ARM: dma-api: fix max_pfn off-by-one error in __dma_supported()
[linux/fpc-iii.git] / net / ipv4 / ip_output.c
blobd84819893db96d813f4e91def912a59a87a48a7c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * The Internet Protocol (IP) output module.
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Donald Becker, <becker@super.org>
12 * Alan Cox, <Alan.Cox@linux.org>
13 * Richard Underwood
14 * Stefan Becker, <stefanb@yello.ping.de>
15 * Jorge Cwik, <jorge@laser.satlink.net>
16 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17 * Hirokazu Takahashi, <taka@valinux.co.jp>
19 * See ip_input.c for original log
21 * Fixes:
22 * Alan Cox : Missing nonblock feature in ip_build_xmit.
23 * Mike Kilburn : htons() missing in ip_build_xmit.
24 * Bradford Johnson: Fix faulty handling of some frames when
25 * no route is found.
26 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
27 * (in case if packet not accepted by
28 * output firewall rules)
29 * Mike McLagan : Routing by source
30 * Alexey Kuznetsov: use new route cache
31 * Andi Kleen: Fix broken PMTU recovery and remove
32 * some redundant tests.
33 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
34 * Andi Kleen : Replace ip_reply with ip_send_reply.
35 * Andi Kleen : Split fast and slow ip_build_xmit path
36 * for decreased register pressure on x86
37 * and more readibility.
38 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
39 * silently drop skb instead of failing with -EPERM.
40 * Detlev Wengorz : Copy protocol for fragments.
41 * Hirokazu Takahashi: HW checksumming for outgoing UDP
42 * datagrams.
43 * Hirokazu Takahashi: sendfile() on UDP works now.
46 #include <linux/uaccess.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
66 #include <net/snmp.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/xfrm.h>
71 #include <linux/skbuff.h>
72 #include <net/sock.h>
73 #include <net/arp.h>
74 #include <net/icmp.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <net/lwtunnel.h>
78 #include <linux/bpf-cgroup.h>
79 #include <linux/igmp.h>
80 #include <linux/netfilter_ipv4.h>
81 #include <linux/netfilter_bridge.h>
82 #include <linux/netlink.h>
83 #include <linux/tcp.h>
85 static int
86 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
87 unsigned int mtu,
88 int (*output)(struct net *, struct sock *, struct sk_buff *));
90 /* Generate a checksum for an outgoing IP datagram. */
91 void ip_send_check(struct iphdr *iph)
93 iph->check = 0;
94 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
96 EXPORT_SYMBOL(ip_send_check);
98 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
100 struct iphdr *iph = ip_hdr(skb);
102 iph->tot_len = htons(skb->len);
103 ip_send_check(iph);
105 /* if egress device is enslaved to an L3 master device pass the
106 * skb to its handler for processing
108 skb = l3mdev_ip_out(sk, skb);
109 if (unlikely(!skb))
110 return 0;
112 skb->protocol = htons(ETH_P_IP);
114 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
115 net, sk, skb, NULL, skb_dst(skb)->dev,
116 dst_output);
119 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
121 int err;
123 err = __ip_local_out(net, sk, skb);
124 if (likely(err == 1))
125 err = dst_output(net, sk, skb);
127 return err;
129 EXPORT_SYMBOL_GPL(ip_local_out);
131 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
133 int ttl = inet->uc_ttl;
135 if (ttl < 0)
136 ttl = ip4_dst_hoplimit(dst);
137 return ttl;
141 * Add an ip header to a skbuff and send it out.
144 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
145 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
147 struct inet_sock *inet = inet_sk(sk);
148 struct rtable *rt = skb_rtable(skb);
149 struct net *net = sock_net(sk);
150 struct iphdr *iph;
152 /* Build the IP header. */
153 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
154 skb_reset_network_header(skb);
155 iph = ip_hdr(skb);
156 iph->version = 4;
157 iph->ihl = 5;
158 iph->tos = inet->tos;
159 iph->ttl = ip_select_ttl(inet, &rt->dst);
160 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
161 iph->saddr = saddr;
162 iph->protocol = sk->sk_protocol;
163 if (ip_dont_fragment(sk, &rt->dst)) {
164 iph->frag_off = htons(IP_DF);
165 iph->id = 0;
166 } else {
167 iph->frag_off = 0;
168 __ip_select_ident(net, iph, 1);
171 if (opt && opt->opt.optlen) {
172 iph->ihl += opt->opt.optlen>>2;
173 ip_options_build(skb, &opt->opt, daddr, rt, 0);
176 skb->priority = sk->sk_priority;
177 if (!skb->mark)
178 skb->mark = sk->sk_mark;
180 /* Send it out. */
181 return ip_local_out(net, skb->sk, skb);
183 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
185 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
187 struct dst_entry *dst = skb_dst(skb);
188 struct rtable *rt = (struct rtable *)dst;
189 struct net_device *dev = dst->dev;
190 unsigned int hh_len = LL_RESERVED_SPACE(dev);
191 struct neighbour *neigh;
192 bool is_v6gw = false;
194 if (rt->rt_type == RTN_MULTICAST) {
195 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
196 } else if (rt->rt_type == RTN_BROADCAST)
197 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
199 /* Be paranoid, rather than too clever. */
200 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
201 struct sk_buff *skb2;
203 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
204 if (!skb2) {
205 kfree_skb(skb);
206 return -ENOMEM;
208 if (skb->sk)
209 skb_set_owner_w(skb2, skb->sk);
210 consume_skb(skb);
211 skb = skb2;
214 if (lwtunnel_xmit_redirect(dst->lwtstate)) {
215 int res = lwtunnel_xmit(skb);
217 if (res < 0 || res == LWTUNNEL_XMIT_DONE)
218 return res;
221 rcu_read_lock_bh();
222 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
223 if (!IS_ERR(neigh)) {
224 int res;
226 sock_confirm_neigh(skb, neigh);
227 /* if crossing protocols, can not use the cached header */
228 res = neigh_output(neigh, skb, is_v6gw);
229 rcu_read_unlock_bh();
230 return res;
232 rcu_read_unlock_bh();
234 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
235 __func__);
236 kfree_skb(skb);
237 return -EINVAL;
240 static int ip_finish_output_gso(struct net *net, struct sock *sk,
241 struct sk_buff *skb, unsigned int mtu)
243 struct sk_buff *segs, *nskb;
244 netdev_features_t features;
245 int ret = 0;
247 /* common case: seglen is <= mtu
249 if (skb_gso_validate_network_len(skb, mtu))
250 return ip_finish_output2(net, sk, skb);
252 /* Slowpath - GSO segment length exceeds the egress MTU.
254 * This can happen in several cases:
255 * - Forwarding of a TCP GRO skb, when DF flag is not set.
256 * - Forwarding of an skb that arrived on a virtualization interface
257 * (virtio-net/vhost/tap) with TSO/GSO size set by other network
258 * stack.
259 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
260 * interface with a smaller MTU.
261 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is
262 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an
263 * insufficent MTU.
265 features = netif_skb_features(skb);
266 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
267 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
268 if (IS_ERR_OR_NULL(segs)) {
269 kfree_skb(skb);
270 return -ENOMEM;
273 consume_skb(skb);
275 skb_list_walk_safe(segs, segs, nskb) {
276 int err;
278 skb_mark_not_on_list(segs);
279 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
281 if (err && ret == 0)
282 ret = err;
285 return ret;
288 static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
290 unsigned int mtu;
292 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
293 /* Policy lookup after SNAT yielded a new policy */
294 if (skb_dst(skb)->xfrm) {
295 IPCB(skb)->flags |= IPSKB_REROUTED;
296 return dst_output(net, sk, skb);
298 #endif
299 mtu = ip_skb_dst_mtu(sk, skb);
300 if (skb_is_gso(skb))
301 return ip_finish_output_gso(net, sk, skb, mtu);
303 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
304 return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
306 return ip_finish_output2(net, sk, skb);
309 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
311 int ret;
313 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
314 switch (ret) {
315 case NET_XMIT_SUCCESS:
316 return __ip_finish_output(net, sk, skb);
317 case NET_XMIT_CN:
318 return __ip_finish_output(net, sk, skb) ? : ret;
319 default:
320 kfree_skb(skb);
321 return ret;
325 static int ip_mc_finish_output(struct net *net, struct sock *sk,
326 struct sk_buff *skb)
328 struct rtable *new_rt;
329 bool do_cn = false;
330 int ret, err;
332 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
333 switch (ret) {
334 case NET_XMIT_CN:
335 do_cn = true;
336 /* fall through */
337 case NET_XMIT_SUCCESS:
338 break;
339 default:
340 kfree_skb(skb);
341 return ret;
344 /* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting
345 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten,
346 * see ipv4_pktinfo_prepare().
348 new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb));
349 if (new_rt) {
350 new_rt->rt_iif = 0;
351 skb_dst_drop(skb);
352 skb_dst_set(skb, &new_rt->dst);
355 err = dev_loopback_xmit(net, sk, skb);
356 return (do_cn && err) ? ret : err;
359 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
361 struct rtable *rt = skb_rtable(skb);
362 struct net_device *dev = rt->dst.dev;
365 * If the indicated interface is up and running, send the packet.
367 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
369 skb->dev = dev;
370 skb->protocol = htons(ETH_P_IP);
373 * Multicasts are looped back for other local users
376 if (rt->rt_flags&RTCF_MULTICAST) {
377 if (sk_mc_loop(sk)
378 #ifdef CONFIG_IP_MROUTE
379 /* Small optimization: do not loopback not local frames,
380 which returned after forwarding; they will be dropped
381 by ip_mr_input in any case.
382 Note, that local frames are looped back to be delivered
383 to local recipients.
385 This check is duplicated in ip_mr_input at the moment.
388 ((rt->rt_flags & RTCF_LOCAL) ||
389 !(IPCB(skb)->flags & IPSKB_FORWARDED))
390 #endif
392 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
393 if (newskb)
394 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
395 net, sk, newskb, NULL, newskb->dev,
396 ip_mc_finish_output);
399 /* Multicasts with ttl 0 must not go beyond the host */
401 if (ip_hdr(skb)->ttl == 0) {
402 kfree_skb(skb);
403 return 0;
407 if (rt->rt_flags&RTCF_BROADCAST) {
408 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
409 if (newskb)
410 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
411 net, sk, newskb, NULL, newskb->dev,
412 ip_mc_finish_output);
415 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
416 net, sk, skb, NULL, skb->dev,
417 ip_finish_output,
418 !(IPCB(skb)->flags & IPSKB_REROUTED));
421 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
423 struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev;
425 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
427 skb->dev = dev;
428 skb->protocol = htons(ETH_P_IP);
430 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
431 net, sk, skb, indev, dev,
432 ip_finish_output,
433 !(IPCB(skb)->flags & IPSKB_REROUTED));
437 * copy saddr and daddr, possibly using 64bit load/stores
438 * Equivalent to :
439 * iph->saddr = fl4->saddr;
440 * iph->daddr = fl4->daddr;
442 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
444 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
445 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
446 memcpy(&iph->saddr, &fl4->saddr,
447 sizeof(fl4->saddr) + sizeof(fl4->daddr));
450 /* Note: skb->sk can be different from sk, in case of tunnels */
451 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
452 __u8 tos)
454 struct inet_sock *inet = inet_sk(sk);
455 struct net *net = sock_net(sk);
456 struct ip_options_rcu *inet_opt;
457 struct flowi4 *fl4;
458 struct rtable *rt;
459 struct iphdr *iph;
460 int res;
462 /* Skip all of this if the packet is already routed,
463 * f.e. by something like SCTP.
465 rcu_read_lock();
466 inet_opt = rcu_dereference(inet->inet_opt);
467 fl4 = &fl->u.ip4;
468 rt = skb_rtable(skb);
469 if (rt)
470 goto packet_routed;
472 /* Make sure we can route this packet. */
473 rt = (struct rtable *)__sk_dst_check(sk, 0);
474 if (!rt) {
475 __be32 daddr;
477 /* Use correct destination address if we have options. */
478 daddr = inet->inet_daddr;
479 if (inet_opt && inet_opt->opt.srr)
480 daddr = inet_opt->opt.faddr;
482 /* If this fails, retransmit mechanism of transport layer will
483 * keep trying until route appears or the connection times
484 * itself out.
486 rt = ip_route_output_ports(net, fl4, sk,
487 daddr, inet->inet_saddr,
488 inet->inet_dport,
489 inet->inet_sport,
490 sk->sk_protocol,
491 RT_CONN_FLAGS_TOS(sk, tos),
492 sk->sk_bound_dev_if);
493 if (IS_ERR(rt))
494 goto no_route;
495 sk_setup_caps(sk, &rt->dst);
497 skb_dst_set_noref(skb, &rt->dst);
499 packet_routed:
500 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
501 goto no_route;
503 /* OK, we know where to send it, allocate and build IP header. */
504 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
505 skb_reset_network_header(skb);
506 iph = ip_hdr(skb);
507 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff));
508 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
509 iph->frag_off = htons(IP_DF);
510 else
511 iph->frag_off = 0;
512 iph->ttl = ip_select_ttl(inet, &rt->dst);
513 iph->protocol = sk->sk_protocol;
514 ip_copy_addrs(iph, fl4);
516 /* Transport layer set skb->h.foo itself. */
518 if (inet_opt && inet_opt->opt.optlen) {
519 iph->ihl += inet_opt->opt.optlen >> 2;
520 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
523 ip_select_ident_segs(net, skb, sk,
524 skb_shinfo(skb)->gso_segs ?: 1);
526 /* TODO : should we use skb->sk here instead of sk ? */
527 skb->priority = sk->sk_priority;
528 skb->mark = sk->sk_mark;
530 res = ip_local_out(net, sk, skb);
531 rcu_read_unlock();
532 return res;
534 no_route:
535 rcu_read_unlock();
536 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
537 kfree_skb(skb);
538 return -EHOSTUNREACH;
540 EXPORT_SYMBOL(__ip_queue_xmit);
542 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
544 to->pkt_type = from->pkt_type;
545 to->priority = from->priority;
546 to->protocol = from->protocol;
547 to->skb_iif = from->skb_iif;
548 skb_dst_drop(to);
549 skb_dst_copy(to, from);
550 to->dev = from->dev;
551 to->mark = from->mark;
553 skb_copy_hash(to, from);
555 #ifdef CONFIG_NET_SCHED
556 to->tc_index = from->tc_index;
557 #endif
558 nf_copy(to, from);
559 skb_ext_copy(to, from);
560 #if IS_ENABLED(CONFIG_IP_VS)
561 to->ipvs_property = from->ipvs_property;
562 #endif
563 skb_copy_secmark(to, from);
566 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
567 unsigned int mtu,
568 int (*output)(struct net *, struct sock *, struct sk_buff *))
570 struct iphdr *iph = ip_hdr(skb);
572 if ((iph->frag_off & htons(IP_DF)) == 0)
573 return ip_do_fragment(net, sk, skb, output);
575 if (unlikely(!skb->ignore_df ||
576 (IPCB(skb)->frag_max_size &&
577 IPCB(skb)->frag_max_size > mtu))) {
578 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
579 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
580 htonl(mtu));
581 kfree_skb(skb);
582 return -EMSGSIZE;
585 return ip_do_fragment(net, sk, skb, output);
588 void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph,
589 unsigned int hlen, struct ip_fraglist_iter *iter)
591 unsigned int first_len = skb_pagelen(skb);
593 iter->frag = skb_shinfo(skb)->frag_list;
594 skb_frag_list_init(skb);
596 iter->offset = 0;
597 iter->iph = iph;
598 iter->hlen = hlen;
600 skb->data_len = first_len - skb_headlen(skb);
601 skb->len = first_len;
602 iph->tot_len = htons(first_len);
603 iph->frag_off = htons(IP_MF);
604 ip_send_check(iph);
606 EXPORT_SYMBOL(ip_fraglist_init);
608 static void ip_fraglist_ipcb_prepare(struct sk_buff *skb,
609 struct ip_fraglist_iter *iter)
611 struct sk_buff *to = iter->frag;
613 /* Copy the flags to each fragment. */
614 IPCB(to)->flags = IPCB(skb)->flags;
616 if (iter->offset == 0)
617 ip_options_fragment(to);
620 void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter)
622 unsigned int hlen = iter->hlen;
623 struct iphdr *iph = iter->iph;
624 struct sk_buff *frag;
626 frag = iter->frag;
627 frag->ip_summed = CHECKSUM_NONE;
628 skb_reset_transport_header(frag);
629 __skb_push(frag, hlen);
630 skb_reset_network_header(frag);
631 memcpy(skb_network_header(frag), iph, hlen);
632 iter->iph = ip_hdr(frag);
633 iph = iter->iph;
634 iph->tot_len = htons(frag->len);
635 ip_copy_metadata(frag, skb);
636 iter->offset += skb->len - hlen;
637 iph->frag_off = htons(iter->offset >> 3);
638 if (frag->next)
639 iph->frag_off |= htons(IP_MF);
640 /* Ready, complete checksum */
641 ip_send_check(iph);
643 EXPORT_SYMBOL(ip_fraglist_prepare);
645 void ip_frag_init(struct sk_buff *skb, unsigned int hlen,
646 unsigned int ll_rs, unsigned int mtu, bool DF,
647 struct ip_frag_state *state)
649 struct iphdr *iph = ip_hdr(skb);
651 state->DF = DF;
652 state->hlen = hlen;
653 state->ll_rs = ll_rs;
654 state->mtu = mtu;
656 state->left = skb->len - hlen; /* Space per frame */
657 state->ptr = hlen; /* Where to start from */
659 state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
660 state->not_last_frag = iph->frag_off & htons(IP_MF);
662 EXPORT_SYMBOL(ip_frag_init);
664 static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to,
665 bool first_frag, struct ip_frag_state *state)
667 /* Copy the flags to each fragment. */
668 IPCB(to)->flags = IPCB(from)->flags;
670 /* ANK: dirty, but effective trick. Upgrade options only if
671 * the segment to be fragmented was THE FIRST (otherwise,
672 * options are already fixed) and make it ONCE
673 * on the initial skb, so that all the following fragments
674 * will inherit fixed options.
676 if (first_frag)
677 ip_options_fragment(from);
680 struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state)
682 unsigned int len = state->left;
683 struct sk_buff *skb2;
684 struct iphdr *iph;
686 len = state->left;
687 /* IF: it doesn't fit, use 'mtu' - the data space left */
688 if (len > state->mtu)
689 len = state->mtu;
690 /* IF: we are not sending up to and including the packet end
691 then align the next start on an eight byte boundary */
692 if (len < state->left) {
693 len &= ~7;
696 /* Allocate buffer */
697 skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC);
698 if (!skb2)
699 return ERR_PTR(-ENOMEM);
702 * Set up data on packet
705 ip_copy_metadata(skb2, skb);
706 skb_reserve(skb2, state->ll_rs);
707 skb_put(skb2, len + state->hlen);
708 skb_reset_network_header(skb2);
709 skb2->transport_header = skb2->network_header + state->hlen;
712 * Charge the memory for the fragment to any owner
713 * it might possess
716 if (skb->sk)
717 skb_set_owner_w(skb2, skb->sk);
720 * Copy the packet header into the new buffer.
723 skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen);
726 * Copy a block of the IP datagram.
728 if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len))
729 BUG();
730 state->left -= len;
733 * Fill in the new header fields.
735 iph = ip_hdr(skb2);
736 iph->frag_off = htons((state->offset >> 3));
737 if (state->DF)
738 iph->frag_off |= htons(IP_DF);
741 * Added AC : If we are fragmenting a fragment that's not the
742 * last fragment then keep MF on each bit
744 if (state->left > 0 || state->not_last_frag)
745 iph->frag_off |= htons(IP_MF);
746 state->ptr += len;
747 state->offset += len;
749 iph->tot_len = htons(len + state->hlen);
751 ip_send_check(iph);
753 return skb2;
755 EXPORT_SYMBOL(ip_frag_next);
758 * This IP datagram is too large to be sent in one piece. Break it up into
759 * smaller pieces (each of size equal to IP header plus
760 * a block of the data of the original IP data part) that will yet fit in a
761 * single device frame, and queue such a frame for sending.
764 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
765 int (*output)(struct net *, struct sock *, struct sk_buff *))
767 struct iphdr *iph;
768 struct sk_buff *skb2;
769 struct rtable *rt = skb_rtable(skb);
770 unsigned int mtu, hlen, ll_rs;
771 struct ip_fraglist_iter iter;
772 ktime_t tstamp = skb->tstamp;
773 struct ip_frag_state state;
774 int err = 0;
776 /* for offloaded checksums cleanup checksum before fragmentation */
777 if (skb->ip_summed == CHECKSUM_PARTIAL &&
778 (err = skb_checksum_help(skb)))
779 goto fail;
782 * Point into the IP datagram header.
785 iph = ip_hdr(skb);
787 mtu = ip_skb_dst_mtu(sk, skb);
788 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
789 mtu = IPCB(skb)->frag_max_size;
792 * Setup starting values.
795 hlen = iph->ihl * 4;
796 mtu = mtu - hlen; /* Size of data space */
797 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
798 ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
800 /* When frag_list is given, use it. First, check its validity:
801 * some transformers could create wrong frag_list or break existing
802 * one, it is not prohibited. In this case fall back to copying.
804 * LATER: this step can be merged to real generation of fragments,
805 * we can switch to copy when see the first bad fragment.
807 if (skb_has_frag_list(skb)) {
808 struct sk_buff *frag, *frag2;
809 unsigned int first_len = skb_pagelen(skb);
811 if (first_len - hlen > mtu ||
812 ((first_len - hlen) & 7) ||
813 ip_is_fragment(iph) ||
814 skb_cloned(skb) ||
815 skb_headroom(skb) < ll_rs)
816 goto slow_path;
818 skb_walk_frags(skb, frag) {
819 /* Correct geometry. */
820 if (frag->len > mtu ||
821 ((frag->len & 7) && frag->next) ||
822 skb_headroom(frag) < hlen + ll_rs)
823 goto slow_path_clean;
825 /* Partially cloned skb? */
826 if (skb_shared(frag))
827 goto slow_path_clean;
829 BUG_ON(frag->sk);
830 if (skb->sk) {
831 frag->sk = skb->sk;
832 frag->destructor = sock_wfree;
834 skb->truesize -= frag->truesize;
837 /* Everything is OK. Generate! */
838 ip_fraglist_init(skb, iph, hlen, &iter);
840 for (;;) {
841 /* Prepare header of the next frame,
842 * before previous one went down. */
843 if (iter.frag) {
844 ip_fraglist_ipcb_prepare(skb, &iter);
845 ip_fraglist_prepare(skb, &iter);
848 skb->tstamp = tstamp;
849 err = output(net, sk, skb);
851 if (!err)
852 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
853 if (err || !iter.frag)
854 break;
856 skb = ip_fraglist_next(&iter);
859 if (err == 0) {
860 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
861 return 0;
864 kfree_skb_list(iter.frag);
866 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
867 return err;
869 slow_path_clean:
870 skb_walk_frags(skb, frag2) {
871 if (frag2 == frag)
872 break;
873 frag2->sk = NULL;
874 frag2->destructor = NULL;
875 skb->truesize += frag2->truesize;
879 slow_path:
881 * Fragment the datagram.
884 ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU,
885 &state);
888 * Keep copying data until we run out.
891 while (state.left > 0) {
892 bool first_frag = (state.offset == 0);
894 skb2 = ip_frag_next(skb, &state);
895 if (IS_ERR(skb2)) {
896 err = PTR_ERR(skb2);
897 goto fail;
899 ip_frag_ipcb(skb, skb2, first_frag, &state);
902 * Put this fragment into the sending queue.
904 skb2->tstamp = tstamp;
905 err = output(net, sk, skb2);
906 if (err)
907 goto fail;
909 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
911 consume_skb(skb);
912 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
913 return err;
915 fail:
916 kfree_skb(skb);
917 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
918 return err;
920 EXPORT_SYMBOL(ip_do_fragment);
923 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
925 struct msghdr *msg = from;
927 if (skb->ip_summed == CHECKSUM_PARTIAL) {
928 if (!copy_from_iter_full(to, len, &msg->msg_iter))
929 return -EFAULT;
930 } else {
931 __wsum csum = 0;
932 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
933 return -EFAULT;
934 skb->csum = csum_block_add(skb->csum, csum, odd);
936 return 0;
938 EXPORT_SYMBOL(ip_generic_getfrag);
940 static inline __wsum
941 csum_page(struct page *page, int offset, int copy)
943 char *kaddr;
944 __wsum csum;
945 kaddr = kmap(page);
946 csum = csum_partial(kaddr + offset, copy, 0);
947 kunmap(page);
948 return csum;
951 static int __ip_append_data(struct sock *sk,
952 struct flowi4 *fl4,
953 struct sk_buff_head *queue,
954 struct inet_cork *cork,
955 struct page_frag *pfrag,
956 int getfrag(void *from, char *to, int offset,
957 int len, int odd, struct sk_buff *skb),
958 void *from, int length, int transhdrlen,
959 unsigned int flags)
961 struct inet_sock *inet = inet_sk(sk);
962 struct ubuf_info *uarg = NULL;
963 struct sk_buff *skb;
965 struct ip_options *opt = cork->opt;
966 int hh_len;
967 int exthdrlen;
968 int mtu;
969 int copy;
970 int err;
971 int offset = 0;
972 unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
973 int csummode = CHECKSUM_NONE;
974 struct rtable *rt = (struct rtable *)cork->dst;
975 unsigned int wmem_alloc_delta = 0;
976 bool paged, extra_uref = false;
977 u32 tskey = 0;
979 skb = skb_peek_tail(queue);
981 exthdrlen = !skb ? rt->dst.header_len : 0;
982 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
983 paged = !!cork->gso_size;
985 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
986 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
987 tskey = sk->sk_tskey++;
989 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
991 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
992 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
993 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
995 if (cork->length + length > maxnonfragsize - fragheaderlen) {
996 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
997 mtu - (opt ? opt->optlen : 0));
998 return -EMSGSIZE;
1002 * transhdrlen > 0 means that this is the first fragment and we wish
1003 * it won't be fragmented in the future.
1005 if (transhdrlen &&
1006 length + fragheaderlen <= mtu &&
1007 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
1008 (!(flags & MSG_MORE) || cork->gso_size) &&
1009 (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM)))
1010 csummode = CHECKSUM_PARTIAL;
1012 if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) {
1013 uarg = sock_zerocopy_realloc(sk, length, skb_zcopy(skb));
1014 if (!uarg)
1015 return -ENOBUFS;
1016 extra_uref = !skb_zcopy(skb); /* only ref on new uarg */
1017 if (rt->dst.dev->features & NETIF_F_SG &&
1018 csummode == CHECKSUM_PARTIAL) {
1019 paged = true;
1020 } else {
1021 uarg->zerocopy = 0;
1022 skb_zcopy_set(skb, uarg, &extra_uref);
1026 cork->length += length;
1028 /* So, what's going on in the loop below?
1030 * We use calculated fragment length to generate chained skb,
1031 * each of segments is IP fragment ready for sending to network after
1032 * adding appropriate IP header.
1035 if (!skb)
1036 goto alloc_new_skb;
1038 while (length > 0) {
1039 /* Check if the remaining data fits into current packet. */
1040 copy = mtu - skb->len;
1041 if (copy < length)
1042 copy = maxfraglen - skb->len;
1043 if (copy <= 0) {
1044 char *data;
1045 unsigned int datalen;
1046 unsigned int fraglen;
1047 unsigned int fraggap;
1048 unsigned int alloclen;
1049 unsigned int pagedlen;
1050 struct sk_buff *skb_prev;
1051 alloc_new_skb:
1052 skb_prev = skb;
1053 if (skb_prev)
1054 fraggap = skb_prev->len - maxfraglen;
1055 else
1056 fraggap = 0;
1059 * If remaining data exceeds the mtu,
1060 * we know we need more fragment(s).
1062 datalen = length + fraggap;
1063 if (datalen > mtu - fragheaderlen)
1064 datalen = maxfraglen - fragheaderlen;
1065 fraglen = datalen + fragheaderlen;
1066 pagedlen = 0;
1068 if ((flags & MSG_MORE) &&
1069 !(rt->dst.dev->features&NETIF_F_SG))
1070 alloclen = mtu;
1071 else if (!paged)
1072 alloclen = fraglen;
1073 else {
1074 alloclen = min_t(int, fraglen, MAX_HEADER);
1075 pagedlen = fraglen - alloclen;
1078 alloclen += exthdrlen;
1080 /* The last fragment gets additional space at tail.
1081 * Note, with MSG_MORE we overallocate on fragments,
1082 * because we have no idea what fragment will be
1083 * the last.
1085 if (datalen == length + fraggap)
1086 alloclen += rt->dst.trailer_len;
1088 if (transhdrlen) {
1089 skb = sock_alloc_send_skb(sk,
1090 alloclen + hh_len + 15,
1091 (flags & MSG_DONTWAIT), &err);
1092 } else {
1093 skb = NULL;
1094 if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
1095 2 * sk->sk_sndbuf)
1096 skb = alloc_skb(alloclen + hh_len + 15,
1097 sk->sk_allocation);
1098 if (unlikely(!skb))
1099 err = -ENOBUFS;
1101 if (!skb)
1102 goto error;
1105 * Fill in the control structures
1107 skb->ip_summed = csummode;
1108 skb->csum = 0;
1109 skb_reserve(skb, hh_len);
1112 * Find where to start putting bytes.
1114 data = skb_put(skb, fraglen + exthdrlen - pagedlen);
1115 skb_set_network_header(skb, exthdrlen);
1116 skb->transport_header = (skb->network_header +
1117 fragheaderlen);
1118 data += fragheaderlen + exthdrlen;
1120 if (fraggap) {
1121 skb->csum = skb_copy_and_csum_bits(
1122 skb_prev, maxfraglen,
1123 data + transhdrlen, fraggap, 0);
1124 skb_prev->csum = csum_sub(skb_prev->csum,
1125 skb->csum);
1126 data += fraggap;
1127 pskb_trim_unique(skb_prev, maxfraglen);
1130 copy = datalen - transhdrlen - fraggap - pagedlen;
1131 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1132 err = -EFAULT;
1133 kfree_skb(skb);
1134 goto error;
1137 offset += copy;
1138 length -= copy + transhdrlen;
1139 transhdrlen = 0;
1140 exthdrlen = 0;
1141 csummode = CHECKSUM_NONE;
1143 /* only the initial fragment is time stamped */
1144 skb_shinfo(skb)->tx_flags = cork->tx_flags;
1145 cork->tx_flags = 0;
1146 skb_shinfo(skb)->tskey = tskey;
1147 tskey = 0;
1148 skb_zcopy_set(skb, uarg, &extra_uref);
1150 if ((flags & MSG_CONFIRM) && !skb_prev)
1151 skb_set_dst_pending_confirm(skb, 1);
1154 * Put the packet on the pending queue.
1156 if (!skb->destructor) {
1157 skb->destructor = sock_wfree;
1158 skb->sk = sk;
1159 wmem_alloc_delta += skb->truesize;
1161 __skb_queue_tail(queue, skb);
1162 continue;
1165 if (copy > length)
1166 copy = length;
1168 if (!(rt->dst.dev->features&NETIF_F_SG) &&
1169 skb_tailroom(skb) >= copy) {
1170 unsigned int off;
1172 off = skb->len;
1173 if (getfrag(from, skb_put(skb, copy),
1174 offset, copy, off, skb) < 0) {
1175 __skb_trim(skb, off);
1176 err = -EFAULT;
1177 goto error;
1179 } else if (!uarg || !uarg->zerocopy) {
1180 int i = skb_shinfo(skb)->nr_frags;
1182 err = -ENOMEM;
1183 if (!sk_page_frag_refill(sk, pfrag))
1184 goto error;
1186 if (!skb_can_coalesce(skb, i, pfrag->page,
1187 pfrag->offset)) {
1188 err = -EMSGSIZE;
1189 if (i == MAX_SKB_FRAGS)
1190 goto error;
1192 __skb_fill_page_desc(skb, i, pfrag->page,
1193 pfrag->offset, 0);
1194 skb_shinfo(skb)->nr_frags = ++i;
1195 get_page(pfrag->page);
1197 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1198 if (getfrag(from,
1199 page_address(pfrag->page) + pfrag->offset,
1200 offset, copy, skb->len, skb) < 0)
1201 goto error_efault;
1203 pfrag->offset += copy;
1204 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1205 skb->len += copy;
1206 skb->data_len += copy;
1207 skb->truesize += copy;
1208 wmem_alloc_delta += copy;
1209 } else {
1210 err = skb_zerocopy_iter_dgram(skb, from, copy);
1211 if (err < 0)
1212 goto error;
1214 offset += copy;
1215 length -= copy;
1218 if (wmem_alloc_delta)
1219 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1220 return 0;
1222 error_efault:
1223 err = -EFAULT;
1224 error:
1225 if (uarg)
1226 sock_zerocopy_put_abort(uarg, extra_uref);
1227 cork->length -= length;
1228 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1229 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1230 return err;
1233 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1234 struct ipcm_cookie *ipc, struct rtable **rtp)
1236 struct ip_options_rcu *opt;
1237 struct rtable *rt;
1239 rt = *rtp;
1240 if (unlikely(!rt))
1241 return -EFAULT;
1244 * setup for corking.
1246 opt = ipc->opt;
1247 if (opt) {
1248 if (!cork->opt) {
1249 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1250 sk->sk_allocation);
1251 if (unlikely(!cork->opt))
1252 return -ENOBUFS;
1254 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1255 cork->flags |= IPCORK_OPT;
1256 cork->addr = ipc->addr;
1259 cork->fragsize = ip_sk_use_pmtu(sk) ?
1260 dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu);
1262 if (!inetdev_valid_mtu(cork->fragsize))
1263 return -ENETUNREACH;
1265 cork->gso_size = ipc->gso_size;
1267 cork->dst = &rt->dst;
1268 /* We stole this route, caller should not release it. */
1269 *rtp = NULL;
1271 cork->length = 0;
1272 cork->ttl = ipc->ttl;
1273 cork->tos = ipc->tos;
1274 cork->mark = ipc->sockc.mark;
1275 cork->priority = ipc->priority;
1276 cork->transmit_time = ipc->sockc.transmit_time;
1277 cork->tx_flags = 0;
1278 sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags);
1280 return 0;
1284 * ip_append_data() and ip_append_page() can make one large IP datagram
1285 * from many pieces of data. Each pieces will be holded on the socket
1286 * until ip_push_pending_frames() is called. Each piece can be a page
1287 * or non-page data.
1289 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1290 * this interface potentially.
1292 * LATER: length must be adjusted by pad at tail, when it is required.
1294 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1295 int getfrag(void *from, char *to, int offset, int len,
1296 int odd, struct sk_buff *skb),
1297 void *from, int length, int transhdrlen,
1298 struct ipcm_cookie *ipc, struct rtable **rtp,
1299 unsigned int flags)
1301 struct inet_sock *inet = inet_sk(sk);
1302 int err;
1304 if (flags&MSG_PROBE)
1305 return 0;
1307 if (skb_queue_empty(&sk->sk_write_queue)) {
1308 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1309 if (err)
1310 return err;
1311 } else {
1312 transhdrlen = 0;
1315 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1316 sk_page_frag(sk), getfrag,
1317 from, length, transhdrlen, flags);
1320 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1321 int offset, size_t size, int flags)
1323 struct inet_sock *inet = inet_sk(sk);
1324 struct sk_buff *skb;
1325 struct rtable *rt;
1326 struct ip_options *opt = NULL;
1327 struct inet_cork *cork;
1328 int hh_len;
1329 int mtu;
1330 int len;
1331 int err;
1332 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1334 if (inet->hdrincl)
1335 return -EPERM;
1337 if (flags&MSG_PROBE)
1338 return 0;
1340 if (skb_queue_empty(&sk->sk_write_queue))
1341 return -EINVAL;
1343 cork = &inet->cork.base;
1344 rt = (struct rtable *)cork->dst;
1345 if (cork->flags & IPCORK_OPT)
1346 opt = cork->opt;
1348 if (!(rt->dst.dev->features&NETIF_F_SG))
1349 return -EOPNOTSUPP;
1351 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1352 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
1354 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1355 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1356 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1358 if (cork->length + size > maxnonfragsize - fragheaderlen) {
1359 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1360 mtu - (opt ? opt->optlen : 0));
1361 return -EMSGSIZE;
1364 skb = skb_peek_tail(&sk->sk_write_queue);
1365 if (!skb)
1366 return -EINVAL;
1368 cork->length += size;
1370 while (size > 0) {
1371 /* Check if the remaining data fits into current packet. */
1372 len = mtu - skb->len;
1373 if (len < size)
1374 len = maxfraglen - skb->len;
1376 if (len <= 0) {
1377 struct sk_buff *skb_prev;
1378 int alloclen;
1380 skb_prev = skb;
1381 fraggap = skb_prev->len - maxfraglen;
1383 alloclen = fragheaderlen + hh_len + fraggap + 15;
1384 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1385 if (unlikely(!skb)) {
1386 err = -ENOBUFS;
1387 goto error;
1391 * Fill in the control structures
1393 skb->ip_summed = CHECKSUM_NONE;
1394 skb->csum = 0;
1395 skb_reserve(skb, hh_len);
1398 * Find where to start putting bytes.
1400 skb_put(skb, fragheaderlen + fraggap);
1401 skb_reset_network_header(skb);
1402 skb->transport_header = (skb->network_header +
1403 fragheaderlen);
1404 if (fraggap) {
1405 skb->csum = skb_copy_and_csum_bits(skb_prev,
1406 maxfraglen,
1407 skb_transport_header(skb),
1408 fraggap, 0);
1409 skb_prev->csum = csum_sub(skb_prev->csum,
1410 skb->csum);
1411 pskb_trim_unique(skb_prev, maxfraglen);
1415 * Put the packet on the pending queue.
1417 __skb_queue_tail(&sk->sk_write_queue, skb);
1418 continue;
1421 if (len > size)
1422 len = size;
1424 if (skb_append_pagefrags(skb, page, offset, len)) {
1425 err = -EMSGSIZE;
1426 goto error;
1429 if (skb->ip_summed == CHECKSUM_NONE) {
1430 __wsum csum;
1431 csum = csum_page(page, offset, len);
1432 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1435 skb->len += len;
1436 skb->data_len += len;
1437 skb->truesize += len;
1438 refcount_add(len, &sk->sk_wmem_alloc);
1439 offset += len;
1440 size -= len;
1442 return 0;
1444 error:
1445 cork->length -= size;
1446 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1447 return err;
1450 static void ip_cork_release(struct inet_cork *cork)
1452 cork->flags &= ~IPCORK_OPT;
1453 kfree(cork->opt);
1454 cork->opt = NULL;
1455 dst_release(cork->dst);
1456 cork->dst = NULL;
1460 * Combined all pending IP fragments on the socket as one IP datagram
1461 * and push them out.
1463 struct sk_buff *__ip_make_skb(struct sock *sk,
1464 struct flowi4 *fl4,
1465 struct sk_buff_head *queue,
1466 struct inet_cork *cork)
1468 struct sk_buff *skb, *tmp_skb;
1469 struct sk_buff **tail_skb;
1470 struct inet_sock *inet = inet_sk(sk);
1471 struct net *net = sock_net(sk);
1472 struct ip_options *opt = NULL;
1473 struct rtable *rt = (struct rtable *)cork->dst;
1474 struct iphdr *iph;
1475 __be16 df = 0;
1476 __u8 ttl;
1478 skb = __skb_dequeue(queue);
1479 if (!skb)
1480 goto out;
1481 tail_skb = &(skb_shinfo(skb)->frag_list);
1483 /* move skb->data to ip header from ext header */
1484 if (skb->data < skb_network_header(skb))
1485 __skb_pull(skb, skb_network_offset(skb));
1486 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1487 __skb_pull(tmp_skb, skb_network_header_len(skb));
1488 *tail_skb = tmp_skb;
1489 tail_skb = &(tmp_skb->next);
1490 skb->len += tmp_skb->len;
1491 skb->data_len += tmp_skb->len;
1492 skb->truesize += tmp_skb->truesize;
1493 tmp_skb->destructor = NULL;
1494 tmp_skb->sk = NULL;
1497 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1498 * to fragment the frame generated here. No matter, what transforms
1499 * how transforms change size of the packet, it will come out.
1501 skb->ignore_df = ip_sk_ignore_df(sk);
1503 /* DF bit is set when we want to see DF on outgoing frames.
1504 * If ignore_df is set too, we still allow to fragment this frame
1505 * locally. */
1506 if (inet->pmtudisc == IP_PMTUDISC_DO ||
1507 inet->pmtudisc == IP_PMTUDISC_PROBE ||
1508 (skb->len <= dst_mtu(&rt->dst) &&
1509 ip_dont_fragment(sk, &rt->dst)))
1510 df = htons(IP_DF);
1512 if (cork->flags & IPCORK_OPT)
1513 opt = cork->opt;
1515 if (cork->ttl != 0)
1516 ttl = cork->ttl;
1517 else if (rt->rt_type == RTN_MULTICAST)
1518 ttl = inet->mc_ttl;
1519 else
1520 ttl = ip_select_ttl(inet, &rt->dst);
1522 iph = ip_hdr(skb);
1523 iph->version = 4;
1524 iph->ihl = 5;
1525 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1526 iph->frag_off = df;
1527 iph->ttl = ttl;
1528 iph->protocol = sk->sk_protocol;
1529 ip_copy_addrs(iph, fl4);
1530 ip_select_ident(net, skb, sk);
1532 if (opt) {
1533 iph->ihl += opt->optlen>>2;
1534 ip_options_build(skb, opt, cork->addr, rt, 0);
1537 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1538 skb->mark = cork->mark;
1539 skb->tstamp = cork->transmit_time;
1541 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1542 * on dst refcount
1544 cork->dst = NULL;
1545 skb_dst_set(skb, &rt->dst);
1547 if (iph->protocol == IPPROTO_ICMP)
1548 icmp_out_count(net, ((struct icmphdr *)
1549 skb_transport_header(skb))->type);
1551 ip_cork_release(cork);
1552 out:
1553 return skb;
1556 int ip_send_skb(struct net *net, struct sk_buff *skb)
1558 int err;
1560 err = ip_local_out(net, skb->sk, skb);
1561 if (err) {
1562 if (err > 0)
1563 err = net_xmit_errno(err);
1564 if (err)
1565 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1568 return err;
1571 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1573 struct sk_buff *skb;
1575 skb = ip_finish_skb(sk, fl4);
1576 if (!skb)
1577 return 0;
1579 /* Netfilter gets whole the not fragmented skb. */
1580 return ip_send_skb(sock_net(sk), skb);
1584 * Throw away all pending data on the socket.
1586 static void __ip_flush_pending_frames(struct sock *sk,
1587 struct sk_buff_head *queue,
1588 struct inet_cork *cork)
1590 struct sk_buff *skb;
1592 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1593 kfree_skb(skb);
1595 ip_cork_release(cork);
1598 void ip_flush_pending_frames(struct sock *sk)
1600 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1603 struct sk_buff *ip_make_skb(struct sock *sk,
1604 struct flowi4 *fl4,
1605 int getfrag(void *from, char *to, int offset,
1606 int len, int odd, struct sk_buff *skb),
1607 void *from, int length, int transhdrlen,
1608 struct ipcm_cookie *ipc, struct rtable **rtp,
1609 struct inet_cork *cork, unsigned int flags)
1611 struct sk_buff_head queue;
1612 int err;
1614 if (flags & MSG_PROBE)
1615 return NULL;
1617 __skb_queue_head_init(&queue);
1619 cork->flags = 0;
1620 cork->addr = 0;
1621 cork->opt = NULL;
1622 err = ip_setup_cork(sk, cork, ipc, rtp);
1623 if (err)
1624 return ERR_PTR(err);
1626 err = __ip_append_data(sk, fl4, &queue, cork,
1627 &current->task_frag, getfrag,
1628 from, length, transhdrlen, flags);
1629 if (err) {
1630 __ip_flush_pending_frames(sk, &queue, cork);
1631 return ERR_PTR(err);
1634 return __ip_make_skb(sk, fl4, &queue, cork);
1638 * Fetch data from kernel space and fill in checksum if needed.
1640 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1641 int len, int odd, struct sk_buff *skb)
1643 __wsum csum;
1645 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1646 skb->csum = csum_block_add(skb->csum, csum, odd);
1647 return 0;
1651 * Generic function to send a packet as reply to another packet.
1652 * Used to send some TCP resets/acks so far.
1654 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1655 const struct ip_options *sopt,
1656 __be32 daddr, __be32 saddr,
1657 const struct ip_reply_arg *arg,
1658 unsigned int len, u64 transmit_time)
1660 struct ip_options_data replyopts;
1661 struct ipcm_cookie ipc;
1662 struct flowi4 fl4;
1663 struct rtable *rt = skb_rtable(skb);
1664 struct net *net = sock_net(sk);
1665 struct sk_buff *nskb;
1666 int err;
1667 int oif;
1669 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1670 return;
1672 ipcm_init(&ipc);
1673 ipc.addr = daddr;
1674 ipc.sockc.transmit_time = transmit_time;
1676 if (replyopts.opt.opt.optlen) {
1677 ipc.opt = &replyopts.opt;
1679 if (replyopts.opt.opt.srr)
1680 daddr = replyopts.opt.opt.faddr;
1683 oif = arg->bound_dev_if;
1684 if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1685 oif = skb->skb_iif;
1687 flowi4_init_output(&fl4, oif,
1688 IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark,
1689 RT_TOS(arg->tos),
1690 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1691 ip_reply_arg_flowi_flags(arg),
1692 daddr, saddr,
1693 tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1694 arg->uid);
1695 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1696 rt = ip_route_output_key(net, &fl4);
1697 if (IS_ERR(rt))
1698 return;
1700 inet_sk(sk)->tos = arg->tos;
1702 sk->sk_protocol = ip_hdr(skb)->protocol;
1703 sk->sk_bound_dev_if = arg->bound_dev_if;
1704 sk->sk_sndbuf = sysctl_wmem_default;
1705 sk->sk_mark = fl4.flowi4_mark;
1706 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1707 len, 0, &ipc, &rt, MSG_DONTWAIT);
1708 if (unlikely(err)) {
1709 ip_flush_pending_frames(sk);
1710 goto out;
1713 nskb = skb_peek(&sk->sk_write_queue);
1714 if (nskb) {
1715 if (arg->csumoffset >= 0)
1716 *((__sum16 *)skb_transport_header(nskb) +
1717 arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1718 arg->csum));
1719 nskb->ip_summed = CHECKSUM_NONE;
1720 ip_push_pending_frames(sk, &fl4);
1722 out:
1723 ip_rt_put(rt);
1726 void __init ip_init(void)
1728 ip_rt_init();
1729 inet_initpeers();
1731 #if defined(CONFIG_IP_MULTICAST)
1732 igmp_mc_init();
1733 #endif