd_t *pmd;
1314 pte_t *pte;
1316 if (above != 0 && above != -1UL)
1317 return 0;
1319 pgd = pgd_offset_k(addr);
1320 if (pgd_none(*pgd))
1321 return 0;
1323 p4d = p4d_offset(pgd, addr);
1324 if (p4d_none(*p4d))
1325 return 0;
1327 pud = pud_offset(p4d, addr);
1328 if (pud_none(*pud))
1329 return 0;
1331 if (pud_large(*pud))
1332 return pfn_valid(pud_pfn(*pud));
1334 pmd = pmd_offset(pud, addr);
1335 if (pmd_none(*pmd))
1336 return 0;
1338 if (pmd_large(*pmd))
1339 return pfn_valid(pmd_pfn(*pmd));
1341 pte = pte_offset_kernel(pmd, addr);
1342 if (pte_none(*pte))
1343 return 0;
1345 return pfn_valid(pte_pfn(*pte));
1349 * Block size is the minimum amount of memory which can be hotplugged or
1350 * hotremoved. It must be power of two and must be equal or larger than
1351 * MIN_MEMORY_BLOCK_SIZE.
1353 #define MAX_BLOCK_SIZE (2UL << 30)
1355 /* Amount of ram needed to start using large blocks */
1356 #define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
1358 /* Adjustable memory block size */
1359 static unsigned long set_memory_block_size;
1360 int __init set_memory_block_size_order(unsigned int order)
1362 unsigned long size = 1UL << order;
1364 if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
1365 return -EINVAL;
1367 set_memory_block_size = size;
1368 return 0;
1371 static unsigned long probe_memory_block_size(void)
1373 unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
1374 unsigned long bz;
1376 /* If memory block size has been set, then use it */
1377 bz = set_memory_block_size;
1378 if (bz)
1379 goto done;
1381 /* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
1382 if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
1383 bz = MIN_MEMORY_BLOCK_SIZE;
1384 goto done;
1387 /* Find the largest allowed block size that aligns to memory end */
1388 for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
1389 if (IS_ALIGNED(boot_mem_end, bz))
1390 break;
1392 done:
1393 pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1395 return bz;
1398 static unsigned long memory_block_size_probed;
1399 unsigned long memory_block_size_bytes(void)
1401 if (!memory_block_size_probed)
1402 memory_block_size_probed = probe_memory_block_size();
1404 return memory_block_size_probed;
1407 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1409 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1411 static long __meminitdata addr_start, addr_end;
1412 static void __meminitdata *p_start, *p_end;
1413 static int __meminitdata node_start;
1415 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1416 unsigned long end, int node, struct vmem_altmap *altmap)
1418 unsigned long addr;
1419 unsigned long next;
1420 pgd_t *pgd;
1421 p4d_t *p4d;
1422 pud_t *pud;
1423 pmd_t *pmd;
1425 for (addr = start; addr < end; addr = next) {
1426 next = pmd_addr_end(addr, end);
1428 pgd = vmemmap_pgd_populate(addr, node);
1429 if (!pgd)
1430 return -ENOMEM;
1432 p4d = vmemmap_p4d_populate(pgd, addr, node);
1433 if (!p4d)
1434 return -ENOMEM;
1436 pud = vmemmap_pud_populate(p4d, addr, node);
1437 if (!pud)
1438 return -ENOMEM;
1440 pmd = pmd_offset(pud, addr);
1441 if (pmd_none(*pmd)) {
1442 void *p;
1444 if (altmap)
1445 p = altmap_alloc_block_buf(PMD_SIZE, altmap);
1446 else
1447 p = vmemmap_alloc_block_buf(PMD_SIZE, node);
1448 if (p) {
1449 pte_t entry;
1451 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1452 PAGE_KERNEL_LARGE);
1453 set_pmd(pmd, __pmd(pte_val(entry)));
1455 /* check to see if we have contiguous blocks */
1456 if (p_end != p || node_start != node) {
1457 if (p_start)
1458 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1459 addr_start, addr_end-1, p_start, p_end-1, node_start);
1460 addr_start = addr;
1461 node_start = node;
1462 p_start = p;
1465 addr_end = addr + PMD_SIZE;
1466 p_end = p + PMD_SIZE;
1467 continue;
1468 } else if (altmap)
1469 return -ENOMEM; /* no fallback */
1470 } else if (pmd_large(*pmd)) {
1471 vmemmap_verify((pte_t *)pmd, node, addr, next);
1472 continue;
1474 if (vmemmap_populate_basepages(addr, next, node))
1475 return -ENOMEM;
1477 return 0;
1480 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1481 struct vmem_altmap *altmap)
1483 int err;
1485 if (end - start < PAGES_PER_SECTION * sizeof(struct page))
1486 err = vmemmap_populate_basepages(start, end, node);
1487 else if (boot_cpu_has(X86_FEATURE_PSE))
1488 err = vmemmap_populate_hugepages(start, end, node, altmap);
1489 else if (altmap) {
1490 pr_err_once("%s: no cpu support for altmap allocations\n",
1491 __func__);
1492 err = -ENOMEM;
1493 } else
1494 err = vmemmap_populate_basepages(start, end, node);
1495 if (!err)
1496 sync_global_pgds(start, end - 1);
1497 return err;
1500 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1501 void register_page_bootmem_memmap(unsigned long section_nr,
1502 struct page *start_page, unsigned long nr_pages)
1504 unsigned long addr = (unsigned long)start_page;
1505 unsigned long end = (unsigned long)(start_page + nr_pages);
1506 unsigned long next;
1507 pgd_t *pgd;
1508 p4d_t *p4d;
1509 pud_t *pud;
1510 pmd_t *pmd;
1511 unsigned int nr_pmd_pages;
1512 struct page *page;
1514 for (; addr < end; addr = next) {
1515 pte_t *pte = NULL;
1517 pgd = pgd_offset_k(addr);
1518 if (pgd_none(*pgd)) {
1519 next = (addr + PAGE_SIZE) & PAGE_MASK;
1520 continue;
1522 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1524 p4d = p4d_offset(pgd, addr);
1525 if (p4d_none(*p4d)) {
1526 next = (addr + PAGE_SIZE) & PAGE_MASK;
1527 continue;
1529 get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
1531 pud = pud_offset(p4d, addr);
1532 if (pud_none(*pud)) {
1533 next = (addr + PAGE_SIZE) & PAGE_MASK;
1534 continue;
1536 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1538 if (!boot_cpu_has(X86_FEATURE_PSE)) {
1539 next = (addr + PAGE_SIZE) & PAGE_MASK;
1540 pmd = pmd_offset(pud, addr);
1541 if (pmd_none(*pmd))
1542 continue;
1543 get_page_bootmem(section_nr, pmd_page(*pmd),
1544 MIX_SECTION_INFO);
1546 pte = pte_offset_kernel(pmd, addr);
1547 if (pte_none(*pte))
1548 continue;
1549 get_page_bootmem(section_nr, pte_page(*pte),
1550 SECTION_INFO);
1551 } else {
1552 next = pmd_addr_end(addr, end);
1554 pmd = pmd_offset(pud, addr);
1555 if (pmd_none(*pmd))
1556 continue;
1558 nr_pmd_pages = 1 << get_order(PMD_SIZE);
1559 page = pmd_page(*pmd);
1560 while (nr_pmd_pages--)
1561 get_page_bootmem(section_nr, page++,
1562 SECTION_INFO);
1566 #endif
1568 void __meminit vmemmap_populate_print_last(void)
1570 if (p_start) {
1571 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1572 addr_start, addr_end-1, p_start, p_end-1, node_start);
1573 p_start = NULL;
1574 p_end = NULL;
1575 node_start = 0;
1578 #endif