ARM: dma-api: fix max_pfn off-by-one error in __dma_supported()
[linux/fpc-iii.git] / arch / x86 / xen / enlighten_pv.c
blobae4a41ca19f6244eab9063c64d9688c7c350001d
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Core of Xen paravirt_ops implementation.
5 * This file contains the xen_paravirt_ops structure itself, and the
6 * implementations for:
7 * - privileged instructions
8 * - interrupt flags
9 * - segment operations
10 * - booting and setup
12 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
15 #include <linux/cpu.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/smp.h>
19 #include <linux/preempt.h>
20 #include <linux/hardirq.h>
21 #include <linux/percpu.h>
22 #include <linux/delay.h>
23 #include <linux/start_kernel.h>
24 #include <linux/sched.h>
25 #include <linux/kprobes.h>
26 #include <linux/memblock.h>
27 #include <linux/export.h>
28 #include <linux/mm.h>
29 #include <linux/page-flags.h>
30 #include <linux/highmem.h>
31 #include <linux/console.h>
32 #include <linux/pci.h>
33 #include <linux/gfp.h>
34 #include <linux/edd.h>
35 #include <linux/frame.h>
37 #include <xen/xen.h>
38 #include <xen/events.h>
39 #include <xen/interface/xen.h>
40 #include <xen/interface/version.h>
41 #include <xen/interface/physdev.h>
42 #include <xen/interface/vcpu.h>
43 #include <xen/interface/memory.h>
44 #include <xen/interface/nmi.h>
45 #include <xen/interface/xen-mca.h>
46 #include <xen/features.h>
47 #include <xen/page.h>
48 #include <xen/hvc-console.h>
49 #include <xen/acpi.h>
51 #include <asm/paravirt.h>
52 #include <asm/apic.h>
53 #include <asm/page.h>
54 #include <asm/xen/pci.h>
55 #include <asm/xen/hypercall.h>
56 #include <asm/xen/hypervisor.h>
57 #include <asm/xen/cpuid.h>
58 #include <asm/fixmap.h>
59 #include <asm/processor.h>
60 #include <asm/proto.h>
61 #include <asm/msr-index.h>
62 #include <asm/traps.h>
63 #include <asm/setup.h>
64 #include <asm/desc.h>
65 #include <asm/pgalloc.h>
66 #include <asm/pgtable.h>
67 #include <asm/tlbflush.h>
68 #include <asm/reboot.h>
69 #include <asm/stackprotector.h>
70 #include <asm/hypervisor.h>
71 #include <asm/mach_traps.h>
72 #include <asm/mwait.h>
73 #include <asm/pci_x86.h>
74 #include <asm/cpu.h>
76 #ifdef CONFIG_ACPI
77 #include <linux/acpi.h>
78 #include <asm/acpi.h>
79 #include <acpi/pdc_intel.h>
80 #include <acpi/processor.h>
81 #include <xen/interface/platform.h>
82 #endif
84 #include "xen-ops.h"
85 #include "mmu.h"
86 #include "smp.h"
87 #include "multicalls.h"
88 #include "pmu.h"
90 #include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
92 void *xen_initial_gdt;
94 static int xen_cpu_up_prepare_pv(unsigned int cpu);
95 static int xen_cpu_dead_pv(unsigned int cpu);
97 struct tls_descs {
98 struct desc_struct desc[3];
102 * Updating the 3 TLS descriptors in the GDT on every task switch is
103 * surprisingly expensive so we avoid updating them if they haven't
104 * changed. Since Xen writes different descriptors than the one
105 * passed in the update_descriptor hypercall we keep shadow copies to
106 * compare against.
108 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
110 static void __init xen_banner(void)
112 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
113 struct xen_extraversion extra;
114 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
116 pr_info("Booting paravirtualized kernel on %s\n", pv_info.name);
117 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
118 version >> 16, version & 0xffff, extra.extraversion,
119 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
121 #ifdef CONFIG_X86_32
122 pr_warn("WARNING! WARNING! WARNING! WARNING! WARNING! WARNING! WARNING!\n"
123 "Support for running as 32-bit PV-guest under Xen will soon be removed\n"
124 "from the Linux kernel!\n"
125 "Please use either a 64-bit kernel or switch to HVM or PVH mode!\n"
126 "WARNING! WARNING! WARNING! WARNING! WARNING! WARNING! WARNING!\n");
127 #endif
130 static void __init xen_pv_init_platform(void)
132 populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP));
134 set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
135 HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
137 /* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */
138 xen_vcpu_info_reset(0);
140 /* pvclock is in shared info area */
141 xen_init_time_ops();
144 static void __init xen_pv_guest_late_init(void)
146 #ifndef CONFIG_SMP
147 /* Setup shared vcpu info for non-smp configurations */
148 xen_setup_vcpu_info_placement();
149 #endif
152 /* Check if running on Xen version (major, minor) or later */
153 bool
154 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
156 unsigned int version;
158 if (!xen_domain())
159 return false;
161 version = HYPERVISOR_xen_version(XENVER_version, NULL);
162 if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
163 ((version >> 16) > major))
164 return true;
165 return false;
168 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
169 static __read_mostly unsigned int cpuid_leaf5_edx_val;
171 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
172 unsigned int *cx, unsigned int *dx)
174 unsigned maskebx = ~0;
177 * Mask out inconvenient features, to try and disable as many
178 * unsupported kernel subsystems as possible.
180 switch (*ax) {
181 case CPUID_MWAIT_LEAF:
182 /* Synthesize the values.. */
183 *ax = 0;
184 *bx = 0;
185 *cx = cpuid_leaf5_ecx_val;
186 *dx = cpuid_leaf5_edx_val;
187 return;
189 case 0xb:
190 /* Suppress extended topology stuff */
191 maskebx = 0;
192 break;
195 asm(XEN_EMULATE_PREFIX "cpuid"
196 : "=a" (*ax),
197 "=b" (*bx),
198 "=c" (*cx),
199 "=d" (*dx)
200 : "0" (*ax), "2" (*cx));
202 *bx &= maskebx;
204 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
206 static bool __init xen_check_mwait(void)
208 #ifdef CONFIG_ACPI
209 struct xen_platform_op op = {
210 .cmd = XENPF_set_processor_pminfo,
211 .u.set_pminfo.id = -1,
212 .u.set_pminfo.type = XEN_PM_PDC,
214 uint32_t buf[3];
215 unsigned int ax, bx, cx, dx;
216 unsigned int mwait_mask;
218 /* We need to determine whether it is OK to expose the MWAIT
219 * capability to the kernel to harvest deeper than C3 states from ACPI
220 * _CST using the processor_harvest_xen.c module. For this to work, we
221 * need to gather the MWAIT_LEAF values (which the cstate.c code
222 * checks against). The hypervisor won't expose the MWAIT flag because
223 * it would break backwards compatibility; so we will find out directly
224 * from the hardware and hypercall.
226 if (!xen_initial_domain())
227 return false;
230 * When running under platform earlier than Xen4.2, do not expose
231 * mwait, to avoid the risk of loading native acpi pad driver
233 if (!xen_running_on_version_or_later(4, 2))
234 return false;
236 ax = 1;
237 cx = 0;
239 native_cpuid(&ax, &bx, &cx, &dx);
241 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
242 (1 << (X86_FEATURE_MWAIT % 32));
244 if ((cx & mwait_mask) != mwait_mask)
245 return false;
247 /* We need to emulate the MWAIT_LEAF and for that we need both
248 * ecx and edx. The hypercall provides only partial information.
251 ax = CPUID_MWAIT_LEAF;
252 bx = 0;
253 cx = 0;
254 dx = 0;
256 native_cpuid(&ax, &bx, &cx, &dx);
258 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
259 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
261 buf[0] = ACPI_PDC_REVISION_ID;
262 buf[1] = 1;
263 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
265 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
267 if ((HYPERVISOR_platform_op(&op) == 0) &&
268 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
269 cpuid_leaf5_ecx_val = cx;
270 cpuid_leaf5_edx_val = dx;
272 return true;
273 #else
274 return false;
275 #endif
278 static bool __init xen_check_xsave(void)
280 unsigned int cx, xsave_mask;
282 cx = cpuid_ecx(1);
284 xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
285 (1 << (X86_FEATURE_OSXSAVE % 32));
287 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
288 return (cx & xsave_mask) == xsave_mask;
291 static void __init xen_init_capabilities(void)
293 setup_force_cpu_cap(X86_FEATURE_XENPV);
294 setup_clear_cpu_cap(X86_FEATURE_DCA);
295 setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
296 setup_clear_cpu_cap(X86_FEATURE_MTRR);
297 setup_clear_cpu_cap(X86_FEATURE_ACC);
298 setup_clear_cpu_cap(X86_FEATURE_X2APIC);
299 setup_clear_cpu_cap(X86_FEATURE_SME);
302 * Xen PV would need some work to support PCID: CR3 handling as well
303 * as xen_flush_tlb_others() would need updating.
305 setup_clear_cpu_cap(X86_FEATURE_PCID);
307 if (!xen_initial_domain())
308 setup_clear_cpu_cap(X86_FEATURE_ACPI);
310 if (xen_check_mwait())
311 setup_force_cpu_cap(X86_FEATURE_MWAIT);
312 else
313 setup_clear_cpu_cap(X86_FEATURE_MWAIT);
315 if (!xen_check_xsave()) {
316 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
317 setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
321 static void xen_set_debugreg(int reg, unsigned long val)
323 HYPERVISOR_set_debugreg(reg, val);
326 static unsigned long xen_get_debugreg(int reg)
328 return HYPERVISOR_get_debugreg(reg);
331 static void xen_end_context_switch(struct task_struct *next)
333 xen_mc_flush();
334 paravirt_end_context_switch(next);
337 static unsigned long xen_store_tr(void)
339 return 0;
343 * Set the page permissions for a particular virtual address. If the
344 * address is a vmalloc mapping (or other non-linear mapping), then
345 * find the linear mapping of the page and also set its protections to
346 * match.
348 static void set_aliased_prot(void *v, pgprot_t prot)
350 int level;
351 pte_t *ptep;
352 pte_t pte;
353 unsigned long pfn;
354 struct page *page;
355 unsigned char dummy;
357 ptep = lookup_address((unsigned long)v, &level);
358 BUG_ON(ptep == NULL);
360 pfn = pte_pfn(*ptep);
361 page = pfn_to_page(pfn);
363 pte = pfn_pte(pfn, prot);
366 * Careful: update_va_mapping() will fail if the virtual address
367 * we're poking isn't populated in the page tables. We don't
368 * need to worry about the direct map (that's always in the page
369 * tables), but we need to be careful about vmap space. In
370 * particular, the top level page table can lazily propagate
371 * entries between processes, so if we've switched mms since we
372 * vmapped the target in the first place, we might not have the
373 * top-level page table entry populated.
375 * We disable preemption because we want the same mm active when
376 * we probe the target and when we issue the hypercall. We'll
377 * have the same nominal mm, but if we're a kernel thread, lazy
378 * mm dropping could change our pgd.
380 * Out of an abundance of caution, this uses __get_user() to fault
381 * in the target address just in case there's some obscure case
382 * in which the target address isn't readable.
385 preempt_disable();
387 probe_kernel_read(&dummy, v, 1);
389 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
390 BUG();
392 if (!PageHighMem(page)) {
393 void *av = __va(PFN_PHYS(pfn));
395 if (av != v)
396 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
397 BUG();
398 } else
399 kmap_flush_unused();
401 preempt_enable();
404 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
406 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
407 int i;
410 * We need to mark the all aliases of the LDT pages RO. We
411 * don't need to call vm_flush_aliases(), though, since that's
412 * only responsible for flushing aliases out the TLBs, not the
413 * page tables, and Xen will flush the TLB for us if needed.
415 * To avoid confusing future readers: none of this is necessary
416 * to load the LDT. The hypervisor only checks this when the
417 * LDT is faulted in due to subsequent descriptor access.
420 for (i = 0; i < entries; i += entries_per_page)
421 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
424 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
426 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
427 int i;
429 for (i = 0; i < entries; i += entries_per_page)
430 set_aliased_prot(ldt + i, PAGE_KERNEL);
433 static void xen_set_ldt(const void *addr, unsigned entries)
435 struct mmuext_op *op;
436 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
438 trace_xen_cpu_set_ldt(addr, entries);
440 op = mcs.args;
441 op->cmd = MMUEXT_SET_LDT;
442 op->arg1.linear_addr = (unsigned long)addr;
443 op->arg2.nr_ents = entries;
445 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
447 xen_mc_issue(PARAVIRT_LAZY_CPU);
450 static void xen_load_gdt(const struct desc_ptr *dtr)
452 unsigned long va = dtr->address;
453 unsigned int size = dtr->size + 1;
454 unsigned long pfn, mfn;
455 int level;
456 pte_t *ptep;
457 void *virt;
459 /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
460 BUG_ON(size > PAGE_SIZE);
461 BUG_ON(va & ~PAGE_MASK);
464 * The GDT is per-cpu and is in the percpu data area.
465 * That can be virtually mapped, so we need to do a
466 * page-walk to get the underlying MFN for the
467 * hypercall. The page can also be in the kernel's
468 * linear range, so we need to RO that mapping too.
470 ptep = lookup_address(va, &level);
471 BUG_ON(ptep == NULL);
473 pfn = pte_pfn(*ptep);
474 mfn = pfn_to_mfn(pfn);
475 virt = __va(PFN_PHYS(pfn));
477 make_lowmem_page_readonly((void *)va);
478 make_lowmem_page_readonly(virt);
480 if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
481 BUG();
485 * load_gdt for early boot, when the gdt is only mapped once
487 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
489 unsigned long va = dtr->address;
490 unsigned int size = dtr->size + 1;
491 unsigned long pfn, mfn;
492 pte_t pte;
494 /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
495 BUG_ON(size > PAGE_SIZE);
496 BUG_ON(va & ~PAGE_MASK);
498 pfn = virt_to_pfn(va);
499 mfn = pfn_to_mfn(pfn);
501 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
503 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
504 BUG();
506 if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
507 BUG();
510 static inline bool desc_equal(const struct desc_struct *d1,
511 const struct desc_struct *d2)
513 return !memcmp(d1, d2, sizeof(*d1));
516 static void load_TLS_descriptor(struct thread_struct *t,
517 unsigned int cpu, unsigned int i)
519 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
520 struct desc_struct *gdt;
521 xmaddr_t maddr;
522 struct multicall_space mc;
524 if (desc_equal(shadow, &t->tls_array[i]))
525 return;
527 *shadow = t->tls_array[i];
529 gdt = get_cpu_gdt_rw(cpu);
530 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
531 mc = __xen_mc_entry(0);
533 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
536 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
539 * XXX sleazy hack: If we're being called in a lazy-cpu zone
540 * and lazy gs handling is enabled, it means we're in a
541 * context switch, and %gs has just been saved. This means we
542 * can zero it out to prevent faults on exit from the
543 * hypervisor if the next process has no %gs. Either way, it
544 * has been saved, and the new value will get loaded properly.
545 * This will go away as soon as Xen has been modified to not
546 * save/restore %gs for normal hypercalls.
548 * On x86_64, this hack is not used for %gs, because gs points
549 * to KERNEL_GS_BASE (and uses it for PDA references), so we
550 * must not zero %gs on x86_64
552 * For x86_64, we need to zero %fs, otherwise we may get an
553 * exception between the new %fs descriptor being loaded and
554 * %fs being effectively cleared at __switch_to().
556 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
557 #ifdef CONFIG_X86_32
558 lazy_load_gs(0);
559 #else
560 loadsegment(fs, 0);
561 #endif
564 xen_mc_batch();
566 load_TLS_descriptor(t, cpu, 0);
567 load_TLS_descriptor(t, cpu, 1);
568 load_TLS_descriptor(t, cpu, 2);
570 xen_mc_issue(PARAVIRT_LAZY_CPU);
573 #ifdef CONFIG_X86_64
574 static void xen_load_gs_index(unsigned int idx)
576 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
577 BUG();
579 #endif
581 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
582 const void *ptr)
584 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
585 u64 entry = *(u64 *)ptr;
587 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
589 preempt_disable();
591 xen_mc_flush();
592 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
593 BUG();
595 preempt_enable();
598 #ifdef CONFIG_X86_64
599 struct trap_array_entry {
600 void (*orig)(void);
601 void (*xen)(void);
602 bool ist_okay;
605 static struct trap_array_entry trap_array[] = {
606 { debug, xen_xendebug, true },
607 { double_fault, xen_double_fault, true },
608 #ifdef CONFIG_X86_MCE
609 { machine_check, xen_machine_check, true },
610 #endif
611 { nmi, xen_xennmi, true },
612 { int3, xen_int3, false },
613 { overflow, xen_overflow, false },
614 #ifdef CONFIG_IA32_EMULATION
615 { entry_INT80_compat, xen_entry_INT80_compat, false },
616 #endif
617 { page_fault, xen_page_fault, false },
618 { divide_error, xen_divide_error, false },
619 { bounds, xen_bounds, false },
620 { invalid_op, xen_invalid_op, false },
621 { device_not_available, xen_device_not_available, false },
622 { coprocessor_segment_overrun, xen_coprocessor_segment_overrun, false },
623 { invalid_TSS, xen_invalid_TSS, false },
624 { segment_not_present, xen_segment_not_present, false },
625 { stack_segment, xen_stack_segment, false },
626 { general_protection, xen_general_protection, false },
627 { spurious_interrupt_bug, xen_spurious_interrupt_bug, false },
628 { coprocessor_error, xen_coprocessor_error, false },
629 { alignment_check, xen_alignment_check, false },
630 { simd_coprocessor_error, xen_simd_coprocessor_error, false },
633 static bool __ref get_trap_addr(void **addr, unsigned int ist)
635 unsigned int nr;
636 bool ist_okay = false;
639 * Replace trap handler addresses by Xen specific ones.
640 * Check for known traps using IST and whitelist them.
641 * The debugger ones are the only ones we care about.
642 * Xen will handle faults like double_fault, * so we should never see
643 * them. Warn if there's an unexpected IST-using fault handler.
645 for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
646 struct trap_array_entry *entry = trap_array + nr;
648 if (*addr == entry->orig) {
649 *addr = entry->xen;
650 ist_okay = entry->ist_okay;
651 break;
655 if (nr == ARRAY_SIZE(trap_array) &&
656 *addr >= (void *)early_idt_handler_array[0] &&
657 *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
658 nr = (*addr - (void *)early_idt_handler_array[0]) /
659 EARLY_IDT_HANDLER_SIZE;
660 *addr = (void *)xen_early_idt_handler_array[nr];
663 if (WARN_ON(ist != 0 && !ist_okay))
664 return false;
666 return true;
668 #endif
670 static int cvt_gate_to_trap(int vector, const gate_desc *val,
671 struct trap_info *info)
673 unsigned long addr;
675 if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
676 return 0;
678 info->vector = vector;
680 addr = gate_offset(val);
681 #ifdef CONFIG_X86_64
682 if (!get_trap_addr((void **)&addr, val->bits.ist))
683 return 0;
684 #endif /* CONFIG_X86_64 */
685 info->address = addr;
687 info->cs = gate_segment(val);
688 info->flags = val->bits.dpl;
689 /* interrupt gates clear IF */
690 if (val->bits.type == GATE_INTERRUPT)
691 info->flags |= 1 << 2;
693 return 1;
696 /* Locations of each CPU's IDT */
697 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
699 /* Set an IDT entry. If the entry is part of the current IDT, then
700 also update Xen. */
701 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
703 unsigned long p = (unsigned long)&dt[entrynum];
704 unsigned long start, end;
706 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
708 preempt_disable();
710 start = __this_cpu_read(idt_desc.address);
711 end = start + __this_cpu_read(idt_desc.size) + 1;
713 xen_mc_flush();
715 native_write_idt_entry(dt, entrynum, g);
717 if (p >= start && (p + 8) <= end) {
718 struct trap_info info[2];
720 info[1].address = 0;
722 if (cvt_gate_to_trap(entrynum, g, &info[0]))
723 if (HYPERVISOR_set_trap_table(info))
724 BUG();
727 preempt_enable();
730 static void xen_convert_trap_info(const struct desc_ptr *desc,
731 struct trap_info *traps)
733 unsigned in, out, count;
735 count = (desc->size+1) / sizeof(gate_desc);
736 BUG_ON(count > 256);
738 for (in = out = 0; in < count; in++) {
739 gate_desc *entry = (gate_desc *)(desc->address) + in;
741 if (cvt_gate_to_trap(in, entry, &traps[out]))
742 out++;
744 traps[out].address = 0;
747 void xen_copy_trap_info(struct trap_info *traps)
749 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
751 xen_convert_trap_info(desc, traps);
754 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
755 hold a spinlock to protect the static traps[] array (static because
756 it avoids allocation, and saves stack space). */
757 static void xen_load_idt(const struct desc_ptr *desc)
759 static DEFINE_SPINLOCK(lock);
760 static struct trap_info traps[257];
762 trace_xen_cpu_load_idt(desc);
764 spin_lock(&lock);
766 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
768 xen_convert_trap_info(desc, traps);
770 xen_mc_flush();
771 if (HYPERVISOR_set_trap_table(traps))
772 BUG();
774 spin_unlock(&lock);
777 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
778 they're handled differently. */
779 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
780 const void *desc, int type)
782 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
784 preempt_disable();
786 switch (type) {
787 case DESC_LDT:
788 case DESC_TSS:
789 /* ignore */
790 break;
792 default: {
793 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
795 xen_mc_flush();
796 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
797 BUG();
802 preempt_enable();
806 * Version of write_gdt_entry for use at early boot-time needed to
807 * update an entry as simply as possible.
809 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
810 const void *desc, int type)
812 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
814 switch (type) {
815 case DESC_LDT:
816 case DESC_TSS:
817 /* ignore */
818 break;
820 default: {
821 xmaddr_t maddr = virt_to_machine(&dt[entry]);
823 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
824 dt[entry] = *(struct desc_struct *)desc;
830 static void xen_load_sp0(unsigned long sp0)
832 struct multicall_space mcs;
834 mcs = xen_mc_entry(0);
835 MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
836 xen_mc_issue(PARAVIRT_LAZY_CPU);
837 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
840 static void xen_io_delay(void)
844 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
846 static unsigned long xen_read_cr0(void)
848 unsigned long cr0 = this_cpu_read(xen_cr0_value);
850 if (unlikely(cr0 == 0)) {
851 cr0 = native_read_cr0();
852 this_cpu_write(xen_cr0_value, cr0);
855 return cr0;
858 static void xen_write_cr0(unsigned long cr0)
860 struct multicall_space mcs;
862 this_cpu_write(xen_cr0_value, cr0);
864 /* Only pay attention to cr0.TS; everything else is
865 ignored. */
866 mcs = xen_mc_entry(0);
868 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
870 xen_mc_issue(PARAVIRT_LAZY_CPU);
873 static void xen_write_cr4(unsigned long cr4)
875 cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
877 native_write_cr4(cr4);
880 static u64 xen_read_msr_safe(unsigned int msr, int *err)
882 u64 val;
884 if (pmu_msr_read(msr, &val, err))
885 return val;
887 val = native_read_msr_safe(msr, err);
888 switch (msr) {
889 case MSR_IA32_APICBASE:
890 val &= ~X2APIC_ENABLE;
891 break;
893 return val;
896 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
898 int ret;
900 ret = 0;
902 switch (msr) {
903 #ifdef CONFIG_X86_64
904 unsigned which;
905 u64 base;
907 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
908 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
909 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
911 set:
912 base = ((u64)high << 32) | low;
913 if (HYPERVISOR_set_segment_base(which, base) != 0)
914 ret = -EIO;
915 break;
916 #endif
918 case MSR_STAR:
919 case MSR_CSTAR:
920 case MSR_LSTAR:
921 case MSR_SYSCALL_MASK:
922 case MSR_IA32_SYSENTER_CS:
923 case MSR_IA32_SYSENTER_ESP:
924 case MSR_IA32_SYSENTER_EIP:
925 /* Fast syscall setup is all done in hypercalls, so
926 these are all ignored. Stub them out here to stop
927 Xen console noise. */
928 break;
930 default:
931 if (!pmu_msr_write(msr, low, high, &ret))
932 ret = native_write_msr_safe(msr, low, high);
935 return ret;
938 static u64 xen_read_msr(unsigned int msr)
941 * This will silently swallow a #GP from RDMSR. It may be worth
942 * changing that.
944 int err;
946 return xen_read_msr_safe(msr, &err);
949 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
952 * This will silently swallow a #GP from WRMSR. It may be worth
953 * changing that.
955 xen_write_msr_safe(msr, low, high);
958 /* This is called once we have the cpu_possible_mask */
959 void __init xen_setup_vcpu_info_placement(void)
961 int cpu;
963 for_each_possible_cpu(cpu) {
964 /* Set up direct vCPU id mapping for PV guests. */
965 per_cpu(xen_vcpu_id, cpu) = cpu;
968 * xen_vcpu_setup(cpu) can fail -- in which case it
969 * falls back to the shared_info version for cpus
970 * where xen_vcpu_nr(cpu) < MAX_VIRT_CPUS.
972 * xen_cpu_up_prepare_pv() handles the rest by failing
973 * them in hotplug.
975 (void) xen_vcpu_setup(cpu);
979 * xen_vcpu_setup managed to place the vcpu_info within the
980 * percpu area for all cpus, so make use of it.
982 if (xen_have_vcpu_info_placement) {
983 pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
984 pv_ops.irq.restore_fl =
985 __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
986 pv_ops.irq.irq_disable =
987 __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
988 pv_ops.irq.irq_enable =
989 __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
990 pv_ops.mmu.read_cr2 =
991 __PV_IS_CALLEE_SAVE(xen_read_cr2_direct);
995 static const struct pv_info xen_info __initconst = {
996 .shared_kernel_pmd = 0,
998 #ifdef CONFIG_X86_64
999 .extra_user_64bit_cs = FLAT_USER_CS64,
1000 #endif
1001 .name = "Xen",
1004 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1005 .cpuid = xen_cpuid,
1007 .set_debugreg = xen_set_debugreg,
1008 .get_debugreg = xen_get_debugreg,
1010 .read_cr0 = xen_read_cr0,
1011 .write_cr0 = xen_write_cr0,
1013 .write_cr4 = xen_write_cr4,
1015 .wbinvd = native_wbinvd,
1017 .read_msr = xen_read_msr,
1018 .write_msr = xen_write_msr,
1020 .read_msr_safe = xen_read_msr_safe,
1021 .write_msr_safe = xen_write_msr_safe,
1023 .read_pmc = xen_read_pmc,
1025 .iret = xen_iret,
1026 #ifdef CONFIG_X86_64
1027 .usergs_sysret64 = xen_sysret64,
1028 #endif
1030 .load_tr_desc = paravirt_nop,
1031 .set_ldt = xen_set_ldt,
1032 .load_gdt = xen_load_gdt,
1033 .load_idt = xen_load_idt,
1034 .load_tls = xen_load_tls,
1035 #ifdef CONFIG_X86_64
1036 .load_gs_index = xen_load_gs_index,
1037 #endif
1039 .alloc_ldt = xen_alloc_ldt,
1040 .free_ldt = xen_free_ldt,
1042 .store_tr = xen_store_tr,
1044 .write_ldt_entry = xen_write_ldt_entry,
1045 .write_gdt_entry = xen_write_gdt_entry,
1046 .write_idt_entry = xen_write_idt_entry,
1047 .load_sp0 = xen_load_sp0,
1049 .io_delay = xen_io_delay,
1051 /* Xen takes care of %gs when switching to usermode for us */
1052 .swapgs = paravirt_nop,
1054 .start_context_switch = paravirt_start_context_switch,
1055 .end_context_switch = xen_end_context_switch,
1058 static void xen_restart(char *msg)
1060 xen_reboot(SHUTDOWN_reboot);
1063 static void xen_machine_halt(void)
1065 xen_reboot(SHUTDOWN_poweroff);
1068 static void xen_machine_power_off(void)
1070 if (pm_power_off)
1071 pm_power_off();
1072 xen_reboot(SHUTDOWN_poweroff);
1075 static void xen_crash_shutdown(struct pt_regs *regs)
1077 xen_reboot(SHUTDOWN_crash);
1080 static const struct machine_ops xen_machine_ops __initconst = {
1081 .restart = xen_restart,
1082 .halt = xen_machine_halt,
1083 .power_off = xen_machine_power_off,
1084 .shutdown = xen_machine_halt,
1085 .crash_shutdown = xen_crash_shutdown,
1086 .emergency_restart = xen_emergency_restart,
1089 static unsigned char xen_get_nmi_reason(void)
1091 unsigned char reason = 0;
1093 /* Construct a value which looks like it came from port 0x61. */
1094 if (test_bit(_XEN_NMIREASON_io_error,
1095 &HYPERVISOR_shared_info->arch.nmi_reason))
1096 reason |= NMI_REASON_IOCHK;
1097 if (test_bit(_XEN_NMIREASON_pci_serr,
1098 &HYPERVISOR_shared_info->arch.nmi_reason))
1099 reason |= NMI_REASON_SERR;
1101 return reason;
1104 static void __init xen_boot_params_init_edd(void)
1106 #if IS_ENABLED(CONFIG_EDD)
1107 struct xen_platform_op op;
1108 struct edd_info *edd_info;
1109 u32 *mbr_signature;
1110 unsigned nr;
1111 int ret;
1113 edd_info = boot_params.eddbuf;
1114 mbr_signature = boot_params.edd_mbr_sig_buffer;
1116 op.cmd = XENPF_firmware_info;
1118 op.u.firmware_info.type = XEN_FW_DISK_INFO;
1119 for (nr = 0; nr < EDDMAXNR; nr++) {
1120 struct edd_info *info = edd_info + nr;
1122 op.u.firmware_info.index = nr;
1123 info->params.length = sizeof(info->params);
1124 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1125 &info->params);
1126 ret = HYPERVISOR_platform_op(&op);
1127 if (ret)
1128 break;
1130 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1131 C(device);
1132 C(version);
1133 C(interface_support);
1134 C(legacy_max_cylinder);
1135 C(legacy_max_head);
1136 C(legacy_sectors_per_track);
1137 #undef C
1139 boot_params.eddbuf_entries = nr;
1141 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1142 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1143 op.u.firmware_info.index = nr;
1144 ret = HYPERVISOR_platform_op(&op);
1145 if (ret)
1146 break;
1147 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1149 boot_params.edd_mbr_sig_buf_entries = nr;
1150 #endif
1154 * Set up the GDT and segment registers for -fstack-protector. Until
1155 * we do this, we have to be careful not to call any stack-protected
1156 * function, which is most of the kernel.
1158 static void __init xen_setup_gdt(int cpu)
1160 pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot;
1161 pv_ops.cpu.load_gdt = xen_load_gdt_boot;
1163 setup_stack_canary_segment(cpu);
1164 switch_to_new_gdt(cpu);
1166 pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry;
1167 pv_ops.cpu.load_gdt = xen_load_gdt;
1170 static void __init xen_dom0_set_legacy_features(void)
1172 x86_platform.legacy.rtc = 1;
1175 /* First C function to be called on Xen boot */
1176 asmlinkage __visible void __init xen_start_kernel(void)
1178 struct physdev_set_iopl set_iopl;
1179 unsigned long initrd_start = 0;
1180 int rc;
1182 if (!xen_start_info)
1183 return;
1185 xen_domain_type = XEN_PV_DOMAIN;
1186 xen_start_flags = xen_start_info->flags;
1188 xen_setup_features();
1190 /* Install Xen paravirt ops */
1191 pv_info = xen_info;
1192 pv_ops.init.patch = paravirt_patch_default;
1193 pv_ops.cpu = xen_cpu_ops;
1194 xen_init_irq_ops();
1197 * Setup xen_vcpu early because it is needed for
1198 * local_irq_disable(), irqs_disabled(), e.g. in printk().
1200 * Don't do the full vcpu_info placement stuff until we have
1201 * the cpu_possible_mask and a non-dummy shared_info.
1203 xen_vcpu_info_reset(0);
1205 x86_platform.get_nmi_reason = xen_get_nmi_reason;
1207 x86_init.resources.memory_setup = xen_memory_setup;
1208 x86_init.irqs.intr_mode_init = x86_init_noop;
1209 x86_init.oem.arch_setup = xen_arch_setup;
1210 x86_init.oem.banner = xen_banner;
1211 x86_init.hyper.init_platform = xen_pv_init_platform;
1212 x86_init.hyper.guest_late_init = xen_pv_guest_late_init;
1215 * Set up some pagetable state before starting to set any ptes.
1218 xen_setup_machphys_mapping();
1219 xen_init_mmu_ops();
1221 /* Prevent unwanted bits from being set in PTEs. */
1222 __supported_pte_mask &= ~_PAGE_GLOBAL;
1223 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
1226 * Prevent page tables from being allocated in highmem, even
1227 * if CONFIG_HIGHPTE is enabled.
1229 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1231 /* Get mfn list */
1232 xen_build_dynamic_phys_to_machine();
1235 * Set up kernel GDT and segment registers, mainly so that
1236 * -fstack-protector code can be executed.
1238 xen_setup_gdt(0);
1240 /* Work out if we support NX */
1241 get_cpu_cap(&boot_cpu_data);
1242 x86_configure_nx();
1244 /* Determine virtual and physical address sizes */
1245 get_cpu_address_sizes(&boot_cpu_data);
1247 /* Let's presume PV guests always boot on vCPU with id 0. */
1248 per_cpu(xen_vcpu_id, 0) = 0;
1250 idt_setup_early_handler();
1252 xen_init_capabilities();
1254 #ifdef CONFIG_X86_LOCAL_APIC
1256 * set up the basic apic ops.
1258 xen_init_apic();
1259 #endif
1261 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1262 pv_ops.mmu.ptep_modify_prot_start =
1263 xen_ptep_modify_prot_start;
1264 pv_ops.mmu.ptep_modify_prot_commit =
1265 xen_ptep_modify_prot_commit;
1268 machine_ops = xen_machine_ops;
1271 * The only reliable way to retain the initial address of the
1272 * percpu gdt_page is to remember it here, so we can go and
1273 * mark it RW later, when the initial percpu area is freed.
1275 xen_initial_gdt = &per_cpu(gdt_page, 0);
1277 xen_smp_init();
1279 #ifdef CONFIG_ACPI_NUMA
1281 * The pages we from Xen are not related to machine pages, so
1282 * any NUMA information the kernel tries to get from ACPI will
1283 * be meaningless. Prevent it from trying.
1285 acpi_numa = -1;
1286 #endif
1287 WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1289 local_irq_disable();
1290 early_boot_irqs_disabled = true;
1292 xen_raw_console_write("mapping kernel into physical memory\n");
1293 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1294 xen_start_info->nr_pages);
1295 xen_reserve_special_pages();
1297 /* keep using Xen gdt for now; no urgent need to change it */
1299 #ifdef CONFIG_X86_32
1300 pv_info.kernel_rpl = 1;
1301 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1302 pv_info.kernel_rpl = 0;
1303 #else
1304 pv_info.kernel_rpl = 0;
1305 #endif
1306 /* set the limit of our address space */
1307 xen_reserve_top();
1310 * We used to do this in xen_arch_setup, but that is too late
1311 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1312 * early_amd_init which pokes 0xcf8 port.
1314 set_iopl.iopl = 1;
1315 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1316 if (rc != 0)
1317 xen_raw_printk("physdev_op failed %d\n", rc);
1319 #ifdef CONFIG_X86_32
1320 /* set up basic CPUID stuff */
1321 cpu_detect(&new_cpu_data);
1322 set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1323 new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1324 #endif
1326 if (xen_start_info->mod_start) {
1327 if (xen_start_info->flags & SIF_MOD_START_PFN)
1328 initrd_start = PFN_PHYS(xen_start_info->mod_start);
1329 else
1330 initrd_start = __pa(xen_start_info->mod_start);
1333 /* Poke various useful things into boot_params */
1334 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1335 boot_params.hdr.ramdisk_image = initrd_start;
1336 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1337 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1338 boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1340 if (!xen_initial_domain()) {
1341 add_preferred_console("xenboot", 0, NULL);
1342 if (pci_xen)
1343 x86_init.pci.arch_init = pci_xen_init;
1344 } else {
1345 const struct dom0_vga_console_info *info =
1346 (void *)((char *)xen_start_info +
1347 xen_start_info->console.dom0.info_off);
1348 struct xen_platform_op op = {
1349 .cmd = XENPF_firmware_info,
1350 .interface_version = XENPF_INTERFACE_VERSION,
1351 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1354 x86_platform.set_legacy_features =
1355 xen_dom0_set_legacy_features;
1356 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1357 xen_start_info->console.domU.mfn = 0;
1358 xen_start_info->console.domU.evtchn = 0;
1360 if (HYPERVISOR_platform_op(&op) == 0)
1361 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1363 /* Make sure ACS will be enabled */
1364 pci_request_acs();
1366 xen_acpi_sleep_register();
1368 /* Avoid searching for BIOS MP tables */
1369 x86_init.mpparse.find_smp_config = x86_init_noop;
1370 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1372 xen_boot_params_init_edd();
1375 if (!boot_params.screen_info.orig_video_isVGA)
1376 add_preferred_console("tty", 0, NULL);
1377 add_preferred_console("hvc", 0, NULL);
1378 if (boot_params.screen_info.orig_video_isVGA)
1379 add_preferred_console("tty", 0, NULL);
1381 #ifdef CONFIG_PCI
1382 /* PCI BIOS service won't work from a PV guest. */
1383 pci_probe &= ~PCI_PROBE_BIOS;
1384 #endif
1385 xen_raw_console_write("about to get started...\n");
1387 /* We need this for printk timestamps */
1388 xen_setup_runstate_info(0);
1390 xen_efi_init(&boot_params);
1392 /* Start the world */
1393 #ifdef CONFIG_X86_32
1394 i386_start_kernel();
1395 #else
1396 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1397 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1398 #endif
1401 static int xen_cpu_up_prepare_pv(unsigned int cpu)
1403 int rc;
1405 if (per_cpu(xen_vcpu, cpu) == NULL)
1406 return -ENODEV;
1408 xen_setup_timer(cpu);
1410 rc = xen_smp_intr_init(cpu);
1411 if (rc) {
1412 WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1413 cpu, rc);
1414 return rc;
1417 rc = xen_smp_intr_init_pv(cpu);
1418 if (rc) {
1419 WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1420 cpu, rc);
1421 return rc;
1424 return 0;
1427 static int xen_cpu_dead_pv(unsigned int cpu)
1429 xen_smp_intr_free(cpu);
1430 xen_smp_intr_free_pv(cpu);
1432 xen_teardown_timer(cpu);
1434 return 0;
1437 static uint32_t __init xen_platform_pv(void)
1439 if (xen_pv_domain())
1440 return xen_cpuid_base();
1442 return 0;
1445 const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1446 .name = "Xen PV",
1447 .detect = xen_platform_pv,
1448 .type = X86_HYPER_XEN_PV,
1449 .runtime.pin_vcpu = xen_pin_vcpu,
1450 .ignore_nopv = true,