1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * SGI RTC clock/timer routines.
5 * Copyright (c) 2009-2013 Silicon Graphics, Inc. All Rights Reserved.
6 * Copyright (c) Dimitri Sivanich
8 #include <linux/clockchips.h>
9 #include <linux/slab.h>
11 #include <asm/uv/uv_mmrs.h>
12 #include <asm/uv/uv_hub.h>
13 #include <asm/uv/bios.h>
14 #include <asm/uv/uv.h>
18 #define RTC_NAME "sgi_rtc"
20 static u64
uv_read_rtc(struct clocksource
*cs
);
21 static int uv_rtc_next_event(unsigned long, struct clock_event_device
*);
22 static int uv_rtc_shutdown(struct clock_event_device
*evt
);
24 static struct clocksource clocksource_uv
= {
28 .mask
= (u64
)UVH_RTC_REAL_TIME_CLOCK_MASK
,
29 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
32 static struct clock_event_device clock_event_device_uv
= {
34 .features
= CLOCK_EVT_FEAT_ONESHOT
,
38 .set_next_event
= uv_rtc_next_event
,
39 .set_state_shutdown
= uv_rtc_shutdown
,
40 .event_handler
= NULL
,
43 static DEFINE_PER_CPU(struct clock_event_device
, cpu_ced
);
45 /* There is one of these allocated per node */
46 struct uv_rtc_timer_head
{
48 /* next cpu waiting for timer, local node relative: */
50 /* number of cpus on this node: */
53 int lcpu
; /* systemwide logical cpu number */
54 u64 expires
; /* next timer expiration for this cpu */
59 * Access to uv_rtc_timer_head via blade id.
61 static struct uv_rtc_timer_head
**blade_info __read_mostly
;
63 static int uv_rtc_evt_enable
;
66 * Hardware interface routines
69 /* Send IPIs to another node */
70 static void uv_rtc_send_IPI(int cpu
)
72 unsigned long apicid
, val
;
75 apicid
= cpu_physical_id(cpu
);
76 pnode
= uv_apicid_to_pnode(apicid
);
77 apicid
|= uv_apicid_hibits
;
78 val
= (1UL << UVH_IPI_INT_SEND_SHFT
) |
79 (apicid
<< UVH_IPI_INT_APIC_ID_SHFT
) |
80 (X86_PLATFORM_IPI_VECTOR
<< UVH_IPI_INT_VECTOR_SHFT
);
82 uv_write_global_mmr64(pnode
, UVH_IPI_INT
, val
);
85 /* Check for an RTC interrupt pending */
86 static int uv_intr_pending(int pnode
)
89 return uv_read_global_mmr64(pnode
, UVH_EVENT_OCCURRED0
) &
90 UV1H_EVENT_OCCURRED0_RTC1_MASK
;
91 else if (is_uvx_hub())
92 return uv_read_global_mmr64(pnode
, UVXH_EVENT_OCCURRED2
) &
93 UVXH_EVENT_OCCURRED2_RTC_1_MASK
;
97 /* Setup interrupt and return non-zero if early expiration occurred. */
98 static int uv_setup_intr(int cpu
, u64 expires
)
101 unsigned long apicid
= cpu_physical_id(cpu
) | uv_apicid_hibits
;
102 int pnode
= uv_cpu_to_pnode(cpu
);
104 uv_write_global_mmr64(pnode
, UVH_RTC1_INT_CONFIG
,
105 UVH_RTC1_INT_CONFIG_M_MASK
);
106 uv_write_global_mmr64(pnode
, UVH_INT_CMPB
, -1L);
109 uv_write_global_mmr64(pnode
, UVH_EVENT_OCCURRED0_ALIAS
,
110 UV1H_EVENT_OCCURRED0_RTC1_MASK
);
112 uv_write_global_mmr64(pnode
, UVXH_EVENT_OCCURRED2_ALIAS
,
113 UVXH_EVENT_OCCURRED2_RTC_1_MASK
);
115 val
= (X86_PLATFORM_IPI_VECTOR
<< UVH_RTC1_INT_CONFIG_VECTOR_SHFT
) |
116 ((u64
)apicid
<< UVH_RTC1_INT_CONFIG_APIC_ID_SHFT
);
118 /* Set configuration */
119 uv_write_global_mmr64(pnode
, UVH_RTC1_INT_CONFIG
, val
);
120 /* Initialize comparator value */
121 uv_write_global_mmr64(pnode
, UVH_INT_CMPB
, expires
);
123 if (uv_read_rtc(NULL
) <= expires
)
126 return !uv_intr_pending(pnode
);
130 * Per-cpu timer tracking routines
133 static __init
void uv_rtc_deallocate_timers(void)
137 for_each_possible_blade(bid
) {
138 kfree(blade_info
[bid
]);
143 /* Allocate per-node list of cpu timer expiration times. */
144 static __init
int uv_rtc_allocate_timers(void)
148 blade_info
= kcalloc(uv_possible_blades
, sizeof(void *), GFP_KERNEL
);
152 for_each_present_cpu(cpu
) {
153 int nid
= cpu_to_node(cpu
);
154 int bid
= uv_cpu_to_blade_id(cpu
);
155 int bcpu
= uv_cpu_blade_processor_id(cpu
);
156 struct uv_rtc_timer_head
*head
= blade_info
[bid
];
159 head
= kmalloc_node(sizeof(struct uv_rtc_timer_head
) +
160 (uv_blade_nr_possible_cpus(bid
) *
164 uv_rtc_deallocate_timers();
167 spin_lock_init(&head
->lock
);
168 head
->ncpus
= uv_blade_nr_possible_cpus(bid
);
170 blade_info
[bid
] = head
;
173 head
->cpu
[bcpu
].lcpu
= cpu
;
174 head
->cpu
[bcpu
].expires
= ULLONG_MAX
;
180 /* Find and set the next expiring timer. */
181 static void uv_rtc_find_next_timer(struct uv_rtc_timer_head
*head
, int pnode
)
183 u64 lowest
= ULLONG_MAX
;
187 for (c
= 0; c
< head
->ncpus
; c
++) {
188 u64 exp
= head
->cpu
[c
].expires
;
195 head
->next_cpu
= bcpu
;
196 c
= head
->cpu
[bcpu
].lcpu
;
197 if (uv_setup_intr(c
, lowest
))
198 /* If we didn't set it up in time, trigger */
201 uv_write_global_mmr64(pnode
, UVH_RTC1_INT_CONFIG
,
202 UVH_RTC1_INT_CONFIG_M_MASK
);
207 * Set expiration time for current cpu.
209 * Returns 1 if we missed the expiration time.
211 static int uv_rtc_set_timer(int cpu
, u64 expires
)
213 int pnode
= uv_cpu_to_pnode(cpu
);
214 int bid
= uv_cpu_to_blade_id(cpu
);
215 struct uv_rtc_timer_head
*head
= blade_info
[bid
];
216 int bcpu
= uv_cpu_blade_processor_id(cpu
);
217 u64
*t
= &head
->cpu
[bcpu
].expires
;
221 spin_lock_irqsave(&head
->lock
, flags
);
223 next_cpu
= head
->next_cpu
;
226 /* Will this one be next to go off? */
227 if (next_cpu
< 0 || bcpu
== next_cpu
||
228 expires
< head
->cpu
[next_cpu
].expires
) {
229 head
->next_cpu
= bcpu
;
230 if (uv_setup_intr(cpu
, expires
)) {
232 uv_rtc_find_next_timer(head
, pnode
);
233 spin_unlock_irqrestore(&head
->lock
, flags
);
238 spin_unlock_irqrestore(&head
->lock
, flags
);
243 * Unset expiration time for current cpu.
245 * Returns 1 if this timer was pending.
247 static int uv_rtc_unset_timer(int cpu
, int force
)
249 int pnode
= uv_cpu_to_pnode(cpu
);
250 int bid
= uv_cpu_to_blade_id(cpu
);
251 struct uv_rtc_timer_head
*head
= blade_info
[bid
];
252 int bcpu
= uv_cpu_blade_processor_id(cpu
);
253 u64
*t
= &head
->cpu
[bcpu
].expires
;
257 spin_lock_irqsave(&head
->lock
, flags
);
259 if ((head
->next_cpu
== bcpu
&& uv_read_rtc(NULL
) >= *t
) || force
)
264 /* Was the hardware setup for this timer? */
265 if (head
->next_cpu
== bcpu
)
266 uv_rtc_find_next_timer(head
, pnode
);
269 spin_unlock_irqrestore(&head
->lock
, flags
);
276 * Kernel interface routines.
282 * Starting with HUB rev 2.0, the UV RTC register is replicated across all
283 * cachelines of it's own page. This allows faster simultaneous reads
284 * from a given socket.
286 static u64
uv_read_rtc(struct clocksource
*cs
)
288 unsigned long offset
;
290 if (uv_get_min_hub_revision_id() == 1)
293 offset
= (uv_blade_processor_id() * L1_CACHE_BYTES
) % PAGE_SIZE
;
295 return (u64
)uv_read_local_mmr(UVH_RTC
| offset
);
299 * Program the next event, relative to now
301 static int uv_rtc_next_event(unsigned long delta
,
302 struct clock_event_device
*ced
)
304 int ced_cpu
= cpumask_first(ced
->cpumask
);
306 return uv_rtc_set_timer(ced_cpu
, delta
+ uv_read_rtc(NULL
));
310 * Shutdown the RTC timer
312 static int uv_rtc_shutdown(struct clock_event_device
*evt
)
314 int ced_cpu
= cpumask_first(evt
->cpumask
);
316 uv_rtc_unset_timer(ced_cpu
, 1);
320 static void uv_rtc_interrupt(void)
322 int cpu
= smp_processor_id();
323 struct clock_event_device
*ced
= &per_cpu(cpu_ced
, cpu
);
325 if (!ced
|| !ced
->event_handler
)
328 if (uv_rtc_unset_timer(cpu
, 0) != 1)
331 ced
->event_handler(ced
);
334 static int __init
uv_enable_evt_rtc(char *str
)
336 uv_rtc_evt_enable
= 1;
340 __setup("uvrtcevt", uv_enable_evt_rtc
);
342 static __init
void uv_rtc_register_clockevents(struct work_struct
*dummy
)
344 struct clock_event_device
*ced
= this_cpu_ptr(&cpu_ced
);
346 *ced
= clock_event_device_uv
;
347 ced
->cpumask
= cpumask_of(smp_processor_id());
348 clockevents_register_device(ced
);
351 static __init
int uv_rtc_setup_clock(void)
358 rc
= clocksource_register_hz(&clocksource_uv
, sn_rtc_cycles_per_second
);
360 printk(KERN_INFO
"UV RTC clocksource failed rc %d\n", rc
);
362 printk(KERN_INFO
"UV RTC clocksource registered freq %lu MHz\n",
363 sn_rtc_cycles_per_second
/(unsigned long)1E6
);
365 if (rc
|| !uv_rtc_evt_enable
|| x86_platform_ipi_callback
)
368 /* Setup and register clockevents */
369 rc
= uv_rtc_allocate_timers();
373 x86_platform_ipi_callback
= uv_rtc_interrupt
;
375 clock_event_device_uv
.mult
= div_sc(sn_rtc_cycles_per_second
,
376 NSEC_PER_SEC
, clock_event_device_uv
.shift
);
378 clock_event_device_uv
.min_delta_ns
= NSEC_PER_SEC
/
379 sn_rtc_cycles_per_second
;
380 clock_event_device_uv
.min_delta_ticks
= 1;
382 clock_event_device_uv
.max_delta_ns
= clocksource_uv
.mask
*
383 (NSEC_PER_SEC
/ sn_rtc_cycles_per_second
);
384 clock_event_device_uv
.max_delta_ticks
= clocksource_uv
.mask
;
386 rc
= schedule_on_each_cpu(uv_rtc_register_clockevents
);
388 x86_platform_ipi_callback
= NULL
;
389 uv_rtc_deallocate_timers();
393 printk(KERN_INFO
"UV RTC clockevents registered\n");
398 clocksource_unregister(&clocksource_uv
);
399 printk(KERN_INFO
"UV RTC clockevents failed rc %d\n", rc
);
403 arch_initcall(uv_rtc_setup_clock
);