ARM: dma-api: fix max_pfn off-by-one error in __dma_supported()
[linux/fpc-iii.git] / arch / x86 / mm / ioremap.c
blob44e4beb4239f93bb83876bd21ab6f8007460be71
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Re-map IO memory to kernel address space so that we can access it.
4 * This is needed for high PCI addresses that aren't mapped in the
5 * 640k-1MB IO memory area on PC's
7 * (C) Copyright 1995 1996 Linus Torvalds
8 */
10 #include <linux/memblock.h>
11 #include <linux/init.h>
12 #include <linux/io.h>
13 #include <linux/ioport.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/mmiotrace.h>
17 #include <linux/mem_encrypt.h>
18 #include <linux/efi.h>
20 #include <asm/set_memory.h>
21 #include <asm/e820/api.h>
22 #include <asm/efi.h>
23 #include <asm/fixmap.h>
24 #include <asm/pgtable.h>
25 #include <asm/tlbflush.h>
26 #include <asm/pgalloc.h>
27 #include <asm/memtype.h>
28 #include <asm/setup.h>
30 #include "physaddr.h"
33 * Descriptor controlling ioremap() behavior.
35 struct ioremap_desc {
36 unsigned int flags;
40 * Fix up the linear direct mapping of the kernel to avoid cache attribute
41 * conflicts.
43 int ioremap_change_attr(unsigned long vaddr, unsigned long size,
44 enum page_cache_mode pcm)
46 unsigned long nrpages = size >> PAGE_SHIFT;
47 int err;
49 switch (pcm) {
50 case _PAGE_CACHE_MODE_UC:
51 default:
52 err = _set_memory_uc(vaddr, nrpages);
53 break;
54 case _PAGE_CACHE_MODE_WC:
55 err = _set_memory_wc(vaddr, nrpages);
56 break;
57 case _PAGE_CACHE_MODE_WT:
58 err = _set_memory_wt(vaddr, nrpages);
59 break;
60 case _PAGE_CACHE_MODE_WB:
61 err = _set_memory_wb(vaddr, nrpages);
62 break;
65 return err;
68 /* Does the range (or a subset of) contain normal RAM? */
69 static unsigned int __ioremap_check_ram(struct resource *res)
71 unsigned long start_pfn, stop_pfn;
72 unsigned long i;
74 if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
75 return 0;
77 start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
78 stop_pfn = (res->end + 1) >> PAGE_SHIFT;
79 if (stop_pfn > start_pfn) {
80 for (i = 0; i < (stop_pfn - start_pfn); ++i)
81 if (pfn_valid(start_pfn + i) &&
82 !PageReserved(pfn_to_page(start_pfn + i)))
83 return IORES_MAP_SYSTEM_RAM;
86 return 0;
90 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
91 * there the whole memory is already encrypted.
93 static unsigned int __ioremap_check_encrypted(struct resource *res)
95 if (!sev_active())
96 return 0;
98 switch (res->desc) {
99 case IORES_DESC_NONE:
100 case IORES_DESC_RESERVED:
101 break;
102 default:
103 return IORES_MAP_ENCRYPTED;
106 return 0;
109 static int __ioremap_collect_map_flags(struct resource *res, void *arg)
111 struct ioremap_desc *desc = arg;
113 if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
114 desc->flags |= __ioremap_check_ram(res);
116 if (!(desc->flags & IORES_MAP_ENCRYPTED))
117 desc->flags |= __ioremap_check_encrypted(res);
119 return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
120 (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
124 * To avoid multiple resource walks, this function walks resources marked as
125 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
126 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
128 static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
129 struct ioremap_desc *desc)
131 u64 start, end;
133 start = (u64)addr;
134 end = start + size - 1;
135 memset(desc, 0, sizeof(struct ioremap_desc));
137 walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
141 * Remap an arbitrary physical address space into the kernel virtual
142 * address space. It transparently creates kernel huge I/O mapping when
143 * the physical address is aligned by a huge page size (1GB or 2MB) and
144 * the requested size is at least the huge page size.
146 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
147 * Therefore, the mapping code falls back to use a smaller page toward 4KB
148 * when a mapping range is covered by non-WB type of MTRRs.
150 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
151 * have to convert them into an offset in a page-aligned mapping, but the
152 * caller shouldn't need to know that small detail.
154 static void __iomem *
155 __ioremap_caller(resource_size_t phys_addr, unsigned long size,
156 enum page_cache_mode pcm, void *caller, bool encrypted)
158 unsigned long offset, vaddr;
159 resource_size_t last_addr;
160 const resource_size_t unaligned_phys_addr = phys_addr;
161 const unsigned long unaligned_size = size;
162 struct ioremap_desc io_desc;
163 struct vm_struct *area;
164 enum page_cache_mode new_pcm;
165 pgprot_t prot;
166 int retval;
167 void __iomem *ret_addr;
169 /* Don't allow wraparound or zero size */
170 last_addr = phys_addr + size - 1;
171 if (!size || last_addr < phys_addr)
172 return NULL;
174 if (!phys_addr_valid(phys_addr)) {
175 printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
176 (unsigned long long)phys_addr);
177 WARN_ON_ONCE(1);
178 return NULL;
181 __ioremap_check_mem(phys_addr, size, &io_desc);
184 * Don't allow anybody to remap normal RAM that we're using..
186 if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
187 WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
188 &phys_addr, &last_addr);
189 return NULL;
193 * Mappings have to be page-aligned
195 offset = phys_addr & ~PAGE_MASK;
196 phys_addr &= PHYSICAL_PAGE_MASK;
197 size = PAGE_ALIGN(last_addr+1) - phys_addr;
199 retval = memtype_reserve(phys_addr, (u64)phys_addr + size,
200 pcm, &new_pcm);
201 if (retval) {
202 printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval);
203 return NULL;
206 if (pcm != new_pcm) {
207 if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
208 printk(KERN_ERR
209 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
210 (unsigned long long)phys_addr,
211 (unsigned long long)(phys_addr + size),
212 pcm, new_pcm);
213 goto err_free_memtype;
215 pcm = new_pcm;
219 * If the page being mapped is in memory and SEV is active then
220 * make sure the memory encryption attribute is enabled in the
221 * resulting mapping.
223 prot = PAGE_KERNEL_IO;
224 if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
225 prot = pgprot_encrypted(prot);
227 switch (pcm) {
228 case _PAGE_CACHE_MODE_UC:
229 default:
230 prot = __pgprot(pgprot_val(prot) |
231 cachemode2protval(_PAGE_CACHE_MODE_UC));
232 break;
233 case _PAGE_CACHE_MODE_UC_MINUS:
234 prot = __pgprot(pgprot_val(prot) |
235 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
236 break;
237 case _PAGE_CACHE_MODE_WC:
238 prot = __pgprot(pgprot_val(prot) |
239 cachemode2protval(_PAGE_CACHE_MODE_WC));
240 break;
241 case _PAGE_CACHE_MODE_WT:
242 prot = __pgprot(pgprot_val(prot) |
243 cachemode2protval(_PAGE_CACHE_MODE_WT));
244 break;
245 case _PAGE_CACHE_MODE_WB:
246 break;
250 * Ok, go for it..
252 area = get_vm_area_caller(size, VM_IOREMAP, caller);
253 if (!area)
254 goto err_free_memtype;
255 area->phys_addr = phys_addr;
256 vaddr = (unsigned long) area->addr;
258 if (memtype_kernel_map_sync(phys_addr, size, pcm))
259 goto err_free_area;
261 if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
262 goto err_free_area;
264 ret_addr = (void __iomem *) (vaddr + offset);
265 mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
268 * Check if the request spans more than any BAR in the iomem resource
269 * tree.
271 if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
272 pr_warn("caller %pS mapping multiple BARs\n", caller);
274 return ret_addr;
275 err_free_area:
276 free_vm_area(area);
277 err_free_memtype:
278 memtype_free(phys_addr, phys_addr + size);
279 return NULL;
283 * ioremap - map bus memory into CPU space
284 * @phys_addr: bus address of the memory
285 * @size: size of the resource to map
287 * ioremap performs a platform specific sequence of operations to
288 * make bus memory CPU accessible via the readb/readw/readl/writeb/
289 * writew/writel functions and the other mmio helpers. The returned
290 * address is not guaranteed to be usable directly as a virtual
291 * address.
293 * This version of ioremap ensures that the memory is marked uncachable
294 * on the CPU as well as honouring existing caching rules from things like
295 * the PCI bus. Note that there are other caches and buffers on many
296 * busses. In particular driver authors should read up on PCI writes
298 * It's useful if some control registers are in such an area and
299 * write combining or read caching is not desirable:
301 * Must be freed with iounmap.
303 void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
306 * Ideally, this should be:
307 * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
309 * Till we fix all X drivers to use ioremap_wc(), we will use
310 * UC MINUS. Drivers that are certain they need or can already
311 * be converted over to strong UC can use ioremap_uc().
313 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
315 return __ioremap_caller(phys_addr, size, pcm,
316 __builtin_return_address(0), false);
318 EXPORT_SYMBOL(ioremap);
321 * ioremap_uc - map bus memory into CPU space as strongly uncachable
322 * @phys_addr: bus address of the memory
323 * @size: size of the resource to map
325 * ioremap_uc performs a platform specific sequence of operations to
326 * make bus memory CPU accessible via the readb/readw/readl/writeb/
327 * writew/writel functions and the other mmio helpers. The returned
328 * address is not guaranteed to be usable directly as a virtual
329 * address.
331 * This version of ioremap ensures that the memory is marked with a strong
332 * preference as completely uncachable on the CPU when possible. For non-PAT
333 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
334 * systems this will set the PAT entry for the pages as strong UC. This call
335 * will honor existing caching rules from things like the PCI bus. Note that
336 * there are other caches and buffers on many busses. In particular driver
337 * authors should read up on PCI writes.
339 * It's useful if some control registers are in such an area and
340 * write combining or read caching is not desirable:
342 * Must be freed with iounmap.
344 void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
346 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
348 return __ioremap_caller(phys_addr, size, pcm,
349 __builtin_return_address(0), false);
351 EXPORT_SYMBOL_GPL(ioremap_uc);
354 * ioremap_wc - map memory into CPU space write combined
355 * @phys_addr: bus address of the memory
356 * @size: size of the resource to map
358 * This version of ioremap ensures that the memory is marked write combining.
359 * Write combining allows faster writes to some hardware devices.
361 * Must be freed with iounmap.
363 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
365 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
366 __builtin_return_address(0), false);
368 EXPORT_SYMBOL(ioremap_wc);
371 * ioremap_wt - map memory into CPU space write through
372 * @phys_addr: bus address of the memory
373 * @size: size of the resource to map
375 * This version of ioremap ensures that the memory is marked write through.
376 * Write through stores data into memory while keeping the cache up-to-date.
378 * Must be freed with iounmap.
380 void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
382 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
383 __builtin_return_address(0), false);
385 EXPORT_SYMBOL(ioremap_wt);
387 void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
389 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
390 __builtin_return_address(0), true);
392 EXPORT_SYMBOL(ioremap_encrypted);
394 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
396 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
397 __builtin_return_address(0), false);
399 EXPORT_SYMBOL(ioremap_cache);
401 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
402 unsigned long prot_val)
404 return __ioremap_caller(phys_addr, size,
405 pgprot2cachemode(__pgprot(prot_val)),
406 __builtin_return_address(0), false);
408 EXPORT_SYMBOL(ioremap_prot);
411 * iounmap - Free a IO remapping
412 * @addr: virtual address from ioremap_*
414 * Caller must ensure there is only one unmapping for the same pointer.
416 void iounmap(volatile void __iomem *addr)
418 struct vm_struct *p, *o;
420 if ((void __force *)addr <= high_memory)
421 return;
424 * The PCI/ISA range special-casing was removed from __ioremap()
425 * so this check, in theory, can be removed. However, there are
426 * cases where iounmap() is called for addresses not obtained via
427 * ioremap() (vga16fb for example). Add a warning so that these
428 * cases can be caught and fixed.
430 if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
431 (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
432 WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
433 return;
436 mmiotrace_iounmap(addr);
438 addr = (volatile void __iomem *)
439 (PAGE_MASK & (unsigned long __force)addr);
441 /* Use the vm area unlocked, assuming the caller
442 ensures there isn't another iounmap for the same address
443 in parallel. Reuse of the virtual address is prevented by
444 leaving it in the global lists until we're done with it.
445 cpa takes care of the direct mappings. */
446 p = find_vm_area((void __force *)addr);
448 if (!p) {
449 printk(KERN_ERR "iounmap: bad address %p\n", addr);
450 dump_stack();
451 return;
454 memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p));
456 /* Finally remove it */
457 o = remove_vm_area((void __force *)addr);
458 BUG_ON(p != o || o == NULL);
459 kfree(p);
461 EXPORT_SYMBOL(iounmap);
463 int __init arch_ioremap_p4d_supported(void)
465 return 0;
468 int __init arch_ioremap_pud_supported(void)
470 #ifdef CONFIG_X86_64
471 return boot_cpu_has(X86_FEATURE_GBPAGES);
472 #else
473 return 0;
474 #endif
477 int __init arch_ioremap_pmd_supported(void)
479 return boot_cpu_has(X86_FEATURE_PSE);
483 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
484 * access
486 void *xlate_dev_mem_ptr(phys_addr_t phys)
488 unsigned long start = phys & PAGE_MASK;
489 unsigned long offset = phys & ~PAGE_MASK;
490 void *vaddr;
492 /* memremap() maps if RAM, otherwise falls back to ioremap() */
493 vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
495 /* Only add the offset on success and return NULL if memremap() failed */
496 if (vaddr)
497 vaddr += offset;
499 return vaddr;
502 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
504 memunmap((void *)((unsigned long)addr & PAGE_MASK));
508 * Examine the physical address to determine if it is an area of memory
509 * that should be mapped decrypted. If the memory is not part of the
510 * kernel usable area it was accessed and created decrypted, so these
511 * areas should be mapped decrypted. And since the encryption key can
512 * change across reboots, persistent memory should also be mapped
513 * decrypted.
515 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
516 * only persistent memory should be mapped decrypted.
518 static bool memremap_should_map_decrypted(resource_size_t phys_addr,
519 unsigned long size)
521 int is_pmem;
524 * Check if the address is part of a persistent memory region.
525 * This check covers areas added by E820, EFI and ACPI.
527 is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
528 IORES_DESC_PERSISTENT_MEMORY);
529 if (is_pmem != REGION_DISJOINT)
530 return true;
533 * Check if the non-volatile attribute is set for an EFI
534 * reserved area.
536 if (efi_enabled(EFI_BOOT)) {
537 switch (efi_mem_type(phys_addr)) {
538 case EFI_RESERVED_TYPE:
539 if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
540 return true;
541 break;
542 default:
543 break;
547 /* Check if the address is outside kernel usable area */
548 switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
549 case E820_TYPE_RESERVED:
550 case E820_TYPE_ACPI:
551 case E820_TYPE_NVS:
552 case E820_TYPE_UNUSABLE:
553 /* For SEV, these areas are encrypted */
554 if (sev_active())
555 break;
556 /* Fallthrough */
558 case E820_TYPE_PRAM:
559 return true;
560 default:
561 break;
564 return false;
568 * Examine the physical address to determine if it is EFI data. Check
569 * it against the boot params structure and EFI tables and memory types.
571 static bool memremap_is_efi_data(resource_size_t phys_addr,
572 unsigned long size)
574 u64 paddr;
576 /* Check if the address is part of EFI boot/runtime data */
577 if (!efi_enabled(EFI_BOOT))
578 return false;
580 paddr = boot_params.efi_info.efi_memmap_hi;
581 paddr <<= 32;
582 paddr |= boot_params.efi_info.efi_memmap;
583 if (phys_addr == paddr)
584 return true;
586 paddr = boot_params.efi_info.efi_systab_hi;
587 paddr <<= 32;
588 paddr |= boot_params.efi_info.efi_systab;
589 if (phys_addr == paddr)
590 return true;
592 if (efi_is_table_address(phys_addr))
593 return true;
595 switch (efi_mem_type(phys_addr)) {
596 case EFI_BOOT_SERVICES_DATA:
597 case EFI_RUNTIME_SERVICES_DATA:
598 return true;
599 default:
600 break;
603 return false;
607 * Examine the physical address to determine if it is boot data by checking
608 * it against the boot params setup_data chain.
610 static bool memremap_is_setup_data(resource_size_t phys_addr,
611 unsigned long size)
613 struct setup_data *data;
614 u64 paddr, paddr_next;
616 paddr = boot_params.hdr.setup_data;
617 while (paddr) {
618 unsigned int len;
620 if (phys_addr == paddr)
621 return true;
623 data = memremap(paddr, sizeof(*data),
624 MEMREMAP_WB | MEMREMAP_DEC);
626 paddr_next = data->next;
627 len = data->len;
629 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
630 memunmap(data);
631 return true;
634 if (data->type == SETUP_INDIRECT &&
635 ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) {
636 paddr = ((struct setup_indirect *)data->data)->addr;
637 len = ((struct setup_indirect *)data->data)->len;
640 memunmap(data);
642 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
643 return true;
645 paddr = paddr_next;
648 return false;
652 * Examine the physical address to determine if it is boot data by checking
653 * it against the boot params setup_data chain (early boot version).
655 static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
656 unsigned long size)
658 struct setup_data *data;
659 u64 paddr, paddr_next;
661 paddr = boot_params.hdr.setup_data;
662 while (paddr) {
663 unsigned int len;
665 if (phys_addr == paddr)
666 return true;
668 data = early_memremap_decrypted(paddr, sizeof(*data));
670 paddr_next = data->next;
671 len = data->len;
673 early_memunmap(data, sizeof(*data));
675 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
676 return true;
678 paddr = paddr_next;
681 return false;
685 * Architecture function to determine if RAM remap is allowed. By default, a
686 * RAM remap will map the data as encrypted. Determine if a RAM remap should
687 * not be done so that the data will be mapped decrypted.
689 bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
690 unsigned long flags)
692 if (!mem_encrypt_active())
693 return true;
695 if (flags & MEMREMAP_ENC)
696 return true;
698 if (flags & MEMREMAP_DEC)
699 return false;
701 if (sme_active()) {
702 if (memremap_is_setup_data(phys_addr, size) ||
703 memremap_is_efi_data(phys_addr, size))
704 return false;
707 return !memremap_should_map_decrypted(phys_addr, size);
711 * Architecture override of __weak function to adjust the protection attributes
712 * used when remapping memory. By default, early_memremap() will map the data
713 * as encrypted. Determine if an encrypted mapping should not be done and set
714 * the appropriate protection attributes.
716 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
717 unsigned long size,
718 pgprot_t prot)
720 bool encrypted_prot;
722 if (!mem_encrypt_active())
723 return prot;
725 encrypted_prot = true;
727 if (sme_active()) {
728 if (early_memremap_is_setup_data(phys_addr, size) ||
729 memremap_is_efi_data(phys_addr, size))
730 encrypted_prot = false;
733 if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
734 encrypted_prot = false;
736 return encrypted_prot ? pgprot_encrypted(prot)
737 : pgprot_decrypted(prot);
740 bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
742 return arch_memremap_can_ram_remap(phys_addr, size, 0);
745 #ifdef CONFIG_AMD_MEM_ENCRYPT
746 /* Remap memory with encryption */
747 void __init *early_memremap_encrypted(resource_size_t phys_addr,
748 unsigned long size)
750 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
754 * Remap memory with encryption and write-protected - cannot be called
755 * before pat_init() is called
757 void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
758 unsigned long size)
760 /* Be sure the write-protect PAT entry is set for write-protect */
761 if (__pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] != _PAGE_CACHE_MODE_WP)
762 return NULL;
764 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
767 /* Remap memory without encryption */
768 void __init *early_memremap_decrypted(resource_size_t phys_addr,
769 unsigned long size)
771 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
775 * Remap memory without encryption and write-protected - cannot be called
776 * before pat_init() is called
778 void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
779 unsigned long size)
781 /* Be sure the write-protect PAT entry is set for write-protect */
782 if (__pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] != _PAGE_CACHE_MODE_WP)
783 return NULL;
785 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
787 #endif /* CONFIG_AMD_MEM_ENCRYPT */
789 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
791 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
793 /* Don't assume we're using swapper_pg_dir at this point */
794 pgd_t *base = __va(read_cr3_pa());
795 pgd_t *pgd = &base[pgd_index(addr)];
796 p4d_t *p4d = p4d_offset(pgd, addr);
797 pud_t *pud = pud_offset(p4d, addr);
798 pmd_t *pmd = pmd_offset(pud, addr);
800 return pmd;
803 static inline pte_t * __init early_ioremap_pte(unsigned long addr)
805 return &bm_pte[pte_index(addr)];
808 bool __init is_early_ioremap_ptep(pte_t *ptep)
810 return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
813 void __init early_ioremap_init(void)
815 pmd_t *pmd;
817 #ifdef CONFIG_X86_64
818 BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
819 #else
820 WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
821 #endif
823 early_ioremap_setup();
825 pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
826 memset(bm_pte, 0, sizeof(bm_pte));
827 pmd_populate_kernel(&init_mm, pmd, bm_pte);
830 * The boot-ioremap range spans multiple pmds, for which
831 * we are not prepared:
833 #define __FIXADDR_TOP (-PAGE_SIZE)
834 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
835 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
836 #undef __FIXADDR_TOP
837 if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
838 WARN_ON(1);
839 printk(KERN_WARNING "pmd %p != %p\n",
840 pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
841 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
842 fix_to_virt(FIX_BTMAP_BEGIN));
843 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n",
844 fix_to_virt(FIX_BTMAP_END));
846 printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
847 printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n",
848 FIX_BTMAP_BEGIN);
852 void __init __early_set_fixmap(enum fixed_addresses idx,
853 phys_addr_t phys, pgprot_t flags)
855 unsigned long addr = __fix_to_virt(idx);
856 pte_t *pte;
858 if (idx >= __end_of_fixed_addresses) {
859 BUG();
860 return;
862 pte = early_ioremap_pte(addr);
864 /* Sanitize 'prot' against any unsupported bits: */
865 pgprot_val(flags) &= __supported_pte_mask;
867 if (pgprot_val(flags))
868 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
869 else
870 pte_clear(&init_mm, addr, pte);
871 __flush_tlb_one_kernel(addr);