ARM: dma-api: fix max_pfn off-by-one error in __dma_supported()
[linux/fpc-iii.git] / mm / compaction.c
blob672d3c78c6abfcfa152b95113701982fac8221e2
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/compaction.c
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
31 count_vm_event(item);
34 static inline void count_compact_events(enum vm_event_item item, long delta)
36 count_vm_events(item, delta);
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
48 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
53 static unsigned long release_freepages(struct list_head *freelist)
55 struct page *page, *next;
56 unsigned long high_pfn = 0;
58 list_for_each_entry_safe(page, next, freelist, lru) {
59 unsigned long pfn = page_to_pfn(page);
60 list_del(&page->lru);
61 __free_page(page);
62 if (pfn > high_pfn)
63 high_pfn = pfn;
66 return high_pfn;
69 static void split_map_pages(struct list_head *list)
71 unsigned int i, order, nr_pages;
72 struct page *page, *next;
73 LIST_HEAD(tmp_list);
75 list_for_each_entry_safe(page, next, list, lru) {
76 list_del(&page->lru);
78 order = page_private(page);
79 nr_pages = 1 << order;
81 post_alloc_hook(page, order, __GFP_MOVABLE);
82 if (order)
83 split_page(page, order);
85 for (i = 0; i < nr_pages; i++) {
86 list_add(&page->lru, &tmp_list);
87 page++;
91 list_splice(&tmp_list, list);
94 #ifdef CONFIG_COMPACTION
96 int PageMovable(struct page *page)
98 struct address_space *mapping;
100 VM_BUG_ON_PAGE(!PageLocked(page), page);
101 if (!__PageMovable(page))
102 return 0;
104 mapping = page_mapping(page);
105 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
106 return 1;
108 return 0;
110 EXPORT_SYMBOL(PageMovable);
112 void __SetPageMovable(struct page *page, struct address_space *mapping)
114 VM_BUG_ON_PAGE(!PageLocked(page), page);
115 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
116 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
118 EXPORT_SYMBOL(__SetPageMovable);
120 void __ClearPageMovable(struct page *page)
122 VM_BUG_ON_PAGE(!PageLocked(page), page);
123 VM_BUG_ON_PAGE(!PageMovable(page), page);
125 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
126 * flag so that VM can catch up released page by driver after isolation.
127 * With it, VM migration doesn't try to put it back.
129 page->mapping = (void *)((unsigned long)page->mapping &
130 PAGE_MAPPING_MOVABLE);
132 EXPORT_SYMBOL(__ClearPageMovable);
134 /* Do not skip compaction more than 64 times */
135 #define COMPACT_MAX_DEFER_SHIFT 6
138 * Compaction is deferred when compaction fails to result in a page
139 * allocation success. 1 << compact_defer_limit compactions are skipped up
140 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
142 void defer_compaction(struct zone *zone, int order)
144 zone->compact_considered = 0;
145 zone->compact_defer_shift++;
147 if (order < zone->compact_order_failed)
148 zone->compact_order_failed = order;
150 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
151 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
153 trace_mm_compaction_defer_compaction(zone, order);
156 /* Returns true if compaction should be skipped this time */
157 bool compaction_deferred(struct zone *zone, int order)
159 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
161 if (order < zone->compact_order_failed)
162 return false;
164 /* Avoid possible overflow */
165 if (++zone->compact_considered > defer_limit)
166 zone->compact_considered = defer_limit;
168 if (zone->compact_considered >= defer_limit)
169 return false;
171 trace_mm_compaction_deferred(zone, order);
173 return true;
177 * Update defer tracking counters after successful compaction of given order,
178 * which means an allocation either succeeded (alloc_success == true) or is
179 * expected to succeed.
181 void compaction_defer_reset(struct zone *zone, int order,
182 bool alloc_success)
184 if (alloc_success) {
185 zone->compact_considered = 0;
186 zone->compact_defer_shift = 0;
188 if (order >= zone->compact_order_failed)
189 zone->compact_order_failed = order + 1;
191 trace_mm_compaction_defer_reset(zone, order);
194 /* Returns true if restarting compaction after many failures */
195 bool compaction_restarting(struct zone *zone, int order)
197 if (order < zone->compact_order_failed)
198 return false;
200 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
201 zone->compact_considered >= 1UL << zone->compact_defer_shift;
204 /* Returns true if the pageblock should be scanned for pages to isolate. */
205 static inline bool isolation_suitable(struct compact_control *cc,
206 struct page *page)
208 if (cc->ignore_skip_hint)
209 return true;
211 return !get_pageblock_skip(page);
214 static void reset_cached_positions(struct zone *zone)
216 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
217 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
218 zone->compact_cached_free_pfn =
219 pageblock_start_pfn(zone_end_pfn(zone) - 1);
223 * Compound pages of >= pageblock_order should consistenly be skipped until
224 * released. It is always pointless to compact pages of such order (if they are
225 * migratable), and the pageblocks they occupy cannot contain any free pages.
227 static bool pageblock_skip_persistent(struct page *page)
229 if (!PageCompound(page))
230 return false;
232 page = compound_head(page);
234 if (compound_order(page) >= pageblock_order)
235 return true;
237 return false;
240 static bool
241 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
242 bool check_target)
244 struct page *page = pfn_to_online_page(pfn);
245 struct page *block_page;
246 struct page *end_page;
247 unsigned long block_pfn;
249 if (!page)
250 return false;
251 if (zone != page_zone(page))
252 return false;
253 if (pageblock_skip_persistent(page))
254 return false;
257 * If skip is already cleared do no further checking once the
258 * restart points have been set.
260 if (check_source && check_target && !get_pageblock_skip(page))
261 return true;
264 * If clearing skip for the target scanner, do not select a
265 * non-movable pageblock as the starting point.
267 if (!check_source && check_target &&
268 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
269 return false;
271 /* Ensure the start of the pageblock or zone is online and valid */
272 block_pfn = pageblock_start_pfn(pfn);
273 block_pfn = max(block_pfn, zone->zone_start_pfn);
274 block_page = pfn_to_online_page(block_pfn);
275 if (block_page) {
276 page = block_page;
277 pfn = block_pfn;
280 /* Ensure the end of the pageblock or zone is online and valid */
281 block_pfn = pageblock_end_pfn(pfn) - 1;
282 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
283 end_page = pfn_to_online_page(block_pfn);
284 if (!end_page)
285 return false;
288 * Only clear the hint if a sample indicates there is either a
289 * free page or an LRU page in the block. One or other condition
290 * is necessary for the block to be a migration source/target.
292 do {
293 if (pfn_valid_within(pfn)) {
294 if (check_source && PageLRU(page)) {
295 clear_pageblock_skip(page);
296 return true;
299 if (check_target && PageBuddy(page)) {
300 clear_pageblock_skip(page);
301 return true;
305 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
306 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
307 } while (page <= end_page);
309 return false;
313 * This function is called to clear all cached information on pageblocks that
314 * should be skipped for page isolation when the migrate and free page scanner
315 * meet.
317 static void __reset_isolation_suitable(struct zone *zone)
319 unsigned long migrate_pfn = zone->zone_start_pfn;
320 unsigned long free_pfn = zone_end_pfn(zone) - 1;
321 unsigned long reset_migrate = free_pfn;
322 unsigned long reset_free = migrate_pfn;
323 bool source_set = false;
324 bool free_set = false;
326 if (!zone->compact_blockskip_flush)
327 return;
329 zone->compact_blockskip_flush = false;
332 * Walk the zone and update pageblock skip information. Source looks
333 * for PageLRU while target looks for PageBuddy. When the scanner
334 * is found, both PageBuddy and PageLRU are checked as the pageblock
335 * is suitable as both source and target.
337 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
338 free_pfn -= pageblock_nr_pages) {
339 cond_resched();
341 /* Update the migrate PFN */
342 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
343 migrate_pfn < reset_migrate) {
344 source_set = true;
345 reset_migrate = migrate_pfn;
346 zone->compact_init_migrate_pfn = reset_migrate;
347 zone->compact_cached_migrate_pfn[0] = reset_migrate;
348 zone->compact_cached_migrate_pfn[1] = reset_migrate;
351 /* Update the free PFN */
352 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
353 free_pfn > reset_free) {
354 free_set = true;
355 reset_free = free_pfn;
356 zone->compact_init_free_pfn = reset_free;
357 zone->compact_cached_free_pfn = reset_free;
361 /* Leave no distance if no suitable block was reset */
362 if (reset_migrate >= reset_free) {
363 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
364 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
365 zone->compact_cached_free_pfn = free_pfn;
369 void reset_isolation_suitable(pg_data_t *pgdat)
371 int zoneid;
373 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
374 struct zone *zone = &pgdat->node_zones[zoneid];
375 if (!populated_zone(zone))
376 continue;
378 /* Only flush if a full compaction finished recently */
379 if (zone->compact_blockskip_flush)
380 __reset_isolation_suitable(zone);
385 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
386 * locks are not required for read/writers. Returns true if it was already set.
388 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
389 unsigned long pfn)
391 bool skip;
393 /* Do no update if skip hint is being ignored */
394 if (cc->ignore_skip_hint)
395 return false;
397 if (!IS_ALIGNED(pfn, pageblock_nr_pages))
398 return false;
400 skip = get_pageblock_skip(page);
401 if (!skip && !cc->no_set_skip_hint)
402 set_pageblock_skip(page);
404 return skip;
407 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
409 struct zone *zone = cc->zone;
411 pfn = pageblock_end_pfn(pfn);
413 /* Set for isolation rather than compaction */
414 if (cc->no_set_skip_hint)
415 return;
417 if (pfn > zone->compact_cached_migrate_pfn[0])
418 zone->compact_cached_migrate_pfn[0] = pfn;
419 if (cc->mode != MIGRATE_ASYNC &&
420 pfn > zone->compact_cached_migrate_pfn[1])
421 zone->compact_cached_migrate_pfn[1] = pfn;
425 * If no pages were isolated then mark this pageblock to be skipped in the
426 * future. The information is later cleared by __reset_isolation_suitable().
428 static void update_pageblock_skip(struct compact_control *cc,
429 struct page *page, unsigned long pfn)
431 struct zone *zone = cc->zone;
433 if (cc->no_set_skip_hint)
434 return;
436 if (!page)
437 return;
439 set_pageblock_skip(page);
441 /* Update where async and sync compaction should restart */
442 if (pfn < zone->compact_cached_free_pfn)
443 zone->compact_cached_free_pfn = pfn;
445 #else
446 static inline bool isolation_suitable(struct compact_control *cc,
447 struct page *page)
449 return true;
452 static inline bool pageblock_skip_persistent(struct page *page)
454 return false;
457 static inline void update_pageblock_skip(struct compact_control *cc,
458 struct page *page, unsigned long pfn)
462 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
466 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
467 unsigned long pfn)
469 return false;
471 #endif /* CONFIG_COMPACTION */
474 * Compaction requires the taking of some coarse locks that are potentially
475 * very heavily contended. For async compaction, trylock and record if the
476 * lock is contended. The lock will still be acquired but compaction will
477 * abort when the current block is finished regardless of success rate.
478 * Sync compaction acquires the lock.
480 * Always returns true which makes it easier to track lock state in callers.
482 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
483 struct compact_control *cc)
485 /* Track if the lock is contended in async mode */
486 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
487 if (spin_trylock_irqsave(lock, *flags))
488 return true;
490 cc->contended = true;
493 spin_lock_irqsave(lock, *flags);
494 return true;
498 * Compaction requires the taking of some coarse locks that are potentially
499 * very heavily contended. The lock should be periodically unlocked to avoid
500 * having disabled IRQs for a long time, even when there is nobody waiting on
501 * the lock. It might also be that allowing the IRQs will result in
502 * need_resched() becoming true. If scheduling is needed, async compaction
503 * aborts. Sync compaction schedules.
504 * Either compaction type will also abort if a fatal signal is pending.
505 * In either case if the lock was locked, it is dropped and not regained.
507 * Returns true if compaction should abort due to fatal signal pending, or
508 * async compaction due to need_resched()
509 * Returns false when compaction can continue (sync compaction might have
510 * scheduled)
512 static bool compact_unlock_should_abort(spinlock_t *lock,
513 unsigned long flags, bool *locked, struct compact_control *cc)
515 if (*locked) {
516 spin_unlock_irqrestore(lock, flags);
517 *locked = false;
520 if (fatal_signal_pending(current)) {
521 cc->contended = true;
522 return true;
525 cond_resched();
527 return false;
531 * Isolate free pages onto a private freelist. If @strict is true, will abort
532 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
533 * (even though it may still end up isolating some pages).
535 static unsigned long isolate_freepages_block(struct compact_control *cc,
536 unsigned long *start_pfn,
537 unsigned long end_pfn,
538 struct list_head *freelist,
539 unsigned int stride,
540 bool strict)
542 int nr_scanned = 0, total_isolated = 0;
543 struct page *cursor;
544 unsigned long flags = 0;
545 bool locked = false;
546 unsigned long blockpfn = *start_pfn;
547 unsigned int order;
549 /* Strict mode is for isolation, speed is secondary */
550 if (strict)
551 stride = 1;
553 cursor = pfn_to_page(blockpfn);
555 /* Isolate free pages. */
556 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
557 int isolated;
558 struct page *page = cursor;
561 * Periodically drop the lock (if held) regardless of its
562 * contention, to give chance to IRQs. Abort if fatal signal
563 * pending or async compaction detects need_resched()
565 if (!(blockpfn % SWAP_CLUSTER_MAX)
566 && compact_unlock_should_abort(&cc->zone->lock, flags,
567 &locked, cc))
568 break;
570 nr_scanned++;
571 if (!pfn_valid_within(blockpfn))
572 goto isolate_fail;
575 * For compound pages such as THP and hugetlbfs, we can save
576 * potentially a lot of iterations if we skip them at once.
577 * The check is racy, but we can consider only valid values
578 * and the only danger is skipping too much.
580 if (PageCompound(page)) {
581 const unsigned int order = compound_order(page);
583 if (likely(order < MAX_ORDER)) {
584 blockpfn += (1UL << order) - 1;
585 cursor += (1UL << order) - 1;
587 goto isolate_fail;
590 if (!PageBuddy(page))
591 goto isolate_fail;
594 * If we already hold the lock, we can skip some rechecking.
595 * Note that if we hold the lock now, checked_pageblock was
596 * already set in some previous iteration (or strict is true),
597 * so it is correct to skip the suitable migration target
598 * recheck as well.
600 if (!locked) {
601 locked = compact_lock_irqsave(&cc->zone->lock,
602 &flags, cc);
604 /* Recheck this is a buddy page under lock */
605 if (!PageBuddy(page))
606 goto isolate_fail;
609 /* Found a free page, will break it into order-0 pages */
610 order = page_order(page);
611 isolated = __isolate_free_page(page, order);
612 if (!isolated)
613 break;
614 set_page_private(page, order);
616 total_isolated += isolated;
617 cc->nr_freepages += isolated;
618 list_add_tail(&page->lru, freelist);
620 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
621 blockpfn += isolated;
622 break;
624 /* Advance to the end of split page */
625 blockpfn += isolated - 1;
626 cursor += isolated - 1;
627 continue;
629 isolate_fail:
630 if (strict)
631 break;
632 else
633 continue;
637 if (locked)
638 spin_unlock_irqrestore(&cc->zone->lock, flags);
641 * There is a tiny chance that we have read bogus compound_order(),
642 * so be careful to not go outside of the pageblock.
644 if (unlikely(blockpfn > end_pfn))
645 blockpfn = end_pfn;
647 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
648 nr_scanned, total_isolated);
650 /* Record how far we have got within the block */
651 *start_pfn = blockpfn;
654 * If strict isolation is requested by CMA then check that all the
655 * pages requested were isolated. If there were any failures, 0 is
656 * returned and CMA will fail.
658 if (strict && blockpfn < end_pfn)
659 total_isolated = 0;
661 cc->total_free_scanned += nr_scanned;
662 if (total_isolated)
663 count_compact_events(COMPACTISOLATED, total_isolated);
664 return total_isolated;
668 * isolate_freepages_range() - isolate free pages.
669 * @cc: Compaction control structure.
670 * @start_pfn: The first PFN to start isolating.
671 * @end_pfn: The one-past-last PFN.
673 * Non-free pages, invalid PFNs, or zone boundaries within the
674 * [start_pfn, end_pfn) range are considered errors, cause function to
675 * undo its actions and return zero.
677 * Otherwise, function returns one-past-the-last PFN of isolated page
678 * (which may be greater then end_pfn if end fell in a middle of
679 * a free page).
681 unsigned long
682 isolate_freepages_range(struct compact_control *cc,
683 unsigned long start_pfn, unsigned long end_pfn)
685 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
686 LIST_HEAD(freelist);
688 pfn = start_pfn;
689 block_start_pfn = pageblock_start_pfn(pfn);
690 if (block_start_pfn < cc->zone->zone_start_pfn)
691 block_start_pfn = cc->zone->zone_start_pfn;
692 block_end_pfn = pageblock_end_pfn(pfn);
694 for (; pfn < end_pfn; pfn += isolated,
695 block_start_pfn = block_end_pfn,
696 block_end_pfn += pageblock_nr_pages) {
697 /* Protect pfn from changing by isolate_freepages_block */
698 unsigned long isolate_start_pfn = pfn;
700 block_end_pfn = min(block_end_pfn, end_pfn);
703 * pfn could pass the block_end_pfn if isolated freepage
704 * is more than pageblock order. In this case, we adjust
705 * scanning range to right one.
707 if (pfn >= block_end_pfn) {
708 block_start_pfn = pageblock_start_pfn(pfn);
709 block_end_pfn = pageblock_end_pfn(pfn);
710 block_end_pfn = min(block_end_pfn, end_pfn);
713 if (!pageblock_pfn_to_page(block_start_pfn,
714 block_end_pfn, cc->zone))
715 break;
717 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
718 block_end_pfn, &freelist, 0, true);
721 * In strict mode, isolate_freepages_block() returns 0 if
722 * there are any holes in the block (ie. invalid PFNs or
723 * non-free pages).
725 if (!isolated)
726 break;
729 * If we managed to isolate pages, it is always (1 << n) *
730 * pageblock_nr_pages for some non-negative n. (Max order
731 * page may span two pageblocks).
735 /* __isolate_free_page() does not map the pages */
736 split_map_pages(&freelist);
738 if (pfn < end_pfn) {
739 /* Loop terminated early, cleanup. */
740 release_freepages(&freelist);
741 return 0;
744 /* We don't use freelists for anything. */
745 return pfn;
748 /* Similar to reclaim, but different enough that they don't share logic */
749 static bool too_many_isolated(pg_data_t *pgdat)
751 unsigned long active, inactive, isolated;
753 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
754 node_page_state(pgdat, NR_INACTIVE_ANON);
755 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
756 node_page_state(pgdat, NR_ACTIVE_ANON);
757 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
758 node_page_state(pgdat, NR_ISOLATED_ANON);
760 return isolated > (inactive + active) / 2;
764 * isolate_migratepages_block() - isolate all migrate-able pages within
765 * a single pageblock
766 * @cc: Compaction control structure.
767 * @low_pfn: The first PFN to isolate
768 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
769 * @isolate_mode: Isolation mode to be used.
771 * Isolate all pages that can be migrated from the range specified by
772 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
773 * Returns zero if there is a fatal signal pending, otherwise PFN of the
774 * first page that was not scanned (which may be both less, equal to or more
775 * than end_pfn).
777 * The pages are isolated on cc->migratepages list (not required to be empty),
778 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
779 * is neither read nor updated.
781 static unsigned long
782 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
783 unsigned long end_pfn, isolate_mode_t isolate_mode)
785 pg_data_t *pgdat = cc->zone->zone_pgdat;
786 unsigned long nr_scanned = 0, nr_isolated = 0;
787 struct lruvec *lruvec;
788 unsigned long flags = 0;
789 bool locked = false;
790 struct page *page = NULL, *valid_page = NULL;
791 unsigned long start_pfn = low_pfn;
792 bool skip_on_failure = false;
793 unsigned long next_skip_pfn = 0;
794 bool skip_updated = false;
797 * Ensure that there are not too many pages isolated from the LRU
798 * list by either parallel reclaimers or compaction. If there are,
799 * delay for some time until fewer pages are isolated
801 while (unlikely(too_many_isolated(pgdat))) {
802 /* async migration should just abort */
803 if (cc->mode == MIGRATE_ASYNC)
804 return 0;
806 congestion_wait(BLK_RW_ASYNC, HZ/10);
808 if (fatal_signal_pending(current))
809 return 0;
812 cond_resched();
814 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
815 skip_on_failure = true;
816 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
819 /* Time to isolate some pages for migration */
820 for (; low_pfn < end_pfn; low_pfn++) {
822 if (skip_on_failure && low_pfn >= next_skip_pfn) {
824 * We have isolated all migration candidates in the
825 * previous order-aligned block, and did not skip it due
826 * to failure. We should migrate the pages now and
827 * hopefully succeed compaction.
829 if (nr_isolated)
830 break;
833 * We failed to isolate in the previous order-aligned
834 * block. Set the new boundary to the end of the
835 * current block. Note we can't simply increase
836 * next_skip_pfn by 1 << order, as low_pfn might have
837 * been incremented by a higher number due to skipping
838 * a compound or a high-order buddy page in the
839 * previous loop iteration.
841 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
845 * Periodically drop the lock (if held) regardless of its
846 * contention, to give chance to IRQs. Abort completely if
847 * a fatal signal is pending.
849 if (!(low_pfn % SWAP_CLUSTER_MAX)
850 && compact_unlock_should_abort(&pgdat->lru_lock,
851 flags, &locked, cc)) {
852 low_pfn = 0;
853 goto fatal_pending;
856 if (!pfn_valid_within(low_pfn))
857 goto isolate_fail;
858 nr_scanned++;
860 page = pfn_to_page(low_pfn);
863 * Check if the pageblock has already been marked skipped.
864 * Only the aligned PFN is checked as the caller isolates
865 * COMPACT_CLUSTER_MAX at a time so the second call must
866 * not falsely conclude that the block should be skipped.
868 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
869 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
870 low_pfn = end_pfn;
871 goto isolate_abort;
873 valid_page = page;
877 * Skip if free. We read page order here without zone lock
878 * which is generally unsafe, but the race window is small and
879 * the worst thing that can happen is that we skip some
880 * potential isolation targets.
882 if (PageBuddy(page)) {
883 unsigned long freepage_order = page_order_unsafe(page);
886 * Without lock, we cannot be sure that what we got is
887 * a valid page order. Consider only values in the
888 * valid order range to prevent low_pfn overflow.
890 if (freepage_order > 0 && freepage_order < MAX_ORDER)
891 low_pfn += (1UL << freepage_order) - 1;
892 continue;
896 * Regardless of being on LRU, compound pages such as THP and
897 * hugetlbfs are not to be compacted. We can potentially save
898 * a lot of iterations if we skip them at once. The check is
899 * racy, but we can consider only valid values and the only
900 * danger is skipping too much.
902 if (PageCompound(page)) {
903 const unsigned int order = compound_order(page);
905 if (likely(order < MAX_ORDER))
906 low_pfn += (1UL << order) - 1;
907 goto isolate_fail;
911 * Check may be lockless but that's ok as we recheck later.
912 * It's possible to migrate LRU and non-lru movable pages.
913 * Skip any other type of page
915 if (!PageLRU(page)) {
917 * __PageMovable can return false positive so we need
918 * to verify it under page_lock.
920 if (unlikely(__PageMovable(page)) &&
921 !PageIsolated(page)) {
922 if (locked) {
923 spin_unlock_irqrestore(&pgdat->lru_lock,
924 flags);
925 locked = false;
928 if (!isolate_movable_page(page, isolate_mode))
929 goto isolate_success;
932 goto isolate_fail;
936 * Migration will fail if an anonymous page is pinned in memory,
937 * so avoid taking lru_lock and isolating it unnecessarily in an
938 * admittedly racy check.
940 if (!page_mapping(page) &&
941 page_count(page) > page_mapcount(page))
942 goto isolate_fail;
945 * Only allow to migrate anonymous pages in GFP_NOFS context
946 * because those do not depend on fs locks.
948 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
949 goto isolate_fail;
951 /* If we already hold the lock, we can skip some rechecking */
952 if (!locked) {
953 locked = compact_lock_irqsave(&pgdat->lru_lock,
954 &flags, cc);
956 /* Try get exclusive access under lock */
957 if (!skip_updated) {
958 skip_updated = true;
959 if (test_and_set_skip(cc, page, low_pfn))
960 goto isolate_abort;
963 /* Recheck PageLRU and PageCompound under lock */
964 if (!PageLRU(page))
965 goto isolate_fail;
968 * Page become compound since the non-locked check,
969 * and it's on LRU. It can only be a THP so the order
970 * is safe to read and it's 0 for tail pages.
972 if (unlikely(PageCompound(page))) {
973 low_pfn += compound_nr(page) - 1;
974 goto isolate_fail;
978 lruvec = mem_cgroup_page_lruvec(page, pgdat);
980 /* Try isolate the page */
981 if (__isolate_lru_page(page, isolate_mode) != 0)
982 goto isolate_fail;
984 VM_BUG_ON_PAGE(PageCompound(page), page);
986 /* Successfully isolated */
987 del_page_from_lru_list(page, lruvec, page_lru(page));
988 inc_node_page_state(page,
989 NR_ISOLATED_ANON + page_is_file_cache(page));
991 isolate_success:
992 list_add(&page->lru, &cc->migratepages);
993 cc->nr_migratepages++;
994 nr_isolated++;
997 * Avoid isolating too much unless this block is being
998 * rescanned (e.g. dirty/writeback pages, parallel allocation)
999 * or a lock is contended. For contention, isolate quickly to
1000 * potentially remove one source of contention.
1002 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
1003 !cc->rescan && !cc->contended) {
1004 ++low_pfn;
1005 break;
1008 continue;
1009 isolate_fail:
1010 if (!skip_on_failure)
1011 continue;
1014 * We have isolated some pages, but then failed. Release them
1015 * instead of migrating, as we cannot form the cc->order buddy
1016 * page anyway.
1018 if (nr_isolated) {
1019 if (locked) {
1020 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1021 locked = false;
1023 putback_movable_pages(&cc->migratepages);
1024 cc->nr_migratepages = 0;
1025 nr_isolated = 0;
1028 if (low_pfn < next_skip_pfn) {
1029 low_pfn = next_skip_pfn - 1;
1031 * The check near the loop beginning would have updated
1032 * next_skip_pfn too, but this is a bit simpler.
1034 next_skip_pfn += 1UL << cc->order;
1039 * The PageBuddy() check could have potentially brought us outside
1040 * the range to be scanned.
1042 if (unlikely(low_pfn > end_pfn))
1043 low_pfn = end_pfn;
1045 isolate_abort:
1046 if (locked)
1047 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1050 * Updated the cached scanner pfn once the pageblock has been scanned
1051 * Pages will either be migrated in which case there is no point
1052 * scanning in the near future or migration failed in which case the
1053 * failure reason may persist. The block is marked for skipping if
1054 * there were no pages isolated in the block or if the block is
1055 * rescanned twice in a row.
1057 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1058 if (valid_page && !skip_updated)
1059 set_pageblock_skip(valid_page);
1060 update_cached_migrate(cc, low_pfn);
1063 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1064 nr_scanned, nr_isolated);
1066 fatal_pending:
1067 cc->total_migrate_scanned += nr_scanned;
1068 if (nr_isolated)
1069 count_compact_events(COMPACTISOLATED, nr_isolated);
1071 return low_pfn;
1075 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1076 * @cc: Compaction control structure.
1077 * @start_pfn: The first PFN to start isolating.
1078 * @end_pfn: The one-past-last PFN.
1080 * Returns zero if isolation fails fatally due to e.g. pending signal.
1081 * Otherwise, function returns one-past-the-last PFN of isolated page
1082 * (which may be greater than end_pfn if end fell in a middle of a THP page).
1084 unsigned long
1085 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1086 unsigned long end_pfn)
1088 unsigned long pfn, block_start_pfn, block_end_pfn;
1090 /* Scan block by block. First and last block may be incomplete */
1091 pfn = start_pfn;
1092 block_start_pfn = pageblock_start_pfn(pfn);
1093 if (block_start_pfn < cc->zone->zone_start_pfn)
1094 block_start_pfn = cc->zone->zone_start_pfn;
1095 block_end_pfn = pageblock_end_pfn(pfn);
1097 for (; pfn < end_pfn; pfn = block_end_pfn,
1098 block_start_pfn = block_end_pfn,
1099 block_end_pfn += pageblock_nr_pages) {
1101 block_end_pfn = min(block_end_pfn, end_pfn);
1103 if (!pageblock_pfn_to_page(block_start_pfn,
1104 block_end_pfn, cc->zone))
1105 continue;
1107 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1108 ISOLATE_UNEVICTABLE);
1110 if (!pfn)
1111 break;
1113 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1114 break;
1117 return pfn;
1120 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1121 #ifdef CONFIG_COMPACTION
1123 static bool suitable_migration_source(struct compact_control *cc,
1124 struct page *page)
1126 int block_mt;
1128 if (pageblock_skip_persistent(page))
1129 return false;
1131 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1132 return true;
1134 block_mt = get_pageblock_migratetype(page);
1136 if (cc->migratetype == MIGRATE_MOVABLE)
1137 return is_migrate_movable(block_mt);
1138 else
1139 return block_mt == cc->migratetype;
1142 /* Returns true if the page is within a block suitable for migration to */
1143 static bool suitable_migration_target(struct compact_control *cc,
1144 struct page *page)
1146 /* If the page is a large free page, then disallow migration */
1147 if (PageBuddy(page)) {
1149 * We are checking page_order without zone->lock taken. But
1150 * the only small danger is that we skip a potentially suitable
1151 * pageblock, so it's not worth to check order for valid range.
1153 if (page_order_unsafe(page) >= pageblock_order)
1154 return false;
1157 if (cc->ignore_block_suitable)
1158 return true;
1160 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1161 if (is_migrate_movable(get_pageblock_migratetype(page)))
1162 return true;
1164 /* Otherwise skip the block */
1165 return false;
1168 static inline unsigned int
1169 freelist_scan_limit(struct compact_control *cc)
1171 unsigned short shift = BITS_PER_LONG - 1;
1173 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1177 * Test whether the free scanner has reached the same or lower pageblock than
1178 * the migration scanner, and compaction should thus terminate.
1180 static inline bool compact_scanners_met(struct compact_control *cc)
1182 return (cc->free_pfn >> pageblock_order)
1183 <= (cc->migrate_pfn >> pageblock_order);
1187 * Used when scanning for a suitable migration target which scans freelists
1188 * in reverse. Reorders the list such as the unscanned pages are scanned
1189 * first on the next iteration of the free scanner
1191 static void
1192 move_freelist_head(struct list_head *freelist, struct page *freepage)
1194 LIST_HEAD(sublist);
1196 if (!list_is_last(freelist, &freepage->lru)) {
1197 list_cut_before(&sublist, freelist, &freepage->lru);
1198 if (!list_empty(&sublist))
1199 list_splice_tail(&sublist, freelist);
1204 * Similar to move_freelist_head except used by the migration scanner
1205 * when scanning forward. It's possible for these list operations to
1206 * move against each other if they search the free list exactly in
1207 * lockstep.
1209 static void
1210 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1212 LIST_HEAD(sublist);
1214 if (!list_is_first(freelist, &freepage->lru)) {
1215 list_cut_position(&sublist, freelist, &freepage->lru);
1216 if (!list_empty(&sublist))
1217 list_splice_tail(&sublist, freelist);
1221 static void
1222 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1224 unsigned long start_pfn, end_pfn;
1225 struct page *page = pfn_to_page(pfn);
1227 /* Do not search around if there are enough pages already */
1228 if (cc->nr_freepages >= cc->nr_migratepages)
1229 return;
1231 /* Minimise scanning during async compaction */
1232 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1233 return;
1235 /* Pageblock boundaries */
1236 start_pfn = pageblock_start_pfn(pfn);
1237 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
1239 /* Scan before */
1240 if (start_pfn != pfn) {
1241 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1242 if (cc->nr_freepages >= cc->nr_migratepages)
1243 return;
1246 /* Scan after */
1247 start_pfn = pfn + nr_isolated;
1248 if (start_pfn < end_pfn)
1249 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1251 /* Skip this pageblock in the future as it's full or nearly full */
1252 if (cc->nr_freepages < cc->nr_migratepages)
1253 set_pageblock_skip(page);
1256 /* Search orders in round-robin fashion */
1257 static int next_search_order(struct compact_control *cc, int order)
1259 order--;
1260 if (order < 0)
1261 order = cc->order - 1;
1263 /* Search wrapped around? */
1264 if (order == cc->search_order) {
1265 cc->search_order--;
1266 if (cc->search_order < 0)
1267 cc->search_order = cc->order - 1;
1268 return -1;
1271 return order;
1274 static unsigned long
1275 fast_isolate_freepages(struct compact_control *cc)
1277 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1278 unsigned int nr_scanned = 0;
1279 unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
1280 unsigned long nr_isolated = 0;
1281 unsigned long distance;
1282 struct page *page = NULL;
1283 bool scan_start = false;
1284 int order;
1286 /* Full compaction passes in a negative order */
1287 if (cc->order <= 0)
1288 return cc->free_pfn;
1291 * If starting the scan, use a deeper search and use the highest
1292 * PFN found if a suitable one is not found.
1294 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1295 limit = pageblock_nr_pages >> 1;
1296 scan_start = true;
1300 * Preferred point is in the top quarter of the scan space but take
1301 * a pfn from the top half if the search is problematic.
1303 distance = (cc->free_pfn - cc->migrate_pfn);
1304 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1305 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1307 if (WARN_ON_ONCE(min_pfn > low_pfn))
1308 low_pfn = min_pfn;
1311 * Search starts from the last successful isolation order or the next
1312 * order to search after a previous failure
1314 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1316 for (order = cc->search_order;
1317 !page && order >= 0;
1318 order = next_search_order(cc, order)) {
1319 struct free_area *area = &cc->zone->free_area[order];
1320 struct list_head *freelist;
1321 struct page *freepage;
1322 unsigned long flags;
1323 unsigned int order_scanned = 0;
1325 if (!area->nr_free)
1326 continue;
1328 spin_lock_irqsave(&cc->zone->lock, flags);
1329 freelist = &area->free_list[MIGRATE_MOVABLE];
1330 list_for_each_entry_reverse(freepage, freelist, lru) {
1331 unsigned long pfn;
1333 order_scanned++;
1334 nr_scanned++;
1335 pfn = page_to_pfn(freepage);
1337 if (pfn >= highest)
1338 highest = pageblock_start_pfn(pfn);
1340 if (pfn >= low_pfn) {
1341 cc->fast_search_fail = 0;
1342 cc->search_order = order;
1343 page = freepage;
1344 break;
1347 if (pfn >= min_pfn && pfn > high_pfn) {
1348 high_pfn = pfn;
1350 /* Shorten the scan if a candidate is found */
1351 limit >>= 1;
1354 if (order_scanned >= limit)
1355 break;
1358 /* Use a minimum pfn if a preferred one was not found */
1359 if (!page && high_pfn) {
1360 page = pfn_to_page(high_pfn);
1362 /* Update freepage for the list reorder below */
1363 freepage = page;
1366 /* Reorder to so a future search skips recent pages */
1367 move_freelist_head(freelist, freepage);
1369 /* Isolate the page if available */
1370 if (page) {
1371 if (__isolate_free_page(page, order)) {
1372 set_page_private(page, order);
1373 nr_isolated = 1 << order;
1374 cc->nr_freepages += nr_isolated;
1375 list_add_tail(&page->lru, &cc->freepages);
1376 count_compact_events(COMPACTISOLATED, nr_isolated);
1377 } else {
1378 /* If isolation fails, abort the search */
1379 order = cc->search_order + 1;
1380 page = NULL;
1384 spin_unlock_irqrestore(&cc->zone->lock, flags);
1387 * Smaller scan on next order so the total scan ig related
1388 * to freelist_scan_limit.
1390 if (order_scanned >= limit)
1391 limit = min(1U, limit >> 1);
1394 if (!page) {
1395 cc->fast_search_fail++;
1396 if (scan_start) {
1398 * Use the highest PFN found above min. If one was
1399 * not found, be pessemistic for direct compaction
1400 * and use the min mark.
1402 if (highest) {
1403 page = pfn_to_page(highest);
1404 cc->free_pfn = highest;
1405 } else {
1406 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1407 page = pfn_to_page(min_pfn);
1408 cc->free_pfn = min_pfn;
1414 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1415 highest -= pageblock_nr_pages;
1416 cc->zone->compact_cached_free_pfn = highest;
1419 cc->total_free_scanned += nr_scanned;
1420 if (!page)
1421 return cc->free_pfn;
1423 low_pfn = page_to_pfn(page);
1424 fast_isolate_around(cc, low_pfn, nr_isolated);
1425 return low_pfn;
1429 * Based on information in the current compact_control, find blocks
1430 * suitable for isolating free pages from and then isolate them.
1432 static void isolate_freepages(struct compact_control *cc)
1434 struct zone *zone = cc->zone;
1435 struct page *page;
1436 unsigned long block_start_pfn; /* start of current pageblock */
1437 unsigned long isolate_start_pfn; /* exact pfn we start at */
1438 unsigned long block_end_pfn; /* end of current pageblock */
1439 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1440 struct list_head *freelist = &cc->freepages;
1441 unsigned int stride;
1443 /* Try a small search of the free lists for a candidate */
1444 isolate_start_pfn = fast_isolate_freepages(cc);
1445 if (cc->nr_freepages)
1446 goto splitmap;
1449 * Initialise the free scanner. The starting point is where we last
1450 * successfully isolated from, zone-cached value, or the end of the
1451 * zone when isolating for the first time. For looping we also need
1452 * this pfn aligned down to the pageblock boundary, because we do
1453 * block_start_pfn -= pageblock_nr_pages in the for loop.
1454 * For ending point, take care when isolating in last pageblock of a
1455 * a zone which ends in the middle of a pageblock.
1456 * The low boundary is the end of the pageblock the migration scanner
1457 * is using.
1459 isolate_start_pfn = cc->free_pfn;
1460 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1461 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1462 zone_end_pfn(zone));
1463 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1464 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1467 * Isolate free pages until enough are available to migrate the
1468 * pages on cc->migratepages. We stop searching if the migrate
1469 * and free page scanners meet or enough free pages are isolated.
1471 for (; block_start_pfn >= low_pfn;
1472 block_end_pfn = block_start_pfn,
1473 block_start_pfn -= pageblock_nr_pages,
1474 isolate_start_pfn = block_start_pfn) {
1475 unsigned long nr_isolated;
1478 * This can iterate a massively long zone without finding any
1479 * suitable migration targets, so periodically check resched.
1481 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1482 cond_resched();
1484 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1485 zone);
1486 if (!page)
1487 continue;
1489 /* Check the block is suitable for migration */
1490 if (!suitable_migration_target(cc, page))
1491 continue;
1493 /* If isolation recently failed, do not retry */
1494 if (!isolation_suitable(cc, page))
1495 continue;
1497 /* Found a block suitable for isolating free pages from. */
1498 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1499 block_end_pfn, freelist, stride, false);
1501 /* Update the skip hint if the full pageblock was scanned */
1502 if (isolate_start_pfn == block_end_pfn)
1503 update_pageblock_skip(cc, page, block_start_pfn);
1505 /* Are enough freepages isolated? */
1506 if (cc->nr_freepages >= cc->nr_migratepages) {
1507 if (isolate_start_pfn >= block_end_pfn) {
1509 * Restart at previous pageblock if more
1510 * freepages can be isolated next time.
1512 isolate_start_pfn =
1513 block_start_pfn - pageblock_nr_pages;
1515 break;
1516 } else if (isolate_start_pfn < block_end_pfn) {
1518 * If isolation failed early, do not continue
1519 * needlessly.
1521 break;
1524 /* Adjust stride depending on isolation */
1525 if (nr_isolated) {
1526 stride = 1;
1527 continue;
1529 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1533 * Record where the free scanner will restart next time. Either we
1534 * broke from the loop and set isolate_start_pfn based on the last
1535 * call to isolate_freepages_block(), or we met the migration scanner
1536 * and the loop terminated due to isolate_start_pfn < low_pfn
1538 cc->free_pfn = isolate_start_pfn;
1540 splitmap:
1541 /* __isolate_free_page() does not map the pages */
1542 split_map_pages(freelist);
1546 * This is a migrate-callback that "allocates" freepages by taking pages
1547 * from the isolated freelists in the block we are migrating to.
1549 static struct page *compaction_alloc(struct page *migratepage,
1550 unsigned long data)
1552 struct compact_control *cc = (struct compact_control *)data;
1553 struct page *freepage;
1555 if (list_empty(&cc->freepages)) {
1556 isolate_freepages(cc);
1558 if (list_empty(&cc->freepages))
1559 return NULL;
1562 freepage = list_entry(cc->freepages.next, struct page, lru);
1563 list_del(&freepage->lru);
1564 cc->nr_freepages--;
1566 return freepage;
1570 * This is a migrate-callback that "frees" freepages back to the isolated
1571 * freelist. All pages on the freelist are from the same zone, so there is no
1572 * special handling needed for NUMA.
1574 static void compaction_free(struct page *page, unsigned long data)
1576 struct compact_control *cc = (struct compact_control *)data;
1578 list_add(&page->lru, &cc->freepages);
1579 cc->nr_freepages++;
1582 /* possible outcome of isolate_migratepages */
1583 typedef enum {
1584 ISOLATE_ABORT, /* Abort compaction now */
1585 ISOLATE_NONE, /* No pages isolated, continue scanning */
1586 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1587 } isolate_migrate_t;
1590 * Allow userspace to control policy on scanning the unevictable LRU for
1591 * compactable pages.
1593 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1595 static inline void
1596 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1598 if (cc->fast_start_pfn == ULONG_MAX)
1599 return;
1601 if (!cc->fast_start_pfn)
1602 cc->fast_start_pfn = pfn;
1604 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1607 static inline unsigned long
1608 reinit_migrate_pfn(struct compact_control *cc)
1610 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1611 return cc->migrate_pfn;
1613 cc->migrate_pfn = cc->fast_start_pfn;
1614 cc->fast_start_pfn = ULONG_MAX;
1616 return cc->migrate_pfn;
1620 * Briefly search the free lists for a migration source that already has
1621 * some free pages to reduce the number of pages that need migration
1622 * before a pageblock is free.
1624 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1626 unsigned int limit = freelist_scan_limit(cc);
1627 unsigned int nr_scanned = 0;
1628 unsigned long distance;
1629 unsigned long pfn = cc->migrate_pfn;
1630 unsigned long high_pfn;
1631 int order;
1633 /* Skip hints are relied on to avoid repeats on the fast search */
1634 if (cc->ignore_skip_hint)
1635 return pfn;
1638 * If the migrate_pfn is not at the start of a zone or the start
1639 * of a pageblock then assume this is a continuation of a previous
1640 * scan restarted due to COMPACT_CLUSTER_MAX.
1642 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1643 return pfn;
1646 * For smaller orders, just linearly scan as the number of pages
1647 * to migrate should be relatively small and does not necessarily
1648 * justify freeing up a large block for a small allocation.
1650 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1651 return pfn;
1654 * Only allow kcompactd and direct requests for movable pages to
1655 * quickly clear out a MOVABLE pageblock for allocation. This
1656 * reduces the risk that a large movable pageblock is freed for
1657 * an unmovable/reclaimable small allocation.
1659 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1660 return pfn;
1663 * When starting the migration scanner, pick any pageblock within the
1664 * first half of the search space. Otherwise try and pick a pageblock
1665 * within the first eighth to reduce the chances that a migration
1666 * target later becomes a source.
1668 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1669 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1670 distance >>= 2;
1671 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1673 for (order = cc->order - 1;
1674 order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1675 order--) {
1676 struct free_area *area = &cc->zone->free_area[order];
1677 struct list_head *freelist;
1678 unsigned long flags;
1679 struct page *freepage;
1681 if (!area->nr_free)
1682 continue;
1684 spin_lock_irqsave(&cc->zone->lock, flags);
1685 freelist = &area->free_list[MIGRATE_MOVABLE];
1686 list_for_each_entry(freepage, freelist, lru) {
1687 unsigned long free_pfn;
1689 nr_scanned++;
1690 free_pfn = page_to_pfn(freepage);
1691 if (free_pfn < high_pfn) {
1693 * Avoid if skipped recently. Ideally it would
1694 * move to the tail but even safe iteration of
1695 * the list assumes an entry is deleted, not
1696 * reordered.
1698 if (get_pageblock_skip(freepage)) {
1699 if (list_is_last(freelist, &freepage->lru))
1700 break;
1702 continue;
1705 /* Reorder to so a future search skips recent pages */
1706 move_freelist_tail(freelist, freepage);
1708 update_fast_start_pfn(cc, free_pfn);
1709 pfn = pageblock_start_pfn(free_pfn);
1710 cc->fast_search_fail = 0;
1711 set_pageblock_skip(freepage);
1712 break;
1715 if (nr_scanned >= limit) {
1716 cc->fast_search_fail++;
1717 move_freelist_tail(freelist, freepage);
1718 break;
1721 spin_unlock_irqrestore(&cc->zone->lock, flags);
1724 cc->total_migrate_scanned += nr_scanned;
1727 * If fast scanning failed then use a cached entry for a page block
1728 * that had free pages as the basis for starting a linear scan.
1730 if (pfn == cc->migrate_pfn)
1731 pfn = reinit_migrate_pfn(cc);
1733 return pfn;
1737 * Isolate all pages that can be migrated from the first suitable block,
1738 * starting at the block pointed to by the migrate scanner pfn within
1739 * compact_control.
1741 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1743 unsigned long block_start_pfn;
1744 unsigned long block_end_pfn;
1745 unsigned long low_pfn;
1746 struct page *page;
1747 const isolate_mode_t isolate_mode =
1748 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1749 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1750 bool fast_find_block;
1753 * Start at where we last stopped, or beginning of the zone as
1754 * initialized by compact_zone(). The first failure will use
1755 * the lowest PFN as the starting point for linear scanning.
1757 low_pfn = fast_find_migrateblock(cc);
1758 block_start_pfn = pageblock_start_pfn(low_pfn);
1759 if (block_start_pfn < cc->zone->zone_start_pfn)
1760 block_start_pfn = cc->zone->zone_start_pfn;
1763 * fast_find_migrateblock marks a pageblock skipped so to avoid
1764 * the isolation_suitable check below, check whether the fast
1765 * search was successful.
1767 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1769 /* Only scan within a pageblock boundary */
1770 block_end_pfn = pageblock_end_pfn(low_pfn);
1773 * Iterate over whole pageblocks until we find the first suitable.
1774 * Do not cross the free scanner.
1776 for (; block_end_pfn <= cc->free_pfn;
1777 fast_find_block = false,
1778 low_pfn = block_end_pfn,
1779 block_start_pfn = block_end_pfn,
1780 block_end_pfn += pageblock_nr_pages) {
1783 * This can potentially iterate a massively long zone with
1784 * many pageblocks unsuitable, so periodically check if we
1785 * need to schedule.
1787 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1788 cond_resched();
1790 page = pageblock_pfn_to_page(block_start_pfn,
1791 block_end_pfn, cc->zone);
1792 if (!page)
1793 continue;
1796 * If isolation recently failed, do not retry. Only check the
1797 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1798 * to be visited multiple times. Assume skip was checked
1799 * before making it "skip" so other compaction instances do
1800 * not scan the same block.
1802 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1803 !fast_find_block && !isolation_suitable(cc, page))
1804 continue;
1807 * For async compaction, also only scan in MOVABLE blocks
1808 * without huge pages. Async compaction is optimistic to see
1809 * if the minimum amount of work satisfies the allocation.
1810 * The cached PFN is updated as it's possible that all
1811 * remaining blocks between source and target are unsuitable
1812 * and the compaction scanners fail to meet.
1814 if (!suitable_migration_source(cc, page)) {
1815 update_cached_migrate(cc, block_end_pfn);
1816 continue;
1819 /* Perform the isolation */
1820 low_pfn = isolate_migratepages_block(cc, low_pfn,
1821 block_end_pfn, isolate_mode);
1823 if (!low_pfn)
1824 return ISOLATE_ABORT;
1827 * Either we isolated something and proceed with migration. Or
1828 * we failed and compact_zone should decide if we should
1829 * continue or not.
1831 break;
1834 /* Record where migration scanner will be restarted. */
1835 cc->migrate_pfn = low_pfn;
1837 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1841 * order == -1 is expected when compacting via
1842 * /proc/sys/vm/compact_memory
1844 static inline bool is_via_compact_memory(int order)
1846 return order == -1;
1849 static enum compact_result __compact_finished(struct compact_control *cc)
1851 unsigned int order;
1852 const int migratetype = cc->migratetype;
1853 int ret;
1855 /* Compaction run completes if the migrate and free scanner meet */
1856 if (compact_scanners_met(cc)) {
1857 /* Let the next compaction start anew. */
1858 reset_cached_positions(cc->zone);
1861 * Mark that the PG_migrate_skip information should be cleared
1862 * by kswapd when it goes to sleep. kcompactd does not set the
1863 * flag itself as the decision to be clear should be directly
1864 * based on an allocation request.
1866 if (cc->direct_compaction)
1867 cc->zone->compact_blockskip_flush = true;
1869 if (cc->whole_zone)
1870 return COMPACT_COMPLETE;
1871 else
1872 return COMPACT_PARTIAL_SKIPPED;
1875 if (is_via_compact_memory(cc->order))
1876 return COMPACT_CONTINUE;
1879 * Always finish scanning a pageblock to reduce the possibility of
1880 * fallbacks in the future. This is particularly important when
1881 * migration source is unmovable/reclaimable but it's not worth
1882 * special casing.
1884 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1885 return COMPACT_CONTINUE;
1887 /* Direct compactor: Is a suitable page free? */
1888 ret = COMPACT_NO_SUITABLE_PAGE;
1889 for (order = cc->order; order < MAX_ORDER; order++) {
1890 struct free_area *area = &cc->zone->free_area[order];
1891 bool can_steal;
1893 /* Job done if page is free of the right migratetype */
1894 if (!free_area_empty(area, migratetype))
1895 return COMPACT_SUCCESS;
1897 #ifdef CONFIG_CMA
1898 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1899 if (migratetype == MIGRATE_MOVABLE &&
1900 !free_area_empty(area, MIGRATE_CMA))
1901 return COMPACT_SUCCESS;
1902 #endif
1904 * Job done if allocation would steal freepages from
1905 * other migratetype buddy lists.
1907 if (find_suitable_fallback(area, order, migratetype,
1908 true, &can_steal) != -1) {
1910 /* movable pages are OK in any pageblock */
1911 if (migratetype == MIGRATE_MOVABLE)
1912 return COMPACT_SUCCESS;
1915 * We are stealing for a non-movable allocation. Make
1916 * sure we finish compacting the current pageblock
1917 * first so it is as free as possible and we won't
1918 * have to steal another one soon. This only applies
1919 * to sync compaction, as async compaction operates
1920 * on pageblocks of the same migratetype.
1922 if (cc->mode == MIGRATE_ASYNC ||
1923 IS_ALIGNED(cc->migrate_pfn,
1924 pageblock_nr_pages)) {
1925 return COMPACT_SUCCESS;
1928 ret = COMPACT_CONTINUE;
1929 break;
1933 if (cc->contended || fatal_signal_pending(current))
1934 ret = COMPACT_CONTENDED;
1936 return ret;
1939 static enum compact_result compact_finished(struct compact_control *cc)
1941 int ret;
1943 ret = __compact_finished(cc);
1944 trace_mm_compaction_finished(cc->zone, cc->order, ret);
1945 if (ret == COMPACT_NO_SUITABLE_PAGE)
1946 ret = COMPACT_CONTINUE;
1948 return ret;
1952 * compaction_suitable: Is this suitable to run compaction on this zone now?
1953 * Returns
1954 * COMPACT_SKIPPED - If there are too few free pages for compaction
1955 * COMPACT_SUCCESS - If the allocation would succeed without compaction
1956 * COMPACT_CONTINUE - If compaction should run now
1958 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1959 unsigned int alloc_flags,
1960 int classzone_idx,
1961 unsigned long wmark_target)
1963 unsigned long watermark;
1965 if (is_via_compact_memory(order))
1966 return COMPACT_CONTINUE;
1968 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
1970 * If watermarks for high-order allocation are already met, there
1971 * should be no need for compaction at all.
1973 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1974 alloc_flags))
1975 return COMPACT_SUCCESS;
1978 * Watermarks for order-0 must be met for compaction to be able to
1979 * isolate free pages for migration targets. This means that the
1980 * watermark and alloc_flags have to match, or be more pessimistic than
1981 * the check in __isolate_free_page(). We don't use the direct
1982 * compactor's alloc_flags, as they are not relevant for freepage
1983 * isolation. We however do use the direct compactor's classzone_idx to
1984 * skip over zones where lowmem reserves would prevent allocation even
1985 * if compaction succeeds.
1986 * For costly orders, we require low watermark instead of min for
1987 * compaction to proceed to increase its chances.
1988 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1989 * suitable migration targets
1991 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1992 low_wmark_pages(zone) : min_wmark_pages(zone);
1993 watermark += compact_gap(order);
1994 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1995 ALLOC_CMA, wmark_target))
1996 return COMPACT_SKIPPED;
1998 return COMPACT_CONTINUE;
2001 enum compact_result compaction_suitable(struct zone *zone, int order,
2002 unsigned int alloc_flags,
2003 int classzone_idx)
2005 enum compact_result ret;
2006 int fragindex;
2008 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
2009 zone_page_state(zone, NR_FREE_PAGES));
2011 * fragmentation index determines if allocation failures are due to
2012 * low memory or external fragmentation
2014 * index of -1000 would imply allocations might succeed depending on
2015 * watermarks, but we already failed the high-order watermark check
2016 * index towards 0 implies failure is due to lack of memory
2017 * index towards 1000 implies failure is due to fragmentation
2019 * Only compact if a failure would be due to fragmentation. Also
2020 * ignore fragindex for non-costly orders where the alternative to
2021 * a successful reclaim/compaction is OOM. Fragindex and the
2022 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2023 * excessive compaction for costly orders, but it should not be at the
2024 * expense of system stability.
2026 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2027 fragindex = fragmentation_index(zone, order);
2028 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2029 ret = COMPACT_NOT_SUITABLE_ZONE;
2032 trace_mm_compaction_suitable(zone, order, ret);
2033 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2034 ret = COMPACT_SKIPPED;
2036 return ret;
2039 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2040 int alloc_flags)
2042 struct zone *zone;
2043 struct zoneref *z;
2046 * Make sure at least one zone would pass __compaction_suitable if we continue
2047 * retrying the reclaim.
2049 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2050 ac->nodemask) {
2051 unsigned long available;
2052 enum compact_result compact_result;
2055 * Do not consider all the reclaimable memory because we do not
2056 * want to trash just for a single high order allocation which
2057 * is even not guaranteed to appear even if __compaction_suitable
2058 * is happy about the watermark check.
2060 available = zone_reclaimable_pages(zone) / order;
2061 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2062 compact_result = __compaction_suitable(zone, order, alloc_flags,
2063 ac_classzone_idx(ac), available);
2064 if (compact_result != COMPACT_SKIPPED)
2065 return true;
2068 return false;
2071 static enum compact_result
2072 compact_zone(struct compact_control *cc, struct capture_control *capc)
2074 enum compact_result ret;
2075 unsigned long start_pfn = cc->zone->zone_start_pfn;
2076 unsigned long end_pfn = zone_end_pfn(cc->zone);
2077 unsigned long last_migrated_pfn;
2078 const bool sync = cc->mode != MIGRATE_ASYNC;
2079 bool update_cached;
2082 * These counters track activities during zone compaction. Initialize
2083 * them before compacting a new zone.
2085 cc->total_migrate_scanned = 0;
2086 cc->total_free_scanned = 0;
2087 cc->nr_migratepages = 0;
2088 cc->nr_freepages = 0;
2089 INIT_LIST_HEAD(&cc->freepages);
2090 INIT_LIST_HEAD(&cc->migratepages);
2092 cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
2093 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2094 cc->classzone_idx);
2095 /* Compaction is likely to fail */
2096 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2097 return ret;
2099 /* huh, compaction_suitable is returning something unexpected */
2100 VM_BUG_ON(ret != COMPACT_CONTINUE);
2103 * Clear pageblock skip if there were failures recently and compaction
2104 * is about to be retried after being deferred.
2106 if (compaction_restarting(cc->zone, cc->order))
2107 __reset_isolation_suitable(cc->zone);
2110 * Setup to move all movable pages to the end of the zone. Used cached
2111 * information on where the scanners should start (unless we explicitly
2112 * want to compact the whole zone), but check that it is initialised
2113 * by ensuring the values are within zone boundaries.
2115 cc->fast_start_pfn = 0;
2116 if (cc->whole_zone) {
2117 cc->migrate_pfn = start_pfn;
2118 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2119 } else {
2120 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2121 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2122 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2123 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2124 cc->zone->compact_cached_free_pfn = cc->free_pfn;
2126 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2127 cc->migrate_pfn = start_pfn;
2128 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2129 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2132 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2133 cc->whole_zone = true;
2136 last_migrated_pfn = 0;
2139 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2140 * the basis that some migrations will fail in ASYNC mode. However,
2141 * if the cached PFNs match and pageblocks are skipped due to having
2142 * no isolation candidates, then the sync state does not matter.
2143 * Until a pageblock with isolation candidates is found, keep the
2144 * cached PFNs in sync to avoid revisiting the same blocks.
2146 update_cached = !sync &&
2147 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2149 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2150 cc->free_pfn, end_pfn, sync);
2152 migrate_prep_local();
2154 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2155 int err;
2156 unsigned long start_pfn = cc->migrate_pfn;
2159 * Avoid multiple rescans which can happen if a page cannot be
2160 * isolated (dirty/writeback in async mode) or if the migrated
2161 * pages are being allocated before the pageblock is cleared.
2162 * The first rescan will capture the entire pageblock for
2163 * migration. If it fails, it'll be marked skip and scanning
2164 * will proceed as normal.
2166 cc->rescan = false;
2167 if (pageblock_start_pfn(last_migrated_pfn) ==
2168 pageblock_start_pfn(start_pfn)) {
2169 cc->rescan = true;
2172 switch (isolate_migratepages(cc)) {
2173 case ISOLATE_ABORT:
2174 ret = COMPACT_CONTENDED;
2175 putback_movable_pages(&cc->migratepages);
2176 cc->nr_migratepages = 0;
2177 last_migrated_pfn = 0;
2178 goto out;
2179 case ISOLATE_NONE:
2180 if (update_cached) {
2181 cc->zone->compact_cached_migrate_pfn[1] =
2182 cc->zone->compact_cached_migrate_pfn[0];
2186 * We haven't isolated and migrated anything, but
2187 * there might still be unflushed migrations from
2188 * previous cc->order aligned block.
2190 goto check_drain;
2191 case ISOLATE_SUCCESS:
2192 update_cached = false;
2193 last_migrated_pfn = start_pfn;
2197 err = migrate_pages(&cc->migratepages, compaction_alloc,
2198 compaction_free, (unsigned long)cc, cc->mode,
2199 MR_COMPACTION);
2201 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2202 &cc->migratepages);
2204 /* All pages were either migrated or will be released */
2205 cc->nr_migratepages = 0;
2206 if (err) {
2207 putback_movable_pages(&cc->migratepages);
2209 * migrate_pages() may return -ENOMEM when scanners meet
2210 * and we want compact_finished() to detect it
2212 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2213 ret = COMPACT_CONTENDED;
2214 goto out;
2217 * We failed to migrate at least one page in the current
2218 * order-aligned block, so skip the rest of it.
2220 if (cc->direct_compaction &&
2221 (cc->mode == MIGRATE_ASYNC)) {
2222 cc->migrate_pfn = block_end_pfn(
2223 cc->migrate_pfn - 1, cc->order);
2224 /* Draining pcplists is useless in this case */
2225 last_migrated_pfn = 0;
2229 check_drain:
2231 * Has the migration scanner moved away from the previous
2232 * cc->order aligned block where we migrated from? If yes,
2233 * flush the pages that were freed, so that they can merge and
2234 * compact_finished() can detect immediately if allocation
2235 * would succeed.
2237 if (cc->order > 0 && last_migrated_pfn) {
2238 int cpu;
2239 unsigned long current_block_start =
2240 block_start_pfn(cc->migrate_pfn, cc->order);
2242 if (last_migrated_pfn < current_block_start) {
2243 cpu = get_cpu();
2244 lru_add_drain_cpu(cpu);
2245 drain_local_pages(cc->zone);
2246 put_cpu();
2247 /* No more flushing until we migrate again */
2248 last_migrated_pfn = 0;
2252 /* Stop if a page has been captured */
2253 if (capc && capc->page) {
2254 ret = COMPACT_SUCCESS;
2255 break;
2259 out:
2261 * Release free pages and update where the free scanner should restart,
2262 * so we don't leave any returned pages behind in the next attempt.
2264 if (cc->nr_freepages > 0) {
2265 unsigned long free_pfn = release_freepages(&cc->freepages);
2267 cc->nr_freepages = 0;
2268 VM_BUG_ON(free_pfn == 0);
2269 /* The cached pfn is always the first in a pageblock */
2270 free_pfn = pageblock_start_pfn(free_pfn);
2272 * Only go back, not forward. The cached pfn might have been
2273 * already reset to zone end in compact_finished()
2275 if (free_pfn > cc->zone->compact_cached_free_pfn)
2276 cc->zone->compact_cached_free_pfn = free_pfn;
2279 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2280 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2282 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2283 cc->free_pfn, end_pfn, sync, ret);
2285 return ret;
2288 static enum compact_result compact_zone_order(struct zone *zone, int order,
2289 gfp_t gfp_mask, enum compact_priority prio,
2290 unsigned int alloc_flags, int classzone_idx,
2291 struct page **capture)
2293 enum compact_result ret;
2294 struct compact_control cc = {
2295 .order = order,
2296 .search_order = order,
2297 .gfp_mask = gfp_mask,
2298 .zone = zone,
2299 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2300 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2301 .alloc_flags = alloc_flags,
2302 .classzone_idx = classzone_idx,
2303 .direct_compaction = true,
2304 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2305 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2306 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2308 struct capture_control capc = {
2309 .cc = &cc,
2310 .page = NULL,
2313 if (capture)
2314 current->capture_control = &capc;
2316 ret = compact_zone(&cc, &capc);
2318 VM_BUG_ON(!list_empty(&cc.freepages));
2319 VM_BUG_ON(!list_empty(&cc.migratepages));
2321 *capture = capc.page;
2322 current->capture_control = NULL;
2324 return ret;
2327 int sysctl_extfrag_threshold = 500;
2330 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2331 * @gfp_mask: The GFP mask of the current allocation
2332 * @order: The order of the current allocation
2333 * @alloc_flags: The allocation flags of the current allocation
2334 * @ac: The context of current allocation
2335 * @prio: Determines how hard direct compaction should try to succeed
2337 * This is the main entry point for direct page compaction.
2339 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2340 unsigned int alloc_flags, const struct alloc_context *ac,
2341 enum compact_priority prio, struct page **capture)
2343 int may_perform_io = gfp_mask & __GFP_IO;
2344 struct zoneref *z;
2345 struct zone *zone;
2346 enum compact_result rc = COMPACT_SKIPPED;
2349 * Check if the GFP flags allow compaction - GFP_NOIO is really
2350 * tricky context because the migration might require IO
2352 if (!may_perform_io)
2353 return COMPACT_SKIPPED;
2355 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2357 /* Compact each zone in the list */
2358 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2359 ac->nodemask) {
2360 enum compact_result status;
2362 if (prio > MIN_COMPACT_PRIORITY
2363 && compaction_deferred(zone, order)) {
2364 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2365 continue;
2368 status = compact_zone_order(zone, order, gfp_mask, prio,
2369 alloc_flags, ac_classzone_idx(ac), capture);
2370 rc = max(status, rc);
2372 /* The allocation should succeed, stop compacting */
2373 if (status == COMPACT_SUCCESS) {
2375 * We think the allocation will succeed in this zone,
2376 * but it is not certain, hence the false. The caller
2377 * will repeat this with true if allocation indeed
2378 * succeeds in this zone.
2380 compaction_defer_reset(zone, order, false);
2382 break;
2385 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2386 status == COMPACT_PARTIAL_SKIPPED))
2388 * We think that allocation won't succeed in this zone
2389 * so we defer compaction there. If it ends up
2390 * succeeding after all, it will be reset.
2392 defer_compaction(zone, order);
2395 * We might have stopped compacting due to need_resched() in
2396 * async compaction, or due to a fatal signal detected. In that
2397 * case do not try further zones
2399 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2400 || fatal_signal_pending(current))
2401 break;
2404 return rc;
2408 /* Compact all zones within a node */
2409 static void compact_node(int nid)
2411 pg_data_t *pgdat = NODE_DATA(nid);
2412 int zoneid;
2413 struct zone *zone;
2414 struct compact_control cc = {
2415 .order = -1,
2416 .mode = MIGRATE_SYNC,
2417 .ignore_skip_hint = true,
2418 .whole_zone = true,
2419 .gfp_mask = GFP_KERNEL,
2423 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2425 zone = &pgdat->node_zones[zoneid];
2426 if (!populated_zone(zone))
2427 continue;
2429 cc.zone = zone;
2431 compact_zone(&cc, NULL);
2433 VM_BUG_ON(!list_empty(&cc.freepages));
2434 VM_BUG_ON(!list_empty(&cc.migratepages));
2438 /* Compact all nodes in the system */
2439 static void compact_nodes(void)
2441 int nid;
2443 /* Flush pending updates to the LRU lists */
2444 lru_add_drain_all();
2446 for_each_online_node(nid)
2447 compact_node(nid);
2450 /* The written value is actually unused, all memory is compacted */
2451 int sysctl_compact_memory;
2454 * This is the entry point for compacting all nodes via
2455 * /proc/sys/vm/compact_memory
2457 int sysctl_compaction_handler(struct ctl_table *table, int write,
2458 void __user *buffer, size_t *length, loff_t *ppos)
2460 if (write)
2461 compact_nodes();
2463 return 0;
2466 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2467 static ssize_t sysfs_compact_node(struct device *dev,
2468 struct device_attribute *attr,
2469 const char *buf, size_t count)
2471 int nid = dev->id;
2473 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2474 /* Flush pending updates to the LRU lists */
2475 lru_add_drain_all();
2477 compact_node(nid);
2480 return count;
2482 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2484 int compaction_register_node(struct node *node)
2486 return device_create_file(&node->dev, &dev_attr_compact);
2489 void compaction_unregister_node(struct node *node)
2491 return device_remove_file(&node->dev, &dev_attr_compact);
2493 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2495 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2497 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2500 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2502 int zoneid;
2503 struct zone *zone;
2504 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
2506 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
2507 zone = &pgdat->node_zones[zoneid];
2509 if (!populated_zone(zone))
2510 continue;
2512 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2513 classzone_idx) == COMPACT_CONTINUE)
2514 return true;
2517 return false;
2520 static void kcompactd_do_work(pg_data_t *pgdat)
2523 * With no special task, compact all zones so that a page of requested
2524 * order is allocatable.
2526 int zoneid;
2527 struct zone *zone;
2528 struct compact_control cc = {
2529 .order = pgdat->kcompactd_max_order,
2530 .search_order = pgdat->kcompactd_max_order,
2531 .classzone_idx = pgdat->kcompactd_classzone_idx,
2532 .mode = MIGRATE_SYNC_LIGHT,
2533 .ignore_skip_hint = false,
2534 .gfp_mask = GFP_KERNEL,
2536 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2537 cc.classzone_idx);
2538 count_compact_event(KCOMPACTD_WAKE);
2540 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
2541 int status;
2543 zone = &pgdat->node_zones[zoneid];
2544 if (!populated_zone(zone))
2545 continue;
2547 if (compaction_deferred(zone, cc.order))
2548 continue;
2550 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2551 COMPACT_CONTINUE)
2552 continue;
2554 if (kthread_should_stop())
2555 return;
2557 cc.zone = zone;
2558 status = compact_zone(&cc, NULL);
2560 if (status == COMPACT_SUCCESS) {
2561 compaction_defer_reset(zone, cc.order, false);
2562 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2564 * Buddy pages may become stranded on pcps that could
2565 * otherwise coalesce on the zone's free area for
2566 * order >= cc.order. This is ratelimited by the
2567 * upcoming deferral.
2569 drain_all_pages(zone);
2572 * We use sync migration mode here, so we defer like
2573 * sync direct compaction does.
2575 defer_compaction(zone, cc.order);
2578 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2579 cc.total_migrate_scanned);
2580 count_compact_events(KCOMPACTD_FREE_SCANNED,
2581 cc.total_free_scanned);
2583 VM_BUG_ON(!list_empty(&cc.freepages));
2584 VM_BUG_ON(!list_empty(&cc.migratepages));
2588 * Regardless of success, we are done until woken up next. But remember
2589 * the requested order/classzone_idx in case it was higher/tighter than
2590 * our current ones
2592 if (pgdat->kcompactd_max_order <= cc.order)
2593 pgdat->kcompactd_max_order = 0;
2594 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2595 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2598 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2600 if (!order)
2601 return;
2603 if (pgdat->kcompactd_max_order < order)
2604 pgdat->kcompactd_max_order = order;
2606 if (pgdat->kcompactd_classzone_idx > classzone_idx)
2607 pgdat->kcompactd_classzone_idx = classzone_idx;
2610 * Pairs with implicit barrier in wait_event_freezable()
2611 * such that wakeups are not missed.
2613 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2614 return;
2616 if (!kcompactd_node_suitable(pgdat))
2617 return;
2619 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2620 classzone_idx);
2621 wake_up_interruptible(&pgdat->kcompactd_wait);
2625 * The background compaction daemon, started as a kernel thread
2626 * from the init process.
2628 static int kcompactd(void *p)
2630 pg_data_t *pgdat = (pg_data_t*)p;
2631 struct task_struct *tsk = current;
2633 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2635 if (!cpumask_empty(cpumask))
2636 set_cpus_allowed_ptr(tsk, cpumask);
2638 set_freezable();
2640 pgdat->kcompactd_max_order = 0;
2641 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2643 while (!kthread_should_stop()) {
2644 unsigned long pflags;
2646 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2647 wait_event_freezable(pgdat->kcompactd_wait,
2648 kcompactd_work_requested(pgdat));
2650 psi_memstall_enter(&pflags);
2651 kcompactd_do_work(pgdat);
2652 psi_memstall_leave(&pflags);
2655 return 0;
2659 * This kcompactd start function will be called by init and node-hot-add.
2660 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2662 int kcompactd_run(int nid)
2664 pg_data_t *pgdat = NODE_DATA(nid);
2665 int ret = 0;
2667 if (pgdat->kcompactd)
2668 return 0;
2670 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2671 if (IS_ERR(pgdat->kcompactd)) {
2672 pr_err("Failed to start kcompactd on node %d\n", nid);
2673 ret = PTR_ERR(pgdat->kcompactd);
2674 pgdat->kcompactd = NULL;
2676 return ret;
2680 * Called by memory hotplug when all memory in a node is offlined. Caller must
2681 * hold mem_hotplug_begin/end().
2683 void kcompactd_stop(int nid)
2685 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2687 if (kcompactd) {
2688 kthread_stop(kcompactd);
2689 NODE_DATA(nid)->kcompactd = NULL;
2694 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2695 * not required for correctness. So if the last cpu in a node goes
2696 * away, we get changed to run anywhere: as the first one comes back,
2697 * restore their cpu bindings.
2699 static int kcompactd_cpu_online(unsigned int cpu)
2701 int nid;
2703 for_each_node_state(nid, N_MEMORY) {
2704 pg_data_t *pgdat = NODE_DATA(nid);
2705 const struct cpumask *mask;
2707 mask = cpumask_of_node(pgdat->node_id);
2709 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2710 /* One of our CPUs online: restore mask */
2711 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2713 return 0;
2716 static int __init kcompactd_init(void)
2718 int nid;
2719 int ret;
2721 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2722 "mm/compaction:online",
2723 kcompactd_cpu_online, NULL);
2724 if (ret < 0) {
2725 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2726 return ret;
2729 for_each_node_state(nid, N_MEMORY)
2730 kcompactd_run(nid);
2731 return 0;
2733 subsys_initcall(kcompactd_init)
2735 #endif /* CONFIG_COMPACTION */