1 // SPDX-License-Identifier: GPL-2.0-only
3 * AMD Memory Encryption Support
5 * Copyright (C) 2016 Advanced Micro Devices, Inc.
7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
10 #define DISABLE_BRANCH_PROFILING
12 #include <linux/linkage.h>
13 #include <linux/init.h>
15 #include <linux/dma-direct.h>
16 #include <linux/swiotlb.h>
17 #include <linux/mem_encrypt.h>
18 #include <linux/device.h>
19 #include <linux/kernel.h>
20 #include <linux/bitops.h>
21 #include <linux/dma-mapping.h>
23 #include <asm/tlbflush.h>
24 #include <asm/fixmap.h>
25 #include <asm/setup.h>
26 #include <asm/bootparam.h>
27 #include <asm/set_memory.h>
28 #include <asm/cacheflush.h>
29 #include <asm/processor-flags.h>
31 #include <asm/cmdline.h>
33 #include "mm_internal.h"
36 * Since SME related variables are set early in the boot process they must
37 * reside in the .data section so as not to be zeroed out when the .bss
38 * section is later cleared.
40 u64 sme_me_mask
__section(.data
) = 0;
41 EXPORT_SYMBOL(sme_me_mask
);
42 DEFINE_STATIC_KEY_FALSE(sev_enable_key
);
43 EXPORT_SYMBOL_GPL(sev_enable_key
);
45 bool sev_enabled
__section(.data
);
47 /* Buffer used for early in-place encryption by BSP, no locking needed */
48 static char sme_early_buffer
[PAGE_SIZE
] __initdata
__aligned(PAGE_SIZE
);
51 * This routine does not change the underlying encryption setting of the
52 * page(s) that map this memory. It assumes that eventually the memory is
53 * meant to be accessed as either encrypted or decrypted but the contents
54 * are currently not in the desired state.
56 * This routine follows the steps outlined in the AMD64 Architecture
57 * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
59 static void __init
__sme_early_enc_dec(resource_size_t paddr
,
60 unsigned long size
, bool enc
)
71 * There are limited number of early mapping slots, so map (at most)
75 len
= min_t(size_t, sizeof(sme_early_buffer
), size
);
78 * Create mappings for the current and desired format of
79 * the memory. Use a write-protected mapping for the source.
81 src
= enc
? early_memremap_decrypted_wp(paddr
, len
) :
82 early_memremap_encrypted_wp(paddr
, len
);
84 dst
= enc
? early_memremap_encrypted(paddr
, len
) :
85 early_memremap_decrypted(paddr
, len
);
88 * If a mapping can't be obtained to perform the operation,
89 * then eventual access of that area in the desired mode
95 * Use a temporary buffer, of cache-line multiple size, to
96 * avoid data corruption as documented in the APM.
98 memcpy(sme_early_buffer
, src
, len
);
99 memcpy(dst
, sme_early_buffer
, len
);
101 early_memunmap(dst
, len
);
102 early_memunmap(src
, len
);
109 void __init
sme_early_encrypt(resource_size_t paddr
, unsigned long size
)
111 __sme_early_enc_dec(paddr
, size
, true);
114 void __init
sme_early_decrypt(resource_size_t paddr
, unsigned long size
)
116 __sme_early_enc_dec(paddr
, size
, false);
119 static void __init
__sme_early_map_unmap_mem(void *vaddr
, unsigned long size
,
122 unsigned long paddr
= (unsigned long)vaddr
- __PAGE_OFFSET
;
123 pmdval_t pmd_flags
, pmd
;
125 /* Use early_pmd_flags but remove the encryption mask */
126 pmd_flags
= __sme_clr(early_pmd_flags
);
129 pmd
= map
? (paddr
& PMD_MASK
) + pmd_flags
: 0;
130 __early_make_pgtable((unsigned long)vaddr
, pmd
);
134 size
= (size
<= PMD_SIZE
) ? 0 : size
- PMD_SIZE
;
137 __native_flush_tlb();
140 void __init
sme_unmap_bootdata(char *real_mode_data
)
142 struct boot_params
*boot_data
;
143 unsigned long cmdline_paddr
;
148 /* Get the command line address before unmapping the real_mode_data */
149 boot_data
= (struct boot_params
*)real_mode_data
;
150 cmdline_paddr
= boot_data
->hdr
.cmd_line_ptr
| ((u64
)boot_data
->ext_cmd_line_ptr
<< 32);
152 __sme_early_map_unmap_mem(real_mode_data
, sizeof(boot_params
), false);
157 __sme_early_map_unmap_mem(__va(cmdline_paddr
), COMMAND_LINE_SIZE
, false);
160 void __init
sme_map_bootdata(char *real_mode_data
)
162 struct boot_params
*boot_data
;
163 unsigned long cmdline_paddr
;
168 __sme_early_map_unmap_mem(real_mode_data
, sizeof(boot_params
), true);
170 /* Get the command line address after mapping the real_mode_data */
171 boot_data
= (struct boot_params
*)real_mode_data
;
172 cmdline_paddr
= boot_data
->hdr
.cmd_line_ptr
| ((u64
)boot_data
->ext_cmd_line_ptr
<< 32);
177 __sme_early_map_unmap_mem(__va(cmdline_paddr
), COMMAND_LINE_SIZE
, true);
180 void __init
sme_early_init(void)
187 early_pmd_flags
= __sme_set(early_pmd_flags
);
189 __supported_pte_mask
= __sme_set(__supported_pte_mask
);
191 /* Update the protection map with memory encryption mask */
192 for (i
= 0; i
< ARRAY_SIZE(protection_map
); i
++)
193 protection_map
[i
] = pgprot_encrypted(protection_map
[i
]);
196 swiotlb_force
= SWIOTLB_FORCE
;
199 static void __init
__set_clr_pte_enc(pte_t
*kpte
, int level
, bool enc
)
201 pgprot_t old_prot
, new_prot
;
202 unsigned long pfn
, pa
, size
;
207 pfn
= pte_pfn(*kpte
);
208 old_prot
= pte_pgprot(*kpte
);
211 pfn
= pmd_pfn(*(pmd_t
*)kpte
);
212 old_prot
= pmd_pgprot(*(pmd_t
*)kpte
);
215 pfn
= pud_pfn(*(pud_t
*)kpte
);
216 old_prot
= pud_pgprot(*(pud_t
*)kpte
);
224 pgprot_val(new_prot
) |= _PAGE_ENC
;
226 pgprot_val(new_prot
) &= ~_PAGE_ENC
;
228 /* If prot is same then do nothing. */
229 if (pgprot_val(old_prot
) == pgprot_val(new_prot
))
232 pa
= pfn
<< page_level_shift(level
);
233 size
= page_level_size(level
);
236 * We are going to perform in-place en-/decryption and change the
237 * physical page attribute from C=1 to C=0 or vice versa. Flush the
238 * caches to ensure that data gets accessed with the correct C-bit.
240 clflush_cache_range(__va(pa
), size
);
242 /* Encrypt/decrypt the contents in-place */
244 sme_early_encrypt(pa
, size
);
246 sme_early_decrypt(pa
, size
);
248 /* Change the page encryption mask. */
249 new_pte
= pfn_pte(pfn
, new_prot
);
250 set_pte_atomic(kpte
, new_pte
);
253 static int __init
early_set_memory_enc_dec(unsigned long vaddr
,
254 unsigned long size
, bool enc
)
256 unsigned long vaddr_end
, vaddr_next
;
257 unsigned long psize
, pmask
;
258 int split_page_size_mask
;
263 vaddr_end
= vaddr
+ size
;
265 for (; vaddr
< vaddr_end
; vaddr
= vaddr_next
) {
266 kpte
= lookup_address(vaddr
, &level
);
267 if (!kpte
|| pte_none(*kpte
)) {
272 if (level
== PG_LEVEL_4K
) {
273 __set_clr_pte_enc(kpte
, level
, enc
);
274 vaddr_next
= (vaddr
& PAGE_MASK
) + PAGE_SIZE
;
278 psize
= page_level_size(level
);
279 pmask
= page_level_mask(level
);
282 * Check whether we can change the large page in one go.
283 * We request a split when the address is not aligned and
284 * the number of pages to set/clear encryption bit is smaller
285 * than the number of pages in the large page.
287 if (vaddr
== (vaddr
& pmask
) &&
288 ((vaddr_end
- vaddr
) >= psize
)) {
289 __set_clr_pte_enc(kpte
, level
, enc
);
290 vaddr_next
= (vaddr
& pmask
) + psize
;
295 * The virtual address is part of a larger page, create the next
296 * level page table mapping (4K or 2M). If it is part of a 2M
297 * page then we request a split of the large page into 4K
298 * chunks. A 1GB large page is split into 2M pages, resp.
300 if (level
== PG_LEVEL_2M
)
301 split_page_size_mask
= 0;
303 split_page_size_mask
= 1 << PG_LEVEL_2M
;
306 * kernel_physical_mapping_change() does not flush the TLBs, so
307 * a TLB flush is required after we exit from the for loop.
309 kernel_physical_mapping_change(__pa(vaddr
& pmask
),
310 __pa((vaddr_end
& pmask
) + psize
),
311 split_page_size_mask
);
321 int __init
early_set_memory_decrypted(unsigned long vaddr
, unsigned long size
)
323 return early_set_memory_enc_dec(vaddr
, size
, false);
326 int __init
early_set_memory_encrypted(unsigned long vaddr
, unsigned long size
)
328 return early_set_memory_enc_dec(vaddr
, size
, true);
332 * SME and SEV are very similar but they are not the same, so there are
333 * times that the kernel will need to distinguish between SME and SEV. The
334 * sme_active() and sev_active() functions are used for this. When a
335 * distinction isn't needed, the mem_encrypt_active() function can be used.
337 * The trampoline code is a good example for this requirement. Before
338 * paging is activated, SME will access all memory as decrypted, but SEV
339 * will access all memory as encrypted. So, when APs are being brought
340 * up under SME the trampoline area cannot be encrypted, whereas under SEV
341 * the trampoline area must be encrypted.
343 bool sme_active(void)
345 return sme_me_mask
&& !sev_enabled
;
348 bool sev_active(void)
350 return sme_me_mask
&& sev_enabled
;
353 /* Override for DMA direct allocation check - ARCH_HAS_FORCE_DMA_UNENCRYPTED */
354 bool force_dma_unencrypted(struct device
*dev
)
357 * For SEV, all DMA must be to unencrypted addresses.
363 * For SME, all DMA must be to unencrypted addresses if the
364 * device does not support DMA to addresses that include the
368 u64 dma_enc_mask
= DMA_BIT_MASK(__ffs64(sme_me_mask
));
369 u64 dma_dev_mask
= min_not_zero(dev
->coherent_dma_mask
,
372 if (dma_dev_mask
<= dma_enc_mask
)
379 /* Architecture __weak replacement functions */
380 void __init
mem_encrypt_free_decrypted_mem(void)
382 unsigned long vaddr
, vaddr_end
, npages
;
385 vaddr
= (unsigned long)__start_bss_decrypted_unused
;
386 vaddr_end
= (unsigned long)__end_bss_decrypted
;
387 npages
= (vaddr_end
- vaddr
) >> PAGE_SHIFT
;
390 * The unused memory range was mapped decrypted, change the encryption
391 * attribute from decrypted to encrypted before freeing it.
393 if (mem_encrypt_active()) {
394 r
= set_memory_encrypted(vaddr
, npages
);
396 pr_warn("failed to free unused decrypted pages\n");
401 free_init_pages("unused decrypted", vaddr
, vaddr_end
);
404 void __init
mem_encrypt_init(void)
409 /* Call into SWIOTLB to update the SWIOTLB DMA buffers */
410 swiotlb_update_mem_attributes();
413 * With SEV, we need to unroll the rep string I/O instructions.
416 static_branch_enable(&sev_enable_key
);
418 pr_info("AMD %s active\n",
419 sev_active() ? "Secure Encrypted Virtualization (SEV)"
420 : "Secure Memory Encryption (SME)");