1 // SPDX-License-Identifier: GPL-2.0-only
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * The Internet Protocol (IP) output module.
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Donald Becker, <becker@super.org>
12 * Alan Cox, <Alan.Cox@linux.org>
14 * Stefan Becker, <stefanb@yello.ping.de>
15 * Jorge Cwik, <jorge@laser.satlink.net>
16 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17 * Hirokazu Takahashi, <taka@valinux.co.jp>
19 * See ip_input.c for original log
22 * Alan Cox : Missing nonblock feature in ip_build_xmit.
23 * Mike Kilburn : htons() missing in ip_build_xmit.
24 * Bradford Johnson: Fix faulty handling of some frames when
26 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
27 * (in case if packet not accepted by
28 * output firewall rules)
29 * Mike McLagan : Routing by source
30 * Alexey Kuznetsov: use new route cache
31 * Andi Kleen: Fix broken PMTU recovery and remove
32 * some redundant tests.
33 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
34 * Andi Kleen : Replace ip_reply with ip_send_reply.
35 * Andi Kleen : Split fast and slow ip_build_xmit path
36 * for decreased register pressure on x86
37 * and more readibility.
38 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
39 * silently drop skb instead of failing with -EPERM.
40 * Detlev Wengorz : Copy protocol for fragments.
41 * Hirokazu Takahashi: HW checksumming for outgoing UDP
43 * Hirokazu Takahashi: sendfile() on UDP works now.
46 #include <linux/uaccess.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
71 #include <linux/skbuff.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <net/lwtunnel.h>
78 #include <linux/bpf-cgroup.h>
79 #include <linux/igmp.h>
80 #include <linux/netfilter_ipv4.h>
81 #include <linux/netfilter_bridge.h>
82 #include <linux/netlink.h>
83 #include <linux/tcp.h>
86 ip_fragment(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
,
88 int (*output
)(struct net
*, struct sock
*, struct sk_buff
*));
90 /* Generate a checksum for an outgoing IP datagram. */
91 void ip_send_check(struct iphdr
*iph
)
94 iph
->check
= ip_fast_csum((unsigned char *)iph
, iph
->ihl
);
96 EXPORT_SYMBOL(ip_send_check
);
98 int __ip_local_out(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
100 struct iphdr
*iph
= ip_hdr(skb
);
102 iph
->tot_len
= htons(skb
->len
);
105 /* if egress device is enslaved to an L3 master device pass the
106 * skb to its handler for processing
108 skb
= l3mdev_ip_out(sk
, skb
);
112 skb
->protocol
= htons(ETH_P_IP
);
114 return nf_hook(NFPROTO_IPV4
, NF_INET_LOCAL_OUT
,
115 net
, sk
, skb
, NULL
, skb_dst(skb
)->dev
,
119 int ip_local_out(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
123 err
= __ip_local_out(net
, sk
, skb
);
124 if (likely(err
== 1))
125 err
= dst_output(net
, sk
, skb
);
129 EXPORT_SYMBOL_GPL(ip_local_out
);
131 static inline int ip_select_ttl(struct inet_sock
*inet
, struct dst_entry
*dst
)
133 int ttl
= inet
->uc_ttl
;
136 ttl
= ip4_dst_hoplimit(dst
);
141 * Add an ip header to a skbuff and send it out.
144 int ip_build_and_send_pkt(struct sk_buff
*skb
, const struct sock
*sk
,
145 __be32 saddr
, __be32 daddr
, struct ip_options_rcu
*opt
)
147 struct inet_sock
*inet
= inet_sk(sk
);
148 struct rtable
*rt
= skb_rtable(skb
);
149 struct net
*net
= sock_net(sk
);
152 /* Build the IP header. */
153 skb_push(skb
, sizeof(struct iphdr
) + (opt
? opt
->opt
.optlen
: 0));
154 skb_reset_network_header(skb
);
158 iph
->tos
= inet
->tos
;
159 iph
->ttl
= ip_select_ttl(inet
, &rt
->dst
);
160 iph
->daddr
= (opt
&& opt
->opt
.srr
? opt
->opt
.faddr
: daddr
);
162 iph
->protocol
= sk
->sk_protocol
;
163 if (ip_dont_fragment(sk
, &rt
->dst
)) {
164 iph
->frag_off
= htons(IP_DF
);
168 __ip_select_ident(net
, iph
, 1);
171 if (opt
&& opt
->opt
.optlen
) {
172 iph
->ihl
+= opt
->opt
.optlen
>>2;
173 ip_options_build(skb
, &opt
->opt
, daddr
, rt
, 0);
176 skb
->priority
= sk
->sk_priority
;
178 skb
->mark
= sk
->sk_mark
;
181 return ip_local_out(net
, skb
->sk
, skb
);
183 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt
);
185 static int ip_finish_output2(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
187 struct dst_entry
*dst
= skb_dst(skb
);
188 struct rtable
*rt
= (struct rtable
*)dst
;
189 struct net_device
*dev
= dst
->dev
;
190 unsigned int hh_len
= LL_RESERVED_SPACE(dev
);
191 struct neighbour
*neigh
;
192 bool is_v6gw
= false;
194 if (rt
->rt_type
== RTN_MULTICAST
) {
195 IP_UPD_PO_STATS(net
, IPSTATS_MIB_OUTMCAST
, skb
->len
);
196 } else if (rt
->rt_type
== RTN_BROADCAST
)
197 IP_UPD_PO_STATS(net
, IPSTATS_MIB_OUTBCAST
, skb
->len
);
199 /* Be paranoid, rather than too clever. */
200 if (unlikely(skb_headroom(skb
) < hh_len
&& dev
->header_ops
)) {
201 struct sk_buff
*skb2
;
203 skb2
= skb_realloc_headroom(skb
, LL_RESERVED_SPACE(dev
));
209 skb_set_owner_w(skb2
, skb
->sk
);
214 if (lwtunnel_xmit_redirect(dst
->lwtstate
)) {
215 int res
= lwtunnel_xmit(skb
);
217 if (res
< 0 || res
== LWTUNNEL_XMIT_DONE
)
222 neigh
= ip_neigh_for_gw(rt
, skb
, &is_v6gw
);
223 if (!IS_ERR(neigh
)) {
226 sock_confirm_neigh(skb
, neigh
);
227 /* if crossing protocols, can not use the cached header */
228 res
= neigh_output(neigh
, skb
, is_v6gw
);
229 rcu_read_unlock_bh();
232 rcu_read_unlock_bh();
234 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
240 static int ip_finish_output_gso(struct net
*net
, struct sock
*sk
,
241 struct sk_buff
*skb
, unsigned int mtu
)
243 struct sk_buff
*segs
, *nskb
;
244 netdev_features_t features
;
247 /* common case: seglen is <= mtu
249 if (skb_gso_validate_network_len(skb
, mtu
))
250 return ip_finish_output2(net
, sk
, skb
);
252 /* Slowpath - GSO segment length exceeds the egress MTU.
254 * This can happen in several cases:
255 * - Forwarding of a TCP GRO skb, when DF flag is not set.
256 * - Forwarding of an skb that arrived on a virtualization interface
257 * (virtio-net/vhost/tap) with TSO/GSO size set by other network
259 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
260 * interface with a smaller MTU.
261 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is
262 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an
265 features
= netif_skb_features(skb
);
266 BUILD_BUG_ON(sizeof(*IPCB(skb
)) > SKB_SGO_CB_OFFSET
);
267 segs
= skb_gso_segment(skb
, features
& ~NETIF_F_GSO_MASK
);
268 if (IS_ERR_OR_NULL(segs
)) {
275 skb_list_walk_safe(segs
, segs
, nskb
) {
278 skb_mark_not_on_list(segs
);
279 err
= ip_fragment(net
, sk
, segs
, mtu
, ip_finish_output2
);
288 static int __ip_finish_output(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
292 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
293 /* Policy lookup after SNAT yielded a new policy */
294 if (skb_dst(skb
)->xfrm
) {
295 IPCB(skb
)->flags
|= IPSKB_REROUTED
;
296 return dst_output(net
, sk
, skb
);
299 mtu
= ip_skb_dst_mtu(sk
, skb
);
301 return ip_finish_output_gso(net
, sk
, skb
, mtu
);
303 if (skb
->len
> mtu
|| (IPCB(skb
)->flags
& IPSKB_FRAG_PMTU
))
304 return ip_fragment(net
, sk
, skb
, mtu
, ip_finish_output2
);
306 return ip_finish_output2(net
, sk
, skb
);
309 static int ip_finish_output(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
313 ret
= BPF_CGROUP_RUN_PROG_INET_EGRESS(sk
, skb
);
315 case NET_XMIT_SUCCESS
:
316 return __ip_finish_output(net
, sk
, skb
);
318 return __ip_finish_output(net
, sk
, skb
) ? : ret
;
325 static int ip_mc_finish_output(struct net
*net
, struct sock
*sk
,
328 struct rtable
*new_rt
;
332 ret
= BPF_CGROUP_RUN_PROG_INET_EGRESS(sk
, skb
);
337 case NET_XMIT_SUCCESS
:
344 /* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting
345 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten,
346 * see ipv4_pktinfo_prepare().
348 new_rt
= rt_dst_clone(net
->loopback_dev
, skb_rtable(skb
));
352 skb_dst_set(skb
, &new_rt
->dst
);
355 err
= dev_loopback_xmit(net
, sk
, skb
);
356 return (do_cn
&& err
) ? ret
: err
;
359 int ip_mc_output(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
361 struct rtable
*rt
= skb_rtable(skb
);
362 struct net_device
*dev
= rt
->dst
.dev
;
365 * If the indicated interface is up and running, send the packet.
367 IP_UPD_PO_STATS(net
, IPSTATS_MIB_OUT
, skb
->len
);
370 skb
->protocol
= htons(ETH_P_IP
);
373 * Multicasts are looped back for other local users
376 if (rt
->rt_flags
&RTCF_MULTICAST
) {
378 #ifdef CONFIG_IP_MROUTE
379 /* Small optimization: do not loopback not local frames,
380 which returned after forwarding; they will be dropped
381 by ip_mr_input in any case.
382 Note, that local frames are looped back to be delivered
385 This check is duplicated in ip_mr_input at the moment.
388 ((rt
->rt_flags
& RTCF_LOCAL
) ||
389 !(IPCB(skb
)->flags
& IPSKB_FORWARDED
))
392 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
394 NF_HOOK(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
395 net
, sk
, newskb
, NULL
, newskb
->dev
,
396 ip_mc_finish_output
);
399 /* Multicasts with ttl 0 must not go beyond the host */
401 if (ip_hdr(skb
)->ttl
== 0) {
407 if (rt
->rt_flags
&RTCF_BROADCAST
) {
408 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
410 NF_HOOK(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
411 net
, sk
, newskb
, NULL
, newskb
->dev
,
412 ip_mc_finish_output
);
415 return NF_HOOK_COND(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
416 net
, sk
, skb
, NULL
, skb
->dev
,
418 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
421 int ip_output(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
423 struct net_device
*dev
= skb_dst(skb
)->dev
, *indev
= skb
->dev
;
425 IP_UPD_PO_STATS(net
, IPSTATS_MIB_OUT
, skb
->len
);
428 skb
->protocol
= htons(ETH_P_IP
);
430 return NF_HOOK_COND(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
431 net
, sk
, skb
, indev
, dev
,
433 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
437 * copy saddr and daddr, possibly using 64bit load/stores
439 * iph->saddr = fl4->saddr;
440 * iph->daddr = fl4->daddr;
442 static void ip_copy_addrs(struct iphdr
*iph
, const struct flowi4
*fl4
)
444 BUILD_BUG_ON(offsetof(typeof(*fl4
), daddr
) !=
445 offsetof(typeof(*fl4
), saddr
) + sizeof(fl4
->saddr
));
446 memcpy(&iph
->saddr
, &fl4
->saddr
,
447 sizeof(fl4
->saddr
) + sizeof(fl4
->daddr
));
450 /* Note: skb->sk can be different from sk, in case of tunnels */
451 int __ip_queue_xmit(struct sock
*sk
, struct sk_buff
*skb
, struct flowi
*fl
,
454 struct inet_sock
*inet
= inet_sk(sk
);
455 struct net
*net
= sock_net(sk
);
456 struct ip_options_rcu
*inet_opt
;
462 /* Skip all of this if the packet is already routed,
463 * f.e. by something like SCTP.
466 inet_opt
= rcu_dereference(inet
->inet_opt
);
468 rt
= skb_rtable(skb
);
472 /* Make sure we can route this packet. */
473 rt
= (struct rtable
*)__sk_dst_check(sk
, 0);
477 /* Use correct destination address if we have options. */
478 daddr
= inet
->inet_daddr
;
479 if (inet_opt
&& inet_opt
->opt
.srr
)
480 daddr
= inet_opt
->opt
.faddr
;
482 /* If this fails, retransmit mechanism of transport layer will
483 * keep trying until route appears or the connection times
486 rt
= ip_route_output_ports(net
, fl4
, sk
,
487 daddr
, inet
->inet_saddr
,
491 RT_CONN_FLAGS_TOS(sk
, tos
),
492 sk
->sk_bound_dev_if
);
495 sk_setup_caps(sk
, &rt
->dst
);
497 skb_dst_set_noref(skb
, &rt
->dst
);
500 if (inet_opt
&& inet_opt
->opt
.is_strictroute
&& rt
->rt_uses_gateway
)
503 /* OK, we know where to send it, allocate and build IP header. */
504 skb_push(skb
, sizeof(struct iphdr
) + (inet_opt
? inet_opt
->opt
.optlen
: 0));
505 skb_reset_network_header(skb
);
507 *((__be16
*)iph
) = htons((4 << 12) | (5 << 8) | (tos
& 0xff));
508 if (ip_dont_fragment(sk
, &rt
->dst
) && !skb
->ignore_df
)
509 iph
->frag_off
= htons(IP_DF
);
512 iph
->ttl
= ip_select_ttl(inet
, &rt
->dst
);
513 iph
->protocol
= sk
->sk_protocol
;
514 ip_copy_addrs(iph
, fl4
);
516 /* Transport layer set skb->h.foo itself. */
518 if (inet_opt
&& inet_opt
->opt
.optlen
) {
519 iph
->ihl
+= inet_opt
->opt
.optlen
>> 2;
520 ip_options_build(skb
, &inet_opt
->opt
, inet
->inet_daddr
, rt
, 0);
523 ip_select_ident_segs(net
, skb
, sk
,
524 skb_shinfo(skb
)->gso_segs
?: 1);
526 /* TODO : should we use skb->sk here instead of sk ? */
527 skb
->priority
= sk
->sk_priority
;
528 skb
->mark
= sk
->sk_mark
;
530 res
= ip_local_out(net
, sk
, skb
);
536 IP_INC_STATS(net
, IPSTATS_MIB_OUTNOROUTES
);
538 return -EHOSTUNREACH
;
540 EXPORT_SYMBOL(__ip_queue_xmit
);
542 static void ip_copy_metadata(struct sk_buff
*to
, struct sk_buff
*from
)
544 to
->pkt_type
= from
->pkt_type
;
545 to
->priority
= from
->priority
;
546 to
->protocol
= from
->protocol
;
547 to
->skb_iif
= from
->skb_iif
;
549 skb_dst_copy(to
, from
);
551 to
->mark
= from
->mark
;
553 skb_copy_hash(to
, from
);
555 #ifdef CONFIG_NET_SCHED
556 to
->tc_index
= from
->tc_index
;
559 skb_ext_copy(to
, from
);
560 #if IS_ENABLED(CONFIG_IP_VS)
561 to
->ipvs_property
= from
->ipvs_property
;
563 skb_copy_secmark(to
, from
);
566 static int ip_fragment(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
,
568 int (*output
)(struct net
*, struct sock
*, struct sk_buff
*))
570 struct iphdr
*iph
= ip_hdr(skb
);
572 if ((iph
->frag_off
& htons(IP_DF
)) == 0)
573 return ip_do_fragment(net
, sk
, skb
, output
);
575 if (unlikely(!skb
->ignore_df
||
576 (IPCB(skb
)->frag_max_size
&&
577 IPCB(skb
)->frag_max_size
> mtu
))) {
578 IP_INC_STATS(net
, IPSTATS_MIB_FRAGFAILS
);
579 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_FRAG_NEEDED
,
585 return ip_do_fragment(net
, sk
, skb
, output
);
588 void ip_fraglist_init(struct sk_buff
*skb
, struct iphdr
*iph
,
589 unsigned int hlen
, struct ip_fraglist_iter
*iter
)
591 unsigned int first_len
= skb_pagelen(skb
);
593 iter
->frag
= skb_shinfo(skb
)->frag_list
;
594 skb_frag_list_init(skb
);
600 skb
->data_len
= first_len
- skb_headlen(skb
);
601 skb
->len
= first_len
;
602 iph
->tot_len
= htons(first_len
);
603 iph
->frag_off
= htons(IP_MF
);
606 EXPORT_SYMBOL(ip_fraglist_init
);
608 static void ip_fraglist_ipcb_prepare(struct sk_buff
*skb
,
609 struct ip_fraglist_iter
*iter
)
611 struct sk_buff
*to
= iter
->frag
;
613 /* Copy the flags to each fragment. */
614 IPCB(to
)->flags
= IPCB(skb
)->flags
;
616 if (iter
->offset
== 0)
617 ip_options_fragment(to
);
620 void ip_fraglist_prepare(struct sk_buff
*skb
, struct ip_fraglist_iter
*iter
)
622 unsigned int hlen
= iter
->hlen
;
623 struct iphdr
*iph
= iter
->iph
;
624 struct sk_buff
*frag
;
627 frag
->ip_summed
= CHECKSUM_NONE
;
628 skb_reset_transport_header(frag
);
629 __skb_push(frag
, hlen
);
630 skb_reset_network_header(frag
);
631 memcpy(skb_network_header(frag
), iph
, hlen
);
632 iter
->iph
= ip_hdr(frag
);
634 iph
->tot_len
= htons(frag
->len
);
635 ip_copy_metadata(frag
, skb
);
636 iter
->offset
+= skb
->len
- hlen
;
637 iph
->frag_off
= htons(iter
->offset
>> 3);
639 iph
->frag_off
|= htons(IP_MF
);
640 /* Ready, complete checksum */
643 EXPORT_SYMBOL(ip_fraglist_prepare
);
645 void ip_frag_init(struct sk_buff
*skb
, unsigned int hlen
,
646 unsigned int ll_rs
, unsigned int mtu
, bool DF
,
647 struct ip_frag_state
*state
)
649 struct iphdr
*iph
= ip_hdr(skb
);
653 state
->ll_rs
= ll_rs
;
656 state
->left
= skb
->len
- hlen
; /* Space per frame */
657 state
->ptr
= hlen
; /* Where to start from */
659 state
->offset
= (ntohs(iph
->frag_off
) & IP_OFFSET
) << 3;
660 state
->not_last_frag
= iph
->frag_off
& htons(IP_MF
);
662 EXPORT_SYMBOL(ip_frag_init
);
664 static void ip_frag_ipcb(struct sk_buff
*from
, struct sk_buff
*to
,
665 bool first_frag
, struct ip_frag_state
*state
)
667 /* Copy the flags to each fragment. */
668 IPCB(to
)->flags
= IPCB(from
)->flags
;
670 /* ANK: dirty, but effective trick. Upgrade options only if
671 * the segment to be fragmented was THE FIRST (otherwise,
672 * options are already fixed) and make it ONCE
673 * on the initial skb, so that all the following fragments
674 * will inherit fixed options.
677 ip_options_fragment(from
);
680 struct sk_buff
*ip_frag_next(struct sk_buff
*skb
, struct ip_frag_state
*state
)
682 unsigned int len
= state
->left
;
683 struct sk_buff
*skb2
;
687 /* IF: it doesn't fit, use 'mtu' - the data space left */
688 if (len
> state
->mtu
)
690 /* IF: we are not sending up to and including the packet end
691 then align the next start on an eight byte boundary */
692 if (len
< state
->left
) {
696 /* Allocate buffer */
697 skb2
= alloc_skb(len
+ state
->hlen
+ state
->ll_rs
, GFP_ATOMIC
);
699 return ERR_PTR(-ENOMEM
);
702 * Set up data on packet
705 ip_copy_metadata(skb2
, skb
);
706 skb_reserve(skb2
, state
->ll_rs
);
707 skb_put(skb2
, len
+ state
->hlen
);
708 skb_reset_network_header(skb2
);
709 skb2
->transport_header
= skb2
->network_header
+ state
->hlen
;
712 * Charge the memory for the fragment to any owner
717 skb_set_owner_w(skb2
, skb
->sk
);
720 * Copy the packet header into the new buffer.
723 skb_copy_from_linear_data(skb
, skb_network_header(skb2
), state
->hlen
);
726 * Copy a block of the IP datagram.
728 if (skb_copy_bits(skb
, state
->ptr
, skb_transport_header(skb2
), len
))
733 * Fill in the new header fields.
736 iph
->frag_off
= htons((state
->offset
>> 3));
738 iph
->frag_off
|= htons(IP_DF
);
741 * Added AC : If we are fragmenting a fragment that's not the
742 * last fragment then keep MF on each bit
744 if (state
->left
> 0 || state
->not_last_frag
)
745 iph
->frag_off
|= htons(IP_MF
);
747 state
->offset
+= len
;
749 iph
->tot_len
= htons(len
+ state
->hlen
);
755 EXPORT_SYMBOL(ip_frag_next
);
758 * This IP datagram is too large to be sent in one piece. Break it up into
759 * smaller pieces (each of size equal to IP header plus
760 * a block of the data of the original IP data part) that will yet fit in a
761 * single device frame, and queue such a frame for sending.
764 int ip_do_fragment(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
,
765 int (*output
)(struct net
*, struct sock
*, struct sk_buff
*))
768 struct sk_buff
*skb2
;
769 struct rtable
*rt
= skb_rtable(skb
);
770 unsigned int mtu
, hlen
, ll_rs
;
771 struct ip_fraglist_iter iter
;
772 ktime_t tstamp
= skb
->tstamp
;
773 struct ip_frag_state state
;
776 /* for offloaded checksums cleanup checksum before fragmentation */
777 if (skb
->ip_summed
== CHECKSUM_PARTIAL
&&
778 (err
= skb_checksum_help(skb
)))
782 * Point into the IP datagram header.
787 mtu
= ip_skb_dst_mtu(sk
, skb
);
788 if (IPCB(skb
)->frag_max_size
&& IPCB(skb
)->frag_max_size
< mtu
)
789 mtu
= IPCB(skb
)->frag_max_size
;
792 * Setup starting values.
796 mtu
= mtu
- hlen
; /* Size of data space */
797 IPCB(skb
)->flags
|= IPSKB_FRAG_COMPLETE
;
798 ll_rs
= LL_RESERVED_SPACE(rt
->dst
.dev
);
800 /* When frag_list is given, use it. First, check its validity:
801 * some transformers could create wrong frag_list or break existing
802 * one, it is not prohibited. In this case fall back to copying.
804 * LATER: this step can be merged to real generation of fragments,
805 * we can switch to copy when see the first bad fragment.
807 if (skb_has_frag_list(skb
)) {
808 struct sk_buff
*frag
, *frag2
;
809 unsigned int first_len
= skb_pagelen(skb
);
811 if (first_len
- hlen
> mtu
||
812 ((first_len
- hlen
) & 7) ||
813 ip_is_fragment(iph
) ||
815 skb_headroom(skb
) < ll_rs
)
818 skb_walk_frags(skb
, frag
) {
819 /* Correct geometry. */
820 if (frag
->len
> mtu
||
821 ((frag
->len
& 7) && frag
->next
) ||
822 skb_headroom(frag
) < hlen
+ ll_rs
)
823 goto slow_path_clean
;
825 /* Partially cloned skb? */
826 if (skb_shared(frag
))
827 goto slow_path_clean
;
832 frag
->destructor
= sock_wfree
;
834 skb
->truesize
-= frag
->truesize
;
837 /* Everything is OK. Generate! */
838 ip_fraglist_init(skb
, iph
, hlen
, &iter
);
841 /* Prepare header of the next frame,
842 * before previous one went down. */
844 ip_fraglist_ipcb_prepare(skb
, &iter
);
845 ip_fraglist_prepare(skb
, &iter
);
848 skb
->tstamp
= tstamp
;
849 err
= output(net
, sk
, skb
);
852 IP_INC_STATS(net
, IPSTATS_MIB_FRAGCREATES
);
853 if (err
|| !iter
.frag
)
856 skb
= ip_fraglist_next(&iter
);
860 IP_INC_STATS(net
, IPSTATS_MIB_FRAGOKS
);
864 kfree_skb_list(iter
.frag
);
866 IP_INC_STATS(net
, IPSTATS_MIB_FRAGFAILS
);
870 skb_walk_frags(skb
, frag2
) {
874 frag2
->destructor
= NULL
;
875 skb
->truesize
+= frag2
->truesize
;
881 * Fragment the datagram.
884 ip_frag_init(skb
, hlen
, ll_rs
, mtu
, IPCB(skb
)->flags
& IPSKB_FRAG_PMTU
,
888 * Keep copying data until we run out.
891 while (state
.left
> 0) {
892 bool first_frag
= (state
.offset
== 0);
894 skb2
= ip_frag_next(skb
, &state
);
899 ip_frag_ipcb(skb
, skb2
, first_frag
, &state
);
902 * Put this fragment into the sending queue.
904 skb2
->tstamp
= tstamp
;
905 err
= output(net
, sk
, skb2
);
909 IP_INC_STATS(net
, IPSTATS_MIB_FRAGCREATES
);
912 IP_INC_STATS(net
, IPSTATS_MIB_FRAGOKS
);
917 IP_INC_STATS(net
, IPSTATS_MIB_FRAGFAILS
);
920 EXPORT_SYMBOL(ip_do_fragment
);
923 ip_generic_getfrag(void *from
, char *to
, int offset
, int len
, int odd
, struct sk_buff
*skb
)
925 struct msghdr
*msg
= from
;
927 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
928 if (!copy_from_iter_full(to
, len
, &msg
->msg_iter
))
932 if (!csum_and_copy_from_iter_full(to
, len
, &csum
, &msg
->msg_iter
))
934 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
938 EXPORT_SYMBOL(ip_generic_getfrag
);
941 csum_page(struct page
*page
, int offset
, int copy
)
946 csum
= csum_partial(kaddr
+ offset
, copy
, 0);
951 static int __ip_append_data(struct sock
*sk
,
953 struct sk_buff_head
*queue
,
954 struct inet_cork
*cork
,
955 struct page_frag
*pfrag
,
956 int getfrag(void *from
, char *to
, int offset
,
957 int len
, int odd
, struct sk_buff
*skb
),
958 void *from
, int length
, int transhdrlen
,
961 struct inet_sock
*inet
= inet_sk(sk
);
962 struct ubuf_info
*uarg
= NULL
;
965 struct ip_options
*opt
= cork
->opt
;
972 unsigned int maxfraglen
, fragheaderlen
, maxnonfragsize
;
973 int csummode
= CHECKSUM_NONE
;
974 struct rtable
*rt
= (struct rtable
*)cork
->dst
;
975 unsigned int wmem_alloc_delta
= 0;
976 bool paged
, extra_uref
= false;
979 skb
= skb_peek_tail(queue
);
981 exthdrlen
= !skb
? rt
->dst
.header_len
: 0;
982 mtu
= cork
->gso_size
? IP_MAX_MTU
: cork
->fragsize
;
983 paged
= !!cork
->gso_size
;
985 if (cork
->tx_flags
& SKBTX_ANY_SW_TSTAMP
&&
986 sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_ID
)
987 tskey
= sk
->sk_tskey
++;
989 hh_len
= LL_RESERVED_SPACE(rt
->dst
.dev
);
991 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
992 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
993 maxnonfragsize
= ip_sk_ignore_df(sk
) ? 0xFFFF : mtu
;
995 if (cork
->length
+ length
> maxnonfragsize
- fragheaderlen
) {
996 ip_local_error(sk
, EMSGSIZE
, fl4
->daddr
, inet
->inet_dport
,
997 mtu
- (opt
? opt
->optlen
: 0));
1002 * transhdrlen > 0 means that this is the first fragment and we wish
1003 * it won't be fragmented in the future.
1006 length
+ fragheaderlen
<= mtu
&&
1007 rt
->dst
.dev
->features
& (NETIF_F_HW_CSUM
| NETIF_F_IP_CSUM
) &&
1008 (!(flags
& MSG_MORE
) || cork
->gso_size
) &&
1009 (!exthdrlen
|| (rt
->dst
.dev
->features
& NETIF_F_HW_ESP_TX_CSUM
)))
1010 csummode
= CHECKSUM_PARTIAL
;
1012 if (flags
& MSG_ZEROCOPY
&& length
&& sock_flag(sk
, SOCK_ZEROCOPY
)) {
1013 uarg
= sock_zerocopy_realloc(sk
, length
, skb_zcopy(skb
));
1016 extra_uref
= !skb_zcopy(skb
); /* only ref on new uarg */
1017 if (rt
->dst
.dev
->features
& NETIF_F_SG
&&
1018 csummode
== CHECKSUM_PARTIAL
) {
1022 skb_zcopy_set(skb
, uarg
, &extra_uref
);
1026 cork
->length
+= length
;
1028 /* So, what's going on in the loop below?
1030 * We use calculated fragment length to generate chained skb,
1031 * each of segments is IP fragment ready for sending to network after
1032 * adding appropriate IP header.
1038 while (length
> 0) {
1039 /* Check if the remaining data fits into current packet. */
1040 copy
= mtu
- skb
->len
;
1042 copy
= maxfraglen
- skb
->len
;
1045 unsigned int datalen
;
1046 unsigned int fraglen
;
1047 unsigned int fraggap
;
1048 unsigned int alloclen
;
1049 unsigned int pagedlen
;
1050 struct sk_buff
*skb_prev
;
1054 fraggap
= skb_prev
->len
- maxfraglen
;
1059 * If remaining data exceeds the mtu,
1060 * we know we need more fragment(s).
1062 datalen
= length
+ fraggap
;
1063 if (datalen
> mtu
- fragheaderlen
)
1064 datalen
= maxfraglen
- fragheaderlen
;
1065 fraglen
= datalen
+ fragheaderlen
;
1068 if ((flags
& MSG_MORE
) &&
1069 !(rt
->dst
.dev
->features
&NETIF_F_SG
))
1074 alloclen
= min_t(int, fraglen
, MAX_HEADER
);
1075 pagedlen
= fraglen
- alloclen
;
1078 alloclen
+= exthdrlen
;
1080 /* The last fragment gets additional space at tail.
1081 * Note, with MSG_MORE we overallocate on fragments,
1082 * because we have no idea what fragment will be
1085 if (datalen
== length
+ fraggap
)
1086 alloclen
+= rt
->dst
.trailer_len
;
1089 skb
= sock_alloc_send_skb(sk
,
1090 alloclen
+ hh_len
+ 15,
1091 (flags
& MSG_DONTWAIT
), &err
);
1094 if (refcount_read(&sk
->sk_wmem_alloc
) + wmem_alloc_delta
<=
1096 skb
= alloc_skb(alloclen
+ hh_len
+ 15,
1105 * Fill in the control structures
1107 skb
->ip_summed
= csummode
;
1109 skb_reserve(skb
, hh_len
);
1112 * Find where to start putting bytes.
1114 data
= skb_put(skb
, fraglen
+ exthdrlen
- pagedlen
);
1115 skb_set_network_header(skb
, exthdrlen
);
1116 skb
->transport_header
= (skb
->network_header
+
1118 data
+= fragheaderlen
+ exthdrlen
;
1121 skb
->csum
= skb_copy_and_csum_bits(
1122 skb_prev
, maxfraglen
,
1123 data
+ transhdrlen
, fraggap
, 0);
1124 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
1127 pskb_trim_unique(skb_prev
, maxfraglen
);
1130 copy
= datalen
- transhdrlen
- fraggap
- pagedlen
;
1131 if (copy
> 0 && getfrag(from
, data
+ transhdrlen
, offset
, copy
, fraggap
, skb
) < 0) {
1138 length
-= copy
+ transhdrlen
;
1141 csummode
= CHECKSUM_NONE
;
1143 /* only the initial fragment is time stamped */
1144 skb_shinfo(skb
)->tx_flags
= cork
->tx_flags
;
1146 skb_shinfo(skb
)->tskey
= tskey
;
1148 skb_zcopy_set(skb
, uarg
, &extra_uref
);
1150 if ((flags
& MSG_CONFIRM
) && !skb_prev
)
1151 skb_set_dst_pending_confirm(skb
, 1);
1154 * Put the packet on the pending queue.
1156 if (!skb
->destructor
) {
1157 skb
->destructor
= sock_wfree
;
1159 wmem_alloc_delta
+= skb
->truesize
;
1161 __skb_queue_tail(queue
, skb
);
1168 if (!(rt
->dst
.dev
->features
&NETIF_F_SG
) &&
1169 skb_tailroom(skb
) >= copy
) {
1173 if (getfrag(from
, skb_put(skb
, copy
),
1174 offset
, copy
, off
, skb
) < 0) {
1175 __skb_trim(skb
, off
);
1179 } else if (!uarg
|| !uarg
->zerocopy
) {
1180 int i
= skb_shinfo(skb
)->nr_frags
;
1183 if (!sk_page_frag_refill(sk
, pfrag
))
1186 if (!skb_can_coalesce(skb
, i
, pfrag
->page
,
1189 if (i
== MAX_SKB_FRAGS
)
1192 __skb_fill_page_desc(skb
, i
, pfrag
->page
,
1194 skb_shinfo(skb
)->nr_frags
= ++i
;
1195 get_page(pfrag
->page
);
1197 copy
= min_t(int, copy
, pfrag
->size
- pfrag
->offset
);
1199 page_address(pfrag
->page
) + pfrag
->offset
,
1200 offset
, copy
, skb
->len
, skb
) < 0)
1203 pfrag
->offset
+= copy
;
1204 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
- 1], copy
);
1206 skb
->data_len
+= copy
;
1207 skb
->truesize
+= copy
;
1208 wmem_alloc_delta
+= copy
;
1210 err
= skb_zerocopy_iter_dgram(skb
, from
, copy
);
1218 if (wmem_alloc_delta
)
1219 refcount_add(wmem_alloc_delta
, &sk
->sk_wmem_alloc
);
1226 sock_zerocopy_put_abort(uarg
, extra_uref
);
1227 cork
->length
-= length
;
1228 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1229 refcount_add(wmem_alloc_delta
, &sk
->sk_wmem_alloc
);
1233 static int ip_setup_cork(struct sock
*sk
, struct inet_cork
*cork
,
1234 struct ipcm_cookie
*ipc
, struct rtable
**rtp
)
1236 struct ip_options_rcu
*opt
;
1244 * setup for corking.
1249 cork
->opt
= kmalloc(sizeof(struct ip_options
) + 40,
1251 if (unlikely(!cork
->opt
))
1254 memcpy(cork
->opt
, &opt
->opt
, sizeof(struct ip_options
) + opt
->opt
.optlen
);
1255 cork
->flags
|= IPCORK_OPT
;
1256 cork
->addr
= ipc
->addr
;
1259 cork
->fragsize
= ip_sk_use_pmtu(sk
) ?
1260 dst_mtu(&rt
->dst
) : READ_ONCE(rt
->dst
.dev
->mtu
);
1262 if (!inetdev_valid_mtu(cork
->fragsize
))
1263 return -ENETUNREACH
;
1265 cork
->gso_size
= ipc
->gso_size
;
1267 cork
->dst
= &rt
->dst
;
1268 /* We stole this route, caller should not release it. */
1272 cork
->ttl
= ipc
->ttl
;
1273 cork
->tos
= ipc
->tos
;
1274 cork
->mark
= ipc
->sockc
.mark
;
1275 cork
->priority
= ipc
->priority
;
1276 cork
->transmit_time
= ipc
->sockc
.transmit_time
;
1278 sock_tx_timestamp(sk
, ipc
->sockc
.tsflags
, &cork
->tx_flags
);
1284 * ip_append_data() and ip_append_page() can make one large IP datagram
1285 * from many pieces of data. Each pieces will be holded on the socket
1286 * until ip_push_pending_frames() is called. Each piece can be a page
1289 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1290 * this interface potentially.
1292 * LATER: length must be adjusted by pad at tail, when it is required.
1294 int ip_append_data(struct sock
*sk
, struct flowi4
*fl4
,
1295 int getfrag(void *from
, char *to
, int offset
, int len
,
1296 int odd
, struct sk_buff
*skb
),
1297 void *from
, int length
, int transhdrlen
,
1298 struct ipcm_cookie
*ipc
, struct rtable
**rtp
,
1301 struct inet_sock
*inet
= inet_sk(sk
);
1304 if (flags
&MSG_PROBE
)
1307 if (skb_queue_empty(&sk
->sk_write_queue
)) {
1308 err
= ip_setup_cork(sk
, &inet
->cork
.base
, ipc
, rtp
);
1315 return __ip_append_data(sk
, fl4
, &sk
->sk_write_queue
, &inet
->cork
.base
,
1316 sk_page_frag(sk
), getfrag
,
1317 from
, length
, transhdrlen
, flags
);
1320 ssize_t
ip_append_page(struct sock
*sk
, struct flowi4
*fl4
, struct page
*page
,
1321 int offset
, size_t size
, int flags
)
1323 struct inet_sock
*inet
= inet_sk(sk
);
1324 struct sk_buff
*skb
;
1326 struct ip_options
*opt
= NULL
;
1327 struct inet_cork
*cork
;
1332 unsigned int maxfraglen
, fragheaderlen
, fraggap
, maxnonfragsize
;
1337 if (flags
&MSG_PROBE
)
1340 if (skb_queue_empty(&sk
->sk_write_queue
))
1343 cork
= &inet
->cork
.base
;
1344 rt
= (struct rtable
*)cork
->dst
;
1345 if (cork
->flags
& IPCORK_OPT
)
1348 if (!(rt
->dst
.dev
->features
&NETIF_F_SG
))
1351 hh_len
= LL_RESERVED_SPACE(rt
->dst
.dev
);
1352 mtu
= cork
->gso_size
? IP_MAX_MTU
: cork
->fragsize
;
1354 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
1355 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
1356 maxnonfragsize
= ip_sk_ignore_df(sk
) ? 0xFFFF : mtu
;
1358 if (cork
->length
+ size
> maxnonfragsize
- fragheaderlen
) {
1359 ip_local_error(sk
, EMSGSIZE
, fl4
->daddr
, inet
->inet_dport
,
1360 mtu
- (opt
? opt
->optlen
: 0));
1364 skb
= skb_peek_tail(&sk
->sk_write_queue
);
1368 cork
->length
+= size
;
1371 /* Check if the remaining data fits into current packet. */
1372 len
= mtu
- skb
->len
;
1374 len
= maxfraglen
- skb
->len
;
1377 struct sk_buff
*skb_prev
;
1381 fraggap
= skb_prev
->len
- maxfraglen
;
1383 alloclen
= fragheaderlen
+ hh_len
+ fraggap
+ 15;
1384 skb
= sock_wmalloc(sk
, alloclen
, 1, sk
->sk_allocation
);
1385 if (unlikely(!skb
)) {
1391 * Fill in the control structures
1393 skb
->ip_summed
= CHECKSUM_NONE
;
1395 skb_reserve(skb
, hh_len
);
1398 * Find where to start putting bytes.
1400 skb_put(skb
, fragheaderlen
+ fraggap
);
1401 skb_reset_network_header(skb
);
1402 skb
->transport_header
= (skb
->network_header
+
1405 skb
->csum
= skb_copy_and_csum_bits(skb_prev
,
1407 skb_transport_header(skb
),
1409 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
1411 pskb_trim_unique(skb_prev
, maxfraglen
);
1415 * Put the packet on the pending queue.
1417 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
1424 if (skb_append_pagefrags(skb
, page
, offset
, len
)) {
1429 if (skb
->ip_summed
== CHECKSUM_NONE
) {
1431 csum
= csum_page(page
, offset
, len
);
1432 skb
->csum
= csum_block_add(skb
->csum
, csum
, skb
->len
);
1436 skb
->data_len
+= len
;
1437 skb
->truesize
+= len
;
1438 refcount_add(len
, &sk
->sk_wmem_alloc
);
1445 cork
->length
-= size
;
1446 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1450 static void ip_cork_release(struct inet_cork
*cork
)
1452 cork
->flags
&= ~IPCORK_OPT
;
1455 dst_release(cork
->dst
);
1460 * Combined all pending IP fragments on the socket as one IP datagram
1461 * and push them out.
1463 struct sk_buff
*__ip_make_skb(struct sock
*sk
,
1465 struct sk_buff_head
*queue
,
1466 struct inet_cork
*cork
)
1468 struct sk_buff
*skb
, *tmp_skb
;
1469 struct sk_buff
**tail_skb
;
1470 struct inet_sock
*inet
= inet_sk(sk
);
1471 struct net
*net
= sock_net(sk
);
1472 struct ip_options
*opt
= NULL
;
1473 struct rtable
*rt
= (struct rtable
*)cork
->dst
;
1478 skb
= __skb_dequeue(queue
);
1481 tail_skb
= &(skb_shinfo(skb
)->frag_list
);
1483 /* move skb->data to ip header from ext header */
1484 if (skb
->data
< skb_network_header(skb
))
1485 __skb_pull(skb
, skb_network_offset(skb
));
1486 while ((tmp_skb
= __skb_dequeue(queue
)) != NULL
) {
1487 __skb_pull(tmp_skb
, skb_network_header_len(skb
));
1488 *tail_skb
= tmp_skb
;
1489 tail_skb
= &(tmp_skb
->next
);
1490 skb
->len
+= tmp_skb
->len
;
1491 skb
->data_len
+= tmp_skb
->len
;
1492 skb
->truesize
+= tmp_skb
->truesize
;
1493 tmp_skb
->destructor
= NULL
;
1497 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1498 * to fragment the frame generated here. No matter, what transforms
1499 * how transforms change size of the packet, it will come out.
1501 skb
->ignore_df
= ip_sk_ignore_df(sk
);
1503 /* DF bit is set when we want to see DF on outgoing frames.
1504 * If ignore_df is set too, we still allow to fragment this frame
1506 if (inet
->pmtudisc
== IP_PMTUDISC_DO
||
1507 inet
->pmtudisc
== IP_PMTUDISC_PROBE
||
1508 (skb
->len
<= dst_mtu(&rt
->dst
) &&
1509 ip_dont_fragment(sk
, &rt
->dst
)))
1512 if (cork
->flags
& IPCORK_OPT
)
1517 else if (rt
->rt_type
== RTN_MULTICAST
)
1520 ttl
= ip_select_ttl(inet
, &rt
->dst
);
1525 iph
->tos
= (cork
->tos
!= -1) ? cork
->tos
: inet
->tos
;
1528 iph
->protocol
= sk
->sk_protocol
;
1529 ip_copy_addrs(iph
, fl4
);
1530 ip_select_ident(net
, skb
, sk
);
1533 iph
->ihl
+= opt
->optlen
>>2;
1534 ip_options_build(skb
, opt
, cork
->addr
, rt
, 0);
1537 skb
->priority
= (cork
->tos
!= -1) ? cork
->priority
: sk
->sk_priority
;
1538 skb
->mark
= cork
->mark
;
1539 skb
->tstamp
= cork
->transmit_time
;
1541 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1545 skb_dst_set(skb
, &rt
->dst
);
1547 if (iph
->protocol
== IPPROTO_ICMP
)
1548 icmp_out_count(net
, ((struct icmphdr
*)
1549 skb_transport_header(skb
))->type
);
1551 ip_cork_release(cork
);
1556 int ip_send_skb(struct net
*net
, struct sk_buff
*skb
)
1560 err
= ip_local_out(net
, skb
->sk
, skb
);
1563 err
= net_xmit_errno(err
);
1565 IP_INC_STATS(net
, IPSTATS_MIB_OUTDISCARDS
);
1571 int ip_push_pending_frames(struct sock
*sk
, struct flowi4
*fl4
)
1573 struct sk_buff
*skb
;
1575 skb
= ip_finish_skb(sk
, fl4
);
1579 /* Netfilter gets whole the not fragmented skb. */
1580 return ip_send_skb(sock_net(sk
), skb
);
1584 * Throw away all pending data on the socket.
1586 static void __ip_flush_pending_frames(struct sock
*sk
,
1587 struct sk_buff_head
*queue
,
1588 struct inet_cork
*cork
)
1590 struct sk_buff
*skb
;
1592 while ((skb
= __skb_dequeue_tail(queue
)) != NULL
)
1595 ip_cork_release(cork
);
1598 void ip_flush_pending_frames(struct sock
*sk
)
1600 __ip_flush_pending_frames(sk
, &sk
->sk_write_queue
, &inet_sk(sk
)->cork
.base
);
1603 struct sk_buff
*ip_make_skb(struct sock
*sk
,
1605 int getfrag(void *from
, char *to
, int offset
,
1606 int len
, int odd
, struct sk_buff
*skb
),
1607 void *from
, int length
, int transhdrlen
,
1608 struct ipcm_cookie
*ipc
, struct rtable
**rtp
,
1609 struct inet_cork
*cork
, unsigned int flags
)
1611 struct sk_buff_head queue
;
1614 if (flags
& MSG_PROBE
)
1617 __skb_queue_head_init(&queue
);
1622 err
= ip_setup_cork(sk
, cork
, ipc
, rtp
);
1624 return ERR_PTR(err
);
1626 err
= __ip_append_data(sk
, fl4
, &queue
, cork
,
1627 ¤t
->task_frag
, getfrag
,
1628 from
, length
, transhdrlen
, flags
);
1630 __ip_flush_pending_frames(sk
, &queue
, cork
);
1631 return ERR_PTR(err
);
1634 return __ip_make_skb(sk
, fl4
, &queue
, cork
);
1638 * Fetch data from kernel space and fill in checksum if needed.
1640 static int ip_reply_glue_bits(void *dptr
, char *to
, int offset
,
1641 int len
, int odd
, struct sk_buff
*skb
)
1645 csum
= csum_partial_copy_nocheck(dptr
+offset
, to
, len
, 0);
1646 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
1651 * Generic function to send a packet as reply to another packet.
1652 * Used to send some TCP resets/acks so far.
1654 void ip_send_unicast_reply(struct sock
*sk
, struct sk_buff
*skb
,
1655 const struct ip_options
*sopt
,
1656 __be32 daddr
, __be32 saddr
,
1657 const struct ip_reply_arg
*arg
,
1658 unsigned int len
, u64 transmit_time
)
1660 struct ip_options_data replyopts
;
1661 struct ipcm_cookie ipc
;
1663 struct rtable
*rt
= skb_rtable(skb
);
1664 struct net
*net
= sock_net(sk
);
1665 struct sk_buff
*nskb
;
1669 if (__ip_options_echo(net
, &replyopts
.opt
.opt
, skb
, sopt
))
1674 ipc
.sockc
.transmit_time
= transmit_time
;
1676 if (replyopts
.opt
.opt
.optlen
) {
1677 ipc
.opt
= &replyopts
.opt
;
1679 if (replyopts
.opt
.opt
.srr
)
1680 daddr
= replyopts
.opt
.opt
.faddr
;
1683 oif
= arg
->bound_dev_if
;
1684 if (!oif
&& netif_index_is_l3_master(net
, skb
->skb_iif
))
1687 flowi4_init_output(&fl4
, oif
,
1688 IP4_REPLY_MARK(net
, skb
->mark
) ?: sk
->sk_mark
,
1690 RT_SCOPE_UNIVERSE
, ip_hdr(skb
)->protocol
,
1691 ip_reply_arg_flowi_flags(arg
),
1693 tcp_hdr(skb
)->source
, tcp_hdr(skb
)->dest
,
1695 security_skb_classify_flow(skb
, flowi4_to_flowi(&fl4
));
1696 rt
= ip_route_output_key(net
, &fl4
);
1700 inet_sk(sk
)->tos
= arg
->tos
;
1702 sk
->sk_protocol
= ip_hdr(skb
)->protocol
;
1703 sk
->sk_bound_dev_if
= arg
->bound_dev_if
;
1704 sk
->sk_sndbuf
= sysctl_wmem_default
;
1705 sk
->sk_mark
= fl4
.flowi4_mark
;
1706 err
= ip_append_data(sk
, &fl4
, ip_reply_glue_bits
, arg
->iov
->iov_base
,
1707 len
, 0, &ipc
, &rt
, MSG_DONTWAIT
);
1708 if (unlikely(err
)) {
1709 ip_flush_pending_frames(sk
);
1713 nskb
= skb_peek(&sk
->sk_write_queue
);
1715 if (arg
->csumoffset
>= 0)
1716 *((__sum16
*)skb_transport_header(nskb
) +
1717 arg
->csumoffset
) = csum_fold(csum_add(nskb
->csum
,
1719 nskb
->ip_summed
= CHECKSUM_NONE
;
1720 ip_push_pending_frames(sk
, &fl4
);
1726 void __init
ip_init(void)
1731 #if defined(CONFIG_IP_MULTICAST)