1 // SPDX-License-Identifier: GPL-2.0
6 * This file contains the various mmu fetch and update operations.
7 * The most important job they must perform is the mapping between the
8 * domain's pfn and the overall machine mfns.
10 * Xen allows guests to directly update the pagetable, in a controlled
11 * fashion. In other words, the guest modifies the same pagetable
12 * that the CPU actually uses, which eliminates the overhead of having
13 * a separate shadow pagetable.
15 * In order to allow this, it falls on the guest domain to map its
16 * notion of a "physical" pfn - which is just a domain-local linear
17 * address - into a real "machine address" which the CPU's MMU can
20 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
21 * inserted directly into the pagetable. When creating a new
22 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
23 * when reading the content back with __(pgd|pmd|pte)_val, it converts
24 * the mfn back into a pfn.
26 * The other constraint is that all pages which make up a pagetable
27 * must be mapped read-only in the guest. This prevents uncontrolled
28 * guest updates to the pagetable. Xen strictly enforces this, and
29 * will disallow any pagetable update which will end up mapping a
30 * pagetable page RW, and will disallow using any writable page as a
33 * Naively, when loading %cr3 with the base of a new pagetable, Xen
34 * would need to validate the whole pagetable before going on.
35 * Naturally, this is quite slow. The solution is to "pin" a
36 * pagetable, which enforces all the constraints on the pagetable even
37 * when it is not actively in use. This menas that Xen can be assured
38 * that it is still valid when you do load it into %cr3, and doesn't
39 * need to revalidate it.
41 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
43 #include <linux/sched/mm.h>
44 #include <linux/highmem.h>
45 #include <linux/debugfs.h>
46 #include <linux/bug.h>
47 #include <linux/vmalloc.h>
48 #include <linux/export.h>
49 #include <linux/init.h>
50 #include <linux/gfp.h>
51 #include <linux/memblock.h>
52 #include <linux/seq_file.h>
53 #include <linux/crash_dump.h>
54 #ifdef CONFIG_KEXEC_CORE
55 #include <linux/kexec.h>
58 #include <trace/events/xen.h>
60 #include <asm/pgtable.h>
61 #include <asm/tlbflush.h>
62 #include <asm/fixmap.h>
63 #include <asm/mmu_context.h>
64 #include <asm/setup.h>
65 #include <asm/paravirt.h>
66 #include <asm/e820/api.h>
67 #include <asm/linkage.h>
70 #include <asm/memtype.h>
74 #include <asm/xen/hypercall.h>
75 #include <asm/xen/hypervisor.h>
79 #include <xen/interface/xen.h>
80 #include <xen/interface/hvm/hvm_op.h>
81 #include <xen/interface/version.h>
82 #include <xen/interface/memory.h>
83 #include <xen/hvc-console.h>
85 #include "multicalls.h"
91 * Identity map, in addition to plain kernel map. This needs to be
92 * large enough to allocate page table pages to allocate the rest.
93 * Each page can map 2MB.
95 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
96 static RESERVE_BRK_ARRAY(pte_t
, level1_ident_pgt
, LEVEL1_IDENT_ENTRIES
);
99 /* l3 pud for userspace vsyscall mapping */
100 static pud_t level3_user_vsyscall
[PTRS_PER_PUD
] __page_aligned_bss
;
101 #endif /* CONFIG_X86_64 */
104 * Protects atomic reservation decrease/increase against concurrent increases.
105 * Also protects non-atomic updates of current_pages and balloon lists.
107 static DEFINE_SPINLOCK(xen_reservation_lock
);
110 * Note about cr3 (pagetable base) values:
112 * xen_cr3 contains the current logical cr3 value; it contains the
113 * last set cr3. This may not be the current effective cr3, because
114 * its update may be being lazily deferred. However, a vcpu looking
115 * at its own cr3 can use this value knowing that it everything will
116 * be self-consistent.
118 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
119 * hypercall to set the vcpu cr3 is complete (so it may be a little
120 * out of date, but it will never be set early). If one vcpu is
121 * looking at another vcpu's cr3 value, it should use this variable.
123 DEFINE_PER_CPU(unsigned long, xen_cr3
); /* cr3 stored as physaddr */
124 DEFINE_PER_CPU(unsigned long, xen_current_cr3
); /* actual vcpu cr3 */
126 static phys_addr_t xen_pt_base
, xen_pt_size __initdata
;
128 static DEFINE_STATIC_KEY_FALSE(xen_struct_pages_ready
);
131 * Just beyond the highest usermode address. STACK_TOP_MAX has a
132 * redzone above it, so round it up to a PGD boundary.
134 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
136 void make_lowmem_page_readonly(void *vaddr
)
139 unsigned long address
= (unsigned long)vaddr
;
142 pte
= lookup_address(address
, &level
);
144 return; /* vaddr missing */
146 ptev
= pte_wrprotect(*pte
);
148 if (HYPERVISOR_update_va_mapping(address
, ptev
, 0))
152 void make_lowmem_page_readwrite(void *vaddr
)
155 unsigned long address
= (unsigned long)vaddr
;
158 pte
= lookup_address(address
, &level
);
160 return; /* vaddr missing */
162 ptev
= pte_mkwrite(*pte
);
164 if (HYPERVISOR_update_va_mapping(address
, ptev
, 0))
170 * During early boot all page table pages are pinned, but we do not have struct
171 * pages, so return true until struct pages are ready.
173 static bool xen_page_pinned(void *ptr
)
175 if (static_branch_likely(&xen_struct_pages_ready
)) {
176 struct page
*page
= virt_to_page(ptr
);
178 return PagePinned(page
);
183 static void xen_extend_mmu_update(const struct mmu_update
*update
)
185 struct multicall_space mcs
;
186 struct mmu_update
*u
;
188 mcs
= xen_mc_extend_args(__HYPERVISOR_mmu_update
, sizeof(*u
));
190 if (mcs
.mc
!= NULL
) {
193 mcs
= __xen_mc_entry(sizeof(*u
));
194 MULTI_mmu_update(mcs
.mc
, mcs
.args
, 1, NULL
, DOMID_SELF
);
201 static void xen_extend_mmuext_op(const struct mmuext_op
*op
)
203 struct multicall_space mcs
;
206 mcs
= xen_mc_extend_args(__HYPERVISOR_mmuext_op
, sizeof(*u
));
208 if (mcs
.mc
!= NULL
) {
211 mcs
= __xen_mc_entry(sizeof(*u
));
212 MULTI_mmuext_op(mcs
.mc
, mcs
.args
, 1, NULL
, DOMID_SELF
);
219 static void xen_set_pmd_hyper(pmd_t
*ptr
, pmd_t val
)
227 /* ptr may be ioremapped for 64-bit pagetable setup */
228 u
.ptr
= arbitrary_virt_to_machine(ptr
).maddr
;
229 u
.val
= pmd_val_ma(val
);
230 xen_extend_mmu_update(&u
);
232 xen_mc_issue(PARAVIRT_LAZY_MMU
);
237 static void xen_set_pmd(pmd_t
*ptr
, pmd_t val
)
239 trace_xen_mmu_set_pmd(ptr
, val
);
241 /* If page is not pinned, we can just update the entry
243 if (!xen_page_pinned(ptr
)) {
248 xen_set_pmd_hyper(ptr
, val
);
252 * Associate a virtual page frame with a given physical page frame
253 * and protection flags for that frame.
255 void set_pte_mfn(unsigned long vaddr
, unsigned long mfn
, pgprot_t flags
)
257 set_pte_vaddr(vaddr
, mfn_pte(mfn
, flags
));
260 static bool xen_batched_set_pte(pte_t
*ptep
, pte_t pteval
)
264 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU
)
269 u
.ptr
= virt_to_machine(ptep
).maddr
| MMU_NORMAL_PT_UPDATE
;
270 u
.val
= pte_val_ma(pteval
);
271 xen_extend_mmu_update(&u
);
273 xen_mc_issue(PARAVIRT_LAZY_MMU
);
278 static inline void __xen_set_pte(pte_t
*ptep
, pte_t pteval
)
280 if (!xen_batched_set_pte(ptep
, pteval
)) {
282 * Could call native_set_pte() here and trap and
283 * emulate the PTE write but with 32-bit guests this
284 * needs two traps (one for each of the two 32-bit
285 * words in the PTE) so do one hypercall directly
290 u
.ptr
= virt_to_machine(ptep
).maddr
| MMU_NORMAL_PT_UPDATE
;
291 u
.val
= pte_val_ma(pteval
);
292 HYPERVISOR_mmu_update(&u
, 1, NULL
, DOMID_SELF
);
296 static void xen_set_pte(pte_t
*ptep
, pte_t pteval
)
298 trace_xen_mmu_set_pte(ptep
, pteval
);
299 __xen_set_pte(ptep
, pteval
);
302 static void xen_set_pte_at(struct mm_struct
*mm
, unsigned long addr
,
303 pte_t
*ptep
, pte_t pteval
)
305 trace_xen_mmu_set_pte_at(mm
, addr
, ptep
, pteval
);
306 __xen_set_pte(ptep
, pteval
);
309 pte_t
xen_ptep_modify_prot_start(struct vm_area_struct
*vma
,
310 unsigned long addr
, pte_t
*ptep
)
312 /* Just return the pte as-is. We preserve the bits on commit */
313 trace_xen_mmu_ptep_modify_prot_start(vma
->vm_mm
, addr
, ptep
, *ptep
);
317 void xen_ptep_modify_prot_commit(struct vm_area_struct
*vma
, unsigned long addr
,
318 pte_t
*ptep
, pte_t pte
)
322 trace_xen_mmu_ptep_modify_prot_commit(vma
->vm_mm
, addr
, ptep
, pte
);
325 u
.ptr
= virt_to_machine(ptep
).maddr
| MMU_PT_UPDATE_PRESERVE_AD
;
326 u
.val
= pte_val_ma(pte
);
327 xen_extend_mmu_update(&u
);
329 xen_mc_issue(PARAVIRT_LAZY_MMU
);
332 /* Assume pteval_t is equivalent to all the other *val_t types. */
333 static pteval_t
pte_mfn_to_pfn(pteval_t val
)
335 if (val
& _PAGE_PRESENT
) {
336 unsigned long mfn
= (val
& XEN_PTE_MFN_MASK
) >> PAGE_SHIFT
;
337 unsigned long pfn
= mfn_to_pfn(mfn
);
339 pteval_t flags
= val
& PTE_FLAGS_MASK
;
340 if (unlikely(pfn
== ~0))
341 val
= flags
& ~_PAGE_PRESENT
;
343 val
= ((pteval_t
)pfn
<< PAGE_SHIFT
) | flags
;
349 static pteval_t
pte_pfn_to_mfn(pteval_t val
)
351 if (val
& _PAGE_PRESENT
) {
352 unsigned long pfn
= (val
& PTE_PFN_MASK
) >> PAGE_SHIFT
;
353 pteval_t flags
= val
& PTE_FLAGS_MASK
;
356 mfn
= __pfn_to_mfn(pfn
);
359 * If there's no mfn for the pfn, then just create an
360 * empty non-present pte. Unfortunately this loses
361 * information about the original pfn, so
362 * pte_mfn_to_pfn is asymmetric.
364 if (unlikely(mfn
== INVALID_P2M_ENTRY
)) {
368 mfn
&= ~(FOREIGN_FRAME_BIT
| IDENTITY_FRAME_BIT
);
369 val
= ((pteval_t
)mfn
<< PAGE_SHIFT
) | flags
;
375 __visible pteval_t
xen_pte_val(pte_t pte
)
377 pteval_t pteval
= pte
.pte
;
379 return pte_mfn_to_pfn(pteval
);
381 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val
);
383 __visible pgdval_t
xen_pgd_val(pgd_t pgd
)
385 return pte_mfn_to_pfn(pgd
.pgd
);
387 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val
);
389 __visible pte_t
xen_make_pte(pteval_t pte
)
391 pte
= pte_pfn_to_mfn(pte
);
393 return native_make_pte(pte
);
395 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte
);
397 __visible pgd_t
xen_make_pgd(pgdval_t pgd
)
399 pgd
= pte_pfn_to_mfn(pgd
);
400 return native_make_pgd(pgd
);
402 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd
);
404 __visible pmdval_t
xen_pmd_val(pmd_t pmd
)
406 return pte_mfn_to_pfn(pmd
.pmd
);
408 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val
);
410 static void xen_set_pud_hyper(pud_t
*ptr
, pud_t val
)
418 /* ptr may be ioremapped for 64-bit pagetable setup */
419 u
.ptr
= arbitrary_virt_to_machine(ptr
).maddr
;
420 u
.val
= pud_val_ma(val
);
421 xen_extend_mmu_update(&u
);
423 xen_mc_issue(PARAVIRT_LAZY_MMU
);
428 static void xen_set_pud(pud_t
*ptr
, pud_t val
)
430 trace_xen_mmu_set_pud(ptr
, val
);
432 /* If page is not pinned, we can just update the entry
434 if (!xen_page_pinned(ptr
)) {
439 xen_set_pud_hyper(ptr
, val
);
442 #ifdef CONFIG_X86_PAE
443 static void xen_set_pte_atomic(pte_t
*ptep
, pte_t pte
)
445 trace_xen_mmu_set_pte_atomic(ptep
, pte
);
446 __xen_set_pte(ptep
, pte
);
449 static void xen_pte_clear(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
)
451 trace_xen_mmu_pte_clear(mm
, addr
, ptep
);
452 __xen_set_pte(ptep
, native_make_pte(0));
455 static void xen_pmd_clear(pmd_t
*pmdp
)
457 trace_xen_mmu_pmd_clear(pmdp
);
458 set_pmd(pmdp
, __pmd(0));
460 #endif /* CONFIG_X86_PAE */
462 __visible pmd_t
xen_make_pmd(pmdval_t pmd
)
464 pmd
= pte_pfn_to_mfn(pmd
);
465 return native_make_pmd(pmd
);
467 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd
);
470 __visible pudval_t
xen_pud_val(pud_t pud
)
472 return pte_mfn_to_pfn(pud
.pud
);
474 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val
);
476 __visible pud_t
xen_make_pud(pudval_t pud
)
478 pud
= pte_pfn_to_mfn(pud
);
480 return native_make_pud(pud
);
482 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud
);
484 static pgd_t
*xen_get_user_pgd(pgd_t
*pgd
)
486 pgd_t
*pgd_page
= (pgd_t
*)(((unsigned long)pgd
) & PAGE_MASK
);
487 unsigned offset
= pgd
- pgd_page
;
488 pgd_t
*user_ptr
= NULL
;
490 if (offset
< pgd_index(USER_LIMIT
)) {
491 struct page
*page
= virt_to_page(pgd_page
);
492 user_ptr
= (pgd_t
*)page
->private;
500 static void __xen_set_p4d_hyper(p4d_t
*ptr
, p4d_t val
)
504 u
.ptr
= virt_to_machine(ptr
).maddr
;
505 u
.val
= p4d_val_ma(val
);
506 xen_extend_mmu_update(&u
);
510 * Raw hypercall-based set_p4d, intended for in early boot before
511 * there's a page structure. This implies:
512 * 1. The only existing pagetable is the kernel's
513 * 2. It is always pinned
514 * 3. It has no user pagetable attached to it
516 static void __init
xen_set_p4d_hyper(p4d_t
*ptr
, p4d_t val
)
522 __xen_set_p4d_hyper(ptr
, val
);
524 xen_mc_issue(PARAVIRT_LAZY_MMU
);
529 static void xen_set_p4d(p4d_t
*ptr
, p4d_t val
)
531 pgd_t
*user_ptr
= xen_get_user_pgd((pgd_t
*)ptr
);
534 trace_xen_mmu_set_p4d(ptr
, (p4d_t
*)user_ptr
, val
);
536 /* If page is not pinned, we can just update the entry
538 if (!xen_page_pinned(ptr
)) {
541 WARN_ON(xen_page_pinned(user_ptr
));
542 pgd_val
.pgd
= p4d_val_ma(val
);
548 /* If it's pinned, then we can at least batch the kernel and
549 user updates together. */
552 __xen_set_p4d_hyper(ptr
, val
);
554 __xen_set_p4d_hyper((p4d_t
*)user_ptr
, val
);
556 xen_mc_issue(PARAVIRT_LAZY_MMU
);
559 #if CONFIG_PGTABLE_LEVELS >= 5
560 __visible p4dval_t
xen_p4d_val(p4d_t p4d
)
562 return pte_mfn_to_pfn(p4d
.p4d
);
564 PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val
);
566 __visible p4d_t
xen_make_p4d(p4dval_t p4d
)
568 p4d
= pte_pfn_to_mfn(p4d
);
570 return native_make_p4d(p4d
);
572 PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d
);
573 #endif /* CONFIG_PGTABLE_LEVELS >= 5 */
574 #endif /* CONFIG_X86_64 */
576 static int xen_pmd_walk(struct mm_struct
*mm
, pmd_t
*pmd
,
577 int (*func
)(struct mm_struct
*mm
, struct page
*, enum pt_level
),
578 bool last
, unsigned long limit
)
580 int i
, nr
, flush
= 0;
582 nr
= last
? pmd_index(limit
) + 1 : PTRS_PER_PMD
;
583 for (i
= 0; i
< nr
; i
++) {
584 if (!pmd_none(pmd
[i
]))
585 flush
|= (*func
)(mm
, pmd_page(pmd
[i
]), PT_PTE
);
590 static int xen_pud_walk(struct mm_struct
*mm
, pud_t
*pud
,
591 int (*func
)(struct mm_struct
*mm
, struct page
*, enum pt_level
),
592 bool last
, unsigned long limit
)
594 int i
, nr
, flush
= 0;
596 nr
= last
? pud_index(limit
) + 1 : PTRS_PER_PUD
;
597 for (i
= 0; i
< nr
; i
++) {
600 if (pud_none(pud
[i
]))
603 pmd
= pmd_offset(&pud
[i
], 0);
604 if (PTRS_PER_PMD
> 1)
605 flush
|= (*func
)(mm
, virt_to_page(pmd
), PT_PMD
);
606 flush
|= xen_pmd_walk(mm
, pmd
, func
,
607 last
&& i
== nr
- 1, limit
);
612 static int xen_p4d_walk(struct mm_struct
*mm
, p4d_t
*p4d
,
613 int (*func
)(struct mm_struct
*mm
, struct page
*, enum pt_level
),
614 bool last
, unsigned long limit
)
623 pud
= pud_offset(p4d
, 0);
624 if (PTRS_PER_PUD
> 1)
625 flush
|= (*func
)(mm
, virt_to_page(pud
), PT_PUD
);
626 flush
|= xen_pud_walk(mm
, pud
, func
, last
, limit
);
631 * (Yet another) pagetable walker. This one is intended for pinning a
632 * pagetable. This means that it walks a pagetable and calls the
633 * callback function on each page it finds making up the page table,
634 * at every level. It walks the entire pagetable, but it only bothers
635 * pinning pte pages which are below limit. In the normal case this
636 * will be STACK_TOP_MAX, but at boot we need to pin up to
639 * For 32-bit the important bit is that we don't pin beyond there,
640 * because then we start getting into Xen's ptes.
642 * For 64-bit, we must skip the Xen hole in the middle of the address
643 * space, just after the big x86-64 virtual hole.
645 static int __xen_pgd_walk(struct mm_struct
*mm
, pgd_t
*pgd
,
646 int (*func
)(struct mm_struct
*mm
, struct page
*,
650 int i
, nr
, flush
= 0;
651 unsigned hole_low
= 0, hole_high
= 0;
653 /* The limit is the last byte to be touched */
655 BUG_ON(limit
>= FIXADDR_TOP
);
659 * 64-bit has a great big hole in the middle of the address
660 * space, which contains the Xen mappings.
662 hole_low
= pgd_index(GUARD_HOLE_BASE_ADDR
);
663 hole_high
= pgd_index(GUARD_HOLE_END_ADDR
);
666 nr
= pgd_index(limit
) + 1;
667 for (i
= 0; i
< nr
; i
++) {
670 if (i
>= hole_low
&& i
< hole_high
)
673 if (pgd_none(pgd
[i
]))
676 p4d
= p4d_offset(&pgd
[i
], 0);
677 flush
|= xen_p4d_walk(mm
, p4d
, func
, i
== nr
- 1, limit
);
680 /* Do the top level last, so that the callbacks can use it as
681 a cue to do final things like tlb flushes. */
682 flush
|= (*func
)(mm
, virt_to_page(pgd
), PT_PGD
);
687 static int xen_pgd_walk(struct mm_struct
*mm
,
688 int (*func
)(struct mm_struct
*mm
, struct page
*,
692 return __xen_pgd_walk(mm
, mm
->pgd
, func
, limit
);
695 /* If we're using split pte locks, then take the page's lock and
696 return a pointer to it. Otherwise return NULL. */
697 static spinlock_t
*xen_pte_lock(struct page
*page
, struct mm_struct
*mm
)
699 spinlock_t
*ptl
= NULL
;
701 #if USE_SPLIT_PTE_PTLOCKS
702 ptl
= ptlock_ptr(page
);
703 spin_lock_nest_lock(ptl
, &mm
->page_table_lock
);
709 static void xen_pte_unlock(void *v
)
715 static void xen_do_pin(unsigned level
, unsigned long pfn
)
720 op
.arg1
.mfn
= pfn_to_mfn(pfn
);
722 xen_extend_mmuext_op(&op
);
725 static int xen_pin_page(struct mm_struct
*mm
, struct page
*page
,
728 unsigned pgfl
= TestSetPagePinned(page
);
732 flush
= 0; /* already pinned */
733 else if (PageHighMem(page
))
734 /* kmaps need flushing if we found an unpinned
738 void *pt
= lowmem_page_address(page
);
739 unsigned long pfn
= page_to_pfn(page
);
740 struct multicall_space mcs
= __xen_mc_entry(0);
746 * We need to hold the pagetable lock between the time
747 * we make the pagetable RO and when we actually pin
748 * it. If we don't, then other users may come in and
749 * attempt to update the pagetable by writing it,
750 * which will fail because the memory is RO but not
751 * pinned, so Xen won't do the trap'n'emulate.
753 * If we're using split pte locks, we can't hold the
754 * entire pagetable's worth of locks during the
755 * traverse, because we may wrap the preempt count (8
756 * bits). The solution is to mark RO and pin each PTE
757 * page while holding the lock. This means the number
758 * of locks we end up holding is never more than a
759 * batch size (~32 entries, at present).
761 * If we're not using split pte locks, we needn't pin
762 * the PTE pages independently, because we're
763 * protected by the overall pagetable lock.
767 ptl
= xen_pte_lock(page
, mm
);
769 MULTI_update_va_mapping(mcs
.mc
, (unsigned long)pt
,
770 pfn_pte(pfn
, PAGE_KERNEL_RO
),
771 level
== PT_PGD
? UVMF_TLB_FLUSH
: 0);
774 xen_do_pin(MMUEXT_PIN_L1_TABLE
, pfn
);
776 /* Queue a deferred unlock for when this batch
778 xen_mc_callback(xen_pte_unlock
, ptl
);
785 /* This is called just after a mm has been created, but it has not
786 been used yet. We need to make sure that its pagetable is all
787 read-only, and can be pinned. */
788 static void __xen_pgd_pin(struct mm_struct
*mm
, pgd_t
*pgd
)
790 trace_xen_mmu_pgd_pin(mm
, pgd
);
794 if (__xen_pgd_walk(mm
, pgd
, xen_pin_page
, USER_LIMIT
)) {
795 /* re-enable interrupts for flushing */
805 pgd_t
*user_pgd
= xen_get_user_pgd(pgd
);
807 xen_do_pin(MMUEXT_PIN_L4_TABLE
, PFN_DOWN(__pa(pgd
)));
810 xen_pin_page(mm
, virt_to_page(user_pgd
), PT_PGD
);
811 xen_do_pin(MMUEXT_PIN_L4_TABLE
,
812 PFN_DOWN(__pa(user_pgd
)));
815 #else /* CONFIG_X86_32 */
816 #ifdef CONFIG_X86_PAE
817 /* Need to make sure unshared kernel PMD is pinnable */
818 xen_pin_page(mm
, pgd_page(pgd
[pgd_index(TASK_SIZE
)]),
821 xen_do_pin(MMUEXT_PIN_L3_TABLE
, PFN_DOWN(__pa(pgd
)));
822 #endif /* CONFIG_X86_64 */
826 static void xen_pgd_pin(struct mm_struct
*mm
)
828 __xen_pgd_pin(mm
, mm
->pgd
);
832 * On save, we need to pin all pagetables to make sure they get their
833 * mfns turned into pfns. Search the list for any unpinned pgds and pin
834 * them (unpinned pgds are not currently in use, probably because the
835 * process is under construction or destruction).
837 * Expected to be called in stop_machine() ("equivalent to taking
838 * every spinlock in the system"), so the locking doesn't really
839 * matter all that much.
841 void xen_mm_pin_all(void)
845 spin_lock(&pgd_lock
);
847 list_for_each_entry(page
, &pgd_list
, lru
) {
848 if (!PagePinned(page
)) {
849 __xen_pgd_pin(&init_mm
, (pgd_t
*)page_address(page
));
850 SetPageSavePinned(page
);
854 spin_unlock(&pgd_lock
);
857 static int __init
xen_mark_pinned(struct mm_struct
*mm
, struct page
*page
,
865 * The init_mm pagetable is really pinned as soon as its created, but
866 * that's before we have page structures to store the bits. So do all
867 * the book-keeping now once struct pages for allocated pages are
868 * initialized. This happens only after memblock_free_all() is called.
870 static void __init
xen_after_bootmem(void)
872 static_branch_enable(&xen_struct_pages_ready
);
874 SetPagePinned(virt_to_page(level3_user_vsyscall
));
876 xen_pgd_walk(&init_mm
, xen_mark_pinned
, FIXADDR_TOP
);
879 static int xen_unpin_page(struct mm_struct
*mm
, struct page
*page
,
882 unsigned pgfl
= TestClearPagePinned(page
);
884 if (pgfl
&& !PageHighMem(page
)) {
885 void *pt
= lowmem_page_address(page
);
886 unsigned long pfn
= page_to_pfn(page
);
887 spinlock_t
*ptl
= NULL
;
888 struct multicall_space mcs
;
891 * Do the converse to pin_page. If we're using split
892 * pte locks, we must be holding the lock for while
893 * the pte page is unpinned but still RO to prevent
894 * concurrent updates from seeing it in this
895 * partially-pinned state.
897 if (level
== PT_PTE
) {
898 ptl
= xen_pte_lock(page
, mm
);
901 xen_do_pin(MMUEXT_UNPIN_TABLE
, pfn
);
904 mcs
= __xen_mc_entry(0);
906 MULTI_update_va_mapping(mcs
.mc
, (unsigned long)pt
,
907 pfn_pte(pfn
, PAGE_KERNEL
),
908 level
== PT_PGD
? UVMF_TLB_FLUSH
: 0);
911 /* unlock when batch completed */
912 xen_mc_callback(xen_pte_unlock
, ptl
);
916 return 0; /* never need to flush on unpin */
919 /* Release a pagetables pages back as normal RW */
920 static void __xen_pgd_unpin(struct mm_struct
*mm
, pgd_t
*pgd
)
922 trace_xen_mmu_pgd_unpin(mm
, pgd
);
926 xen_do_pin(MMUEXT_UNPIN_TABLE
, PFN_DOWN(__pa(pgd
)));
930 pgd_t
*user_pgd
= xen_get_user_pgd(pgd
);
933 xen_do_pin(MMUEXT_UNPIN_TABLE
,
934 PFN_DOWN(__pa(user_pgd
)));
935 xen_unpin_page(mm
, virt_to_page(user_pgd
), PT_PGD
);
940 #ifdef CONFIG_X86_PAE
941 /* Need to make sure unshared kernel PMD is unpinned */
942 xen_unpin_page(mm
, pgd_page(pgd
[pgd_index(TASK_SIZE
)]),
946 __xen_pgd_walk(mm
, pgd
, xen_unpin_page
, USER_LIMIT
);
951 static void xen_pgd_unpin(struct mm_struct
*mm
)
953 __xen_pgd_unpin(mm
, mm
->pgd
);
957 * On resume, undo any pinning done at save, so that the rest of the
958 * kernel doesn't see any unexpected pinned pagetables.
960 void xen_mm_unpin_all(void)
964 spin_lock(&pgd_lock
);
966 list_for_each_entry(page
, &pgd_list
, lru
) {
967 if (PageSavePinned(page
)) {
968 BUG_ON(!PagePinned(page
));
969 __xen_pgd_unpin(&init_mm
, (pgd_t
*)page_address(page
));
970 ClearPageSavePinned(page
);
974 spin_unlock(&pgd_lock
);
977 static void xen_activate_mm(struct mm_struct
*prev
, struct mm_struct
*next
)
979 spin_lock(&next
->page_table_lock
);
981 spin_unlock(&next
->page_table_lock
);
984 static void xen_dup_mmap(struct mm_struct
*oldmm
, struct mm_struct
*mm
)
986 spin_lock(&mm
->page_table_lock
);
988 spin_unlock(&mm
->page_table_lock
);
991 static void drop_mm_ref_this_cpu(void *info
)
993 struct mm_struct
*mm
= info
;
995 if (this_cpu_read(cpu_tlbstate
.loaded_mm
) == mm
)
996 leave_mm(smp_processor_id());
999 * If this cpu still has a stale cr3 reference, then make sure
1000 * it has been flushed.
1002 if (this_cpu_read(xen_current_cr3
) == __pa(mm
->pgd
))
1008 * Another cpu may still have their %cr3 pointing at the pagetable, so
1009 * we need to repoint it somewhere else before we can unpin it.
1011 static void xen_drop_mm_ref(struct mm_struct
*mm
)
1016 drop_mm_ref_this_cpu(mm
);
1018 /* Get the "official" set of cpus referring to our pagetable. */
1019 if (!alloc_cpumask_var(&mask
, GFP_ATOMIC
)) {
1020 for_each_online_cpu(cpu
) {
1021 if (per_cpu(xen_current_cr3
, cpu
) != __pa(mm
->pgd
))
1023 smp_call_function_single(cpu
, drop_mm_ref_this_cpu
, mm
, 1);
1029 * It's possible that a vcpu may have a stale reference to our
1030 * cr3, because its in lazy mode, and it hasn't yet flushed
1031 * its set of pending hypercalls yet. In this case, we can
1032 * look at its actual current cr3 value, and force it to flush
1035 cpumask_clear(mask
);
1036 for_each_online_cpu(cpu
) {
1037 if (per_cpu(xen_current_cr3
, cpu
) == __pa(mm
->pgd
))
1038 cpumask_set_cpu(cpu
, mask
);
1041 smp_call_function_many(mask
, drop_mm_ref_this_cpu
, mm
, 1);
1042 free_cpumask_var(mask
);
1045 static void xen_drop_mm_ref(struct mm_struct
*mm
)
1047 drop_mm_ref_this_cpu(mm
);
1052 * While a process runs, Xen pins its pagetables, which means that the
1053 * hypervisor forces it to be read-only, and it controls all updates
1054 * to it. This means that all pagetable updates have to go via the
1055 * hypervisor, which is moderately expensive.
1057 * Since we're pulling the pagetable down, we switch to use init_mm,
1058 * unpin old process pagetable and mark it all read-write, which
1059 * allows further operations on it to be simple memory accesses.
1061 * The only subtle point is that another CPU may be still using the
1062 * pagetable because of lazy tlb flushing. This means we need need to
1063 * switch all CPUs off this pagetable before we can unpin it.
1065 static void xen_exit_mmap(struct mm_struct
*mm
)
1067 get_cpu(); /* make sure we don't move around */
1068 xen_drop_mm_ref(mm
);
1071 spin_lock(&mm
->page_table_lock
);
1073 /* pgd may not be pinned in the error exit path of execve */
1074 if (xen_page_pinned(mm
->pgd
))
1077 spin_unlock(&mm
->page_table_lock
);
1080 static void xen_post_allocator_init(void);
1082 static void __init
pin_pagetable_pfn(unsigned cmd
, unsigned long pfn
)
1084 struct mmuext_op op
;
1087 op
.arg1
.mfn
= pfn_to_mfn(pfn
);
1088 if (HYPERVISOR_mmuext_op(&op
, 1, NULL
, DOMID_SELF
))
1092 #ifdef CONFIG_X86_64
1093 static void __init
xen_cleanhighmap(unsigned long vaddr
,
1094 unsigned long vaddr_end
)
1096 unsigned long kernel_end
= roundup((unsigned long)_brk_end
, PMD_SIZE
) - 1;
1097 pmd_t
*pmd
= level2_kernel_pgt
+ pmd_index(vaddr
);
1099 /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1100 * We include the PMD passed in on _both_ boundaries. */
1101 for (; vaddr
<= vaddr_end
&& (pmd
< (level2_kernel_pgt
+ PTRS_PER_PMD
));
1102 pmd
++, vaddr
+= PMD_SIZE
) {
1105 if (vaddr
< (unsigned long) _text
|| vaddr
> kernel_end
)
1106 set_pmd(pmd
, __pmd(0));
1108 /* In case we did something silly, we should crash in this function
1109 * instead of somewhere later and be confusing. */
1114 * Make a page range writeable and free it.
1116 static void __init
xen_free_ro_pages(unsigned long paddr
, unsigned long size
)
1118 void *vaddr
= __va(paddr
);
1119 void *vaddr_end
= vaddr
+ size
;
1121 for (; vaddr
< vaddr_end
; vaddr
+= PAGE_SIZE
)
1122 make_lowmem_page_readwrite(vaddr
);
1124 memblock_free(paddr
, size
);
1127 static void __init
xen_cleanmfnmap_free_pgtbl(void *pgtbl
, bool unpin
)
1129 unsigned long pa
= __pa(pgtbl
) & PHYSICAL_PAGE_MASK
;
1132 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, PFN_DOWN(pa
));
1133 ClearPagePinned(virt_to_page(__va(pa
)));
1134 xen_free_ro_pages(pa
, PAGE_SIZE
);
1137 static void __init
xen_cleanmfnmap_pmd(pmd_t
*pmd
, bool unpin
)
1143 if (pmd_large(*pmd
)) {
1144 pa
= pmd_val(*pmd
) & PHYSICAL_PAGE_MASK
;
1145 xen_free_ro_pages(pa
, PMD_SIZE
);
1149 pte_tbl
= pte_offset_kernel(pmd
, 0);
1150 for (i
= 0; i
< PTRS_PER_PTE
; i
++) {
1151 if (pte_none(pte_tbl
[i
]))
1153 pa
= pte_pfn(pte_tbl
[i
]) << PAGE_SHIFT
;
1154 xen_free_ro_pages(pa
, PAGE_SIZE
);
1156 set_pmd(pmd
, __pmd(0));
1157 xen_cleanmfnmap_free_pgtbl(pte_tbl
, unpin
);
1160 static void __init
xen_cleanmfnmap_pud(pud_t
*pud
, bool unpin
)
1166 if (pud_large(*pud
)) {
1167 pa
= pud_val(*pud
) & PHYSICAL_PAGE_MASK
;
1168 xen_free_ro_pages(pa
, PUD_SIZE
);
1172 pmd_tbl
= pmd_offset(pud
, 0);
1173 for (i
= 0; i
< PTRS_PER_PMD
; i
++) {
1174 if (pmd_none(pmd_tbl
[i
]))
1176 xen_cleanmfnmap_pmd(pmd_tbl
+ i
, unpin
);
1178 set_pud(pud
, __pud(0));
1179 xen_cleanmfnmap_free_pgtbl(pmd_tbl
, unpin
);
1182 static void __init
xen_cleanmfnmap_p4d(p4d_t
*p4d
, bool unpin
)
1188 if (p4d_large(*p4d
)) {
1189 pa
= p4d_val(*p4d
) & PHYSICAL_PAGE_MASK
;
1190 xen_free_ro_pages(pa
, P4D_SIZE
);
1194 pud_tbl
= pud_offset(p4d
, 0);
1195 for (i
= 0; i
< PTRS_PER_PUD
; i
++) {
1196 if (pud_none(pud_tbl
[i
]))
1198 xen_cleanmfnmap_pud(pud_tbl
+ i
, unpin
);
1200 set_p4d(p4d
, __p4d(0));
1201 xen_cleanmfnmap_free_pgtbl(pud_tbl
, unpin
);
1205 * Since it is well isolated we can (and since it is perhaps large we should)
1206 * also free the page tables mapping the initial P->M table.
1208 static void __init
xen_cleanmfnmap(unsigned long vaddr
)
1214 unpin
= (vaddr
== 2 * PGDIR_SIZE
);
1216 pgd
= pgd_offset_k(vaddr
);
1217 p4d
= p4d_offset(pgd
, 0);
1218 if (!p4d_none(*p4d
))
1219 xen_cleanmfnmap_p4d(p4d
, unpin
);
1222 static void __init
xen_pagetable_p2m_free(void)
1227 size
= PAGE_ALIGN(xen_start_info
->nr_pages
* sizeof(unsigned long));
1229 /* No memory or already called. */
1230 if ((unsigned long)xen_p2m_addr
== xen_start_info
->mfn_list
)
1233 /* using __ka address and sticking INVALID_P2M_ENTRY! */
1234 memset((void *)xen_start_info
->mfn_list
, 0xff, size
);
1236 addr
= xen_start_info
->mfn_list
;
1238 * We could be in __ka space.
1239 * We roundup to the PMD, which means that if anybody at this stage is
1240 * using the __ka address of xen_start_info or
1241 * xen_start_info->shared_info they are in going to crash. Fortunatly
1242 * we have already revectored in xen_setup_kernel_pagetable.
1244 size
= roundup(size
, PMD_SIZE
);
1246 if (addr
>= __START_KERNEL_map
) {
1247 xen_cleanhighmap(addr
, addr
+ size
);
1248 size
= PAGE_ALIGN(xen_start_info
->nr_pages
*
1249 sizeof(unsigned long));
1250 memblock_free(__pa(addr
), size
);
1252 xen_cleanmfnmap(addr
);
1256 static void __init
xen_pagetable_cleanhighmap(void)
1261 /* At this stage, cleanup_highmap has already cleaned __ka space
1262 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1263 * the ramdisk). We continue on, erasing PMD entries that point to page
1264 * tables - do note that they are accessible at this stage via __va.
1265 * As Xen is aligning the memory end to a 4MB boundary, for good
1266 * measure we also round up to PMD_SIZE * 2 - which means that if
1267 * anybody is using __ka address to the initial boot-stack - and try
1268 * to use it - they are going to crash. The xen_start_info has been
1269 * taken care of already in xen_setup_kernel_pagetable. */
1270 addr
= xen_start_info
->pt_base
;
1271 size
= xen_start_info
->nr_pt_frames
* PAGE_SIZE
;
1273 xen_cleanhighmap(addr
, roundup(addr
+ size
, PMD_SIZE
* 2));
1274 xen_start_info
->pt_base
= (unsigned long)__va(__pa(xen_start_info
->pt_base
));
1278 static void __init
xen_pagetable_p2m_setup(void)
1280 xen_vmalloc_p2m_tree();
1282 #ifdef CONFIG_X86_64
1283 xen_pagetable_p2m_free();
1285 xen_pagetable_cleanhighmap();
1287 /* And revector! Bye bye old array */
1288 xen_start_info
->mfn_list
= (unsigned long)xen_p2m_addr
;
1291 static void __init
xen_pagetable_init(void)
1294 xen_post_allocator_init();
1296 xen_pagetable_p2m_setup();
1298 /* Allocate and initialize top and mid mfn levels for p2m structure */
1299 xen_build_mfn_list_list();
1301 /* Remap memory freed due to conflicts with E820 map */
1303 xen_setup_mfn_list_list();
1305 static void xen_write_cr2(unsigned long cr2
)
1307 this_cpu_read(xen_vcpu
)->arch
.cr2
= cr2
;
1310 static noinline
void xen_flush_tlb(void)
1312 struct mmuext_op
*op
;
1313 struct multicall_space mcs
;
1317 mcs
= xen_mc_entry(sizeof(*op
));
1320 op
->cmd
= MMUEXT_TLB_FLUSH_LOCAL
;
1321 MULTI_mmuext_op(mcs
.mc
, op
, 1, NULL
, DOMID_SELF
);
1323 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1328 static void xen_flush_tlb_one_user(unsigned long addr
)
1330 struct mmuext_op
*op
;
1331 struct multicall_space mcs
;
1333 trace_xen_mmu_flush_tlb_one_user(addr
);
1337 mcs
= xen_mc_entry(sizeof(*op
));
1339 op
->cmd
= MMUEXT_INVLPG_LOCAL
;
1340 op
->arg1
.linear_addr
= addr
& PAGE_MASK
;
1341 MULTI_mmuext_op(mcs
.mc
, op
, 1, NULL
, DOMID_SELF
);
1343 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1348 static void xen_flush_tlb_others(const struct cpumask
*cpus
,
1349 const struct flush_tlb_info
*info
)
1352 struct mmuext_op op
;
1353 DECLARE_BITMAP(mask
, NR_CPUS
);
1355 struct multicall_space mcs
;
1356 const size_t mc_entry_size
= sizeof(args
->op
) +
1357 sizeof(args
->mask
[0]) * BITS_TO_LONGS(num_possible_cpus());
1359 trace_xen_mmu_flush_tlb_others(cpus
, info
->mm
, info
->start
, info
->end
);
1361 if (cpumask_empty(cpus
))
1362 return; /* nothing to do */
1364 mcs
= xen_mc_entry(mc_entry_size
);
1366 args
->op
.arg2
.vcpumask
= to_cpumask(args
->mask
);
1368 /* Remove us, and any offline CPUS. */
1369 cpumask_and(to_cpumask(args
->mask
), cpus
, cpu_online_mask
);
1370 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args
->mask
));
1372 args
->op
.cmd
= MMUEXT_TLB_FLUSH_MULTI
;
1373 if (info
->end
!= TLB_FLUSH_ALL
&&
1374 (info
->end
- info
->start
) <= PAGE_SIZE
) {
1375 args
->op
.cmd
= MMUEXT_INVLPG_MULTI
;
1376 args
->op
.arg1
.linear_addr
= info
->start
;
1379 MULTI_mmuext_op(mcs
.mc
, &args
->op
, 1, NULL
, DOMID_SELF
);
1381 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1384 static unsigned long xen_read_cr3(void)
1386 return this_cpu_read(xen_cr3
);
1389 static void set_current_cr3(void *v
)
1391 this_cpu_write(xen_current_cr3
, (unsigned long)v
);
1394 static void __xen_write_cr3(bool kernel
, unsigned long cr3
)
1396 struct mmuext_op op
;
1399 trace_xen_mmu_write_cr3(kernel
, cr3
);
1402 mfn
= pfn_to_mfn(PFN_DOWN(cr3
));
1406 WARN_ON(mfn
== 0 && kernel
);
1408 op
.cmd
= kernel
? MMUEXT_NEW_BASEPTR
: MMUEXT_NEW_USER_BASEPTR
;
1411 xen_extend_mmuext_op(&op
);
1414 this_cpu_write(xen_cr3
, cr3
);
1416 /* Update xen_current_cr3 once the batch has actually
1418 xen_mc_callback(set_current_cr3
, (void *)cr3
);
1421 static void xen_write_cr3(unsigned long cr3
)
1423 BUG_ON(preemptible());
1425 xen_mc_batch(); /* disables interrupts */
1427 /* Update while interrupts are disabled, so its atomic with
1429 this_cpu_write(xen_cr3
, cr3
);
1431 __xen_write_cr3(true, cr3
);
1433 #ifdef CONFIG_X86_64
1435 pgd_t
*user_pgd
= xen_get_user_pgd(__va(cr3
));
1437 __xen_write_cr3(false, __pa(user_pgd
));
1439 __xen_write_cr3(false, 0);
1443 xen_mc_issue(PARAVIRT_LAZY_CPU
); /* interrupts restored */
1446 #ifdef CONFIG_X86_64
1448 * At the start of the day - when Xen launches a guest, it has already
1449 * built pagetables for the guest. We diligently look over them
1450 * in xen_setup_kernel_pagetable and graft as appropriate them in the
1451 * init_top_pgt and its friends. Then when we are happy we load
1452 * the new init_top_pgt - and continue on.
1454 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1455 * up the rest of the pagetables. When it has completed it loads the cr3.
1456 * N.B. that baremetal would start at 'start_kernel' (and the early
1457 * #PF handler would create bootstrap pagetables) - so we are running
1458 * with the same assumptions as what to do when write_cr3 is executed
1461 * Since there are no user-page tables at all, we have two variants
1462 * of xen_write_cr3 - the early bootup (this one), and the late one
1463 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1464 * the Linux kernel and user-space are both in ring 3 while the
1465 * hypervisor is in ring 0.
1467 static void __init
xen_write_cr3_init(unsigned long cr3
)
1469 BUG_ON(preemptible());
1471 xen_mc_batch(); /* disables interrupts */
1473 /* Update while interrupts are disabled, so its atomic with
1475 this_cpu_write(xen_cr3
, cr3
);
1477 __xen_write_cr3(true, cr3
);
1479 xen_mc_issue(PARAVIRT_LAZY_CPU
); /* interrupts restored */
1483 static int xen_pgd_alloc(struct mm_struct
*mm
)
1485 pgd_t
*pgd
= mm
->pgd
;
1488 BUG_ON(PagePinned(virt_to_page(pgd
)));
1490 #ifdef CONFIG_X86_64
1492 struct page
*page
= virt_to_page(pgd
);
1495 BUG_ON(page
->private != 0);
1499 user_pgd
= (pgd_t
*)__get_free_page(GFP_KERNEL
| __GFP_ZERO
);
1500 page
->private = (unsigned long)user_pgd
;
1502 if (user_pgd
!= NULL
) {
1503 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1504 user_pgd
[pgd_index(VSYSCALL_ADDR
)] =
1505 __pgd(__pa(level3_user_vsyscall
) | _PAGE_TABLE
);
1510 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd
))));
1516 static void xen_pgd_free(struct mm_struct
*mm
, pgd_t
*pgd
)
1518 #ifdef CONFIG_X86_64
1519 pgd_t
*user_pgd
= xen_get_user_pgd(pgd
);
1522 free_page((unsigned long)user_pgd
);
1527 * Init-time set_pte while constructing initial pagetables, which
1528 * doesn't allow RO page table pages to be remapped RW.
1530 * If there is no MFN for this PFN then this page is initially
1531 * ballooned out so clear the PTE (as in decrease_reservation() in
1532 * drivers/xen/balloon.c).
1534 * Many of these PTE updates are done on unpinned and writable pages
1535 * and doing a hypercall for these is unnecessary and expensive. At
1536 * this point it is not possible to tell if a page is pinned or not,
1537 * so always write the PTE directly and rely on Xen trapping and
1538 * emulating any updates as necessary.
1540 __visible pte_t
xen_make_pte_init(pteval_t pte
)
1542 #ifdef CONFIG_X86_64
1546 * Pages belonging to the initial p2m list mapped outside the default
1547 * address range must be mapped read-only. This region contains the
1548 * page tables for mapping the p2m list, too, and page tables MUST be
1551 pfn
= (pte
& PTE_PFN_MASK
) >> PAGE_SHIFT
;
1552 if (xen_start_info
->mfn_list
< __START_KERNEL_map
&&
1553 pfn
>= xen_start_info
->first_p2m_pfn
&&
1554 pfn
< xen_start_info
->first_p2m_pfn
+ xen_start_info
->nr_p2m_frames
)
1557 pte
= pte_pfn_to_mfn(pte
);
1558 return native_make_pte(pte
);
1560 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init
);
1562 static void __init
xen_set_pte_init(pte_t
*ptep
, pte_t pte
)
1564 #ifdef CONFIG_X86_32
1565 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1566 if (pte_mfn(pte
) != INVALID_P2M_ENTRY
1567 && pte_val_ma(*ptep
) & _PAGE_PRESENT
)
1568 pte
= __pte_ma(((pte_val_ma(*ptep
) & _PAGE_RW
) | ~_PAGE_RW
) &
1571 __xen_set_pte(ptep
, pte
);
1574 /* Early in boot, while setting up the initial pagetable, assume
1575 everything is pinned. */
1576 static void __init
xen_alloc_pte_init(struct mm_struct
*mm
, unsigned long pfn
)
1578 #ifdef CONFIG_FLATMEM
1579 BUG_ON(mem_map
); /* should only be used early */
1581 make_lowmem_page_readonly(__va(PFN_PHYS(pfn
)));
1582 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE
, pfn
);
1585 /* Used for pmd and pud */
1586 static void __init
xen_alloc_pmd_init(struct mm_struct
*mm
, unsigned long pfn
)
1588 #ifdef CONFIG_FLATMEM
1589 BUG_ON(mem_map
); /* should only be used early */
1591 make_lowmem_page_readonly(__va(PFN_PHYS(pfn
)));
1594 /* Early release_pte assumes that all pts are pinned, since there's
1595 only init_mm and anything attached to that is pinned. */
1596 static void __init
xen_release_pte_init(unsigned long pfn
)
1598 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, pfn
);
1599 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn
)));
1602 static void __init
xen_release_pmd_init(unsigned long pfn
)
1604 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn
)));
1607 static inline void __pin_pagetable_pfn(unsigned cmd
, unsigned long pfn
)
1609 struct multicall_space mcs
;
1610 struct mmuext_op
*op
;
1612 mcs
= __xen_mc_entry(sizeof(*op
));
1615 op
->arg1
.mfn
= pfn_to_mfn(pfn
);
1617 MULTI_mmuext_op(mcs
.mc
, mcs
.args
, 1, NULL
, DOMID_SELF
);
1620 static inline void __set_pfn_prot(unsigned long pfn
, pgprot_t prot
)
1622 struct multicall_space mcs
;
1623 unsigned long addr
= (unsigned long)__va(pfn
<< PAGE_SHIFT
);
1625 mcs
= __xen_mc_entry(0);
1626 MULTI_update_va_mapping(mcs
.mc
, (unsigned long)addr
,
1627 pfn_pte(pfn
, prot
), 0);
1630 /* This needs to make sure the new pte page is pinned iff its being
1631 attached to a pinned pagetable. */
1632 static inline void xen_alloc_ptpage(struct mm_struct
*mm
, unsigned long pfn
,
1635 bool pinned
= xen_page_pinned(mm
->pgd
);
1637 trace_xen_mmu_alloc_ptpage(mm
, pfn
, level
, pinned
);
1640 struct page
*page
= pfn_to_page(pfn
);
1642 if (static_branch_likely(&xen_struct_pages_ready
))
1643 SetPagePinned(page
);
1645 if (!PageHighMem(page
)) {
1648 __set_pfn_prot(pfn
, PAGE_KERNEL_RO
);
1650 if (level
== PT_PTE
&& USE_SPLIT_PTE_PTLOCKS
)
1651 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE
, pfn
);
1653 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1655 /* make sure there are no stray mappings of
1657 kmap_flush_unused();
1662 static void xen_alloc_pte(struct mm_struct
*mm
, unsigned long pfn
)
1664 xen_alloc_ptpage(mm
, pfn
, PT_PTE
);
1667 static void xen_alloc_pmd(struct mm_struct
*mm
, unsigned long pfn
)
1669 xen_alloc_ptpage(mm
, pfn
, PT_PMD
);
1672 /* This should never happen until we're OK to use struct page */
1673 static inline void xen_release_ptpage(unsigned long pfn
, unsigned level
)
1675 struct page
*page
= pfn_to_page(pfn
);
1676 bool pinned
= PagePinned(page
);
1678 trace_xen_mmu_release_ptpage(pfn
, level
, pinned
);
1681 if (!PageHighMem(page
)) {
1684 if (level
== PT_PTE
&& USE_SPLIT_PTE_PTLOCKS
)
1685 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, pfn
);
1687 __set_pfn_prot(pfn
, PAGE_KERNEL
);
1689 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1691 ClearPagePinned(page
);
1695 static void xen_release_pte(unsigned long pfn
)
1697 xen_release_ptpage(pfn
, PT_PTE
);
1700 static void xen_release_pmd(unsigned long pfn
)
1702 xen_release_ptpage(pfn
, PT_PMD
);
1705 #ifdef CONFIG_X86_64
1706 static void xen_alloc_pud(struct mm_struct
*mm
, unsigned long pfn
)
1708 xen_alloc_ptpage(mm
, pfn
, PT_PUD
);
1711 static void xen_release_pud(unsigned long pfn
)
1713 xen_release_ptpage(pfn
, PT_PUD
);
1717 void __init
xen_reserve_top(void)
1719 #ifdef CONFIG_X86_32
1720 unsigned long top
= HYPERVISOR_VIRT_START
;
1721 struct xen_platform_parameters pp
;
1723 if (HYPERVISOR_xen_version(XENVER_platform_parameters
, &pp
) == 0)
1724 top
= pp
.virt_start
;
1726 reserve_top_address(-top
);
1727 #endif /* CONFIG_X86_32 */
1731 * Like __va(), but returns address in the kernel mapping (which is
1732 * all we have until the physical memory mapping has been set up.
1734 static void * __init
__ka(phys_addr_t paddr
)
1736 #ifdef CONFIG_X86_64
1737 return (void *)(paddr
+ __START_KERNEL_map
);
1743 /* Convert a machine address to physical address */
1744 static unsigned long __init
m2p(phys_addr_t maddr
)
1748 maddr
&= XEN_PTE_MFN_MASK
;
1749 paddr
= mfn_to_pfn(maddr
>> PAGE_SHIFT
) << PAGE_SHIFT
;
1754 /* Convert a machine address to kernel virtual */
1755 static void * __init
m2v(phys_addr_t maddr
)
1757 return __ka(m2p(maddr
));
1760 /* Set the page permissions on an identity-mapped pages */
1761 static void __init
set_page_prot_flags(void *addr
, pgprot_t prot
,
1762 unsigned long flags
)
1764 unsigned long pfn
= __pa(addr
) >> PAGE_SHIFT
;
1765 pte_t pte
= pfn_pte(pfn
, prot
);
1767 if (HYPERVISOR_update_va_mapping((unsigned long)addr
, pte
, flags
))
1770 static void __init
set_page_prot(void *addr
, pgprot_t prot
)
1772 return set_page_prot_flags(addr
, prot
, UVMF_NONE
);
1774 #ifdef CONFIG_X86_32
1775 static void __init
xen_map_identity_early(pmd_t
*pmd
, unsigned long max_pfn
)
1777 unsigned pmdidx
, pteidx
;
1781 level1_ident_pgt
= extend_brk(sizeof(pte_t
) * LEVEL1_IDENT_ENTRIES
,
1786 for (pmdidx
= 0; pmdidx
< PTRS_PER_PMD
&& pfn
< max_pfn
; pmdidx
++) {
1789 /* Reuse or allocate a page of ptes */
1790 if (pmd_present(pmd
[pmdidx
]))
1791 pte_page
= m2v(pmd
[pmdidx
].pmd
);
1793 /* Check for free pte pages */
1794 if (ident_pte
== LEVEL1_IDENT_ENTRIES
)
1797 pte_page
= &level1_ident_pgt
[ident_pte
];
1798 ident_pte
+= PTRS_PER_PTE
;
1800 pmd
[pmdidx
] = __pmd(__pa(pte_page
) | _PAGE_TABLE
);
1803 /* Install mappings */
1804 for (pteidx
= 0; pteidx
< PTRS_PER_PTE
; pteidx
++, pfn
++) {
1807 if (pfn
> max_pfn_mapped
)
1808 max_pfn_mapped
= pfn
;
1810 if (!pte_none(pte_page
[pteidx
]))
1813 pte
= pfn_pte(pfn
, PAGE_KERNEL_EXEC
);
1814 pte_page
[pteidx
] = pte
;
1818 for (pteidx
= 0; pteidx
< ident_pte
; pteidx
+= PTRS_PER_PTE
)
1819 set_page_prot(&level1_ident_pgt
[pteidx
], PAGE_KERNEL_RO
);
1821 set_page_prot(pmd
, PAGE_KERNEL_RO
);
1824 void __init
xen_setup_machphys_mapping(void)
1826 struct xen_machphys_mapping mapping
;
1828 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping
, &mapping
) == 0) {
1829 machine_to_phys_mapping
= (unsigned long *)mapping
.v_start
;
1830 machine_to_phys_nr
= mapping
.max_mfn
+ 1;
1832 machine_to_phys_nr
= MACH2PHYS_NR_ENTRIES
;
1834 #ifdef CONFIG_X86_32
1835 WARN_ON((machine_to_phys_mapping
+ (machine_to_phys_nr
- 1))
1836 < machine_to_phys_mapping
);
1840 #ifdef CONFIG_X86_64
1841 static void __init
convert_pfn_mfn(void *v
)
1846 /* All levels are converted the same way, so just treat them
1848 for (i
= 0; i
< PTRS_PER_PTE
; i
++)
1849 pte
[i
] = xen_make_pte(pte
[i
].pte
);
1851 static void __init
check_pt_base(unsigned long *pt_base
, unsigned long *pt_end
,
1854 if (*pt_base
== PFN_DOWN(__pa(addr
))) {
1855 set_page_prot_flags((void *)addr
, PAGE_KERNEL
, UVMF_INVLPG
);
1856 clear_page((void *)addr
);
1859 if (*pt_end
== PFN_DOWN(__pa(addr
))) {
1860 set_page_prot_flags((void *)addr
, PAGE_KERNEL
, UVMF_INVLPG
);
1861 clear_page((void *)addr
);
1866 * Set up the initial kernel pagetable.
1868 * We can construct this by grafting the Xen provided pagetable into
1869 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1870 * level2_ident_pgt, and level2_kernel_pgt. This means that only the
1871 * kernel has a physical mapping to start with - but that's enough to
1872 * get __va working. We need to fill in the rest of the physical
1873 * mapping once some sort of allocator has been set up.
1875 void __init
xen_setup_kernel_pagetable(pgd_t
*pgd
, unsigned long max_pfn
)
1879 unsigned long addr
[3];
1880 unsigned long pt_base
, pt_end
;
1883 /* max_pfn_mapped is the last pfn mapped in the initial memory
1884 * mappings. Considering that on Xen after the kernel mappings we
1885 * have the mappings of some pages that don't exist in pfn space, we
1886 * set max_pfn_mapped to the last real pfn mapped. */
1887 if (xen_start_info
->mfn_list
< __START_KERNEL_map
)
1888 max_pfn_mapped
= xen_start_info
->first_p2m_pfn
;
1890 max_pfn_mapped
= PFN_DOWN(__pa(xen_start_info
->mfn_list
));
1892 pt_base
= PFN_DOWN(__pa(xen_start_info
->pt_base
));
1893 pt_end
= pt_base
+ xen_start_info
->nr_pt_frames
;
1895 /* Zap identity mapping */
1896 init_top_pgt
[0] = __pgd(0);
1898 /* Pre-constructed entries are in pfn, so convert to mfn */
1899 /* L4[273] -> level3_ident_pgt */
1900 /* L4[511] -> level3_kernel_pgt */
1901 convert_pfn_mfn(init_top_pgt
);
1903 /* L3_i[0] -> level2_ident_pgt */
1904 convert_pfn_mfn(level3_ident_pgt
);
1905 /* L3_k[510] -> level2_kernel_pgt */
1906 /* L3_k[511] -> level2_fixmap_pgt */
1907 convert_pfn_mfn(level3_kernel_pgt
);
1909 /* L3_k[511][508-FIXMAP_PMD_NUM ... 507] -> level1_fixmap_pgt */
1910 convert_pfn_mfn(level2_fixmap_pgt
);
1912 /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1913 l3
= m2v(pgd
[pgd_index(__START_KERNEL_map
)].pgd
);
1914 l2
= m2v(l3
[pud_index(__START_KERNEL_map
)].pud
);
1916 addr
[0] = (unsigned long)pgd
;
1917 addr
[1] = (unsigned long)l3
;
1918 addr
[2] = (unsigned long)l2
;
1919 /* Graft it onto L4[273][0]. Note that we creating an aliasing problem:
1920 * Both L4[273][0] and L4[511][510] have entries that point to the same
1921 * L2 (PMD) tables. Meaning that if you modify it in __va space
1922 * it will be also modified in the __ka space! (But if you just
1923 * modify the PMD table to point to other PTE's or none, then you
1924 * are OK - which is what cleanup_highmap does) */
1925 copy_page(level2_ident_pgt
, l2
);
1926 /* Graft it onto L4[511][510] */
1927 copy_page(level2_kernel_pgt
, l2
);
1930 * Zap execute permission from the ident map. Due to the sharing of
1931 * L1 entries we need to do this in the L2.
1933 if (__supported_pte_mask
& _PAGE_NX
) {
1934 for (i
= 0; i
< PTRS_PER_PMD
; ++i
) {
1935 if (pmd_none(level2_ident_pgt
[i
]))
1937 level2_ident_pgt
[i
] = pmd_set_flags(level2_ident_pgt
[i
], _PAGE_NX
);
1941 /* Copy the initial P->M table mappings if necessary. */
1942 i
= pgd_index(xen_start_info
->mfn_list
);
1943 if (i
&& i
< pgd_index(__START_KERNEL_map
))
1944 init_top_pgt
[i
] = ((pgd_t
*)xen_start_info
->pt_base
)[i
];
1946 /* Make pagetable pieces RO */
1947 set_page_prot(init_top_pgt
, PAGE_KERNEL_RO
);
1948 set_page_prot(level3_ident_pgt
, PAGE_KERNEL_RO
);
1949 set_page_prot(level3_kernel_pgt
, PAGE_KERNEL_RO
);
1950 set_page_prot(level3_user_vsyscall
, PAGE_KERNEL_RO
);
1951 set_page_prot(level2_ident_pgt
, PAGE_KERNEL_RO
);
1952 set_page_prot(level2_kernel_pgt
, PAGE_KERNEL_RO
);
1953 set_page_prot(level2_fixmap_pgt
, PAGE_KERNEL_RO
);
1955 for (i
= 0; i
< FIXMAP_PMD_NUM
; i
++) {
1956 set_page_prot(level1_fixmap_pgt
+ i
* PTRS_PER_PTE
,
1960 /* Pin down new L4 */
1961 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE
,
1962 PFN_DOWN(__pa_symbol(init_top_pgt
)));
1964 /* Unpin Xen-provided one */
1965 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, PFN_DOWN(__pa(pgd
)));
1968 * At this stage there can be no user pgd, and no page structure to
1969 * attach it to, so make sure we just set kernel pgd.
1972 __xen_write_cr3(true, __pa(init_top_pgt
));
1973 xen_mc_issue(PARAVIRT_LAZY_CPU
);
1975 /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1976 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for
1977 * the initial domain. For guests using the toolstack, they are in:
1978 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1979 * rip out the [L4] (pgd), but for guests we shave off three pages.
1981 for (i
= 0; i
< ARRAY_SIZE(addr
); i
++)
1982 check_pt_base(&pt_base
, &pt_end
, addr
[i
]);
1984 /* Our (by three pages) smaller Xen pagetable that we are using */
1985 xen_pt_base
= PFN_PHYS(pt_base
);
1986 xen_pt_size
= (pt_end
- pt_base
) * PAGE_SIZE
;
1987 memblock_reserve(xen_pt_base
, xen_pt_size
);
1989 /* Revector the xen_start_info */
1990 xen_start_info
= (struct start_info
*)__va(__pa(xen_start_info
));
1994 * Read a value from a physical address.
1996 static unsigned long __init
xen_read_phys_ulong(phys_addr_t addr
)
1998 unsigned long *vaddr
;
2001 vaddr
= early_memremap_ro(addr
, sizeof(val
));
2003 early_memunmap(vaddr
, sizeof(val
));
2008 * Translate a virtual address to a physical one without relying on mapped
2009 * page tables. Don't rely on big pages being aligned in (guest) physical
2012 static phys_addr_t __init
xen_early_virt_to_phys(unsigned long vaddr
)
2021 pgd
= native_make_pgd(xen_read_phys_ulong(pa
+ pgd_index(vaddr
) *
2023 if (!pgd_present(pgd
))
2026 pa
= pgd_val(pgd
) & PTE_PFN_MASK
;
2027 pud
= native_make_pud(xen_read_phys_ulong(pa
+ pud_index(vaddr
) *
2029 if (!pud_present(pud
))
2031 pa
= pud_val(pud
) & PTE_PFN_MASK
;
2033 return pa
+ (vaddr
& ~PUD_MASK
);
2035 pmd
= native_make_pmd(xen_read_phys_ulong(pa
+ pmd_index(vaddr
) *
2037 if (!pmd_present(pmd
))
2039 pa
= pmd_val(pmd
) & PTE_PFN_MASK
;
2041 return pa
+ (vaddr
& ~PMD_MASK
);
2043 pte
= native_make_pte(xen_read_phys_ulong(pa
+ pte_index(vaddr
) *
2045 if (!pte_present(pte
))
2047 pa
= pte_pfn(pte
) << PAGE_SHIFT
;
2049 return pa
| (vaddr
& ~PAGE_MASK
);
2053 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
2056 void __init
xen_relocate_p2m(void)
2058 phys_addr_t size
, new_area
, pt_phys
, pmd_phys
, pud_phys
;
2059 unsigned long p2m_pfn
, p2m_pfn_end
, n_frames
, pfn
, pfn_end
;
2060 int n_pte
, n_pt
, n_pmd
, n_pud
, idx_pte
, idx_pt
, idx_pmd
, idx_pud
;
2065 unsigned long *new_p2m
;
2067 size
= PAGE_ALIGN(xen_start_info
->nr_pages
* sizeof(unsigned long));
2068 n_pte
= roundup(size
, PAGE_SIZE
) >> PAGE_SHIFT
;
2069 n_pt
= roundup(size
, PMD_SIZE
) >> PMD_SHIFT
;
2070 n_pmd
= roundup(size
, PUD_SIZE
) >> PUD_SHIFT
;
2071 n_pud
= roundup(size
, P4D_SIZE
) >> P4D_SHIFT
;
2072 n_frames
= n_pte
+ n_pt
+ n_pmd
+ n_pud
;
2074 new_area
= xen_find_free_area(PFN_PHYS(n_frames
));
2076 xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
2081 * Setup the page tables for addressing the new p2m list.
2082 * We have asked the hypervisor to map the p2m list at the user address
2083 * PUD_SIZE. It may have done so, or it may have used a kernel space
2084 * address depending on the Xen version.
2085 * To avoid any possible virtual address collision, just use
2086 * 2 * PUD_SIZE for the new area.
2088 pud_phys
= new_area
;
2089 pmd_phys
= pud_phys
+ PFN_PHYS(n_pud
);
2090 pt_phys
= pmd_phys
+ PFN_PHYS(n_pmd
);
2091 p2m_pfn
= PFN_DOWN(pt_phys
) + n_pt
;
2093 pgd
= __va(read_cr3_pa());
2094 new_p2m
= (unsigned long *)(2 * PGDIR_SIZE
);
2095 for (idx_pud
= 0; idx_pud
< n_pud
; idx_pud
++) {
2096 pud
= early_memremap(pud_phys
, PAGE_SIZE
);
2098 for (idx_pmd
= 0; idx_pmd
< min(n_pmd
, PTRS_PER_PUD
);
2100 pmd
= early_memremap(pmd_phys
, PAGE_SIZE
);
2102 for (idx_pt
= 0; idx_pt
< min(n_pt
, PTRS_PER_PMD
);
2104 pt
= early_memremap(pt_phys
, PAGE_SIZE
);
2107 idx_pte
< min(n_pte
, PTRS_PER_PTE
);
2109 pt
[idx_pte
] = pfn_pte(p2m_pfn
,
2113 n_pte
-= PTRS_PER_PTE
;
2114 early_memunmap(pt
, PAGE_SIZE
);
2115 make_lowmem_page_readonly(__va(pt_phys
));
2116 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE
,
2118 pmd
[idx_pt
] = __pmd(_PAGE_TABLE
| pt_phys
);
2119 pt_phys
+= PAGE_SIZE
;
2121 n_pt
-= PTRS_PER_PMD
;
2122 early_memunmap(pmd
, PAGE_SIZE
);
2123 make_lowmem_page_readonly(__va(pmd_phys
));
2124 pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE
,
2125 PFN_DOWN(pmd_phys
));
2126 pud
[idx_pmd
] = __pud(_PAGE_TABLE
| pmd_phys
);
2127 pmd_phys
+= PAGE_SIZE
;
2129 n_pmd
-= PTRS_PER_PUD
;
2130 early_memunmap(pud
, PAGE_SIZE
);
2131 make_lowmem_page_readonly(__va(pud_phys
));
2132 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE
, PFN_DOWN(pud_phys
));
2133 set_pgd(pgd
+ 2 + idx_pud
, __pgd(_PAGE_TABLE
| pud_phys
));
2134 pud_phys
+= PAGE_SIZE
;
2137 /* Now copy the old p2m info to the new area. */
2138 memcpy(new_p2m
, xen_p2m_addr
, size
);
2139 xen_p2m_addr
= new_p2m
;
2141 /* Release the old p2m list and set new list info. */
2142 p2m_pfn
= PFN_DOWN(xen_early_virt_to_phys(xen_start_info
->mfn_list
));
2144 p2m_pfn_end
= p2m_pfn
+ PFN_DOWN(size
);
2146 if (xen_start_info
->mfn_list
< __START_KERNEL_map
) {
2147 pfn
= xen_start_info
->first_p2m_pfn
;
2148 pfn_end
= xen_start_info
->first_p2m_pfn
+
2149 xen_start_info
->nr_p2m_frames
;
2150 set_pgd(pgd
+ 1, __pgd(0));
2153 pfn_end
= p2m_pfn_end
;
2156 memblock_free(PFN_PHYS(pfn
), PAGE_SIZE
* (pfn_end
- pfn
));
2157 while (pfn
< pfn_end
) {
2158 if (pfn
== p2m_pfn
) {
2162 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn
)));
2166 xen_start_info
->mfn_list
= (unsigned long)xen_p2m_addr
;
2167 xen_start_info
->first_p2m_pfn
= PFN_DOWN(new_area
);
2168 xen_start_info
->nr_p2m_frames
= n_frames
;
2171 #else /* !CONFIG_X86_64 */
2172 static RESERVE_BRK_ARRAY(pmd_t
, initial_kernel_pmd
, PTRS_PER_PMD
);
2173 static RESERVE_BRK_ARRAY(pmd_t
, swapper_kernel_pmd
, PTRS_PER_PMD
);
2174 RESERVE_BRK(fixup_kernel_pmd
, PAGE_SIZE
);
2175 RESERVE_BRK(fixup_kernel_pte
, PAGE_SIZE
);
2177 static void __init
xen_write_cr3_init(unsigned long cr3
)
2179 unsigned long pfn
= PFN_DOWN(__pa(swapper_pg_dir
));
2181 BUG_ON(read_cr3_pa() != __pa(initial_page_table
));
2182 BUG_ON(cr3
!= __pa(swapper_pg_dir
));
2185 * We are switching to swapper_pg_dir for the first time (from
2186 * initial_page_table) and therefore need to mark that page
2187 * read-only and then pin it.
2189 * Xen disallows sharing of kernel PMDs for PAE
2190 * guests. Therefore we must copy the kernel PMD from
2191 * initial_page_table into a new kernel PMD to be used in
2194 swapper_kernel_pmd
=
2195 extend_brk(sizeof(pmd_t
) * PTRS_PER_PMD
, PAGE_SIZE
);
2196 copy_page(swapper_kernel_pmd
, initial_kernel_pmd
);
2197 swapper_pg_dir
[KERNEL_PGD_BOUNDARY
] =
2198 __pgd(__pa(swapper_kernel_pmd
) | _PAGE_PRESENT
);
2199 set_page_prot(swapper_kernel_pmd
, PAGE_KERNEL_RO
);
2201 set_page_prot(swapper_pg_dir
, PAGE_KERNEL_RO
);
2203 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE
, pfn
);
2205 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
,
2206 PFN_DOWN(__pa(initial_page_table
)));
2207 set_page_prot(initial_page_table
, PAGE_KERNEL
);
2208 set_page_prot(initial_kernel_pmd
, PAGE_KERNEL
);
2210 pv_ops
.mmu
.write_cr3
= &xen_write_cr3
;
2214 * For 32 bit domains xen_start_info->pt_base is the pgd address which might be
2215 * not the first page table in the page table pool.
2216 * Iterate through the initial page tables to find the real page table base.
2218 static phys_addr_t __init
xen_find_pt_base(pmd_t
*pmd
)
2220 phys_addr_t pt_base
, paddr
;
2223 pt_base
= min(__pa(xen_start_info
->pt_base
), __pa(pmd
));
2225 for (pmdidx
= 0; pmdidx
< PTRS_PER_PMD
; pmdidx
++)
2226 if (pmd_present(pmd
[pmdidx
]) && !pmd_large(pmd
[pmdidx
])) {
2227 paddr
= m2p(pmd
[pmdidx
].pmd
);
2228 pt_base
= min(pt_base
, paddr
);
2234 void __init
xen_setup_kernel_pagetable(pgd_t
*pgd
, unsigned long max_pfn
)
2238 kernel_pmd
= m2v(pgd
[KERNEL_PGD_BOUNDARY
].pgd
);
2240 xen_pt_base
= xen_find_pt_base(kernel_pmd
);
2241 xen_pt_size
= xen_start_info
->nr_pt_frames
* PAGE_SIZE
;
2243 initial_kernel_pmd
=
2244 extend_brk(sizeof(pmd_t
) * PTRS_PER_PMD
, PAGE_SIZE
);
2246 max_pfn_mapped
= PFN_DOWN(xen_pt_base
+ xen_pt_size
+ 512 * 1024);
2248 copy_page(initial_kernel_pmd
, kernel_pmd
);
2250 xen_map_identity_early(initial_kernel_pmd
, max_pfn
);
2252 copy_page(initial_page_table
, pgd
);
2253 initial_page_table
[KERNEL_PGD_BOUNDARY
] =
2254 __pgd(__pa(initial_kernel_pmd
) | _PAGE_PRESENT
);
2256 set_page_prot(initial_kernel_pmd
, PAGE_KERNEL_RO
);
2257 set_page_prot(initial_page_table
, PAGE_KERNEL_RO
);
2258 set_page_prot(empty_zero_page
, PAGE_KERNEL_RO
);
2260 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, PFN_DOWN(__pa(pgd
)));
2262 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE
,
2263 PFN_DOWN(__pa(initial_page_table
)));
2264 xen_write_cr3(__pa(initial_page_table
));
2266 memblock_reserve(xen_pt_base
, xen_pt_size
);
2268 #endif /* CONFIG_X86_64 */
2270 void __init
xen_reserve_special_pages(void)
2274 memblock_reserve(__pa(xen_start_info
), PAGE_SIZE
);
2275 if (xen_start_info
->store_mfn
) {
2276 paddr
= PFN_PHYS(mfn_to_pfn(xen_start_info
->store_mfn
));
2277 memblock_reserve(paddr
, PAGE_SIZE
);
2279 if (!xen_initial_domain()) {
2280 paddr
= PFN_PHYS(mfn_to_pfn(xen_start_info
->console
.domU
.mfn
));
2281 memblock_reserve(paddr
, PAGE_SIZE
);
2285 void __init
xen_pt_check_e820(void)
2287 if (xen_is_e820_reserved(xen_pt_base
, xen_pt_size
)) {
2288 xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2293 static unsigned char dummy_mapping
[PAGE_SIZE
] __page_aligned_bss
;
2295 static void xen_set_fixmap(unsigned idx
, phys_addr_t phys
, pgprot_t prot
)
2299 phys
>>= PAGE_SHIFT
;
2302 case FIX_BTMAP_END
... FIX_BTMAP_BEGIN
:
2303 #ifdef CONFIG_X86_32
2305 # ifdef CONFIG_HIGHMEM
2306 case FIX_KMAP_BEGIN
... FIX_KMAP_END
:
2308 #elif defined(CONFIG_X86_VSYSCALL_EMULATION)
2311 /* All local page mappings */
2312 pte
= pfn_pte(phys
, prot
);
2315 #ifdef CONFIG_X86_LOCAL_APIC
2316 case FIX_APIC_BASE
: /* maps dummy local APIC */
2317 pte
= pfn_pte(PFN_DOWN(__pa(dummy_mapping
)), PAGE_KERNEL
);
2321 #ifdef CONFIG_X86_IO_APIC
2322 case FIX_IO_APIC_BASE_0
... FIX_IO_APIC_BASE_END
:
2324 * We just don't map the IO APIC - all access is via
2325 * hypercalls. Keep the address in the pte for reference.
2327 pte
= pfn_pte(PFN_DOWN(__pa(dummy_mapping
)), PAGE_KERNEL
);
2331 case FIX_PARAVIRT_BOOTMAP
:
2332 /* This is an MFN, but it isn't an IO mapping from the
2334 pte
= mfn_pte(phys
, prot
);
2338 /* By default, set_fixmap is used for hardware mappings */
2339 pte
= mfn_pte(phys
, prot
);
2343 __native_set_fixmap(idx
, pte
);
2345 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2346 /* Replicate changes to map the vsyscall page into the user
2347 pagetable vsyscall mapping. */
2348 if (idx
== VSYSCALL_PAGE
) {
2349 unsigned long vaddr
= __fix_to_virt(idx
);
2350 set_pte_vaddr_pud(level3_user_vsyscall
, vaddr
, pte
);
2355 static void __init
xen_post_allocator_init(void)
2357 pv_ops
.mmu
.set_pte
= xen_set_pte
;
2358 pv_ops
.mmu
.set_pmd
= xen_set_pmd
;
2359 pv_ops
.mmu
.set_pud
= xen_set_pud
;
2360 #ifdef CONFIG_X86_64
2361 pv_ops
.mmu
.set_p4d
= xen_set_p4d
;
2364 /* This will work as long as patching hasn't happened yet
2365 (which it hasn't) */
2366 pv_ops
.mmu
.alloc_pte
= xen_alloc_pte
;
2367 pv_ops
.mmu
.alloc_pmd
= xen_alloc_pmd
;
2368 pv_ops
.mmu
.release_pte
= xen_release_pte
;
2369 pv_ops
.mmu
.release_pmd
= xen_release_pmd
;
2370 #ifdef CONFIG_X86_64
2371 pv_ops
.mmu
.alloc_pud
= xen_alloc_pud
;
2372 pv_ops
.mmu
.release_pud
= xen_release_pud
;
2374 pv_ops
.mmu
.make_pte
= PV_CALLEE_SAVE(xen_make_pte
);
2376 #ifdef CONFIG_X86_64
2377 pv_ops
.mmu
.write_cr3
= &xen_write_cr3
;
2381 static void xen_leave_lazy_mmu(void)
2385 paravirt_leave_lazy_mmu();
2389 static const struct pv_mmu_ops xen_mmu_ops __initconst
= {
2390 .read_cr2
= __PV_IS_CALLEE_SAVE(xen_read_cr2
),
2391 .write_cr2
= xen_write_cr2
,
2393 .read_cr3
= xen_read_cr3
,
2394 .write_cr3
= xen_write_cr3_init
,
2396 .flush_tlb_user
= xen_flush_tlb
,
2397 .flush_tlb_kernel
= xen_flush_tlb
,
2398 .flush_tlb_one_user
= xen_flush_tlb_one_user
,
2399 .flush_tlb_others
= xen_flush_tlb_others
,
2400 .tlb_remove_table
= tlb_remove_table
,
2402 .pgd_alloc
= xen_pgd_alloc
,
2403 .pgd_free
= xen_pgd_free
,
2405 .alloc_pte
= xen_alloc_pte_init
,
2406 .release_pte
= xen_release_pte_init
,
2407 .alloc_pmd
= xen_alloc_pmd_init
,
2408 .release_pmd
= xen_release_pmd_init
,
2410 .set_pte
= xen_set_pte_init
,
2411 .set_pte_at
= xen_set_pte_at
,
2412 .set_pmd
= xen_set_pmd_hyper
,
2414 .ptep_modify_prot_start
= __ptep_modify_prot_start
,
2415 .ptep_modify_prot_commit
= __ptep_modify_prot_commit
,
2417 .pte_val
= PV_CALLEE_SAVE(xen_pte_val
),
2418 .pgd_val
= PV_CALLEE_SAVE(xen_pgd_val
),
2420 .make_pte
= PV_CALLEE_SAVE(xen_make_pte_init
),
2421 .make_pgd
= PV_CALLEE_SAVE(xen_make_pgd
),
2423 #ifdef CONFIG_X86_PAE
2424 .set_pte_atomic
= xen_set_pte_atomic
,
2425 .pte_clear
= xen_pte_clear
,
2426 .pmd_clear
= xen_pmd_clear
,
2427 #endif /* CONFIG_X86_PAE */
2428 .set_pud
= xen_set_pud_hyper
,
2430 .make_pmd
= PV_CALLEE_SAVE(xen_make_pmd
),
2431 .pmd_val
= PV_CALLEE_SAVE(xen_pmd_val
),
2433 #ifdef CONFIG_X86_64
2434 .pud_val
= PV_CALLEE_SAVE(xen_pud_val
),
2435 .make_pud
= PV_CALLEE_SAVE(xen_make_pud
),
2436 .set_p4d
= xen_set_p4d_hyper
,
2438 .alloc_pud
= xen_alloc_pmd_init
,
2439 .release_pud
= xen_release_pmd_init
,
2441 #if CONFIG_PGTABLE_LEVELS >= 5
2442 .p4d_val
= PV_CALLEE_SAVE(xen_p4d_val
),
2443 .make_p4d
= PV_CALLEE_SAVE(xen_make_p4d
),
2445 #endif /* CONFIG_X86_64 */
2447 .activate_mm
= xen_activate_mm
,
2448 .dup_mmap
= xen_dup_mmap
,
2449 .exit_mmap
= xen_exit_mmap
,
2452 .enter
= paravirt_enter_lazy_mmu
,
2453 .leave
= xen_leave_lazy_mmu
,
2454 .flush
= paravirt_flush_lazy_mmu
,
2457 .set_fixmap
= xen_set_fixmap
,
2460 void __init
xen_init_mmu_ops(void)
2462 x86_init
.paging
.pagetable_init
= xen_pagetable_init
;
2463 x86_init
.hyper
.init_after_bootmem
= xen_after_bootmem
;
2465 pv_ops
.mmu
= xen_mmu_ops
;
2467 memset(dummy_mapping
, 0xff, PAGE_SIZE
);
2470 /* Protected by xen_reservation_lock. */
2471 #define MAX_CONTIG_ORDER 9 /* 2MB */
2472 static unsigned long discontig_frames
[1<<MAX_CONTIG_ORDER
];
2474 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2475 static void xen_zap_pfn_range(unsigned long vaddr
, unsigned int order
,
2476 unsigned long *in_frames
,
2477 unsigned long *out_frames
)
2480 struct multicall_space mcs
;
2483 for (i
= 0; i
< (1UL<<order
); i
++, vaddr
+= PAGE_SIZE
) {
2484 mcs
= __xen_mc_entry(0);
2487 in_frames
[i
] = virt_to_mfn(vaddr
);
2489 MULTI_update_va_mapping(mcs
.mc
, vaddr
, VOID_PTE
, 0);
2490 __set_phys_to_machine(virt_to_pfn(vaddr
), INVALID_P2M_ENTRY
);
2493 out_frames
[i
] = virt_to_pfn(vaddr
);
2499 * Update the pfn-to-mfn mappings for a virtual address range, either to
2500 * point to an array of mfns, or contiguously from a single starting
2503 static void xen_remap_exchanged_ptes(unsigned long vaddr
, int order
,
2504 unsigned long *mfns
,
2505 unsigned long first_mfn
)
2512 limit
= 1u << order
;
2513 for (i
= 0; i
< limit
; i
++, vaddr
+= PAGE_SIZE
) {
2514 struct multicall_space mcs
;
2517 mcs
= __xen_mc_entry(0);
2521 mfn
= first_mfn
+ i
;
2523 if (i
< (limit
- 1))
2527 flags
= UVMF_INVLPG
| UVMF_ALL
;
2529 flags
= UVMF_TLB_FLUSH
| UVMF_ALL
;
2532 MULTI_update_va_mapping(mcs
.mc
, vaddr
,
2533 mfn_pte(mfn
, PAGE_KERNEL
), flags
);
2535 set_phys_to_machine(virt_to_pfn(vaddr
), mfn
);
2542 * Perform the hypercall to exchange a region of our pfns to point to
2543 * memory with the required contiguous alignment. Takes the pfns as
2544 * input, and populates mfns as output.
2546 * Returns a success code indicating whether the hypervisor was able to
2547 * satisfy the request or not.
2549 static int xen_exchange_memory(unsigned long extents_in
, unsigned int order_in
,
2550 unsigned long *pfns_in
,
2551 unsigned long extents_out
,
2552 unsigned int order_out
,
2553 unsigned long *mfns_out
,
2554 unsigned int address_bits
)
2559 struct xen_memory_exchange exchange
= {
2561 .nr_extents
= extents_in
,
2562 .extent_order
= order_in
,
2563 .extent_start
= pfns_in
,
2567 .nr_extents
= extents_out
,
2568 .extent_order
= order_out
,
2569 .extent_start
= mfns_out
,
2570 .address_bits
= address_bits
,
2575 BUG_ON(extents_in
<< order_in
!= extents_out
<< order_out
);
2577 rc
= HYPERVISOR_memory_op(XENMEM_exchange
, &exchange
);
2578 success
= (exchange
.nr_exchanged
== extents_in
);
2580 BUG_ON(!success
&& ((exchange
.nr_exchanged
!= 0) || (rc
== 0)));
2581 BUG_ON(success
&& (rc
!= 0));
2586 int xen_create_contiguous_region(phys_addr_t pstart
, unsigned int order
,
2587 unsigned int address_bits
,
2588 dma_addr_t
*dma_handle
)
2590 unsigned long *in_frames
= discontig_frames
, out_frame
;
2591 unsigned long flags
;
2593 unsigned long vstart
= (unsigned long)phys_to_virt(pstart
);
2596 * Currently an auto-translated guest will not perform I/O, nor will
2597 * it require PAE page directories below 4GB. Therefore any calls to
2598 * this function are redundant and can be ignored.
2601 if (unlikely(order
> MAX_CONTIG_ORDER
))
2604 memset((void *) vstart
, 0, PAGE_SIZE
<< order
);
2606 spin_lock_irqsave(&xen_reservation_lock
, flags
);
2608 /* 1. Zap current PTEs, remembering MFNs. */
2609 xen_zap_pfn_range(vstart
, order
, in_frames
, NULL
);
2611 /* 2. Get a new contiguous memory extent. */
2612 out_frame
= virt_to_pfn(vstart
);
2613 success
= xen_exchange_memory(1UL << order
, 0, in_frames
,
2614 1, order
, &out_frame
,
2617 /* 3. Map the new extent in place of old pages. */
2619 xen_remap_exchanged_ptes(vstart
, order
, NULL
, out_frame
);
2621 xen_remap_exchanged_ptes(vstart
, order
, in_frames
, 0);
2623 spin_unlock_irqrestore(&xen_reservation_lock
, flags
);
2625 *dma_handle
= virt_to_machine(vstart
).maddr
;
2626 return success
? 0 : -ENOMEM
;
2629 void xen_destroy_contiguous_region(phys_addr_t pstart
, unsigned int order
)
2631 unsigned long *out_frames
= discontig_frames
, in_frame
;
2632 unsigned long flags
;
2634 unsigned long vstart
;
2636 if (unlikely(order
> MAX_CONTIG_ORDER
))
2639 vstart
= (unsigned long)phys_to_virt(pstart
);
2640 memset((void *) vstart
, 0, PAGE_SIZE
<< order
);
2642 spin_lock_irqsave(&xen_reservation_lock
, flags
);
2644 /* 1. Find start MFN of contiguous extent. */
2645 in_frame
= virt_to_mfn(vstart
);
2647 /* 2. Zap current PTEs. */
2648 xen_zap_pfn_range(vstart
, order
, NULL
, out_frames
);
2650 /* 3. Do the exchange for non-contiguous MFNs. */
2651 success
= xen_exchange_memory(1, order
, &in_frame
, 1UL << order
,
2654 /* 4. Map new pages in place of old pages. */
2656 xen_remap_exchanged_ptes(vstart
, order
, out_frames
, 0);
2658 xen_remap_exchanged_ptes(vstart
, order
, NULL
, in_frame
);
2660 spin_unlock_irqrestore(&xen_reservation_lock
, flags
);
2663 static noinline
void xen_flush_tlb_all(void)
2665 struct mmuext_op
*op
;
2666 struct multicall_space mcs
;
2670 mcs
= xen_mc_entry(sizeof(*op
));
2673 op
->cmd
= MMUEXT_TLB_FLUSH_ALL
;
2674 MULTI_mmuext_op(mcs
.mc
, op
, 1, NULL
, DOMID_SELF
);
2676 xen_mc_issue(PARAVIRT_LAZY_MMU
);
2681 #define REMAP_BATCH_SIZE 16
2688 struct mmu_update
*mmu_update
;
2691 static int remap_area_pfn_pte_fn(pte_t
*ptep
, unsigned long addr
, void *data
)
2693 struct remap_data
*rmd
= data
;
2694 pte_t pte
= pte_mkspecial(mfn_pte(*rmd
->pfn
, rmd
->prot
));
2697 * If we have a contiguous range, just update the pfn itself,
2698 * else update pointer to be "next pfn".
2700 if (rmd
->contiguous
)
2705 rmd
->mmu_update
->ptr
= virt_to_machine(ptep
).maddr
;
2706 rmd
->mmu_update
->ptr
|= rmd
->no_translate
?
2707 MMU_PT_UPDATE_NO_TRANSLATE
:
2708 MMU_NORMAL_PT_UPDATE
;
2709 rmd
->mmu_update
->val
= pte_val_ma(pte
);
2715 int xen_remap_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
2716 xen_pfn_t
*pfn
, int nr
, int *err_ptr
, pgprot_t prot
,
2717 unsigned int domid
, bool no_translate
, struct page
**pages
)
2720 struct remap_data rmd
;
2721 struct mmu_update mmu_update
[REMAP_BATCH_SIZE
];
2722 unsigned long range
;
2725 BUG_ON(!((vma
->vm_flags
& (VM_PFNMAP
| VM_IO
)) == (VM_PFNMAP
| VM_IO
)));
2730 * We use the err_ptr to indicate if there we are doing a contiguous
2731 * mapping or a discontigious mapping.
2733 rmd
.contiguous
= !err_ptr
;
2734 rmd
.no_translate
= no_translate
;
2739 int batch
= min(REMAP_BATCH_SIZE
, nr
);
2740 int batch_left
= batch
;
2742 range
= (unsigned long)batch
<< PAGE_SHIFT
;
2744 rmd
.mmu_update
= mmu_update
;
2745 err
= apply_to_page_range(vma
->vm_mm
, addr
, range
,
2746 remap_area_pfn_pte_fn
, &rmd
);
2751 * We record the error for each page that gives an error, but
2752 * continue mapping until the whole set is done
2757 err
= HYPERVISOR_mmu_update(&mmu_update
[index
],
2758 batch_left
, &done
, domid
);
2761 * @err_ptr may be the same buffer as @gfn, so
2762 * only clear it after each chunk of @gfn is
2766 for (i
= index
; i
< index
+ done
; i
++)
2773 done
++; /* Skip failed frame. */
2778 } while (batch_left
);
2788 xen_flush_tlb_all();
2790 return err
< 0 ? err
: mapped
;
2792 EXPORT_SYMBOL_GPL(xen_remap_pfn
);
2794 #ifdef CONFIG_KEXEC_CORE
2795 phys_addr_t
paddr_vmcoreinfo_note(void)
2797 if (xen_pv_domain())
2798 return virt_to_machine(vmcoreinfo_note
).maddr
;
2800 return __pa(vmcoreinfo_note
);
2802 #endif /* CONFIG_KEXEC_CORE */