ARM: dma-api: fix max_pfn off-by-one error in __dma_supported()
[linux/fpc-iii.git] / arch / x86 / xen / mmu_pv.c
blobbbba8b17829a187a9efdd3dc1de6cfbc398a7ee6
1 // SPDX-License-Identifier: GPL-2.0
3 /*
4 * Xen mmu operations
6 * This file contains the various mmu fetch and update operations.
7 * The most important job they must perform is the mapping between the
8 * domain's pfn and the overall machine mfns.
10 * Xen allows guests to directly update the pagetable, in a controlled
11 * fashion. In other words, the guest modifies the same pagetable
12 * that the CPU actually uses, which eliminates the overhead of having
13 * a separate shadow pagetable.
15 * In order to allow this, it falls on the guest domain to map its
16 * notion of a "physical" pfn - which is just a domain-local linear
17 * address - into a real "machine address" which the CPU's MMU can
18 * use.
20 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
21 * inserted directly into the pagetable. When creating a new
22 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
23 * when reading the content back with __(pgd|pmd|pte)_val, it converts
24 * the mfn back into a pfn.
26 * The other constraint is that all pages which make up a pagetable
27 * must be mapped read-only in the guest. This prevents uncontrolled
28 * guest updates to the pagetable. Xen strictly enforces this, and
29 * will disallow any pagetable update which will end up mapping a
30 * pagetable page RW, and will disallow using any writable page as a
31 * pagetable.
33 * Naively, when loading %cr3 with the base of a new pagetable, Xen
34 * would need to validate the whole pagetable before going on.
35 * Naturally, this is quite slow. The solution is to "pin" a
36 * pagetable, which enforces all the constraints on the pagetable even
37 * when it is not actively in use. This menas that Xen can be assured
38 * that it is still valid when you do load it into %cr3, and doesn't
39 * need to revalidate it.
41 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
43 #include <linux/sched/mm.h>
44 #include <linux/highmem.h>
45 #include <linux/debugfs.h>
46 #include <linux/bug.h>
47 #include <linux/vmalloc.h>
48 #include <linux/export.h>
49 #include <linux/init.h>
50 #include <linux/gfp.h>
51 #include <linux/memblock.h>
52 #include <linux/seq_file.h>
53 #include <linux/crash_dump.h>
54 #ifdef CONFIG_KEXEC_CORE
55 #include <linux/kexec.h>
56 #endif
58 #include <trace/events/xen.h>
60 #include <asm/pgtable.h>
61 #include <asm/tlbflush.h>
62 #include <asm/fixmap.h>
63 #include <asm/mmu_context.h>
64 #include <asm/setup.h>
65 #include <asm/paravirt.h>
66 #include <asm/e820/api.h>
67 #include <asm/linkage.h>
68 #include <asm/page.h>
69 #include <asm/init.h>
70 #include <asm/memtype.h>
71 #include <asm/smp.h>
72 #include <asm/tlb.h>
74 #include <asm/xen/hypercall.h>
75 #include <asm/xen/hypervisor.h>
77 #include <xen/xen.h>
78 #include <xen/page.h>
79 #include <xen/interface/xen.h>
80 #include <xen/interface/hvm/hvm_op.h>
81 #include <xen/interface/version.h>
82 #include <xen/interface/memory.h>
83 #include <xen/hvc-console.h>
85 #include "multicalls.h"
86 #include "mmu.h"
87 #include "debugfs.h"
89 #ifdef CONFIG_X86_32
91 * Identity map, in addition to plain kernel map. This needs to be
92 * large enough to allocate page table pages to allocate the rest.
93 * Each page can map 2MB.
95 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
96 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
97 #endif
98 #ifdef CONFIG_X86_64
99 /* l3 pud for userspace vsyscall mapping */
100 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
101 #endif /* CONFIG_X86_64 */
104 * Protects atomic reservation decrease/increase against concurrent increases.
105 * Also protects non-atomic updates of current_pages and balloon lists.
107 static DEFINE_SPINLOCK(xen_reservation_lock);
110 * Note about cr3 (pagetable base) values:
112 * xen_cr3 contains the current logical cr3 value; it contains the
113 * last set cr3. This may not be the current effective cr3, because
114 * its update may be being lazily deferred. However, a vcpu looking
115 * at its own cr3 can use this value knowing that it everything will
116 * be self-consistent.
118 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
119 * hypercall to set the vcpu cr3 is complete (so it may be a little
120 * out of date, but it will never be set early). If one vcpu is
121 * looking at another vcpu's cr3 value, it should use this variable.
123 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
124 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
126 static phys_addr_t xen_pt_base, xen_pt_size __initdata;
128 static DEFINE_STATIC_KEY_FALSE(xen_struct_pages_ready);
131 * Just beyond the highest usermode address. STACK_TOP_MAX has a
132 * redzone above it, so round it up to a PGD boundary.
134 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
136 void make_lowmem_page_readonly(void *vaddr)
138 pte_t *pte, ptev;
139 unsigned long address = (unsigned long)vaddr;
140 unsigned int level;
142 pte = lookup_address(address, &level);
143 if (pte == NULL)
144 return; /* vaddr missing */
146 ptev = pte_wrprotect(*pte);
148 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
149 BUG();
152 void make_lowmem_page_readwrite(void *vaddr)
154 pte_t *pte, ptev;
155 unsigned long address = (unsigned long)vaddr;
156 unsigned int level;
158 pte = lookup_address(address, &level);
159 if (pte == NULL)
160 return; /* vaddr missing */
162 ptev = pte_mkwrite(*pte);
164 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
165 BUG();
170 * During early boot all page table pages are pinned, but we do not have struct
171 * pages, so return true until struct pages are ready.
173 static bool xen_page_pinned(void *ptr)
175 if (static_branch_likely(&xen_struct_pages_ready)) {
176 struct page *page = virt_to_page(ptr);
178 return PagePinned(page);
180 return true;
183 static void xen_extend_mmu_update(const struct mmu_update *update)
185 struct multicall_space mcs;
186 struct mmu_update *u;
188 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
190 if (mcs.mc != NULL) {
191 mcs.mc->args[1]++;
192 } else {
193 mcs = __xen_mc_entry(sizeof(*u));
194 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
197 u = mcs.args;
198 *u = *update;
201 static void xen_extend_mmuext_op(const struct mmuext_op *op)
203 struct multicall_space mcs;
204 struct mmuext_op *u;
206 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
208 if (mcs.mc != NULL) {
209 mcs.mc->args[1]++;
210 } else {
211 mcs = __xen_mc_entry(sizeof(*u));
212 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
215 u = mcs.args;
216 *u = *op;
219 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
221 struct mmu_update u;
223 preempt_disable();
225 xen_mc_batch();
227 /* ptr may be ioremapped for 64-bit pagetable setup */
228 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
229 u.val = pmd_val_ma(val);
230 xen_extend_mmu_update(&u);
232 xen_mc_issue(PARAVIRT_LAZY_MMU);
234 preempt_enable();
237 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
239 trace_xen_mmu_set_pmd(ptr, val);
241 /* If page is not pinned, we can just update the entry
242 directly */
243 if (!xen_page_pinned(ptr)) {
244 *ptr = val;
245 return;
248 xen_set_pmd_hyper(ptr, val);
252 * Associate a virtual page frame with a given physical page frame
253 * and protection flags for that frame.
255 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
257 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
260 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
262 struct mmu_update u;
264 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
265 return false;
267 xen_mc_batch();
269 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
270 u.val = pte_val_ma(pteval);
271 xen_extend_mmu_update(&u);
273 xen_mc_issue(PARAVIRT_LAZY_MMU);
275 return true;
278 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
280 if (!xen_batched_set_pte(ptep, pteval)) {
282 * Could call native_set_pte() here and trap and
283 * emulate the PTE write but with 32-bit guests this
284 * needs two traps (one for each of the two 32-bit
285 * words in the PTE) so do one hypercall directly
286 * instead.
288 struct mmu_update u;
290 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
291 u.val = pte_val_ma(pteval);
292 HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
296 static void xen_set_pte(pte_t *ptep, pte_t pteval)
298 trace_xen_mmu_set_pte(ptep, pteval);
299 __xen_set_pte(ptep, pteval);
302 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
303 pte_t *ptep, pte_t pteval)
305 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
306 __xen_set_pte(ptep, pteval);
309 pte_t xen_ptep_modify_prot_start(struct vm_area_struct *vma,
310 unsigned long addr, pte_t *ptep)
312 /* Just return the pte as-is. We preserve the bits on commit */
313 trace_xen_mmu_ptep_modify_prot_start(vma->vm_mm, addr, ptep, *ptep);
314 return *ptep;
317 void xen_ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
318 pte_t *ptep, pte_t pte)
320 struct mmu_update u;
322 trace_xen_mmu_ptep_modify_prot_commit(vma->vm_mm, addr, ptep, pte);
323 xen_mc_batch();
325 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
326 u.val = pte_val_ma(pte);
327 xen_extend_mmu_update(&u);
329 xen_mc_issue(PARAVIRT_LAZY_MMU);
332 /* Assume pteval_t is equivalent to all the other *val_t types. */
333 static pteval_t pte_mfn_to_pfn(pteval_t val)
335 if (val & _PAGE_PRESENT) {
336 unsigned long mfn = (val & XEN_PTE_MFN_MASK) >> PAGE_SHIFT;
337 unsigned long pfn = mfn_to_pfn(mfn);
339 pteval_t flags = val & PTE_FLAGS_MASK;
340 if (unlikely(pfn == ~0))
341 val = flags & ~_PAGE_PRESENT;
342 else
343 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
346 return val;
349 static pteval_t pte_pfn_to_mfn(pteval_t val)
351 if (val & _PAGE_PRESENT) {
352 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
353 pteval_t flags = val & PTE_FLAGS_MASK;
354 unsigned long mfn;
356 mfn = __pfn_to_mfn(pfn);
359 * If there's no mfn for the pfn, then just create an
360 * empty non-present pte. Unfortunately this loses
361 * information about the original pfn, so
362 * pte_mfn_to_pfn is asymmetric.
364 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
365 mfn = 0;
366 flags = 0;
367 } else
368 mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
369 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
372 return val;
375 __visible pteval_t xen_pte_val(pte_t pte)
377 pteval_t pteval = pte.pte;
379 return pte_mfn_to_pfn(pteval);
381 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
383 __visible pgdval_t xen_pgd_val(pgd_t pgd)
385 return pte_mfn_to_pfn(pgd.pgd);
387 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
389 __visible pte_t xen_make_pte(pteval_t pte)
391 pte = pte_pfn_to_mfn(pte);
393 return native_make_pte(pte);
395 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
397 __visible pgd_t xen_make_pgd(pgdval_t pgd)
399 pgd = pte_pfn_to_mfn(pgd);
400 return native_make_pgd(pgd);
402 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
404 __visible pmdval_t xen_pmd_val(pmd_t pmd)
406 return pte_mfn_to_pfn(pmd.pmd);
408 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
410 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
412 struct mmu_update u;
414 preempt_disable();
416 xen_mc_batch();
418 /* ptr may be ioremapped for 64-bit pagetable setup */
419 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
420 u.val = pud_val_ma(val);
421 xen_extend_mmu_update(&u);
423 xen_mc_issue(PARAVIRT_LAZY_MMU);
425 preempt_enable();
428 static void xen_set_pud(pud_t *ptr, pud_t val)
430 trace_xen_mmu_set_pud(ptr, val);
432 /* If page is not pinned, we can just update the entry
433 directly */
434 if (!xen_page_pinned(ptr)) {
435 *ptr = val;
436 return;
439 xen_set_pud_hyper(ptr, val);
442 #ifdef CONFIG_X86_PAE
443 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
445 trace_xen_mmu_set_pte_atomic(ptep, pte);
446 __xen_set_pte(ptep, pte);
449 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
451 trace_xen_mmu_pte_clear(mm, addr, ptep);
452 __xen_set_pte(ptep, native_make_pte(0));
455 static void xen_pmd_clear(pmd_t *pmdp)
457 trace_xen_mmu_pmd_clear(pmdp);
458 set_pmd(pmdp, __pmd(0));
460 #endif /* CONFIG_X86_PAE */
462 __visible pmd_t xen_make_pmd(pmdval_t pmd)
464 pmd = pte_pfn_to_mfn(pmd);
465 return native_make_pmd(pmd);
467 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
469 #ifdef CONFIG_X86_64
470 __visible pudval_t xen_pud_val(pud_t pud)
472 return pte_mfn_to_pfn(pud.pud);
474 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
476 __visible pud_t xen_make_pud(pudval_t pud)
478 pud = pte_pfn_to_mfn(pud);
480 return native_make_pud(pud);
482 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
484 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
486 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
487 unsigned offset = pgd - pgd_page;
488 pgd_t *user_ptr = NULL;
490 if (offset < pgd_index(USER_LIMIT)) {
491 struct page *page = virt_to_page(pgd_page);
492 user_ptr = (pgd_t *)page->private;
493 if (user_ptr)
494 user_ptr += offset;
497 return user_ptr;
500 static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
502 struct mmu_update u;
504 u.ptr = virt_to_machine(ptr).maddr;
505 u.val = p4d_val_ma(val);
506 xen_extend_mmu_update(&u);
510 * Raw hypercall-based set_p4d, intended for in early boot before
511 * there's a page structure. This implies:
512 * 1. The only existing pagetable is the kernel's
513 * 2. It is always pinned
514 * 3. It has no user pagetable attached to it
516 static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
518 preempt_disable();
520 xen_mc_batch();
522 __xen_set_p4d_hyper(ptr, val);
524 xen_mc_issue(PARAVIRT_LAZY_MMU);
526 preempt_enable();
529 static void xen_set_p4d(p4d_t *ptr, p4d_t val)
531 pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr);
532 pgd_t pgd_val;
534 trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val);
536 /* If page is not pinned, we can just update the entry
537 directly */
538 if (!xen_page_pinned(ptr)) {
539 *ptr = val;
540 if (user_ptr) {
541 WARN_ON(xen_page_pinned(user_ptr));
542 pgd_val.pgd = p4d_val_ma(val);
543 *user_ptr = pgd_val;
545 return;
548 /* If it's pinned, then we can at least batch the kernel and
549 user updates together. */
550 xen_mc_batch();
552 __xen_set_p4d_hyper(ptr, val);
553 if (user_ptr)
554 __xen_set_p4d_hyper((p4d_t *)user_ptr, val);
556 xen_mc_issue(PARAVIRT_LAZY_MMU);
559 #if CONFIG_PGTABLE_LEVELS >= 5
560 __visible p4dval_t xen_p4d_val(p4d_t p4d)
562 return pte_mfn_to_pfn(p4d.p4d);
564 PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val);
566 __visible p4d_t xen_make_p4d(p4dval_t p4d)
568 p4d = pte_pfn_to_mfn(p4d);
570 return native_make_p4d(p4d);
572 PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d);
573 #endif /* CONFIG_PGTABLE_LEVELS >= 5 */
574 #endif /* CONFIG_X86_64 */
576 static int xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd,
577 int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
578 bool last, unsigned long limit)
580 int i, nr, flush = 0;
582 nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD;
583 for (i = 0; i < nr; i++) {
584 if (!pmd_none(pmd[i]))
585 flush |= (*func)(mm, pmd_page(pmd[i]), PT_PTE);
587 return flush;
590 static int xen_pud_walk(struct mm_struct *mm, pud_t *pud,
591 int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
592 bool last, unsigned long limit)
594 int i, nr, flush = 0;
596 nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD;
597 for (i = 0; i < nr; i++) {
598 pmd_t *pmd;
600 if (pud_none(pud[i]))
601 continue;
603 pmd = pmd_offset(&pud[i], 0);
604 if (PTRS_PER_PMD > 1)
605 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
606 flush |= xen_pmd_walk(mm, pmd, func,
607 last && i == nr - 1, limit);
609 return flush;
612 static int xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d,
613 int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
614 bool last, unsigned long limit)
616 int flush = 0;
617 pud_t *pud;
620 if (p4d_none(*p4d))
621 return flush;
623 pud = pud_offset(p4d, 0);
624 if (PTRS_PER_PUD > 1)
625 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
626 flush |= xen_pud_walk(mm, pud, func, last, limit);
627 return flush;
631 * (Yet another) pagetable walker. This one is intended for pinning a
632 * pagetable. This means that it walks a pagetable and calls the
633 * callback function on each page it finds making up the page table,
634 * at every level. It walks the entire pagetable, but it only bothers
635 * pinning pte pages which are below limit. In the normal case this
636 * will be STACK_TOP_MAX, but at boot we need to pin up to
637 * FIXADDR_TOP.
639 * For 32-bit the important bit is that we don't pin beyond there,
640 * because then we start getting into Xen's ptes.
642 * For 64-bit, we must skip the Xen hole in the middle of the address
643 * space, just after the big x86-64 virtual hole.
645 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
646 int (*func)(struct mm_struct *mm, struct page *,
647 enum pt_level),
648 unsigned long limit)
650 int i, nr, flush = 0;
651 unsigned hole_low = 0, hole_high = 0;
653 /* The limit is the last byte to be touched */
654 limit--;
655 BUG_ON(limit >= FIXADDR_TOP);
657 #ifdef CONFIG_X86_64
659 * 64-bit has a great big hole in the middle of the address
660 * space, which contains the Xen mappings.
662 hole_low = pgd_index(GUARD_HOLE_BASE_ADDR);
663 hole_high = pgd_index(GUARD_HOLE_END_ADDR);
664 #endif
666 nr = pgd_index(limit) + 1;
667 for (i = 0; i < nr; i++) {
668 p4d_t *p4d;
670 if (i >= hole_low && i < hole_high)
671 continue;
673 if (pgd_none(pgd[i]))
674 continue;
676 p4d = p4d_offset(&pgd[i], 0);
677 flush |= xen_p4d_walk(mm, p4d, func, i == nr - 1, limit);
680 /* Do the top level last, so that the callbacks can use it as
681 a cue to do final things like tlb flushes. */
682 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
684 return flush;
687 static int xen_pgd_walk(struct mm_struct *mm,
688 int (*func)(struct mm_struct *mm, struct page *,
689 enum pt_level),
690 unsigned long limit)
692 return __xen_pgd_walk(mm, mm->pgd, func, limit);
695 /* If we're using split pte locks, then take the page's lock and
696 return a pointer to it. Otherwise return NULL. */
697 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
699 spinlock_t *ptl = NULL;
701 #if USE_SPLIT_PTE_PTLOCKS
702 ptl = ptlock_ptr(page);
703 spin_lock_nest_lock(ptl, &mm->page_table_lock);
704 #endif
706 return ptl;
709 static void xen_pte_unlock(void *v)
711 spinlock_t *ptl = v;
712 spin_unlock(ptl);
715 static void xen_do_pin(unsigned level, unsigned long pfn)
717 struct mmuext_op op;
719 op.cmd = level;
720 op.arg1.mfn = pfn_to_mfn(pfn);
722 xen_extend_mmuext_op(&op);
725 static int xen_pin_page(struct mm_struct *mm, struct page *page,
726 enum pt_level level)
728 unsigned pgfl = TestSetPagePinned(page);
729 int flush;
731 if (pgfl)
732 flush = 0; /* already pinned */
733 else if (PageHighMem(page))
734 /* kmaps need flushing if we found an unpinned
735 highpage */
736 flush = 1;
737 else {
738 void *pt = lowmem_page_address(page);
739 unsigned long pfn = page_to_pfn(page);
740 struct multicall_space mcs = __xen_mc_entry(0);
741 spinlock_t *ptl;
743 flush = 0;
746 * We need to hold the pagetable lock between the time
747 * we make the pagetable RO and when we actually pin
748 * it. If we don't, then other users may come in and
749 * attempt to update the pagetable by writing it,
750 * which will fail because the memory is RO but not
751 * pinned, so Xen won't do the trap'n'emulate.
753 * If we're using split pte locks, we can't hold the
754 * entire pagetable's worth of locks during the
755 * traverse, because we may wrap the preempt count (8
756 * bits). The solution is to mark RO and pin each PTE
757 * page while holding the lock. This means the number
758 * of locks we end up holding is never more than a
759 * batch size (~32 entries, at present).
761 * If we're not using split pte locks, we needn't pin
762 * the PTE pages independently, because we're
763 * protected by the overall pagetable lock.
765 ptl = NULL;
766 if (level == PT_PTE)
767 ptl = xen_pte_lock(page, mm);
769 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
770 pfn_pte(pfn, PAGE_KERNEL_RO),
771 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
773 if (ptl) {
774 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
776 /* Queue a deferred unlock for when this batch
777 is completed. */
778 xen_mc_callback(xen_pte_unlock, ptl);
782 return flush;
785 /* This is called just after a mm has been created, but it has not
786 been used yet. We need to make sure that its pagetable is all
787 read-only, and can be pinned. */
788 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
790 trace_xen_mmu_pgd_pin(mm, pgd);
792 xen_mc_batch();
794 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
795 /* re-enable interrupts for flushing */
796 xen_mc_issue(0);
798 kmap_flush_unused();
800 xen_mc_batch();
803 #ifdef CONFIG_X86_64
805 pgd_t *user_pgd = xen_get_user_pgd(pgd);
807 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
809 if (user_pgd) {
810 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
811 xen_do_pin(MMUEXT_PIN_L4_TABLE,
812 PFN_DOWN(__pa(user_pgd)));
815 #else /* CONFIG_X86_32 */
816 #ifdef CONFIG_X86_PAE
817 /* Need to make sure unshared kernel PMD is pinnable */
818 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
819 PT_PMD);
820 #endif
821 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
822 #endif /* CONFIG_X86_64 */
823 xen_mc_issue(0);
826 static void xen_pgd_pin(struct mm_struct *mm)
828 __xen_pgd_pin(mm, mm->pgd);
832 * On save, we need to pin all pagetables to make sure they get their
833 * mfns turned into pfns. Search the list for any unpinned pgds and pin
834 * them (unpinned pgds are not currently in use, probably because the
835 * process is under construction or destruction).
837 * Expected to be called in stop_machine() ("equivalent to taking
838 * every spinlock in the system"), so the locking doesn't really
839 * matter all that much.
841 void xen_mm_pin_all(void)
843 struct page *page;
845 spin_lock(&pgd_lock);
847 list_for_each_entry(page, &pgd_list, lru) {
848 if (!PagePinned(page)) {
849 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
850 SetPageSavePinned(page);
854 spin_unlock(&pgd_lock);
857 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
858 enum pt_level level)
860 SetPagePinned(page);
861 return 0;
865 * The init_mm pagetable is really pinned as soon as its created, but
866 * that's before we have page structures to store the bits. So do all
867 * the book-keeping now once struct pages for allocated pages are
868 * initialized. This happens only after memblock_free_all() is called.
870 static void __init xen_after_bootmem(void)
872 static_branch_enable(&xen_struct_pages_ready);
873 #ifdef CONFIG_X86_64
874 SetPagePinned(virt_to_page(level3_user_vsyscall));
875 #endif
876 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
879 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
880 enum pt_level level)
882 unsigned pgfl = TestClearPagePinned(page);
884 if (pgfl && !PageHighMem(page)) {
885 void *pt = lowmem_page_address(page);
886 unsigned long pfn = page_to_pfn(page);
887 spinlock_t *ptl = NULL;
888 struct multicall_space mcs;
891 * Do the converse to pin_page. If we're using split
892 * pte locks, we must be holding the lock for while
893 * the pte page is unpinned but still RO to prevent
894 * concurrent updates from seeing it in this
895 * partially-pinned state.
897 if (level == PT_PTE) {
898 ptl = xen_pte_lock(page, mm);
900 if (ptl)
901 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
904 mcs = __xen_mc_entry(0);
906 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
907 pfn_pte(pfn, PAGE_KERNEL),
908 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
910 if (ptl) {
911 /* unlock when batch completed */
912 xen_mc_callback(xen_pte_unlock, ptl);
916 return 0; /* never need to flush on unpin */
919 /* Release a pagetables pages back as normal RW */
920 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
922 trace_xen_mmu_pgd_unpin(mm, pgd);
924 xen_mc_batch();
926 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
928 #ifdef CONFIG_X86_64
930 pgd_t *user_pgd = xen_get_user_pgd(pgd);
932 if (user_pgd) {
933 xen_do_pin(MMUEXT_UNPIN_TABLE,
934 PFN_DOWN(__pa(user_pgd)));
935 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
938 #endif
940 #ifdef CONFIG_X86_PAE
941 /* Need to make sure unshared kernel PMD is unpinned */
942 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
943 PT_PMD);
944 #endif
946 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
948 xen_mc_issue(0);
951 static void xen_pgd_unpin(struct mm_struct *mm)
953 __xen_pgd_unpin(mm, mm->pgd);
957 * On resume, undo any pinning done at save, so that the rest of the
958 * kernel doesn't see any unexpected pinned pagetables.
960 void xen_mm_unpin_all(void)
962 struct page *page;
964 spin_lock(&pgd_lock);
966 list_for_each_entry(page, &pgd_list, lru) {
967 if (PageSavePinned(page)) {
968 BUG_ON(!PagePinned(page));
969 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
970 ClearPageSavePinned(page);
974 spin_unlock(&pgd_lock);
977 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
979 spin_lock(&next->page_table_lock);
980 xen_pgd_pin(next);
981 spin_unlock(&next->page_table_lock);
984 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
986 spin_lock(&mm->page_table_lock);
987 xen_pgd_pin(mm);
988 spin_unlock(&mm->page_table_lock);
991 static void drop_mm_ref_this_cpu(void *info)
993 struct mm_struct *mm = info;
995 if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm)
996 leave_mm(smp_processor_id());
999 * If this cpu still has a stale cr3 reference, then make sure
1000 * it has been flushed.
1002 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1003 xen_mc_flush();
1006 #ifdef CONFIG_SMP
1008 * Another cpu may still have their %cr3 pointing at the pagetable, so
1009 * we need to repoint it somewhere else before we can unpin it.
1011 static void xen_drop_mm_ref(struct mm_struct *mm)
1013 cpumask_var_t mask;
1014 unsigned cpu;
1016 drop_mm_ref_this_cpu(mm);
1018 /* Get the "official" set of cpus referring to our pagetable. */
1019 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1020 for_each_online_cpu(cpu) {
1021 if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1022 continue;
1023 smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1);
1025 return;
1029 * It's possible that a vcpu may have a stale reference to our
1030 * cr3, because its in lazy mode, and it hasn't yet flushed
1031 * its set of pending hypercalls yet. In this case, we can
1032 * look at its actual current cr3 value, and force it to flush
1033 * if needed.
1035 cpumask_clear(mask);
1036 for_each_online_cpu(cpu) {
1037 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1038 cpumask_set_cpu(cpu, mask);
1041 smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1);
1042 free_cpumask_var(mask);
1044 #else
1045 static void xen_drop_mm_ref(struct mm_struct *mm)
1047 drop_mm_ref_this_cpu(mm);
1049 #endif
1052 * While a process runs, Xen pins its pagetables, which means that the
1053 * hypervisor forces it to be read-only, and it controls all updates
1054 * to it. This means that all pagetable updates have to go via the
1055 * hypervisor, which is moderately expensive.
1057 * Since we're pulling the pagetable down, we switch to use init_mm,
1058 * unpin old process pagetable and mark it all read-write, which
1059 * allows further operations on it to be simple memory accesses.
1061 * The only subtle point is that another CPU may be still using the
1062 * pagetable because of lazy tlb flushing. This means we need need to
1063 * switch all CPUs off this pagetable before we can unpin it.
1065 static void xen_exit_mmap(struct mm_struct *mm)
1067 get_cpu(); /* make sure we don't move around */
1068 xen_drop_mm_ref(mm);
1069 put_cpu();
1071 spin_lock(&mm->page_table_lock);
1073 /* pgd may not be pinned in the error exit path of execve */
1074 if (xen_page_pinned(mm->pgd))
1075 xen_pgd_unpin(mm);
1077 spin_unlock(&mm->page_table_lock);
1080 static void xen_post_allocator_init(void);
1082 static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1084 struct mmuext_op op;
1086 op.cmd = cmd;
1087 op.arg1.mfn = pfn_to_mfn(pfn);
1088 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1089 BUG();
1092 #ifdef CONFIG_X86_64
1093 static void __init xen_cleanhighmap(unsigned long vaddr,
1094 unsigned long vaddr_end)
1096 unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1097 pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1099 /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1100 * We include the PMD passed in on _both_ boundaries. */
1101 for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1102 pmd++, vaddr += PMD_SIZE) {
1103 if (pmd_none(*pmd))
1104 continue;
1105 if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1106 set_pmd(pmd, __pmd(0));
1108 /* In case we did something silly, we should crash in this function
1109 * instead of somewhere later and be confusing. */
1110 xen_mc_flush();
1114 * Make a page range writeable and free it.
1116 static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1118 void *vaddr = __va(paddr);
1119 void *vaddr_end = vaddr + size;
1121 for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1122 make_lowmem_page_readwrite(vaddr);
1124 memblock_free(paddr, size);
1127 static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1129 unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1131 if (unpin)
1132 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1133 ClearPagePinned(virt_to_page(__va(pa)));
1134 xen_free_ro_pages(pa, PAGE_SIZE);
1137 static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin)
1139 unsigned long pa;
1140 pte_t *pte_tbl;
1141 int i;
1143 if (pmd_large(*pmd)) {
1144 pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1145 xen_free_ro_pages(pa, PMD_SIZE);
1146 return;
1149 pte_tbl = pte_offset_kernel(pmd, 0);
1150 for (i = 0; i < PTRS_PER_PTE; i++) {
1151 if (pte_none(pte_tbl[i]))
1152 continue;
1153 pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT;
1154 xen_free_ro_pages(pa, PAGE_SIZE);
1156 set_pmd(pmd, __pmd(0));
1157 xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin);
1160 static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin)
1162 unsigned long pa;
1163 pmd_t *pmd_tbl;
1164 int i;
1166 if (pud_large(*pud)) {
1167 pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1168 xen_free_ro_pages(pa, PUD_SIZE);
1169 return;
1172 pmd_tbl = pmd_offset(pud, 0);
1173 for (i = 0; i < PTRS_PER_PMD; i++) {
1174 if (pmd_none(pmd_tbl[i]))
1175 continue;
1176 xen_cleanmfnmap_pmd(pmd_tbl + i, unpin);
1178 set_pud(pud, __pud(0));
1179 xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin);
1182 static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin)
1184 unsigned long pa;
1185 pud_t *pud_tbl;
1186 int i;
1188 if (p4d_large(*p4d)) {
1189 pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK;
1190 xen_free_ro_pages(pa, P4D_SIZE);
1191 return;
1194 pud_tbl = pud_offset(p4d, 0);
1195 for (i = 0; i < PTRS_PER_PUD; i++) {
1196 if (pud_none(pud_tbl[i]))
1197 continue;
1198 xen_cleanmfnmap_pud(pud_tbl + i, unpin);
1200 set_p4d(p4d, __p4d(0));
1201 xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin);
1205 * Since it is well isolated we can (and since it is perhaps large we should)
1206 * also free the page tables mapping the initial P->M table.
1208 static void __init xen_cleanmfnmap(unsigned long vaddr)
1210 pgd_t *pgd;
1211 p4d_t *p4d;
1212 bool unpin;
1214 unpin = (vaddr == 2 * PGDIR_SIZE);
1215 vaddr &= PMD_MASK;
1216 pgd = pgd_offset_k(vaddr);
1217 p4d = p4d_offset(pgd, 0);
1218 if (!p4d_none(*p4d))
1219 xen_cleanmfnmap_p4d(p4d, unpin);
1222 static void __init xen_pagetable_p2m_free(void)
1224 unsigned long size;
1225 unsigned long addr;
1227 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1229 /* No memory or already called. */
1230 if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1231 return;
1233 /* using __ka address and sticking INVALID_P2M_ENTRY! */
1234 memset((void *)xen_start_info->mfn_list, 0xff, size);
1236 addr = xen_start_info->mfn_list;
1238 * We could be in __ka space.
1239 * We roundup to the PMD, which means that if anybody at this stage is
1240 * using the __ka address of xen_start_info or
1241 * xen_start_info->shared_info they are in going to crash. Fortunatly
1242 * we have already revectored in xen_setup_kernel_pagetable.
1244 size = roundup(size, PMD_SIZE);
1246 if (addr >= __START_KERNEL_map) {
1247 xen_cleanhighmap(addr, addr + size);
1248 size = PAGE_ALIGN(xen_start_info->nr_pages *
1249 sizeof(unsigned long));
1250 memblock_free(__pa(addr), size);
1251 } else {
1252 xen_cleanmfnmap(addr);
1256 static void __init xen_pagetable_cleanhighmap(void)
1258 unsigned long size;
1259 unsigned long addr;
1261 /* At this stage, cleanup_highmap has already cleaned __ka space
1262 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1263 * the ramdisk). We continue on, erasing PMD entries that point to page
1264 * tables - do note that they are accessible at this stage via __va.
1265 * As Xen is aligning the memory end to a 4MB boundary, for good
1266 * measure we also round up to PMD_SIZE * 2 - which means that if
1267 * anybody is using __ka address to the initial boot-stack - and try
1268 * to use it - they are going to crash. The xen_start_info has been
1269 * taken care of already in xen_setup_kernel_pagetable. */
1270 addr = xen_start_info->pt_base;
1271 size = xen_start_info->nr_pt_frames * PAGE_SIZE;
1273 xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2));
1274 xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1276 #endif
1278 static void __init xen_pagetable_p2m_setup(void)
1280 xen_vmalloc_p2m_tree();
1282 #ifdef CONFIG_X86_64
1283 xen_pagetable_p2m_free();
1285 xen_pagetable_cleanhighmap();
1286 #endif
1287 /* And revector! Bye bye old array */
1288 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1291 static void __init xen_pagetable_init(void)
1293 paging_init();
1294 xen_post_allocator_init();
1296 xen_pagetable_p2m_setup();
1298 /* Allocate and initialize top and mid mfn levels for p2m structure */
1299 xen_build_mfn_list_list();
1301 /* Remap memory freed due to conflicts with E820 map */
1302 xen_remap_memory();
1303 xen_setup_mfn_list_list();
1305 static void xen_write_cr2(unsigned long cr2)
1307 this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1310 static noinline void xen_flush_tlb(void)
1312 struct mmuext_op *op;
1313 struct multicall_space mcs;
1315 preempt_disable();
1317 mcs = xen_mc_entry(sizeof(*op));
1319 op = mcs.args;
1320 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1321 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1323 xen_mc_issue(PARAVIRT_LAZY_MMU);
1325 preempt_enable();
1328 static void xen_flush_tlb_one_user(unsigned long addr)
1330 struct mmuext_op *op;
1331 struct multicall_space mcs;
1333 trace_xen_mmu_flush_tlb_one_user(addr);
1335 preempt_disable();
1337 mcs = xen_mc_entry(sizeof(*op));
1338 op = mcs.args;
1339 op->cmd = MMUEXT_INVLPG_LOCAL;
1340 op->arg1.linear_addr = addr & PAGE_MASK;
1341 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1343 xen_mc_issue(PARAVIRT_LAZY_MMU);
1345 preempt_enable();
1348 static void xen_flush_tlb_others(const struct cpumask *cpus,
1349 const struct flush_tlb_info *info)
1351 struct {
1352 struct mmuext_op op;
1353 DECLARE_BITMAP(mask, NR_CPUS);
1354 } *args;
1355 struct multicall_space mcs;
1356 const size_t mc_entry_size = sizeof(args->op) +
1357 sizeof(args->mask[0]) * BITS_TO_LONGS(num_possible_cpus());
1359 trace_xen_mmu_flush_tlb_others(cpus, info->mm, info->start, info->end);
1361 if (cpumask_empty(cpus))
1362 return; /* nothing to do */
1364 mcs = xen_mc_entry(mc_entry_size);
1365 args = mcs.args;
1366 args->op.arg2.vcpumask = to_cpumask(args->mask);
1368 /* Remove us, and any offline CPUS. */
1369 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1370 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1372 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1373 if (info->end != TLB_FLUSH_ALL &&
1374 (info->end - info->start) <= PAGE_SIZE) {
1375 args->op.cmd = MMUEXT_INVLPG_MULTI;
1376 args->op.arg1.linear_addr = info->start;
1379 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1381 xen_mc_issue(PARAVIRT_LAZY_MMU);
1384 static unsigned long xen_read_cr3(void)
1386 return this_cpu_read(xen_cr3);
1389 static void set_current_cr3(void *v)
1391 this_cpu_write(xen_current_cr3, (unsigned long)v);
1394 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1396 struct mmuext_op op;
1397 unsigned long mfn;
1399 trace_xen_mmu_write_cr3(kernel, cr3);
1401 if (cr3)
1402 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1403 else
1404 mfn = 0;
1406 WARN_ON(mfn == 0 && kernel);
1408 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1409 op.arg1.mfn = mfn;
1411 xen_extend_mmuext_op(&op);
1413 if (kernel) {
1414 this_cpu_write(xen_cr3, cr3);
1416 /* Update xen_current_cr3 once the batch has actually
1417 been submitted. */
1418 xen_mc_callback(set_current_cr3, (void *)cr3);
1421 static void xen_write_cr3(unsigned long cr3)
1423 BUG_ON(preemptible());
1425 xen_mc_batch(); /* disables interrupts */
1427 /* Update while interrupts are disabled, so its atomic with
1428 respect to ipis */
1429 this_cpu_write(xen_cr3, cr3);
1431 __xen_write_cr3(true, cr3);
1433 #ifdef CONFIG_X86_64
1435 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1436 if (user_pgd)
1437 __xen_write_cr3(false, __pa(user_pgd));
1438 else
1439 __xen_write_cr3(false, 0);
1441 #endif
1443 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1446 #ifdef CONFIG_X86_64
1448 * At the start of the day - when Xen launches a guest, it has already
1449 * built pagetables for the guest. We diligently look over them
1450 * in xen_setup_kernel_pagetable and graft as appropriate them in the
1451 * init_top_pgt and its friends. Then when we are happy we load
1452 * the new init_top_pgt - and continue on.
1454 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1455 * up the rest of the pagetables. When it has completed it loads the cr3.
1456 * N.B. that baremetal would start at 'start_kernel' (and the early
1457 * #PF handler would create bootstrap pagetables) - so we are running
1458 * with the same assumptions as what to do when write_cr3 is executed
1459 * at this point.
1461 * Since there are no user-page tables at all, we have two variants
1462 * of xen_write_cr3 - the early bootup (this one), and the late one
1463 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1464 * the Linux kernel and user-space are both in ring 3 while the
1465 * hypervisor is in ring 0.
1467 static void __init xen_write_cr3_init(unsigned long cr3)
1469 BUG_ON(preemptible());
1471 xen_mc_batch(); /* disables interrupts */
1473 /* Update while interrupts are disabled, so its atomic with
1474 respect to ipis */
1475 this_cpu_write(xen_cr3, cr3);
1477 __xen_write_cr3(true, cr3);
1479 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1481 #endif
1483 static int xen_pgd_alloc(struct mm_struct *mm)
1485 pgd_t *pgd = mm->pgd;
1486 int ret = 0;
1488 BUG_ON(PagePinned(virt_to_page(pgd)));
1490 #ifdef CONFIG_X86_64
1492 struct page *page = virt_to_page(pgd);
1493 pgd_t *user_pgd;
1495 BUG_ON(page->private != 0);
1497 ret = -ENOMEM;
1499 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1500 page->private = (unsigned long)user_pgd;
1502 if (user_pgd != NULL) {
1503 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1504 user_pgd[pgd_index(VSYSCALL_ADDR)] =
1505 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1506 #endif
1507 ret = 0;
1510 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1512 #endif
1513 return ret;
1516 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1518 #ifdef CONFIG_X86_64
1519 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1521 if (user_pgd)
1522 free_page((unsigned long)user_pgd);
1523 #endif
1527 * Init-time set_pte while constructing initial pagetables, which
1528 * doesn't allow RO page table pages to be remapped RW.
1530 * If there is no MFN for this PFN then this page is initially
1531 * ballooned out so clear the PTE (as in decrease_reservation() in
1532 * drivers/xen/balloon.c).
1534 * Many of these PTE updates are done on unpinned and writable pages
1535 * and doing a hypercall for these is unnecessary and expensive. At
1536 * this point it is not possible to tell if a page is pinned or not,
1537 * so always write the PTE directly and rely on Xen trapping and
1538 * emulating any updates as necessary.
1540 __visible pte_t xen_make_pte_init(pteval_t pte)
1542 #ifdef CONFIG_X86_64
1543 unsigned long pfn;
1546 * Pages belonging to the initial p2m list mapped outside the default
1547 * address range must be mapped read-only. This region contains the
1548 * page tables for mapping the p2m list, too, and page tables MUST be
1549 * mapped read-only.
1551 pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
1552 if (xen_start_info->mfn_list < __START_KERNEL_map &&
1553 pfn >= xen_start_info->first_p2m_pfn &&
1554 pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1555 pte &= ~_PAGE_RW;
1556 #endif
1557 pte = pte_pfn_to_mfn(pte);
1558 return native_make_pte(pte);
1560 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
1562 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1564 #ifdef CONFIG_X86_32
1565 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1566 if (pte_mfn(pte) != INVALID_P2M_ENTRY
1567 && pte_val_ma(*ptep) & _PAGE_PRESENT)
1568 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1569 pte_val_ma(pte));
1570 #endif
1571 __xen_set_pte(ptep, pte);
1574 /* Early in boot, while setting up the initial pagetable, assume
1575 everything is pinned. */
1576 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1578 #ifdef CONFIG_FLATMEM
1579 BUG_ON(mem_map); /* should only be used early */
1580 #endif
1581 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1582 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1585 /* Used for pmd and pud */
1586 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1588 #ifdef CONFIG_FLATMEM
1589 BUG_ON(mem_map); /* should only be used early */
1590 #endif
1591 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1594 /* Early release_pte assumes that all pts are pinned, since there's
1595 only init_mm and anything attached to that is pinned. */
1596 static void __init xen_release_pte_init(unsigned long pfn)
1598 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1599 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1602 static void __init xen_release_pmd_init(unsigned long pfn)
1604 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1607 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1609 struct multicall_space mcs;
1610 struct mmuext_op *op;
1612 mcs = __xen_mc_entry(sizeof(*op));
1613 op = mcs.args;
1614 op->cmd = cmd;
1615 op->arg1.mfn = pfn_to_mfn(pfn);
1617 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1620 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1622 struct multicall_space mcs;
1623 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1625 mcs = __xen_mc_entry(0);
1626 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1627 pfn_pte(pfn, prot), 0);
1630 /* This needs to make sure the new pte page is pinned iff its being
1631 attached to a pinned pagetable. */
1632 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1633 unsigned level)
1635 bool pinned = xen_page_pinned(mm->pgd);
1637 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1639 if (pinned) {
1640 struct page *page = pfn_to_page(pfn);
1642 if (static_branch_likely(&xen_struct_pages_ready))
1643 SetPagePinned(page);
1645 if (!PageHighMem(page)) {
1646 xen_mc_batch();
1648 __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1650 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1651 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1653 xen_mc_issue(PARAVIRT_LAZY_MMU);
1654 } else {
1655 /* make sure there are no stray mappings of
1656 this page */
1657 kmap_flush_unused();
1662 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1664 xen_alloc_ptpage(mm, pfn, PT_PTE);
1667 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1669 xen_alloc_ptpage(mm, pfn, PT_PMD);
1672 /* This should never happen until we're OK to use struct page */
1673 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1675 struct page *page = pfn_to_page(pfn);
1676 bool pinned = PagePinned(page);
1678 trace_xen_mmu_release_ptpage(pfn, level, pinned);
1680 if (pinned) {
1681 if (!PageHighMem(page)) {
1682 xen_mc_batch();
1684 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1685 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1687 __set_pfn_prot(pfn, PAGE_KERNEL);
1689 xen_mc_issue(PARAVIRT_LAZY_MMU);
1691 ClearPagePinned(page);
1695 static void xen_release_pte(unsigned long pfn)
1697 xen_release_ptpage(pfn, PT_PTE);
1700 static void xen_release_pmd(unsigned long pfn)
1702 xen_release_ptpage(pfn, PT_PMD);
1705 #ifdef CONFIG_X86_64
1706 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1708 xen_alloc_ptpage(mm, pfn, PT_PUD);
1711 static void xen_release_pud(unsigned long pfn)
1713 xen_release_ptpage(pfn, PT_PUD);
1715 #endif
1717 void __init xen_reserve_top(void)
1719 #ifdef CONFIG_X86_32
1720 unsigned long top = HYPERVISOR_VIRT_START;
1721 struct xen_platform_parameters pp;
1723 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1724 top = pp.virt_start;
1726 reserve_top_address(-top);
1727 #endif /* CONFIG_X86_32 */
1731 * Like __va(), but returns address in the kernel mapping (which is
1732 * all we have until the physical memory mapping has been set up.
1734 static void * __init __ka(phys_addr_t paddr)
1736 #ifdef CONFIG_X86_64
1737 return (void *)(paddr + __START_KERNEL_map);
1738 #else
1739 return __va(paddr);
1740 #endif
1743 /* Convert a machine address to physical address */
1744 static unsigned long __init m2p(phys_addr_t maddr)
1746 phys_addr_t paddr;
1748 maddr &= XEN_PTE_MFN_MASK;
1749 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1751 return paddr;
1754 /* Convert a machine address to kernel virtual */
1755 static void * __init m2v(phys_addr_t maddr)
1757 return __ka(m2p(maddr));
1760 /* Set the page permissions on an identity-mapped pages */
1761 static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1762 unsigned long flags)
1764 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1765 pte_t pte = pfn_pte(pfn, prot);
1767 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1768 BUG();
1770 static void __init set_page_prot(void *addr, pgprot_t prot)
1772 return set_page_prot_flags(addr, prot, UVMF_NONE);
1774 #ifdef CONFIG_X86_32
1775 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1777 unsigned pmdidx, pteidx;
1778 unsigned ident_pte;
1779 unsigned long pfn;
1781 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1782 PAGE_SIZE);
1784 ident_pte = 0;
1785 pfn = 0;
1786 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1787 pte_t *pte_page;
1789 /* Reuse or allocate a page of ptes */
1790 if (pmd_present(pmd[pmdidx]))
1791 pte_page = m2v(pmd[pmdidx].pmd);
1792 else {
1793 /* Check for free pte pages */
1794 if (ident_pte == LEVEL1_IDENT_ENTRIES)
1795 break;
1797 pte_page = &level1_ident_pgt[ident_pte];
1798 ident_pte += PTRS_PER_PTE;
1800 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1803 /* Install mappings */
1804 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1805 pte_t pte;
1807 if (pfn > max_pfn_mapped)
1808 max_pfn_mapped = pfn;
1810 if (!pte_none(pte_page[pteidx]))
1811 continue;
1813 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1814 pte_page[pteidx] = pte;
1818 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1819 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1821 set_page_prot(pmd, PAGE_KERNEL_RO);
1823 #endif
1824 void __init xen_setup_machphys_mapping(void)
1826 struct xen_machphys_mapping mapping;
1828 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1829 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1830 machine_to_phys_nr = mapping.max_mfn + 1;
1831 } else {
1832 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1834 #ifdef CONFIG_X86_32
1835 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1836 < machine_to_phys_mapping);
1837 #endif
1840 #ifdef CONFIG_X86_64
1841 static void __init convert_pfn_mfn(void *v)
1843 pte_t *pte = v;
1844 int i;
1846 /* All levels are converted the same way, so just treat them
1847 as ptes. */
1848 for (i = 0; i < PTRS_PER_PTE; i++)
1849 pte[i] = xen_make_pte(pte[i].pte);
1851 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1852 unsigned long addr)
1854 if (*pt_base == PFN_DOWN(__pa(addr))) {
1855 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1856 clear_page((void *)addr);
1857 (*pt_base)++;
1859 if (*pt_end == PFN_DOWN(__pa(addr))) {
1860 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1861 clear_page((void *)addr);
1862 (*pt_end)--;
1866 * Set up the initial kernel pagetable.
1868 * We can construct this by grafting the Xen provided pagetable into
1869 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1870 * level2_ident_pgt, and level2_kernel_pgt. This means that only the
1871 * kernel has a physical mapping to start with - but that's enough to
1872 * get __va working. We need to fill in the rest of the physical
1873 * mapping once some sort of allocator has been set up.
1875 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1877 pud_t *l3;
1878 pmd_t *l2;
1879 unsigned long addr[3];
1880 unsigned long pt_base, pt_end;
1881 unsigned i;
1883 /* max_pfn_mapped is the last pfn mapped in the initial memory
1884 * mappings. Considering that on Xen after the kernel mappings we
1885 * have the mappings of some pages that don't exist in pfn space, we
1886 * set max_pfn_mapped to the last real pfn mapped. */
1887 if (xen_start_info->mfn_list < __START_KERNEL_map)
1888 max_pfn_mapped = xen_start_info->first_p2m_pfn;
1889 else
1890 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1892 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1893 pt_end = pt_base + xen_start_info->nr_pt_frames;
1895 /* Zap identity mapping */
1896 init_top_pgt[0] = __pgd(0);
1898 /* Pre-constructed entries are in pfn, so convert to mfn */
1899 /* L4[273] -> level3_ident_pgt */
1900 /* L4[511] -> level3_kernel_pgt */
1901 convert_pfn_mfn(init_top_pgt);
1903 /* L3_i[0] -> level2_ident_pgt */
1904 convert_pfn_mfn(level3_ident_pgt);
1905 /* L3_k[510] -> level2_kernel_pgt */
1906 /* L3_k[511] -> level2_fixmap_pgt */
1907 convert_pfn_mfn(level3_kernel_pgt);
1909 /* L3_k[511][508-FIXMAP_PMD_NUM ... 507] -> level1_fixmap_pgt */
1910 convert_pfn_mfn(level2_fixmap_pgt);
1912 /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1913 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1914 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1916 addr[0] = (unsigned long)pgd;
1917 addr[1] = (unsigned long)l3;
1918 addr[2] = (unsigned long)l2;
1919 /* Graft it onto L4[273][0]. Note that we creating an aliasing problem:
1920 * Both L4[273][0] and L4[511][510] have entries that point to the same
1921 * L2 (PMD) tables. Meaning that if you modify it in __va space
1922 * it will be also modified in the __ka space! (But if you just
1923 * modify the PMD table to point to other PTE's or none, then you
1924 * are OK - which is what cleanup_highmap does) */
1925 copy_page(level2_ident_pgt, l2);
1926 /* Graft it onto L4[511][510] */
1927 copy_page(level2_kernel_pgt, l2);
1930 * Zap execute permission from the ident map. Due to the sharing of
1931 * L1 entries we need to do this in the L2.
1933 if (__supported_pte_mask & _PAGE_NX) {
1934 for (i = 0; i < PTRS_PER_PMD; ++i) {
1935 if (pmd_none(level2_ident_pgt[i]))
1936 continue;
1937 level2_ident_pgt[i] = pmd_set_flags(level2_ident_pgt[i], _PAGE_NX);
1941 /* Copy the initial P->M table mappings if necessary. */
1942 i = pgd_index(xen_start_info->mfn_list);
1943 if (i && i < pgd_index(__START_KERNEL_map))
1944 init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1946 /* Make pagetable pieces RO */
1947 set_page_prot(init_top_pgt, PAGE_KERNEL_RO);
1948 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1949 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1950 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1951 set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1952 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1953 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1955 for (i = 0; i < FIXMAP_PMD_NUM; i++) {
1956 set_page_prot(level1_fixmap_pgt + i * PTRS_PER_PTE,
1957 PAGE_KERNEL_RO);
1960 /* Pin down new L4 */
1961 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1962 PFN_DOWN(__pa_symbol(init_top_pgt)));
1964 /* Unpin Xen-provided one */
1965 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1968 * At this stage there can be no user pgd, and no page structure to
1969 * attach it to, so make sure we just set kernel pgd.
1971 xen_mc_batch();
1972 __xen_write_cr3(true, __pa(init_top_pgt));
1973 xen_mc_issue(PARAVIRT_LAZY_CPU);
1975 /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1976 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for
1977 * the initial domain. For guests using the toolstack, they are in:
1978 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1979 * rip out the [L4] (pgd), but for guests we shave off three pages.
1981 for (i = 0; i < ARRAY_SIZE(addr); i++)
1982 check_pt_base(&pt_base, &pt_end, addr[i]);
1984 /* Our (by three pages) smaller Xen pagetable that we are using */
1985 xen_pt_base = PFN_PHYS(pt_base);
1986 xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
1987 memblock_reserve(xen_pt_base, xen_pt_size);
1989 /* Revector the xen_start_info */
1990 xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1994 * Read a value from a physical address.
1996 static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
1998 unsigned long *vaddr;
1999 unsigned long val;
2001 vaddr = early_memremap_ro(addr, sizeof(val));
2002 val = *vaddr;
2003 early_memunmap(vaddr, sizeof(val));
2004 return val;
2008 * Translate a virtual address to a physical one without relying on mapped
2009 * page tables. Don't rely on big pages being aligned in (guest) physical
2010 * space!
2012 static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
2014 phys_addr_t pa;
2015 pgd_t pgd;
2016 pud_t pud;
2017 pmd_t pmd;
2018 pte_t pte;
2020 pa = read_cr3_pa();
2021 pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
2022 sizeof(pgd)));
2023 if (!pgd_present(pgd))
2024 return 0;
2026 pa = pgd_val(pgd) & PTE_PFN_MASK;
2027 pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
2028 sizeof(pud)));
2029 if (!pud_present(pud))
2030 return 0;
2031 pa = pud_val(pud) & PTE_PFN_MASK;
2032 if (pud_large(pud))
2033 return pa + (vaddr & ~PUD_MASK);
2035 pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
2036 sizeof(pmd)));
2037 if (!pmd_present(pmd))
2038 return 0;
2039 pa = pmd_val(pmd) & PTE_PFN_MASK;
2040 if (pmd_large(pmd))
2041 return pa + (vaddr & ~PMD_MASK);
2043 pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
2044 sizeof(pte)));
2045 if (!pte_present(pte))
2046 return 0;
2047 pa = pte_pfn(pte) << PAGE_SHIFT;
2049 return pa | (vaddr & ~PAGE_MASK);
2053 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
2054 * this area.
2056 void __init xen_relocate_p2m(void)
2058 phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
2059 unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
2060 int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
2061 pte_t *pt;
2062 pmd_t *pmd;
2063 pud_t *pud;
2064 pgd_t *pgd;
2065 unsigned long *new_p2m;
2067 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
2068 n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
2069 n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
2070 n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
2071 n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT;
2072 n_frames = n_pte + n_pt + n_pmd + n_pud;
2074 new_area = xen_find_free_area(PFN_PHYS(n_frames));
2075 if (!new_area) {
2076 xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
2077 BUG();
2081 * Setup the page tables for addressing the new p2m list.
2082 * We have asked the hypervisor to map the p2m list at the user address
2083 * PUD_SIZE. It may have done so, or it may have used a kernel space
2084 * address depending on the Xen version.
2085 * To avoid any possible virtual address collision, just use
2086 * 2 * PUD_SIZE for the new area.
2088 pud_phys = new_area;
2089 pmd_phys = pud_phys + PFN_PHYS(n_pud);
2090 pt_phys = pmd_phys + PFN_PHYS(n_pmd);
2091 p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
2093 pgd = __va(read_cr3_pa());
2094 new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
2095 for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
2096 pud = early_memremap(pud_phys, PAGE_SIZE);
2097 clear_page(pud);
2098 for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
2099 idx_pmd++) {
2100 pmd = early_memremap(pmd_phys, PAGE_SIZE);
2101 clear_page(pmd);
2102 for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
2103 idx_pt++) {
2104 pt = early_memremap(pt_phys, PAGE_SIZE);
2105 clear_page(pt);
2106 for (idx_pte = 0;
2107 idx_pte < min(n_pte, PTRS_PER_PTE);
2108 idx_pte++) {
2109 pt[idx_pte] = pfn_pte(p2m_pfn,
2110 PAGE_KERNEL);
2111 p2m_pfn++;
2113 n_pte -= PTRS_PER_PTE;
2114 early_memunmap(pt, PAGE_SIZE);
2115 make_lowmem_page_readonly(__va(pt_phys));
2116 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
2117 PFN_DOWN(pt_phys));
2118 pmd[idx_pt] = __pmd(_PAGE_TABLE | pt_phys);
2119 pt_phys += PAGE_SIZE;
2121 n_pt -= PTRS_PER_PMD;
2122 early_memunmap(pmd, PAGE_SIZE);
2123 make_lowmem_page_readonly(__va(pmd_phys));
2124 pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
2125 PFN_DOWN(pmd_phys));
2126 pud[idx_pmd] = __pud(_PAGE_TABLE | pmd_phys);
2127 pmd_phys += PAGE_SIZE;
2129 n_pmd -= PTRS_PER_PUD;
2130 early_memunmap(pud, PAGE_SIZE);
2131 make_lowmem_page_readonly(__va(pud_phys));
2132 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
2133 set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
2134 pud_phys += PAGE_SIZE;
2137 /* Now copy the old p2m info to the new area. */
2138 memcpy(new_p2m, xen_p2m_addr, size);
2139 xen_p2m_addr = new_p2m;
2141 /* Release the old p2m list and set new list info. */
2142 p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
2143 BUG_ON(!p2m_pfn);
2144 p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
2146 if (xen_start_info->mfn_list < __START_KERNEL_map) {
2147 pfn = xen_start_info->first_p2m_pfn;
2148 pfn_end = xen_start_info->first_p2m_pfn +
2149 xen_start_info->nr_p2m_frames;
2150 set_pgd(pgd + 1, __pgd(0));
2151 } else {
2152 pfn = p2m_pfn;
2153 pfn_end = p2m_pfn_end;
2156 memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
2157 while (pfn < pfn_end) {
2158 if (pfn == p2m_pfn) {
2159 pfn = p2m_pfn_end;
2160 continue;
2162 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
2163 pfn++;
2166 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
2167 xen_start_info->first_p2m_pfn = PFN_DOWN(new_area);
2168 xen_start_info->nr_p2m_frames = n_frames;
2171 #else /* !CONFIG_X86_64 */
2172 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
2173 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
2174 RESERVE_BRK(fixup_kernel_pmd, PAGE_SIZE);
2175 RESERVE_BRK(fixup_kernel_pte, PAGE_SIZE);
2177 static void __init xen_write_cr3_init(unsigned long cr3)
2179 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
2181 BUG_ON(read_cr3_pa() != __pa(initial_page_table));
2182 BUG_ON(cr3 != __pa(swapper_pg_dir));
2185 * We are switching to swapper_pg_dir for the first time (from
2186 * initial_page_table) and therefore need to mark that page
2187 * read-only and then pin it.
2189 * Xen disallows sharing of kernel PMDs for PAE
2190 * guests. Therefore we must copy the kernel PMD from
2191 * initial_page_table into a new kernel PMD to be used in
2192 * swapper_pg_dir.
2194 swapper_kernel_pmd =
2195 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2196 copy_page(swapper_kernel_pmd, initial_kernel_pmd);
2197 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
2198 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
2199 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
2201 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
2202 xen_write_cr3(cr3);
2203 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
2205 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
2206 PFN_DOWN(__pa(initial_page_table)));
2207 set_page_prot(initial_page_table, PAGE_KERNEL);
2208 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
2210 pv_ops.mmu.write_cr3 = &xen_write_cr3;
2214 * For 32 bit domains xen_start_info->pt_base is the pgd address which might be
2215 * not the first page table in the page table pool.
2216 * Iterate through the initial page tables to find the real page table base.
2218 static phys_addr_t __init xen_find_pt_base(pmd_t *pmd)
2220 phys_addr_t pt_base, paddr;
2221 unsigned pmdidx;
2223 pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd));
2225 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++)
2226 if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) {
2227 paddr = m2p(pmd[pmdidx].pmd);
2228 pt_base = min(pt_base, paddr);
2231 return pt_base;
2234 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
2236 pmd_t *kernel_pmd;
2238 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2240 xen_pt_base = xen_find_pt_base(kernel_pmd);
2241 xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE;
2243 initial_kernel_pmd =
2244 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2246 max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024);
2248 copy_page(initial_kernel_pmd, kernel_pmd);
2250 xen_map_identity_early(initial_kernel_pmd, max_pfn);
2252 copy_page(initial_page_table, pgd);
2253 initial_page_table[KERNEL_PGD_BOUNDARY] =
2254 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2256 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2257 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2258 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2260 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2262 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2263 PFN_DOWN(__pa(initial_page_table)));
2264 xen_write_cr3(__pa(initial_page_table));
2266 memblock_reserve(xen_pt_base, xen_pt_size);
2268 #endif /* CONFIG_X86_64 */
2270 void __init xen_reserve_special_pages(void)
2272 phys_addr_t paddr;
2274 memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2275 if (xen_start_info->store_mfn) {
2276 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2277 memblock_reserve(paddr, PAGE_SIZE);
2279 if (!xen_initial_domain()) {
2280 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2281 memblock_reserve(paddr, PAGE_SIZE);
2285 void __init xen_pt_check_e820(void)
2287 if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
2288 xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2289 BUG();
2293 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2295 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2297 pte_t pte;
2299 phys >>= PAGE_SHIFT;
2301 switch (idx) {
2302 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2303 #ifdef CONFIG_X86_32
2304 case FIX_WP_TEST:
2305 # ifdef CONFIG_HIGHMEM
2306 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2307 # endif
2308 #elif defined(CONFIG_X86_VSYSCALL_EMULATION)
2309 case VSYSCALL_PAGE:
2310 #endif
2311 /* All local page mappings */
2312 pte = pfn_pte(phys, prot);
2313 break;
2315 #ifdef CONFIG_X86_LOCAL_APIC
2316 case FIX_APIC_BASE: /* maps dummy local APIC */
2317 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2318 break;
2319 #endif
2321 #ifdef CONFIG_X86_IO_APIC
2322 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2324 * We just don't map the IO APIC - all access is via
2325 * hypercalls. Keep the address in the pte for reference.
2327 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2328 break;
2329 #endif
2331 case FIX_PARAVIRT_BOOTMAP:
2332 /* This is an MFN, but it isn't an IO mapping from the
2333 IO domain */
2334 pte = mfn_pte(phys, prot);
2335 break;
2337 default:
2338 /* By default, set_fixmap is used for hardware mappings */
2339 pte = mfn_pte(phys, prot);
2340 break;
2343 __native_set_fixmap(idx, pte);
2345 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2346 /* Replicate changes to map the vsyscall page into the user
2347 pagetable vsyscall mapping. */
2348 if (idx == VSYSCALL_PAGE) {
2349 unsigned long vaddr = __fix_to_virt(idx);
2350 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2352 #endif
2355 static void __init xen_post_allocator_init(void)
2357 pv_ops.mmu.set_pte = xen_set_pte;
2358 pv_ops.mmu.set_pmd = xen_set_pmd;
2359 pv_ops.mmu.set_pud = xen_set_pud;
2360 #ifdef CONFIG_X86_64
2361 pv_ops.mmu.set_p4d = xen_set_p4d;
2362 #endif
2364 /* This will work as long as patching hasn't happened yet
2365 (which it hasn't) */
2366 pv_ops.mmu.alloc_pte = xen_alloc_pte;
2367 pv_ops.mmu.alloc_pmd = xen_alloc_pmd;
2368 pv_ops.mmu.release_pte = xen_release_pte;
2369 pv_ops.mmu.release_pmd = xen_release_pmd;
2370 #ifdef CONFIG_X86_64
2371 pv_ops.mmu.alloc_pud = xen_alloc_pud;
2372 pv_ops.mmu.release_pud = xen_release_pud;
2373 #endif
2374 pv_ops.mmu.make_pte = PV_CALLEE_SAVE(xen_make_pte);
2376 #ifdef CONFIG_X86_64
2377 pv_ops.mmu.write_cr3 = &xen_write_cr3;
2378 #endif
2381 static void xen_leave_lazy_mmu(void)
2383 preempt_disable();
2384 xen_mc_flush();
2385 paravirt_leave_lazy_mmu();
2386 preempt_enable();
2389 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2390 .read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2),
2391 .write_cr2 = xen_write_cr2,
2393 .read_cr3 = xen_read_cr3,
2394 .write_cr3 = xen_write_cr3_init,
2396 .flush_tlb_user = xen_flush_tlb,
2397 .flush_tlb_kernel = xen_flush_tlb,
2398 .flush_tlb_one_user = xen_flush_tlb_one_user,
2399 .flush_tlb_others = xen_flush_tlb_others,
2400 .tlb_remove_table = tlb_remove_table,
2402 .pgd_alloc = xen_pgd_alloc,
2403 .pgd_free = xen_pgd_free,
2405 .alloc_pte = xen_alloc_pte_init,
2406 .release_pte = xen_release_pte_init,
2407 .alloc_pmd = xen_alloc_pmd_init,
2408 .release_pmd = xen_release_pmd_init,
2410 .set_pte = xen_set_pte_init,
2411 .set_pte_at = xen_set_pte_at,
2412 .set_pmd = xen_set_pmd_hyper,
2414 .ptep_modify_prot_start = __ptep_modify_prot_start,
2415 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2417 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2418 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2420 .make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
2421 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2423 #ifdef CONFIG_X86_PAE
2424 .set_pte_atomic = xen_set_pte_atomic,
2425 .pte_clear = xen_pte_clear,
2426 .pmd_clear = xen_pmd_clear,
2427 #endif /* CONFIG_X86_PAE */
2428 .set_pud = xen_set_pud_hyper,
2430 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2431 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2433 #ifdef CONFIG_X86_64
2434 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2435 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2436 .set_p4d = xen_set_p4d_hyper,
2438 .alloc_pud = xen_alloc_pmd_init,
2439 .release_pud = xen_release_pmd_init,
2441 #if CONFIG_PGTABLE_LEVELS >= 5
2442 .p4d_val = PV_CALLEE_SAVE(xen_p4d_val),
2443 .make_p4d = PV_CALLEE_SAVE(xen_make_p4d),
2444 #endif
2445 #endif /* CONFIG_X86_64 */
2447 .activate_mm = xen_activate_mm,
2448 .dup_mmap = xen_dup_mmap,
2449 .exit_mmap = xen_exit_mmap,
2451 .lazy_mode = {
2452 .enter = paravirt_enter_lazy_mmu,
2453 .leave = xen_leave_lazy_mmu,
2454 .flush = paravirt_flush_lazy_mmu,
2457 .set_fixmap = xen_set_fixmap,
2460 void __init xen_init_mmu_ops(void)
2462 x86_init.paging.pagetable_init = xen_pagetable_init;
2463 x86_init.hyper.init_after_bootmem = xen_after_bootmem;
2465 pv_ops.mmu = xen_mmu_ops;
2467 memset(dummy_mapping, 0xff, PAGE_SIZE);
2470 /* Protected by xen_reservation_lock. */
2471 #define MAX_CONTIG_ORDER 9 /* 2MB */
2472 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2474 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2475 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2476 unsigned long *in_frames,
2477 unsigned long *out_frames)
2479 int i;
2480 struct multicall_space mcs;
2482 xen_mc_batch();
2483 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2484 mcs = __xen_mc_entry(0);
2486 if (in_frames)
2487 in_frames[i] = virt_to_mfn(vaddr);
2489 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2490 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2492 if (out_frames)
2493 out_frames[i] = virt_to_pfn(vaddr);
2495 xen_mc_issue(0);
2499 * Update the pfn-to-mfn mappings for a virtual address range, either to
2500 * point to an array of mfns, or contiguously from a single starting
2501 * mfn.
2503 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2504 unsigned long *mfns,
2505 unsigned long first_mfn)
2507 unsigned i, limit;
2508 unsigned long mfn;
2510 xen_mc_batch();
2512 limit = 1u << order;
2513 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2514 struct multicall_space mcs;
2515 unsigned flags;
2517 mcs = __xen_mc_entry(0);
2518 if (mfns)
2519 mfn = mfns[i];
2520 else
2521 mfn = first_mfn + i;
2523 if (i < (limit - 1))
2524 flags = 0;
2525 else {
2526 if (order == 0)
2527 flags = UVMF_INVLPG | UVMF_ALL;
2528 else
2529 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2532 MULTI_update_va_mapping(mcs.mc, vaddr,
2533 mfn_pte(mfn, PAGE_KERNEL), flags);
2535 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2538 xen_mc_issue(0);
2542 * Perform the hypercall to exchange a region of our pfns to point to
2543 * memory with the required contiguous alignment. Takes the pfns as
2544 * input, and populates mfns as output.
2546 * Returns a success code indicating whether the hypervisor was able to
2547 * satisfy the request or not.
2549 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2550 unsigned long *pfns_in,
2551 unsigned long extents_out,
2552 unsigned int order_out,
2553 unsigned long *mfns_out,
2554 unsigned int address_bits)
2556 long rc;
2557 int success;
2559 struct xen_memory_exchange exchange = {
2560 .in = {
2561 .nr_extents = extents_in,
2562 .extent_order = order_in,
2563 .extent_start = pfns_in,
2564 .domid = DOMID_SELF
2566 .out = {
2567 .nr_extents = extents_out,
2568 .extent_order = order_out,
2569 .extent_start = mfns_out,
2570 .address_bits = address_bits,
2571 .domid = DOMID_SELF
2575 BUG_ON(extents_in << order_in != extents_out << order_out);
2577 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2578 success = (exchange.nr_exchanged == extents_in);
2580 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2581 BUG_ON(success && (rc != 0));
2583 return success;
2586 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2587 unsigned int address_bits,
2588 dma_addr_t *dma_handle)
2590 unsigned long *in_frames = discontig_frames, out_frame;
2591 unsigned long flags;
2592 int success;
2593 unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2596 * Currently an auto-translated guest will not perform I/O, nor will
2597 * it require PAE page directories below 4GB. Therefore any calls to
2598 * this function are redundant and can be ignored.
2601 if (unlikely(order > MAX_CONTIG_ORDER))
2602 return -ENOMEM;
2604 memset((void *) vstart, 0, PAGE_SIZE << order);
2606 spin_lock_irqsave(&xen_reservation_lock, flags);
2608 /* 1. Zap current PTEs, remembering MFNs. */
2609 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2611 /* 2. Get a new contiguous memory extent. */
2612 out_frame = virt_to_pfn(vstart);
2613 success = xen_exchange_memory(1UL << order, 0, in_frames,
2614 1, order, &out_frame,
2615 address_bits);
2617 /* 3. Map the new extent in place of old pages. */
2618 if (success)
2619 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2620 else
2621 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2623 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2625 *dma_handle = virt_to_machine(vstart).maddr;
2626 return success ? 0 : -ENOMEM;
2629 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2631 unsigned long *out_frames = discontig_frames, in_frame;
2632 unsigned long flags;
2633 int success;
2634 unsigned long vstart;
2636 if (unlikely(order > MAX_CONTIG_ORDER))
2637 return;
2639 vstart = (unsigned long)phys_to_virt(pstart);
2640 memset((void *) vstart, 0, PAGE_SIZE << order);
2642 spin_lock_irqsave(&xen_reservation_lock, flags);
2644 /* 1. Find start MFN of contiguous extent. */
2645 in_frame = virt_to_mfn(vstart);
2647 /* 2. Zap current PTEs. */
2648 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2650 /* 3. Do the exchange for non-contiguous MFNs. */
2651 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2652 0, out_frames, 0);
2654 /* 4. Map new pages in place of old pages. */
2655 if (success)
2656 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2657 else
2658 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2660 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2663 static noinline void xen_flush_tlb_all(void)
2665 struct mmuext_op *op;
2666 struct multicall_space mcs;
2668 preempt_disable();
2670 mcs = xen_mc_entry(sizeof(*op));
2672 op = mcs.args;
2673 op->cmd = MMUEXT_TLB_FLUSH_ALL;
2674 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
2676 xen_mc_issue(PARAVIRT_LAZY_MMU);
2678 preempt_enable();
2681 #define REMAP_BATCH_SIZE 16
2683 struct remap_data {
2684 xen_pfn_t *pfn;
2685 bool contiguous;
2686 bool no_translate;
2687 pgprot_t prot;
2688 struct mmu_update *mmu_update;
2691 static int remap_area_pfn_pte_fn(pte_t *ptep, unsigned long addr, void *data)
2693 struct remap_data *rmd = data;
2694 pte_t pte = pte_mkspecial(mfn_pte(*rmd->pfn, rmd->prot));
2697 * If we have a contiguous range, just update the pfn itself,
2698 * else update pointer to be "next pfn".
2700 if (rmd->contiguous)
2701 (*rmd->pfn)++;
2702 else
2703 rmd->pfn++;
2705 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2706 rmd->mmu_update->ptr |= rmd->no_translate ?
2707 MMU_PT_UPDATE_NO_TRANSLATE :
2708 MMU_NORMAL_PT_UPDATE;
2709 rmd->mmu_update->val = pte_val_ma(pte);
2710 rmd->mmu_update++;
2712 return 0;
2715 int xen_remap_pfn(struct vm_area_struct *vma, unsigned long addr,
2716 xen_pfn_t *pfn, int nr, int *err_ptr, pgprot_t prot,
2717 unsigned int domid, bool no_translate, struct page **pages)
2719 int err = 0;
2720 struct remap_data rmd;
2721 struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2722 unsigned long range;
2723 int mapped = 0;
2725 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2727 rmd.pfn = pfn;
2728 rmd.prot = prot;
2730 * We use the err_ptr to indicate if there we are doing a contiguous
2731 * mapping or a discontigious mapping.
2733 rmd.contiguous = !err_ptr;
2734 rmd.no_translate = no_translate;
2736 while (nr) {
2737 int index = 0;
2738 int done = 0;
2739 int batch = min(REMAP_BATCH_SIZE, nr);
2740 int batch_left = batch;
2742 range = (unsigned long)batch << PAGE_SHIFT;
2744 rmd.mmu_update = mmu_update;
2745 err = apply_to_page_range(vma->vm_mm, addr, range,
2746 remap_area_pfn_pte_fn, &rmd);
2747 if (err)
2748 goto out;
2751 * We record the error for each page that gives an error, but
2752 * continue mapping until the whole set is done
2754 do {
2755 int i;
2757 err = HYPERVISOR_mmu_update(&mmu_update[index],
2758 batch_left, &done, domid);
2761 * @err_ptr may be the same buffer as @gfn, so
2762 * only clear it after each chunk of @gfn is
2763 * used.
2765 if (err_ptr) {
2766 for (i = index; i < index + done; i++)
2767 err_ptr[i] = 0;
2769 if (err < 0) {
2770 if (!err_ptr)
2771 goto out;
2772 err_ptr[i] = err;
2773 done++; /* Skip failed frame. */
2774 } else
2775 mapped += done;
2776 batch_left -= done;
2777 index += done;
2778 } while (batch_left);
2780 nr -= batch;
2781 addr += range;
2782 if (err_ptr)
2783 err_ptr += batch;
2784 cond_resched();
2786 out:
2788 xen_flush_tlb_all();
2790 return err < 0 ? err : mapped;
2792 EXPORT_SYMBOL_GPL(xen_remap_pfn);
2794 #ifdef CONFIG_KEXEC_CORE
2795 phys_addr_t paddr_vmcoreinfo_note(void)
2797 if (xen_pv_domain())
2798 return virt_to_machine(vmcoreinfo_note).maddr;
2799 else
2800 return __pa(vmcoreinfo_note);
2802 #endif /* CONFIG_KEXEC_CORE */