1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/arch/x86_64/mm/init.c
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
7 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
10 #include <linux/signal.h>
11 #include <linux/sched.h>
12 #include <linux/kernel.h>
13 #include <linux/errno.h>
14 #include <linux/string.h>
15 #include <linux/types.h>
16 #include <linux/ptrace.h>
17 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/smp.h>
21 #include <linux/init.h>
22 #include <linux/initrd.h>
23 #include <linux/pagemap.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/memory.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/memremap.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
37 #include <asm/processor.h>
38 #include <asm/bios_ebda.h>
39 #include <linux/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820/api.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
53 #include <asm/set_memory.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
58 #include "mm_internal.h"
60 #include "ident_map.c"
62 #define DEFINE_POPULATE(fname, type1, type2, init) \
63 static inline void fname##_init(struct mm_struct *mm, \
64 type1##_t *arg1, type2##_t *arg2, bool init) \
67 fname##_safe(mm, arg1, arg2); \
69 fname(mm, arg1, arg2); \
72 DEFINE_POPULATE(p4d_populate
, p4d
, pud
, init
)
73 DEFINE_POPULATE(pgd_populate
, pgd
, p4d
, init
)
74 DEFINE_POPULATE(pud_populate
, pud
, pmd
, init
)
75 DEFINE_POPULATE(pmd_populate_kernel
, pmd
, pte
, init
)
77 #define DEFINE_ENTRY(type1, type2, init) \
78 static inline void set_##type1##_init(type1##_t *arg1, \
79 type2##_t arg2, bool init) \
82 set_##type1##_safe(arg1, arg2); \
84 set_##type1(arg1, arg2); \
87 DEFINE_ENTRY(p4d
, p4d
, init
)
88 DEFINE_ENTRY(pud
, pud
, init
)
89 DEFINE_ENTRY(pmd
, pmd
, init
)
90 DEFINE_ENTRY(pte
, pte
, init
)
94 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
95 * physical space so we can cache the place of the first one and move
96 * around without checking the pgd every time.
99 /* Bits supported by the hardware: */
100 pteval_t __supported_pte_mask __read_mostly
= ~0;
101 /* Bits allowed in normal kernel mappings: */
102 pteval_t __default_kernel_pte_mask __read_mostly
= ~0;
103 EXPORT_SYMBOL_GPL(__supported_pte_mask
);
104 /* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
105 EXPORT_SYMBOL(__default_kernel_pte_mask
);
107 int force_personality32
;
111 * Control non executable heap for 32bit processes.
112 * To control the stack too use noexec=off
114 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
115 * off PROT_READ implies PROT_EXEC
117 static int __init
nonx32_setup(char *str
)
119 if (!strcmp(str
, "on"))
120 force_personality32
&= ~READ_IMPLIES_EXEC
;
121 else if (!strcmp(str
, "off"))
122 force_personality32
|= READ_IMPLIES_EXEC
;
125 __setup("noexec32=", nonx32_setup
);
127 static void sync_global_pgds_l5(unsigned long start
, unsigned long end
)
131 for (addr
= start
; addr
<= end
; addr
= ALIGN(addr
+ 1, PGDIR_SIZE
)) {
132 const pgd_t
*pgd_ref
= pgd_offset_k(addr
);
135 /* Check for overflow */
139 if (pgd_none(*pgd_ref
))
142 spin_lock(&pgd_lock
);
143 list_for_each_entry(page
, &pgd_list
, lru
) {
145 spinlock_t
*pgt_lock
;
147 pgd
= (pgd_t
*)page_address(page
) + pgd_index(addr
);
148 /* the pgt_lock only for Xen */
149 pgt_lock
= &pgd_page_get_mm(page
)->page_table_lock
;
152 if (!pgd_none(*pgd_ref
) && !pgd_none(*pgd
))
153 BUG_ON(pgd_page_vaddr(*pgd
) != pgd_page_vaddr(*pgd_ref
));
156 set_pgd(pgd
, *pgd_ref
);
158 spin_unlock(pgt_lock
);
160 spin_unlock(&pgd_lock
);
164 static void sync_global_pgds_l4(unsigned long start
, unsigned long end
)
168 for (addr
= start
; addr
<= end
; addr
= ALIGN(addr
+ 1, PGDIR_SIZE
)) {
169 pgd_t
*pgd_ref
= pgd_offset_k(addr
);
170 const p4d_t
*p4d_ref
;
174 * With folded p4d, pgd_none() is always false, we need to
175 * handle synchonization on p4d level.
177 MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref
));
178 p4d_ref
= p4d_offset(pgd_ref
, addr
);
180 if (p4d_none(*p4d_ref
))
183 spin_lock(&pgd_lock
);
184 list_for_each_entry(page
, &pgd_list
, lru
) {
187 spinlock_t
*pgt_lock
;
189 pgd
= (pgd_t
*)page_address(page
) + pgd_index(addr
);
190 p4d
= p4d_offset(pgd
, addr
);
191 /* the pgt_lock only for Xen */
192 pgt_lock
= &pgd_page_get_mm(page
)->page_table_lock
;
195 if (!p4d_none(*p4d_ref
) && !p4d_none(*p4d
))
196 BUG_ON(p4d_page_vaddr(*p4d
)
197 != p4d_page_vaddr(*p4d_ref
));
200 set_p4d(p4d
, *p4d_ref
);
202 spin_unlock(pgt_lock
);
204 spin_unlock(&pgd_lock
);
209 * When memory was added make sure all the processes MM have
210 * suitable PGD entries in the local PGD level page.
212 void sync_global_pgds(unsigned long start
, unsigned long end
)
214 if (pgtable_l5_enabled())
215 sync_global_pgds_l5(start
, end
);
217 sync_global_pgds_l4(start
, end
);
221 * NOTE: This function is marked __ref because it calls __init function
222 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
224 static __ref
void *spp_getpage(void)
229 ptr
= (void *) get_zeroed_page(GFP_ATOMIC
);
231 ptr
= memblock_alloc(PAGE_SIZE
, PAGE_SIZE
);
233 if (!ptr
|| ((unsigned long)ptr
& ~PAGE_MASK
)) {
234 panic("set_pte_phys: cannot allocate page data %s\n",
235 after_bootmem
? "after bootmem" : "");
238 pr_debug("spp_getpage %p\n", ptr
);
243 static p4d_t
*fill_p4d(pgd_t
*pgd
, unsigned long vaddr
)
245 if (pgd_none(*pgd
)) {
246 p4d_t
*p4d
= (p4d_t
*)spp_getpage();
247 pgd_populate(&init_mm
, pgd
, p4d
);
248 if (p4d
!= p4d_offset(pgd
, 0))
249 printk(KERN_ERR
"PAGETABLE BUG #00! %p <-> %p\n",
250 p4d
, p4d_offset(pgd
, 0));
252 return p4d_offset(pgd
, vaddr
);
255 static pud_t
*fill_pud(p4d_t
*p4d
, unsigned long vaddr
)
257 if (p4d_none(*p4d
)) {
258 pud_t
*pud
= (pud_t
*)spp_getpage();
259 p4d_populate(&init_mm
, p4d
, pud
);
260 if (pud
!= pud_offset(p4d
, 0))
261 printk(KERN_ERR
"PAGETABLE BUG #01! %p <-> %p\n",
262 pud
, pud_offset(p4d
, 0));
264 return pud_offset(p4d
, vaddr
);
267 static pmd_t
*fill_pmd(pud_t
*pud
, unsigned long vaddr
)
269 if (pud_none(*pud
)) {
270 pmd_t
*pmd
= (pmd_t
*) spp_getpage();
271 pud_populate(&init_mm
, pud
, pmd
);
272 if (pmd
!= pmd_offset(pud
, 0))
273 printk(KERN_ERR
"PAGETABLE BUG #02! %p <-> %p\n",
274 pmd
, pmd_offset(pud
, 0));
276 return pmd_offset(pud
, vaddr
);
279 static pte_t
*fill_pte(pmd_t
*pmd
, unsigned long vaddr
)
281 if (pmd_none(*pmd
)) {
282 pte_t
*pte
= (pte_t
*) spp_getpage();
283 pmd_populate_kernel(&init_mm
, pmd
, pte
);
284 if (pte
!= pte_offset_kernel(pmd
, 0))
285 printk(KERN_ERR
"PAGETABLE BUG #03!\n");
287 return pte_offset_kernel(pmd
, vaddr
);
290 static void __set_pte_vaddr(pud_t
*pud
, unsigned long vaddr
, pte_t new_pte
)
292 pmd_t
*pmd
= fill_pmd(pud
, vaddr
);
293 pte_t
*pte
= fill_pte(pmd
, vaddr
);
295 set_pte(pte
, new_pte
);
298 * It's enough to flush this one mapping.
299 * (PGE mappings get flushed as well)
301 __flush_tlb_one_kernel(vaddr
);
304 void set_pte_vaddr_p4d(p4d_t
*p4d_page
, unsigned long vaddr
, pte_t new_pte
)
306 p4d_t
*p4d
= p4d_page
+ p4d_index(vaddr
);
307 pud_t
*pud
= fill_pud(p4d
, vaddr
);
309 __set_pte_vaddr(pud
, vaddr
, new_pte
);
312 void set_pte_vaddr_pud(pud_t
*pud_page
, unsigned long vaddr
, pte_t new_pte
)
314 pud_t
*pud
= pud_page
+ pud_index(vaddr
);
316 __set_pte_vaddr(pud
, vaddr
, new_pte
);
319 void set_pte_vaddr(unsigned long vaddr
, pte_t pteval
)
324 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr
, native_pte_val(pteval
));
326 pgd
= pgd_offset_k(vaddr
);
327 if (pgd_none(*pgd
)) {
329 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
333 p4d_page
= p4d_offset(pgd
, 0);
334 set_pte_vaddr_p4d(p4d_page
, vaddr
, pteval
);
337 pmd_t
* __init
populate_extra_pmd(unsigned long vaddr
)
343 pgd
= pgd_offset_k(vaddr
);
344 p4d
= fill_p4d(pgd
, vaddr
);
345 pud
= fill_pud(p4d
, vaddr
);
346 return fill_pmd(pud
, vaddr
);
349 pte_t
* __init
populate_extra_pte(unsigned long vaddr
)
353 pmd
= populate_extra_pmd(vaddr
);
354 return fill_pte(pmd
, vaddr
);
358 * Create large page table mappings for a range of physical addresses.
360 static void __init
__init_extra_mapping(unsigned long phys
, unsigned long size
,
361 enum page_cache_mode cache
)
369 pgprot_val(prot
) = pgprot_val(PAGE_KERNEL_LARGE
) |
370 pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache
)));
371 BUG_ON((phys
& ~PMD_MASK
) || (size
& ~PMD_MASK
));
372 for (; size
; phys
+= PMD_SIZE
, size
-= PMD_SIZE
) {
373 pgd
= pgd_offset_k((unsigned long)__va(phys
));
374 if (pgd_none(*pgd
)) {
375 p4d
= (p4d_t
*) spp_getpage();
376 set_pgd(pgd
, __pgd(__pa(p4d
) | _KERNPG_TABLE
|
379 p4d
= p4d_offset(pgd
, (unsigned long)__va(phys
));
380 if (p4d_none(*p4d
)) {
381 pud
= (pud_t
*) spp_getpage();
382 set_p4d(p4d
, __p4d(__pa(pud
) | _KERNPG_TABLE
|
385 pud
= pud_offset(p4d
, (unsigned long)__va(phys
));
386 if (pud_none(*pud
)) {
387 pmd
= (pmd_t
*) spp_getpage();
388 set_pud(pud
, __pud(__pa(pmd
) | _KERNPG_TABLE
|
391 pmd
= pmd_offset(pud
, phys
);
392 BUG_ON(!pmd_none(*pmd
));
393 set_pmd(pmd
, __pmd(phys
| pgprot_val(prot
)));
397 void __init
init_extra_mapping_wb(unsigned long phys
, unsigned long size
)
399 __init_extra_mapping(phys
, size
, _PAGE_CACHE_MODE_WB
);
402 void __init
init_extra_mapping_uc(unsigned long phys
, unsigned long size
)
404 __init_extra_mapping(phys
, size
, _PAGE_CACHE_MODE_UC
);
408 * The head.S code sets up the kernel high mapping:
410 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
412 * phys_base holds the negative offset to the kernel, which is added
413 * to the compile time generated pmds. This results in invalid pmds up
414 * to the point where we hit the physaddr 0 mapping.
416 * We limit the mappings to the region from _text to _brk_end. _brk_end
417 * is rounded up to the 2MB boundary. This catches the invalid pmds as
418 * well, as they are located before _text:
420 void __init
cleanup_highmap(void)
422 unsigned long vaddr
= __START_KERNEL_map
;
423 unsigned long vaddr_end
= __START_KERNEL_map
+ KERNEL_IMAGE_SIZE
;
424 unsigned long end
= roundup((unsigned long)_brk_end
, PMD_SIZE
) - 1;
425 pmd_t
*pmd
= level2_kernel_pgt
;
428 * Native path, max_pfn_mapped is not set yet.
429 * Xen has valid max_pfn_mapped set in
430 * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
433 vaddr_end
= __START_KERNEL_map
+ (max_pfn_mapped
<< PAGE_SHIFT
);
435 for (; vaddr
+ PMD_SIZE
- 1 < vaddr_end
; pmd
++, vaddr
+= PMD_SIZE
) {
438 if (vaddr
< (unsigned long) _text
|| vaddr
> end
)
439 set_pmd(pmd
, __pmd(0));
444 * Create PTE level page table mapping for physical addresses.
445 * It returns the last physical address mapped.
447 static unsigned long __meminit
448 phys_pte_init(pte_t
*pte_page
, unsigned long paddr
, unsigned long paddr_end
,
449 pgprot_t prot
, bool init
)
451 unsigned long pages
= 0, paddr_next
;
452 unsigned long paddr_last
= paddr_end
;
456 pte
= pte_page
+ pte_index(paddr
);
457 i
= pte_index(paddr
);
459 for (; i
< PTRS_PER_PTE
; i
++, paddr
= paddr_next
, pte
++) {
460 paddr_next
= (paddr
& PAGE_MASK
) + PAGE_SIZE
;
461 if (paddr
>= paddr_end
) {
462 if (!after_bootmem
&&
463 !e820__mapped_any(paddr
& PAGE_MASK
, paddr_next
,
465 !e820__mapped_any(paddr
& PAGE_MASK
, paddr_next
,
466 E820_TYPE_RESERVED_KERN
))
467 set_pte_init(pte
, __pte(0), init
);
472 * We will re-use the existing mapping.
473 * Xen for example has some special requirements, like mapping
474 * pagetable pages as RO. So assume someone who pre-setup
475 * these mappings are more intelligent.
477 if (!pte_none(*pte
)) {
484 pr_info(" pte=%p addr=%lx pte=%016lx\n", pte
, paddr
,
485 pfn_pte(paddr
>> PAGE_SHIFT
, PAGE_KERNEL
).pte
);
487 set_pte_init(pte
, pfn_pte(paddr
>> PAGE_SHIFT
, prot
), init
);
488 paddr_last
= (paddr
& PAGE_MASK
) + PAGE_SIZE
;
491 update_page_count(PG_LEVEL_4K
, pages
);
497 * Create PMD level page table mapping for physical addresses. The virtual
498 * and physical address have to be aligned at this level.
499 * It returns the last physical address mapped.
501 static unsigned long __meminit
502 phys_pmd_init(pmd_t
*pmd_page
, unsigned long paddr
, unsigned long paddr_end
,
503 unsigned long page_size_mask
, pgprot_t prot
, bool init
)
505 unsigned long pages
= 0, paddr_next
;
506 unsigned long paddr_last
= paddr_end
;
508 int i
= pmd_index(paddr
);
510 for (; i
< PTRS_PER_PMD
; i
++, paddr
= paddr_next
) {
511 pmd_t
*pmd
= pmd_page
+ pmd_index(paddr
);
513 pgprot_t new_prot
= prot
;
515 paddr_next
= (paddr
& PMD_MASK
) + PMD_SIZE
;
516 if (paddr
>= paddr_end
) {
517 if (!after_bootmem
&&
518 !e820__mapped_any(paddr
& PMD_MASK
, paddr_next
,
520 !e820__mapped_any(paddr
& PMD_MASK
, paddr_next
,
521 E820_TYPE_RESERVED_KERN
))
522 set_pmd_init(pmd
, __pmd(0), init
);
526 if (!pmd_none(*pmd
)) {
527 if (!pmd_large(*pmd
)) {
528 spin_lock(&init_mm
.page_table_lock
);
529 pte
= (pte_t
*)pmd_page_vaddr(*pmd
);
530 paddr_last
= phys_pte_init(pte
, paddr
,
533 spin_unlock(&init_mm
.page_table_lock
);
537 * If we are ok with PG_LEVEL_2M mapping, then we will
538 * use the existing mapping,
540 * Otherwise, we will split the large page mapping but
541 * use the same existing protection bits except for
542 * large page, so that we don't violate Intel's TLB
543 * Application note (317080) which says, while changing
544 * the page sizes, new and old translations should
545 * not differ with respect to page frame and
548 if (page_size_mask
& (1 << PG_LEVEL_2M
)) {
551 paddr_last
= paddr_next
;
554 new_prot
= pte_pgprot(pte_clrhuge(*(pte_t
*)pmd
));
557 if (page_size_mask
& (1<<PG_LEVEL_2M
)) {
559 spin_lock(&init_mm
.page_table_lock
);
560 set_pte_init((pte_t
*)pmd
,
561 pfn_pte((paddr
& PMD_MASK
) >> PAGE_SHIFT
,
562 __pgprot(pgprot_val(prot
) | _PAGE_PSE
)),
564 spin_unlock(&init_mm
.page_table_lock
);
565 paddr_last
= paddr_next
;
569 pte
= alloc_low_page();
570 paddr_last
= phys_pte_init(pte
, paddr
, paddr_end
, new_prot
, init
);
572 spin_lock(&init_mm
.page_table_lock
);
573 pmd_populate_kernel_init(&init_mm
, pmd
, pte
, init
);
574 spin_unlock(&init_mm
.page_table_lock
);
576 update_page_count(PG_LEVEL_2M
, pages
);
581 * Create PUD level page table mapping for physical addresses. The virtual
582 * and physical address do not have to be aligned at this level. KASLR can
583 * randomize virtual addresses up to this level.
584 * It returns the last physical address mapped.
586 static unsigned long __meminit
587 phys_pud_init(pud_t
*pud_page
, unsigned long paddr
, unsigned long paddr_end
,
588 unsigned long page_size_mask
, bool init
)
590 unsigned long pages
= 0, paddr_next
;
591 unsigned long paddr_last
= paddr_end
;
592 unsigned long vaddr
= (unsigned long)__va(paddr
);
593 int i
= pud_index(vaddr
);
595 for (; i
< PTRS_PER_PUD
; i
++, paddr
= paddr_next
) {
598 pgprot_t prot
= PAGE_KERNEL
;
600 vaddr
= (unsigned long)__va(paddr
);
601 pud
= pud_page
+ pud_index(vaddr
);
602 paddr_next
= (paddr
& PUD_MASK
) + PUD_SIZE
;
604 if (paddr
>= paddr_end
) {
605 if (!after_bootmem
&&
606 !e820__mapped_any(paddr
& PUD_MASK
, paddr_next
,
608 !e820__mapped_any(paddr
& PUD_MASK
, paddr_next
,
609 E820_TYPE_RESERVED_KERN
))
610 set_pud_init(pud
, __pud(0), init
);
614 if (!pud_none(*pud
)) {
615 if (!pud_large(*pud
)) {
616 pmd
= pmd_offset(pud
, 0);
617 paddr_last
= phys_pmd_init(pmd
, paddr
,
624 * If we are ok with PG_LEVEL_1G mapping, then we will
625 * use the existing mapping.
627 * Otherwise, we will split the gbpage mapping but use
628 * the same existing protection bits except for large
629 * page, so that we don't violate Intel's TLB
630 * Application note (317080) which says, while changing
631 * the page sizes, new and old translations should
632 * not differ with respect to page frame and
635 if (page_size_mask
& (1 << PG_LEVEL_1G
)) {
638 paddr_last
= paddr_next
;
641 prot
= pte_pgprot(pte_clrhuge(*(pte_t
*)pud
));
644 if (page_size_mask
& (1<<PG_LEVEL_1G
)) {
646 spin_lock(&init_mm
.page_table_lock
);
647 set_pte_init((pte_t
*)pud
,
648 pfn_pte((paddr
& PUD_MASK
) >> PAGE_SHIFT
,
651 spin_unlock(&init_mm
.page_table_lock
);
652 paddr_last
= paddr_next
;
656 pmd
= alloc_low_page();
657 paddr_last
= phys_pmd_init(pmd
, paddr
, paddr_end
,
658 page_size_mask
, prot
, init
);
660 spin_lock(&init_mm
.page_table_lock
);
661 pud_populate_init(&init_mm
, pud
, pmd
, init
);
662 spin_unlock(&init_mm
.page_table_lock
);
665 update_page_count(PG_LEVEL_1G
, pages
);
670 static unsigned long __meminit
671 phys_p4d_init(p4d_t
*p4d_page
, unsigned long paddr
, unsigned long paddr_end
,
672 unsigned long page_size_mask
, bool init
)
674 unsigned long vaddr
, vaddr_end
, vaddr_next
, paddr_next
, paddr_last
;
676 paddr_last
= paddr_end
;
677 vaddr
= (unsigned long)__va(paddr
);
678 vaddr_end
= (unsigned long)__va(paddr_end
);
680 if (!pgtable_l5_enabled())
681 return phys_pud_init((pud_t
*) p4d_page
, paddr
, paddr_end
,
682 page_size_mask
, init
);
684 for (; vaddr
< vaddr_end
; vaddr
= vaddr_next
) {
685 p4d_t
*p4d
= p4d_page
+ p4d_index(vaddr
);
688 vaddr_next
= (vaddr
& P4D_MASK
) + P4D_SIZE
;
691 if (paddr
>= paddr_end
) {
692 paddr_next
= __pa(vaddr_next
);
693 if (!after_bootmem
&&
694 !e820__mapped_any(paddr
& P4D_MASK
, paddr_next
,
696 !e820__mapped_any(paddr
& P4D_MASK
, paddr_next
,
697 E820_TYPE_RESERVED_KERN
))
698 set_p4d_init(p4d
, __p4d(0), init
);
702 if (!p4d_none(*p4d
)) {
703 pud
= pud_offset(p4d
, 0);
704 paddr_last
= phys_pud_init(pud
, paddr
, __pa(vaddr_end
),
705 page_size_mask
, init
);
709 pud
= alloc_low_page();
710 paddr_last
= phys_pud_init(pud
, paddr
, __pa(vaddr_end
),
711 page_size_mask
, init
);
713 spin_lock(&init_mm
.page_table_lock
);
714 p4d_populate_init(&init_mm
, p4d
, pud
, init
);
715 spin_unlock(&init_mm
.page_table_lock
);
721 static unsigned long __meminit
722 __kernel_physical_mapping_init(unsigned long paddr_start
,
723 unsigned long paddr_end
,
724 unsigned long page_size_mask
,
727 bool pgd_changed
= false;
728 unsigned long vaddr
, vaddr_start
, vaddr_end
, vaddr_next
, paddr_last
;
730 paddr_last
= paddr_end
;
731 vaddr
= (unsigned long)__va(paddr_start
);
732 vaddr_end
= (unsigned long)__va(paddr_end
);
735 for (; vaddr
< vaddr_end
; vaddr
= vaddr_next
) {
736 pgd_t
*pgd
= pgd_offset_k(vaddr
);
739 vaddr_next
= (vaddr
& PGDIR_MASK
) + PGDIR_SIZE
;
742 p4d
= (p4d_t
*)pgd_page_vaddr(*pgd
);
743 paddr_last
= phys_p4d_init(p4d
, __pa(vaddr
),
750 p4d
= alloc_low_page();
751 paddr_last
= phys_p4d_init(p4d
, __pa(vaddr
), __pa(vaddr_end
),
752 page_size_mask
, init
);
754 spin_lock(&init_mm
.page_table_lock
);
755 if (pgtable_l5_enabled())
756 pgd_populate_init(&init_mm
, pgd
, p4d
, init
);
758 p4d_populate_init(&init_mm
, p4d_offset(pgd
, vaddr
),
759 (pud_t
*) p4d
, init
);
761 spin_unlock(&init_mm
.page_table_lock
);
766 sync_global_pgds(vaddr_start
, vaddr_end
- 1);
773 * Create page table mapping for the physical memory for specific physical
774 * addresses. Note that it can only be used to populate non-present entries.
775 * The virtual and physical addresses have to be aligned on PMD level
776 * down. It returns the last physical address mapped.
778 unsigned long __meminit
779 kernel_physical_mapping_init(unsigned long paddr_start
,
780 unsigned long paddr_end
,
781 unsigned long page_size_mask
)
783 return __kernel_physical_mapping_init(paddr_start
, paddr_end
,
784 page_size_mask
, true);
788 * This function is similar to kernel_physical_mapping_init() above with the
789 * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe()
790 * when updating the mapping. The caller is responsible to flush the TLBs after
791 * the function returns.
793 unsigned long __meminit
794 kernel_physical_mapping_change(unsigned long paddr_start
,
795 unsigned long paddr_end
,
796 unsigned long page_size_mask
)
798 return __kernel_physical_mapping_init(paddr_start
, paddr_end
,
799 page_size_mask
, false);
803 void __init
initmem_init(void)
805 memblock_set_node(0, PHYS_ADDR_MAX
, &memblock
.memory
, 0);
809 void __init
paging_init(void)
811 sparse_memory_present_with_active_regions(MAX_NUMNODES
);
815 * clear the default setting with node 0
816 * note: don't use nodes_clear here, that is really clearing when
817 * numa support is not compiled in, and later node_set_state
818 * will not set it back.
820 node_clear_state(0, N_MEMORY
);
821 if (N_MEMORY
!= N_NORMAL_MEMORY
)
822 node_clear_state(0, N_NORMAL_MEMORY
);
828 * Memory hotplug specific functions
830 #ifdef CONFIG_MEMORY_HOTPLUG
832 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
835 static void update_end_of_memory_vars(u64 start
, u64 size
)
837 unsigned long end_pfn
= PFN_UP(start
+ size
);
839 if (end_pfn
> max_pfn
) {
841 max_low_pfn
= end_pfn
;
842 high_memory
= (void *)__va(max_pfn
* PAGE_SIZE
- 1) + 1;
846 int add_pages(int nid
, unsigned long start_pfn
, unsigned long nr_pages
,
847 struct mhp_restrictions
*restrictions
)
851 ret
= __add_pages(nid
, start_pfn
, nr_pages
, restrictions
);
854 /* update max_pfn, max_low_pfn and high_memory */
855 update_end_of_memory_vars(start_pfn
<< PAGE_SHIFT
,
856 nr_pages
<< PAGE_SHIFT
);
861 int arch_add_memory(int nid
, u64 start
, u64 size
,
862 struct mhp_restrictions
*restrictions
)
864 unsigned long start_pfn
= start
>> PAGE_SHIFT
;
865 unsigned long nr_pages
= size
>> PAGE_SHIFT
;
867 init_memory_mapping(start
, start
+ size
);
869 return add_pages(nid
, start_pfn
, nr_pages
, restrictions
);
872 #define PAGE_INUSE 0xFD
874 static void __meminit
free_pagetable(struct page
*page
, int order
)
877 unsigned int nr_pages
= 1 << order
;
879 /* bootmem page has reserved flag */
880 if (PageReserved(page
)) {
881 __ClearPageReserved(page
);
883 magic
= (unsigned long)page
->freelist
;
884 if (magic
== SECTION_INFO
|| magic
== MIX_SECTION_INFO
) {
886 put_page_bootmem(page
++);
889 free_reserved_page(page
++);
891 free_pages((unsigned long)page_address(page
), order
);
894 static void __meminit
free_hugepage_table(struct page
*page
,
895 struct vmem_altmap
*altmap
)
898 vmem_altmap_free(altmap
, PMD_SIZE
/ PAGE_SIZE
);
900 free_pagetable(page
, get_order(PMD_SIZE
));
903 static void __meminit
free_pte_table(pte_t
*pte_start
, pmd_t
*pmd
)
908 for (i
= 0; i
< PTRS_PER_PTE
; i
++) {
914 /* free a pte talbe */
915 free_pagetable(pmd_page(*pmd
), 0);
916 spin_lock(&init_mm
.page_table_lock
);
918 spin_unlock(&init_mm
.page_table_lock
);
921 static void __meminit
free_pmd_table(pmd_t
*pmd_start
, pud_t
*pud
)
926 for (i
= 0; i
< PTRS_PER_PMD
; i
++) {
932 /* free a pmd talbe */
933 free_pagetable(pud_page(*pud
), 0);
934 spin_lock(&init_mm
.page_table_lock
);
936 spin_unlock(&init_mm
.page_table_lock
);
939 static void __meminit
free_pud_table(pud_t
*pud_start
, p4d_t
*p4d
)
944 for (i
= 0; i
< PTRS_PER_PUD
; i
++) {
950 /* free a pud talbe */
951 free_pagetable(p4d_page(*p4d
), 0);
952 spin_lock(&init_mm
.page_table_lock
);
954 spin_unlock(&init_mm
.page_table_lock
);
957 static void __meminit
958 remove_pte_table(pte_t
*pte_start
, unsigned long addr
, unsigned long end
,
961 unsigned long next
, pages
= 0;
964 phys_addr_t phys_addr
;
966 pte
= pte_start
+ pte_index(addr
);
967 for (; addr
< end
; addr
= next
, pte
++) {
968 next
= (addr
+ PAGE_SIZE
) & PAGE_MASK
;
972 if (!pte_present(*pte
))
976 * We mapped [0,1G) memory as identity mapping when
977 * initializing, in arch/x86/kernel/head_64.S. These
978 * pagetables cannot be removed.
980 phys_addr
= pte_val(*pte
) + (addr
& PAGE_MASK
);
981 if (phys_addr
< (phys_addr_t
)0x40000000)
984 if (PAGE_ALIGNED(addr
) && PAGE_ALIGNED(next
)) {
986 * Do not free direct mapping pages since they were
987 * freed when offlining, or simplely not in use.
990 free_pagetable(pte_page(*pte
), 0);
992 spin_lock(&init_mm
.page_table_lock
);
993 pte_clear(&init_mm
, addr
, pte
);
994 spin_unlock(&init_mm
.page_table_lock
);
996 /* For non-direct mapping, pages means nothing. */
1000 * If we are here, we are freeing vmemmap pages since
1001 * direct mapped memory ranges to be freed are aligned.
1003 * If we are not removing the whole page, it means
1004 * other page structs in this page are being used and
1005 * we canot remove them. So fill the unused page_structs
1006 * with 0xFD, and remove the page when it is wholly
1009 memset((void *)addr
, PAGE_INUSE
, next
- addr
);
1011 page_addr
= page_address(pte_page(*pte
));
1012 if (!memchr_inv(page_addr
, PAGE_INUSE
, PAGE_SIZE
)) {
1013 free_pagetable(pte_page(*pte
), 0);
1015 spin_lock(&init_mm
.page_table_lock
);
1016 pte_clear(&init_mm
, addr
, pte
);
1017 spin_unlock(&init_mm
.page_table_lock
);
1022 /* Call free_pte_table() in remove_pmd_table(). */
1025 update_page_count(PG_LEVEL_4K
, -pages
);
1028 static void __meminit
1029 remove_pmd_table(pmd_t
*pmd_start
, unsigned long addr
, unsigned long end
,
1030 bool direct
, struct vmem_altmap
*altmap
)
1032 unsigned long next
, pages
= 0;
1037 pmd
= pmd_start
+ pmd_index(addr
);
1038 for (; addr
< end
; addr
= next
, pmd
++) {
1039 next
= pmd_addr_end(addr
, end
);
1041 if (!pmd_present(*pmd
))
1044 if (pmd_large(*pmd
)) {
1045 if (IS_ALIGNED(addr
, PMD_SIZE
) &&
1046 IS_ALIGNED(next
, PMD_SIZE
)) {
1048 free_hugepage_table(pmd_page(*pmd
),
1051 spin_lock(&init_mm
.page_table_lock
);
1053 spin_unlock(&init_mm
.page_table_lock
);
1056 /* If here, we are freeing vmemmap pages. */
1057 memset((void *)addr
, PAGE_INUSE
, next
- addr
);
1059 page_addr
= page_address(pmd_page(*pmd
));
1060 if (!memchr_inv(page_addr
, PAGE_INUSE
,
1062 free_hugepage_table(pmd_page(*pmd
),
1065 spin_lock(&init_mm
.page_table_lock
);
1067 spin_unlock(&init_mm
.page_table_lock
);
1074 pte_base
= (pte_t
*)pmd_page_vaddr(*pmd
);
1075 remove_pte_table(pte_base
, addr
, next
, direct
);
1076 free_pte_table(pte_base
, pmd
);
1079 /* Call free_pmd_table() in remove_pud_table(). */
1081 update_page_count(PG_LEVEL_2M
, -pages
);
1084 static void __meminit
1085 remove_pud_table(pud_t
*pud_start
, unsigned long addr
, unsigned long end
,
1086 struct vmem_altmap
*altmap
, bool direct
)
1088 unsigned long next
, pages
= 0;
1093 pud
= pud_start
+ pud_index(addr
);
1094 for (; addr
< end
; addr
= next
, pud
++) {
1095 next
= pud_addr_end(addr
, end
);
1097 if (!pud_present(*pud
))
1100 if (pud_large(*pud
)) {
1101 if (IS_ALIGNED(addr
, PUD_SIZE
) &&
1102 IS_ALIGNED(next
, PUD_SIZE
)) {
1104 free_pagetable(pud_page(*pud
),
1105 get_order(PUD_SIZE
));
1107 spin_lock(&init_mm
.page_table_lock
);
1109 spin_unlock(&init_mm
.page_table_lock
);
1112 /* If here, we are freeing vmemmap pages. */
1113 memset((void *)addr
, PAGE_INUSE
, next
- addr
);
1115 page_addr
= page_address(pud_page(*pud
));
1116 if (!memchr_inv(page_addr
, PAGE_INUSE
,
1118 free_pagetable(pud_page(*pud
),
1119 get_order(PUD_SIZE
));
1121 spin_lock(&init_mm
.page_table_lock
);
1123 spin_unlock(&init_mm
.page_table_lock
);
1130 pmd_base
= pmd_offset(pud
, 0);
1131 remove_pmd_table(pmd_base
, addr
, next
, direct
, altmap
);
1132 free_pmd_table(pmd_base
, pud
);
1136 update_page_count(PG_LEVEL_1G
, -pages
);
1139 static void __meminit
1140 remove_p4d_table(p4d_t
*p4d_start
, unsigned long addr
, unsigned long end
,
1141 struct vmem_altmap
*altmap
, bool direct
)
1143 unsigned long next
, pages
= 0;
1147 p4d
= p4d_start
+ p4d_index(addr
);
1148 for (; addr
< end
; addr
= next
, p4d
++) {
1149 next
= p4d_addr_end(addr
, end
);
1151 if (!p4d_present(*p4d
))
1154 BUILD_BUG_ON(p4d_large(*p4d
));
1156 pud_base
= pud_offset(p4d
, 0);
1157 remove_pud_table(pud_base
, addr
, next
, altmap
, direct
);
1159 * For 4-level page tables we do not want to free PUDs, but in the
1160 * 5-level case we should free them. This code will have to change
1161 * to adapt for boot-time switching between 4 and 5 level page tables.
1163 if (pgtable_l5_enabled())
1164 free_pud_table(pud_base
, p4d
);
1168 update_page_count(PG_LEVEL_512G
, -pages
);
1171 /* start and end are both virtual address. */
1172 static void __meminit
1173 remove_pagetable(unsigned long start
, unsigned long end
, bool direct
,
1174 struct vmem_altmap
*altmap
)
1181 for (addr
= start
; addr
< end
; addr
= next
) {
1182 next
= pgd_addr_end(addr
, end
);
1184 pgd
= pgd_offset_k(addr
);
1185 if (!pgd_present(*pgd
))
1188 p4d
= p4d_offset(pgd
, 0);
1189 remove_p4d_table(p4d
, addr
, next
, altmap
, direct
);
1195 void __ref
vmemmap_free(unsigned long start
, unsigned long end
,
1196 struct vmem_altmap
*altmap
)
1198 remove_pagetable(start
, end
, false, altmap
);
1201 static void __meminit
1202 kernel_physical_mapping_remove(unsigned long start
, unsigned long end
)
1204 start
= (unsigned long)__va(start
);
1205 end
= (unsigned long)__va(end
);
1207 remove_pagetable(start
, end
, true, NULL
);
1210 void __ref
arch_remove_memory(int nid
, u64 start
, u64 size
,
1211 struct vmem_altmap
*altmap
)
1213 unsigned long start_pfn
= start
>> PAGE_SHIFT
;
1214 unsigned long nr_pages
= size
>> PAGE_SHIFT
;
1216 __remove_pages(start_pfn
, nr_pages
, altmap
);
1217 kernel_physical_mapping_remove(start
, start
+ size
);
1219 #endif /* CONFIG_MEMORY_HOTPLUG */
1221 static struct kcore_list kcore_vsyscall
;
1223 static void __init
register_page_bootmem_info(void)
1228 for_each_online_node(i
)
1229 register_page_bootmem_info_node(NODE_DATA(i
));
1233 void __init
mem_init(void)
1237 /* clear_bss() already clear the empty_zero_page */
1239 /* this will put all memory onto the freelists */
1240 memblock_free_all();
1242 x86_init
.hyper
.init_after_bootmem();
1245 * Must be done after boot memory is put on freelist, because here we
1246 * might set fields in deferred struct pages that have not yet been
1247 * initialized, and memblock_free_all() initializes all the reserved
1248 * deferred pages for us.
1250 register_page_bootmem_info();
1252 /* Register memory areas for /proc/kcore */
1253 if (get_gate_vma(&init_mm
))
1254 kclist_add(&kcore_vsyscall
, (void *)VSYSCALL_ADDR
, PAGE_SIZE
, KCORE_USER
);
1256 mem_init_print_info(NULL
);
1259 int kernel_set_to_readonly
;
1261 void mark_rodata_ro(void)
1263 unsigned long start
= PFN_ALIGN(_text
);
1264 unsigned long rodata_start
= PFN_ALIGN(__start_rodata
);
1265 unsigned long end
= (unsigned long)__end_rodata_hpage_align
;
1266 unsigned long text_end
= PFN_ALIGN(_etext
);
1267 unsigned long rodata_end
= PFN_ALIGN(__end_rodata
);
1268 unsigned long all_end
;
1270 printk(KERN_INFO
"Write protecting the kernel read-only data: %luk\n",
1271 (end
- start
) >> 10);
1272 set_memory_ro(start
, (end
- start
) >> PAGE_SHIFT
);
1274 kernel_set_to_readonly
= 1;
1277 * The rodata/data/bss/brk section (but not the kernel text!)
1278 * should also be not-executable.
1280 * We align all_end to PMD_SIZE because the existing mapping
1281 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1282 * split the PMD and the reminder between _brk_end and the end
1283 * of the PMD will remain mapped executable.
1285 * Any PMD which was setup after the one which covers _brk_end
1286 * has been zapped already via cleanup_highmem().
1288 all_end
= roundup((unsigned long)_brk_end
, PMD_SIZE
);
1289 set_memory_nx(text_end
, (all_end
- text_end
) >> PAGE_SHIFT
);
1291 #ifdef CONFIG_CPA_DEBUG
1292 printk(KERN_INFO
"Testing CPA: undo %lx-%lx\n", start
, end
);
1293 set_memory_rw(start
, (end
-start
) >> PAGE_SHIFT
);
1295 printk(KERN_INFO
"Testing CPA: again\n");
1296 set_memory_ro(start
, (end
-start
) >> PAGE_SHIFT
);
1299 free_kernel_image_pages("unused kernel image (text/rodata gap)",
1300 (void *)text_end
, (void *)rodata_start
);
1301 free_kernel_image_pages("unused kernel image (rodata/data gap)",
1302 (void *)rodata_end
, (void *)_sdata
);
1307 int kern_addr_valid(unsigned long addr
)
1309 unsigned long above
= ((long)addr
) >> __VIRTUAL_MASK_SHIFT
;
1316 if (above
!= 0 && above
!= -1UL)
1319 pgd
= pgd_offset_k(addr
);
1323 p4d
= p4d_offset(pgd
, addr
);
1327 pud
= pud_offset(p4d
, addr
);
1331 if (pud_large(*pud
))
1332 return pfn_valid(pud_pfn(*pud
));
1334 pmd
= pmd_offset(pud
, addr
);
1338 if (pmd_large(*pmd
))
1339 return pfn_valid(pmd_pfn(*pmd
));
1341 pte
= pte_offset_kernel(pmd
, addr
);
1345 return pfn_valid(pte_pfn(*pte
));
1349 * Block size is the minimum amount of memory which can be hotplugged or
1350 * hotremoved. It must be power of two and must be equal or larger than
1351 * MIN_MEMORY_BLOCK_SIZE.
1353 #define MAX_BLOCK_SIZE (2UL << 30)
1355 /* Amount of ram needed to start using large blocks */
1356 #define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
1358 /* Adjustable memory block size */
1359 static unsigned long set_memory_block_size
;
1360 int __init
set_memory_block_size_order(unsigned int order
)
1362 unsigned long size
= 1UL << order
;
1364 if (size
> MEM_SIZE_FOR_LARGE_BLOCK
|| size
< MIN_MEMORY_BLOCK_SIZE
)
1367 set_memory_block_size
= size
;
1371 static unsigned long probe_memory_block_size(void)
1373 unsigned long boot_mem_end
= max_pfn
<< PAGE_SHIFT
;
1376 /* If memory block size has been set, then use it */
1377 bz
= set_memory_block_size
;
1381 /* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
1382 if (boot_mem_end
< MEM_SIZE_FOR_LARGE_BLOCK
) {
1383 bz
= MIN_MEMORY_BLOCK_SIZE
;
1387 /* Find the largest allowed block size that aligns to memory end */
1388 for (bz
= MAX_BLOCK_SIZE
; bz
> MIN_MEMORY_BLOCK_SIZE
; bz
>>= 1) {
1389 if (IS_ALIGNED(boot_mem_end
, bz
))
1393 pr_info("x86/mm: Memory block size: %ldMB\n", bz
>> 20);
1398 static unsigned long memory_block_size_probed
;
1399 unsigned long memory_block_size_bytes(void)
1401 if (!memory_block_size_probed
)
1402 memory_block_size_probed
= probe_memory_block_size();
1404 return memory_block_size_probed
;
1407 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1409 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1411 static long __meminitdata addr_start
, addr_end
;
1412 static void __meminitdata
*p_start
, *p_end
;
1413 static int __meminitdata node_start
;
1415 static int __meminit
vmemmap_populate_hugepages(unsigned long start
,
1416 unsigned long end
, int node
, struct vmem_altmap
*altmap
)
1425 for (addr
= start
; addr
< end
; addr
= next
) {
1426 next
= pmd_addr_end(addr
, end
);
1428 pgd
= vmemmap_pgd_populate(addr
, node
);
1432 p4d
= vmemmap_p4d_populate(pgd
, addr
, node
);
1436 pud
= vmemmap_pud_populate(p4d
, addr
, node
);
1440 pmd
= pmd_offset(pud
, addr
);
1441 if (pmd_none(*pmd
)) {
1445 p
= altmap_alloc_block_buf(PMD_SIZE
, altmap
);
1447 p
= vmemmap_alloc_block_buf(PMD_SIZE
, node
);
1451 entry
= pfn_pte(__pa(p
) >> PAGE_SHIFT
,
1453 set_pmd(pmd
, __pmd(pte_val(entry
)));
1455 /* check to see if we have contiguous blocks */
1456 if (p_end
!= p
|| node_start
!= node
) {
1458 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1459 addr_start
, addr_end
-1, p_start
, p_end
-1, node_start
);
1465 addr_end
= addr
+ PMD_SIZE
;
1466 p_end
= p
+ PMD_SIZE
;
1469 return -ENOMEM
; /* no fallback */
1470 } else if (pmd_large(*pmd
)) {
1471 vmemmap_verify((pte_t
*)pmd
, node
, addr
, next
);
1474 if (vmemmap_populate_basepages(addr
, next
, node
))
1480 int __meminit
vmemmap_populate(unsigned long start
, unsigned long end
, int node
,
1481 struct vmem_altmap
*altmap
)
1485 if (end
- start
< PAGES_PER_SECTION
* sizeof(struct page
))
1486 err
= vmemmap_populate_basepages(start
, end
, node
);
1487 else if (boot_cpu_has(X86_FEATURE_PSE
))
1488 err
= vmemmap_populate_hugepages(start
, end
, node
, altmap
);
1490 pr_err_once("%s: no cpu support for altmap allocations\n",
1494 err
= vmemmap_populate_basepages(start
, end
, node
);
1496 sync_global_pgds(start
, end
- 1);
1500 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1501 void register_page_bootmem_memmap(unsigned long section_nr
,
1502 struct page
*start_page
, unsigned long nr_pages
)
1504 unsigned long addr
= (unsigned long)start_page
;
1505 unsigned long end
= (unsigned long)(start_page
+ nr_pages
);
1511 unsigned int nr_pmd_pages
;
1514 for (; addr
< end
; addr
= next
) {
1517 pgd
= pgd_offset_k(addr
);
1518 if (pgd_none(*pgd
)) {
1519 next
= (addr
+ PAGE_SIZE
) & PAGE_MASK
;
1522 get_page_bootmem(section_nr
, pgd_page(*pgd
), MIX_SECTION_INFO
);
1524 p4d
= p4d_offset(pgd
, addr
);
1525 if (p4d_none(*p4d
)) {
1526 next
= (addr
+ PAGE_SIZE
) & PAGE_MASK
;
1529 get_page_bootmem(section_nr
, p4d_page(*p4d
), MIX_SECTION_INFO
);
1531 pud
= pud_offset(p4d
, addr
);
1532 if (pud_none(*pud
)) {
1533 next
= (addr
+ PAGE_SIZE
) & PAGE_MASK
;
1536 get_page_bootmem(section_nr
, pud_page(*pud
), MIX_SECTION_INFO
);
1538 if (!boot_cpu_has(X86_FEATURE_PSE
)) {
1539 next
= (addr
+ PAGE_SIZE
) & PAGE_MASK
;
1540 pmd
= pmd_offset(pud
, addr
);
1543 get_page_bootmem(section_nr
, pmd_page(*pmd
),
1546 pte
= pte_offset_kernel(pmd
, addr
);
1549 get_page_bootmem(section_nr
, pte_page(*pte
),
1552 next
= pmd_addr_end(addr
, end
);
1554 pmd
= pmd_offset(pud
, addr
);
1558 nr_pmd_pages
= 1 << get_order(PMD_SIZE
);
1559 page
= pmd_page(*pmd
);
1560 while (nr_pmd_pages
--)
1561 get_page_bootmem(section_nr
, page
++,
1568 void __meminit
vmemmap_populate_print_last(void)
1571 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1572 addr_start
, addr_end
-1, p_start
, p_end
-1, node_start
);