1 // SPDX-License-Identifier: GPL-2.0
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Implementation of the Transmission Control Protocol(TCP).
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
24 * Pedro Roque : Fast Retransmit/Recovery.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
57 * J Hadi Salim: ECN support
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #define pr_fmt(fmt) "TCP: " fmt
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
84 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
92 #define FLAG_ECE 0x40 /* ECE in this ACK */
93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
109 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
110 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112 #define REXMIT_NONE 0 /* no loss recovery to do */
113 #define REXMIT_LOST 1 /* retransmit packets marked lost */
114 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
116 #if IS_ENABLED(CONFIG_TLS_DEVICE)
117 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled
, HZ
);
119 void clean_acked_data_enable(struct inet_connection_sock
*icsk
,
120 void (*cad
)(struct sock
*sk
, u32 ack_seq
))
122 icsk
->icsk_clean_acked
= cad
;
123 static_branch_deferred_inc(&clean_acked_data_enabled
);
125 EXPORT_SYMBOL_GPL(clean_acked_data_enable
);
127 void clean_acked_data_disable(struct inet_connection_sock
*icsk
)
129 static_branch_slow_dec_deferred(&clean_acked_data_enabled
);
130 icsk
->icsk_clean_acked
= NULL
;
132 EXPORT_SYMBOL_GPL(clean_acked_data_disable
);
134 void clean_acked_data_flush(void)
136 static_key_deferred_flush(&clean_acked_data_enabled
);
138 EXPORT_SYMBOL_GPL(clean_acked_data_flush
);
141 static void tcp_gro_dev_warn(struct sock
*sk
, const struct sk_buff
*skb
,
144 static bool __once __read_mostly
;
147 struct net_device
*dev
;
152 dev
= dev_get_by_index_rcu(sock_net(sk
), skb
->skb_iif
);
153 if (!dev
|| len
>= dev
->mtu
)
154 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
155 dev
? dev
->name
: "Unknown driver");
160 /* Adapt the MSS value used to make delayed ack decision to the
163 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
165 struct inet_connection_sock
*icsk
= inet_csk(sk
);
166 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
169 icsk
->icsk_ack
.last_seg_size
= 0;
171 /* skb->len may jitter because of SACKs, even if peer
172 * sends good full-sized frames.
174 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
175 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
176 icsk
->icsk_ack
.rcv_mss
= min_t(unsigned int, len
,
178 /* Account for possibly-removed options */
179 if (unlikely(len
> icsk
->icsk_ack
.rcv_mss
+
180 MAX_TCP_OPTION_SPACE
))
181 tcp_gro_dev_warn(sk
, skb
, len
);
183 /* Otherwise, we make more careful check taking into account,
184 * that SACKs block is variable.
186 * "len" is invariant segment length, including TCP header.
188 len
+= skb
->data
- skb_transport_header(skb
);
189 if (len
>= TCP_MSS_DEFAULT
+ sizeof(struct tcphdr
) ||
190 /* If PSH is not set, packet should be
191 * full sized, provided peer TCP is not badly broken.
192 * This observation (if it is correct 8)) allows
193 * to handle super-low mtu links fairly.
195 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
196 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
197 /* Subtract also invariant (if peer is RFC compliant),
198 * tcp header plus fixed timestamp option length.
199 * Resulting "len" is MSS free of SACK jitter.
201 len
-= tcp_sk(sk
)->tcp_header_len
;
202 icsk
->icsk_ack
.last_seg_size
= len
;
204 icsk
->icsk_ack
.rcv_mss
= len
;
208 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
209 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
210 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
214 static void tcp_incr_quickack(struct sock
*sk
, unsigned int max_quickacks
)
216 struct inet_connection_sock
*icsk
= inet_csk(sk
);
217 unsigned int quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
221 quickacks
= min(quickacks
, max_quickacks
);
222 if (quickacks
> icsk
->icsk_ack
.quick
)
223 icsk
->icsk_ack
.quick
= quickacks
;
226 void tcp_enter_quickack_mode(struct sock
*sk
, unsigned int max_quickacks
)
228 struct inet_connection_sock
*icsk
= inet_csk(sk
);
230 tcp_incr_quickack(sk
, max_quickacks
);
231 inet_csk_exit_pingpong_mode(sk
);
232 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
234 EXPORT_SYMBOL(tcp_enter_quickack_mode
);
236 /* Send ACKs quickly, if "quick" count is not exhausted
237 * and the session is not interactive.
240 static bool tcp_in_quickack_mode(struct sock
*sk
)
242 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
243 const struct dst_entry
*dst
= __sk_dst_get(sk
);
245 return (dst
&& dst_metric(dst
, RTAX_QUICKACK
)) ||
246 (icsk
->icsk_ack
.quick
&& !inet_csk_in_pingpong_mode(sk
));
249 static void tcp_ecn_queue_cwr(struct tcp_sock
*tp
)
251 if (tp
->ecn_flags
& TCP_ECN_OK
)
252 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
255 static void tcp_ecn_accept_cwr(struct sock
*sk
, const struct sk_buff
*skb
)
257 if (tcp_hdr(skb
)->cwr
) {
258 tcp_sk(sk
)->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
260 /* If the sender is telling us it has entered CWR, then its
261 * cwnd may be very low (even just 1 packet), so we should ACK
264 inet_csk(sk
)->icsk_ack
.pending
|= ICSK_ACK_NOW
;
268 static void tcp_ecn_withdraw_cwr(struct tcp_sock
*tp
)
270 tp
->ecn_flags
&= ~TCP_ECN_QUEUE_CWR
;
273 static void __tcp_ecn_check_ce(struct sock
*sk
, const struct sk_buff
*skb
)
275 struct tcp_sock
*tp
= tcp_sk(sk
);
277 switch (TCP_SKB_CB(skb
)->ip_dsfield
& INET_ECN_MASK
) {
278 case INET_ECN_NOT_ECT
:
279 /* Funny extension: if ECT is not set on a segment,
280 * and we already seen ECT on a previous segment,
281 * it is probably a retransmit.
283 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
284 tcp_enter_quickack_mode(sk
, 2);
287 if (tcp_ca_needs_ecn(sk
))
288 tcp_ca_event(sk
, CA_EVENT_ECN_IS_CE
);
290 if (!(tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)) {
291 /* Better not delay acks, sender can have a very low cwnd */
292 tcp_enter_quickack_mode(sk
, 2);
293 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
295 tp
->ecn_flags
|= TCP_ECN_SEEN
;
298 if (tcp_ca_needs_ecn(sk
))
299 tcp_ca_event(sk
, CA_EVENT_ECN_NO_CE
);
300 tp
->ecn_flags
|= TCP_ECN_SEEN
;
305 static void tcp_ecn_check_ce(struct sock
*sk
, const struct sk_buff
*skb
)
307 if (tcp_sk(sk
)->ecn_flags
& TCP_ECN_OK
)
308 __tcp_ecn_check_ce(sk
, skb
);
311 static void tcp_ecn_rcv_synack(struct tcp_sock
*tp
, const struct tcphdr
*th
)
313 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
314 tp
->ecn_flags
&= ~TCP_ECN_OK
;
317 static void tcp_ecn_rcv_syn(struct tcp_sock
*tp
, const struct tcphdr
*th
)
319 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
320 tp
->ecn_flags
&= ~TCP_ECN_OK
;
323 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock
*tp
, const struct tcphdr
*th
)
325 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
330 /* Buffer size and advertised window tuning.
332 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
335 static void tcp_sndbuf_expand(struct sock
*sk
)
337 const struct tcp_sock
*tp
= tcp_sk(sk
);
338 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
342 /* Worst case is non GSO/TSO : each frame consumes one skb
343 * and skb->head is kmalloced using power of two area of memory
345 per_mss
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
347 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
349 per_mss
= roundup_pow_of_two(per_mss
) +
350 SKB_DATA_ALIGN(sizeof(struct sk_buff
));
352 nr_segs
= max_t(u32
, TCP_INIT_CWND
, tp
->snd_cwnd
);
353 nr_segs
= max_t(u32
, nr_segs
, tp
->reordering
+ 1);
355 /* Fast Recovery (RFC 5681 3.2) :
356 * Cubic needs 1.7 factor, rounded to 2 to include
357 * extra cushion (application might react slowly to EPOLLOUT)
359 sndmem
= ca_ops
->sndbuf_expand
? ca_ops
->sndbuf_expand(sk
) : 2;
360 sndmem
*= nr_segs
* per_mss
;
362 if (sk
->sk_sndbuf
< sndmem
)
363 WRITE_ONCE(sk
->sk_sndbuf
,
364 min(sndmem
, sock_net(sk
)->ipv4
.sysctl_tcp_wmem
[2]));
367 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
369 * All tcp_full_space() is split to two parts: "network" buffer, allocated
370 * forward and advertised in receiver window (tp->rcv_wnd) and
371 * "application buffer", required to isolate scheduling/application
372 * latencies from network.
373 * window_clamp is maximal advertised window. It can be less than
374 * tcp_full_space(), in this case tcp_full_space() - window_clamp
375 * is reserved for "application" buffer. The less window_clamp is
376 * the smoother our behaviour from viewpoint of network, but the lower
377 * throughput and the higher sensitivity of the connection to losses. 8)
379 * rcv_ssthresh is more strict window_clamp used at "slow start"
380 * phase to predict further behaviour of this connection.
381 * It is used for two goals:
382 * - to enforce header prediction at sender, even when application
383 * requires some significant "application buffer". It is check #1.
384 * - to prevent pruning of receive queue because of misprediction
385 * of receiver window. Check #2.
387 * The scheme does not work when sender sends good segments opening
388 * window and then starts to feed us spaghetti. But it should work
389 * in common situations. Otherwise, we have to rely on queue collapsing.
392 /* Slow part of check#2. */
393 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
395 struct tcp_sock
*tp
= tcp_sk(sk
);
397 int truesize
= tcp_win_from_space(sk
, skb
->truesize
) >> 1;
398 int window
= tcp_win_from_space(sk
, sock_net(sk
)->ipv4
.sysctl_tcp_rmem
[2]) >> 1;
400 while (tp
->rcv_ssthresh
<= window
) {
401 if (truesize
<= skb
->len
)
402 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
410 static void tcp_grow_window(struct sock
*sk
, const struct sk_buff
*skb
)
412 struct tcp_sock
*tp
= tcp_sk(sk
);
415 room
= min_t(int, tp
->window_clamp
, tcp_space(sk
)) - tp
->rcv_ssthresh
;
418 if (room
> 0 && !tcp_under_memory_pressure(sk
)) {
421 /* Check #2. Increase window, if skb with such overhead
422 * will fit to rcvbuf in future.
424 if (tcp_win_from_space(sk
, skb
->truesize
) <= skb
->len
)
425 incr
= 2 * tp
->advmss
;
427 incr
= __tcp_grow_window(sk
, skb
);
430 incr
= max_t(int, incr
, 2 * skb
->len
);
431 tp
->rcv_ssthresh
+= min(room
, incr
);
432 inet_csk(sk
)->icsk_ack
.quick
|= 1;
437 /* 3. Try to fixup all. It is made immediately after connection enters
440 void tcp_init_buffer_space(struct sock
*sk
)
442 int tcp_app_win
= sock_net(sk
)->ipv4
.sysctl_tcp_app_win
;
443 struct tcp_sock
*tp
= tcp_sk(sk
);
446 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
447 tcp_sndbuf_expand(sk
);
449 tp
->rcvq_space
.space
= min_t(u32
, tp
->rcv_wnd
, TCP_INIT_CWND
* tp
->advmss
);
450 tcp_mstamp_refresh(tp
);
451 tp
->rcvq_space
.time
= tp
->tcp_mstamp
;
452 tp
->rcvq_space
.seq
= tp
->copied_seq
;
454 maxwin
= tcp_full_space(sk
);
456 if (tp
->window_clamp
>= maxwin
) {
457 tp
->window_clamp
= maxwin
;
459 if (tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
460 tp
->window_clamp
= max(maxwin
-
461 (maxwin
>> tcp_app_win
),
465 /* Force reservation of one segment. */
467 tp
->window_clamp
> 2 * tp
->advmss
&&
468 tp
->window_clamp
+ tp
->advmss
> maxwin
)
469 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
471 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
472 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
475 /* 4. Recalculate window clamp after socket hit its memory bounds. */
476 static void tcp_clamp_window(struct sock
*sk
)
478 struct tcp_sock
*tp
= tcp_sk(sk
);
479 struct inet_connection_sock
*icsk
= inet_csk(sk
);
480 struct net
*net
= sock_net(sk
);
482 icsk
->icsk_ack
.quick
= 0;
484 if (sk
->sk_rcvbuf
< net
->ipv4
.sysctl_tcp_rmem
[2] &&
485 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
486 !tcp_under_memory_pressure(sk
) &&
487 sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)) {
488 WRITE_ONCE(sk
->sk_rcvbuf
,
489 min(atomic_read(&sk
->sk_rmem_alloc
),
490 net
->ipv4
.sysctl_tcp_rmem
[2]));
492 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
493 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
496 /* Initialize RCV_MSS value.
497 * RCV_MSS is an our guess about MSS used by the peer.
498 * We haven't any direct information about the MSS.
499 * It's better to underestimate the RCV_MSS rather than overestimate.
500 * Overestimations make us ACKing less frequently than needed.
501 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
503 void tcp_initialize_rcv_mss(struct sock
*sk
)
505 const struct tcp_sock
*tp
= tcp_sk(sk
);
506 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
508 hint
= min(hint
, tp
->rcv_wnd
/ 2);
509 hint
= min(hint
, TCP_MSS_DEFAULT
);
510 hint
= max(hint
, TCP_MIN_MSS
);
512 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
514 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);
516 /* Receiver "autotuning" code.
518 * The algorithm for RTT estimation w/o timestamps is based on
519 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
520 * <http://public.lanl.gov/radiant/pubs.html#DRS>
522 * More detail on this code can be found at
523 * <http://staff.psc.edu/jheffner/>,
524 * though this reference is out of date. A new paper
527 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
529 u32 new_sample
= tp
->rcv_rtt_est
.rtt_us
;
532 if (new_sample
!= 0) {
533 /* If we sample in larger samples in the non-timestamp
534 * case, we could grossly overestimate the RTT especially
535 * with chatty applications or bulk transfer apps which
536 * are stalled on filesystem I/O.
538 * Also, since we are only going for a minimum in the
539 * non-timestamp case, we do not smooth things out
540 * else with timestamps disabled convergence takes too
544 m
-= (new_sample
>> 3);
552 /* No previous measure. */
556 tp
->rcv_rtt_est
.rtt_us
= new_sample
;
559 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
563 if (tp
->rcv_rtt_est
.time
== 0)
565 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
567 delta_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, tp
->rcv_rtt_est
.time
);
570 tcp_rcv_rtt_update(tp
, delta_us
, 1);
573 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
574 tp
->rcv_rtt_est
.time
= tp
->tcp_mstamp
;
577 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
578 const struct sk_buff
*skb
)
580 struct tcp_sock
*tp
= tcp_sk(sk
);
582 if (tp
->rx_opt
.rcv_tsecr
== tp
->rcv_rtt_last_tsecr
)
584 tp
->rcv_rtt_last_tsecr
= tp
->rx_opt
.rcv_tsecr
;
586 if (TCP_SKB_CB(skb
)->end_seq
-
587 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
) {
588 u32 delta
= tcp_time_stamp(tp
) - tp
->rx_opt
.rcv_tsecr
;
591 if (likely(delta
< INT_MAX
/ (USEC_PER_SEC
/ TCP_TS_HZ
))) {
594 delta_us
= delta
* (USEC_PER_SEC
/ TCP_TS_HZ
);
595 tcp_rcv_rtt_update(tp
, delta_us
, 0);
601 * This function should be called every time data is copied to user space.
602 * It calculates the appropriate TCP receive buffer space.
604 void tcp_rcv_space_adjust(struct sock
*sk
)
606 struct tcp_sock
*tp
= tcp_sk(sk
);
610 trace_tcp_rcv_space_adjust(sk
);
612 tcp_mstamp_refresh(tp
);
613 time
= tcp_stamp_us_delta(tp
->tcp_mstamp
, tp
->rcvq_space
.time
);
614 if (time
< (tp
->rcv_rtt_est
.rtt_us
>> 3) || tp
->rcv_rtt_est
.rtt_us
== 0)
617 /* Number of bytes copied to user in last RTT */
618 copied
= tp
->copied_seq
- tp
->rcvq_space
.seq
;
619 if (copied
<= tp
->rcvq_space
.space
)
623 * copied = bytes received in previous RTT, our base window
624 * To cope with packet losses, we need a 2x factor
625 * To cope with slow start, and sender growing its cwin by 100 %
626 * every RTT, we need a 4x factor, because the ACK we are sending
627 * now is for the next RTT, not the current one :
628 * <prev RTT . ><current RTT .. ><next RTT .... >
631 if (sock_net(sk
)->ipv4
.sysctl_tcp_moderate_rcvbuf
&&
632 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
636 /* minimal window to cope with packet losses, assuming
637 * steady state. Add some cushion because of small variations.
639 rcvwin
= ((u64
)copied
<< 1) + 16 * tp
->advmss
;
641 /* Accommodate for sender rate increase (eg. slow start) */
642 grow
= rcvwin
* (copied
- tp
->rcvq_space
.space
);
643 do_div(grow
, tp
->rcvq_space
.space
);
644 rcvwin
+= (grow
<< 1);
646 rcvmem
= SKB_TRUESIZE(tp
->advmss
+ MAX_TCP_HEADER
);
647 while (tcp_win_from_space(sk
, rcvmem
) < tp
->advmss
)
650 do_div(rcvwin
, tp
->advmss
);
651 rcvbuf
= min_t(u64
, rcvwin
* rcvmem
,
652 sock_net(sk
)->ipv4
.sysctl_tcp_rmem
[2]);
653 if (rcvbuf
> sk
->sk_rcvbuf
) {
654 WRITE_ONCE(sk
->sk_rcvbuf
, rcvbuf
);
656 /* Make the window clamp follow along. */
657 tp
->window_clamp
= tcp_win_from_space(sk
, rcvbuf
);
660 tp
->rcvq_space
.space
= copied
;
663 tp
->rcvq_space
.seq
= tp
->copied_seq
;
664 tp
->rcvq_space
.time
= tp
->tcp_mstamp
;
667 /* There is something which you must keep in mind when you analyze the
668 * behavior of the tp->ato delayed ack timeout interval. When a
669 * connection starts up, we want to ack as quickly as possible. The
670 * problem is that "good" TCP's do slow start at the beginning of data
671 * transmission. The means that until we send the first few ACK's the
672 * sender will sit on his end and only queue most of his data, because
673 * he can only send snd_cwnd unacked packets at any given time. For
674 * each ACK we send, he increments snd_cwnd and transmits more of his
677 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
679 struct tcp_sock
*tp
= tcp_sk(sk
);
680 struct inet_connection_sock
*icsk
= inet_csk(sk
);
683 inet_csk_schedule_ack(sk
);
685 tcp_measure_rcv_mss(sk
, skb
);
687 tcp_rcv_rtt_measure(tp
);
691 if (!icsk
->icsk_ack
.ato
) {
692 /* The _first_ data packet received, initialize
693 * delayed ACK engine.
695 tcp_incr_quickack(sk
, TCP_MAX_QUICKACKS
);
696 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
698 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
700 if (m
<= TCP_ATO_MIN
/ 2) {
701 /* The fastest case is the first. */
702 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
703 } else if (m
< icsk
->icsk_ack
.ato
) {
704 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
705 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
706 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
707 } else if (m
> icsk
->icsk_rto
) {
708 /* Too long gap. Apparently sender failed to
709 * restart window, so that we send ACKs quickly.
711 tcp_incr_quickack(sk
, TCP_MAX_QUICKACKS
);
715 icsk
->icsk_ack
.lrcvtime
= now
;
717 tcp_ecn_check_ce(sk
, skb
);
720 tcp_grow_window(sk
, skb
);
723 /* Called to compute a smoothed rtt estimate. The data fed to this
724 * routine either comes from timestamps, or from segments that were
725 * known _not_ to have been retransmitted [see Karn/Partridge
726 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
727 * piece by Van Jacobson.
728 * NOTE: the next three routines used to be one big routine.
729 * To save cycles in the RFC 1323 implementation it was better to break
730 * it up into three procedures. -- erics
732 static void tcp_rtt_estimator(struct sock
*sk
, long mrtt_us
)
734 struct tcp_sock
*tp
= tcp_sk(sk
);
735 long m
= mrtt_us
; /* RTT */
736 u32 srtt
= tp
->srtt_us
;
738 /* The following amusing code comes from Jacobson's
739 * article in SIGCOMM '88. Note that rtt and mdev
740 * are scaled versions of rtt and mean deviation.
741 * This is designed to be as fast as possible
742 * m stands for "measurement".
744 * On a 1990 paper the rto value is changed to:
745 * RTO = rtt + 4 * mdev
747 * Funny. This algorithm seems to be very broken.
748 * These formulae increase RTO, when it should be decreased, increase
749 * too slowly, when it should be increased quickly, decrease too quickly
750 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
751 * does not matter how to _calculate_ it. Seems, it was trap
752 * that VJ failed to avoid. 8)
755 m
-= (srtt
>> 3); /* m is now error in rtt est */
756 srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
758 m
= -m
; /* m is now abs(error) */
759 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
760 /* This is similar to one of Eifel findings.
761 * Eifel blocks mdev updates when rtt decreases.
762 * This solution is a bit different: we use finer gain
763 * for mdev in this case (alpha*beta).
764 * Like Eifel it also prevents growth of rto,
765 * but also it limits too fast rto decreases,
766 * happening in pure Eifel.
771 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
773 tp
->mdev_us
+= m
; /* mdev = 3/4 mdev + 1/4 new */
774 if (tp
->mdev_us
> tp
->mdev_max_us
) {
775 tp
->mdev_max_us
= tp
->mdev_us
;
776 if (tp
->mdev_max_us
> tp
->rttvar_us
)
777 tp
->rttvar_us
= tp
->mdev_max_us
;
779 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
780 if (tp
->mdev_max_us
< tp
->rttvar_us
)
781 tp
->rttvar_us
-= (tp
->rttvar_us
- tp
->mdev_max_us
) >> 2;
782 tp
->rtt_seq
= tp
->snd_nxt
;
783 tp
->mdev_max_us
= tcp_rto_min_us(sk
);
788 /* no previous measure. */
789 srtt
= m
<< 3; /* take the measured time to be rtt */
790 tp
->mdev_us
= m
<< 1; /* make sure rto = 3*rtt */
791 tp
->rttvar_us
= max(tp
->mdev_us
, tcp_rto_min_us(sk
));
792 tp
->mdev_max_us
= tp
->rttvar_us
;
793 tp
->rtt_seq
= tp
->snd_nxt
;
797 tp
->srtt_us
= max(1U, srtt
);
800 static void tcp_update_pacing_rate(struct sock
*sk
)
802 const struct tcp_sock
*tp
= tcp_sk(sk
);
805 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
806 rate
= (u64
)tp
->mss_cache
* ((USEC_PER_SEC
/ 100) << 3);
808 /* current rate is (cwnd * mss) / srtt
809 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
810 * In Congestion Avoidance phase, set it to 120 % the current rate.
812 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
813 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
814 * end of slow start and should slow down.
816 if (tp
->snd_cwnd
< tp
->snd_ssthresh
/ 2)
817 rate
*= sock_net(sk
)->ipv4
.sysctl_tcp_pacing_ss_ratio
;
819 rate
*= sock_net(sk
)->ipv4
.sysctl_tcp_pacing_ca_ratio
;
821 rate
*= max(tp
->snd_cwnd
, tp
->packets_out
);
823 if (likely(tp
->srtt_us
))
824 do_div(rate
, tp
->srtt_us
);
826 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
827 * without any lock. We want to make sure compiler wont store
828 * intermediate values in this location.
830 WRITE_ONCE(sk
->sk_pacing_rate
, min_t(u64
, rate
,
831 sk
->sk_max_pacing_rate
));
834 /* Calculate rto without backoff. This is the second half of Van Jacobson's
835 * routine referred to above.
837 static void tcp_set_rto(struct sock
*sk
)
839 const struct tcp_sock
*tp
= tcp_sk(sk
);
840 /* Old crap is replaced with new one. 8)
843 * 1. If rtt variance happened to be less 50msec, it is hallucination.
844 * It cannot be less due to utterly erratic ACK generation made
845 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
846 * to do with delayed acks, because at cwnd>2 true delack timeout
847 * is invisible. Actually, Linux-2.4 also generates erratic
848 * ACKs in some circumstances.
850 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
852 /* 2. Fixups made earlier cannot be right.
853 * If we do not estimate RTO correctly without them,
854 * all the algo is pure shit and should be replaced
855 * with correct one. It is exactly, which we pretend to do.
858 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
859 * guarantees that rto is higher.
864 __u32
tcp_init_cwnd(const struct tcp_sock
*tp
, const struct dst_entry
*dst
)
866 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
869 cwnd
= TCP_INIT_CWND
;
870 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
873 /* Take a notice that peer is sending D-SACKs */
874 static void tcp_dsack_seen(struct tcp_sock
*tp
)
876 tp
->rx_opt
.sack_ok
|= TCP_DSACK_SEEN
;
877 tp
->rack
.dsack_seen
= 1;
881 /* It's reordering when higher sequence was delivered (i.e. sacked) before
882 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
883 * distance is approximated in full-mss packet distance ("reordering").
885 static void tcp_check_sack_reordering(struct sock
*sk
, const u32 low_seq
,
888 struct tcp_sock
*tp
= tcp_sk(sk
);
889 const u32 mss
= tp
->mss_cache
;
892 fack
= tcp_highest_sack_seq(tp
);
893 if (!before(low_seq
, fack
))
896 metric
= fack
- low_seq
;
897 if ((metric
> tp
->reordering
* mss
) && mss
) {
898 #if FASTRETRANS_DEBUG > 1
899 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
900 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
904 tp
->undo_marker
? tp
->undo_retrans
: 0);
906 tp
->reordering
= min_t(u32
, (metric
+ mss
- 1) / mss
,
907 sock_net(sk
)->ipv4
.sysctl_tcp_max_reordering
);
910 /* This exciting event is worth to be remembered. 8) */
912 NET_INC_STATS(sock_net(sk
),
913 ts
? LINUX_MIB_TCPTSREORDER
: LINUX_MIB_TCPSACKREORDER
);
916 /* This must be called before lost_out is incremented */
917 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
919 if ((!tp
->retransmit_skb_hint
&& tp
->retrans_out
>= tp
->lost_out
) ||
920 (tp
->retransmit_skb_hint
&&
921 before(TCP_SKB_CB(skb
)->seq
,
922 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
)))
923 tp
->retransmit_skb_hint
= skb
;
926 /* Sum the number of packets on the wire we have marked as lost.
927 * There are two cases we care about here:
928 * a) Packet hasn't been marked lost (nor retransmitted),
929 * and this is the first loss.
930 * b) Packet has been marked both lost and retransmitted,
931 * and this means we think it was lost again.
933 static void tcp_sum_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
935 __u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
937 if (!(sacked
& TCPCB_LOST
) ||
938 ((sacked
& TCPCB_LOST
) && (sacked
& TCPCB_SACKED_RETRANS
)))
939 tp
->lost
+= tcp_skb_pcount(skb
);
942 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
944 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
945 tcp_verify_retransmit_hint(tp
, skb
);
947 tp
->lost_out
+= tcp_skb_pcount(skb
);
948 tcp_sum_lost(tp
, skb
);
949 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
953 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
, struct sk_buff
*skb
)
955 tcp_verify_retransmit_hint(tp
, skb
);
957 tcp_sum_lost(tp
, skb
);
958 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
959 tp
->lost_out
+= tcp_skb_pcount(skb
);
960 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
964 /* This procedure tags the retransmission queue when SACKs arrive.
966 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
967 * Packets in queue with these bits set are counted in variables
968 * sacked_out, retrans_out and lost_out, correspondingly.
970 * Valid combinations are:
971 * Tag InFlight Description
972 * 0 1 - orig segment is in flight.
973 * S 0 - nothing flies, orig reached receiver.
974 * L 0 - nothing flies, orig lost by net.
975 * R 2 - both orig and retransmit are in flight.
976 * L|R 1 - orig is lost, retransmit is in flight.
977 * S|R 1 - orig reached receiver, retrans is still in flight.
978 * (L|S|R is logically valid, it could occur when L|R is sacked,
979 * but it is equivalent to plain S and code short-curcuits it to S.
980 * L|S is logically invalid, it would mean -1 packet in flight 8))
982 * These 6 states form finite state machine, controlled by the following events:
983 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
984 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
985 * 3. Loss detection event of two flavors:
986 * A. Scoreboard estimator decided the packet is lost.
987 * A'. Reno "three dupacks" marks head of queue lost.
988 * B. SACK arrives sacking SND.NXT at the moment, when the
989 * segment was retransmitted.
990 * 4. D-SACK added new rule: D-SACK changes any tag to S.
992 * It is pleasant to note, that state diagram turns out to be commutative,
993 * so that we are allowed not to be bothered by order of our actions,
994 * when multiple events arrive simultaneously. (see the function below).
996 * Reordering detection.
997 * --------------------
998 * Reordering metric is maximal distance, which a packet can be displaced
999 * in packet stream. With SACKs we can estimate it:
1001 * 1. SACK fills old hole and the corresponding segment was not
1002 * ever retransmitted -> reordering. Alas, we cannot use it
1003 * when segment was retransmitted.
1004 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1005 * for retransmitted and already SACKed segment -> reordering..
1006 * Both of these heuristics are not used in Loss state, when we cannot
1007 * account for retransmits accurately.
1009 * SACK block validation.
1010 * ----------------------
1012 * SACK block range validation checks that the received SACK block fits to
1013 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1014 * Note that SND.UNA is not included to the range though being valid because
1015 * it means that the receiver is rather inconsistent with itself reporting
1016 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1017 * perfectly valid, however, in light of RFC2018 which explicitly states
1018 * that "SACK block MUST reflect the newest segment. Even if the newest
1019 * segment is going to be discarded ...", not that it looks very clever
1020 * in case of head skb. Due to potentional receiver driven attacks, we
1021 * choose to avoid immediate execution of a walk in write queue due to
1022 * reneging and defer head skb's loss recovery to standard loss recovery
1023 * procedure that will eventually trigger (nothing forbids us doing this).
1025 * Implements also blockage to start_seq wrap-around. Problem lies in the
1026 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1027 * there's no guarantee that it will be before snd_nxt (n). The problem
1028 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1031 * <- outs wnd -> <- wrapzone ->
1032 * u e n u_w e_w s n_w
1034 * |<------------+------+----- TCP seqno space --------------+---------->|
1035 * ...-- <2^31 ->| |<--------...
1036 * ...---- >2^31 ------>| |<--------...
1038 * Current code wouldn't be vulnerable but it's better still to discard such
1039 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1040 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1041 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1042 * equal to the ideal case (infinite seqno space without wrap caused issues).
1044 * With D-SACK the lower bound is extended to cover sequence space below
1045 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1046 * again, D-SACK block must not to go across snd_una (for the same reason as
1047 * for the normal SACK blocks, explained above). But there all simplicity
1048 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1049 * fully below undo_marker they do not affect behavior in anyway and can
1050 * therefore be safely ignored. In rare cases (which are more or less
1051 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1052 * fragmentation and packet reordering past skb's retransmission. To consider
1053 * them correctly, the acceptable range must be extended even more though
1054 * the exact amount is rather hard to quantify. However, tp->max_window can
1055 * be used as an exaggerated estimate.
1057 static bool tcp_is_sackblock_valid(struct tcp_sock
*tp
, bool is_dsack
,
1058 u32 start_seq
, u32 end_seq
)
1060 /* Too far in future, or reversed (interpretation is ambiguous) */
1061 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1064 /* Nasty start_seq wrap-around check (see comments above) */
1065 if (!before(start_seq
, tp
->snd_nxt
))
1068 /* In outstanding window? ...This is valid exit for D-SACKs too.
1069 * start_seq == snd_una is non-sensical (see comments above)
1071 if (after(start_seq
, tp
->snd_una
))
1074 if (!is_dsack
|| !tp
->undo_marker
)
1077 /* ...Then it's D-SACK, and must reside below snd_una completely */
1078 if (after(end_seq
, tp
->snd_una
))
1081 if (!before(start_seq
, tp
->undo_marker
))
1085 if (!after(end_seq
, tp
->undo_marker
))
1088 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1089 * start_seq < undo_marker and end_seq >= undo_marker.
1091 return !before(start_seq
, end_seq
- tp
->max_window
);
1094 static bool tcp_check_dsack(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1095 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1098 struct tcp_sock
*tp
= tcp_sk(sk
);
1099 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1100 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1101 bool dup_sack
= false;
1103 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1106 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1107 } else if (num_sacks
> 1) {
1108 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1109 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1111 if (!after(end_seq_0
, end_seq_1
) &&
1112 !before(start_seq_0
, start_seq_1
)) {
1115 NET_INC_STATS(sock_net(sk
),
1116 LINUX_MIB_TCPDSACKOFORECV
);
1120 /* D-SACK for already forgotten data... Do dumb counting. */
1121 if (dup_sack
&& tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1122 !after(end_seq_0
, prior_snd_una
) &&
1123 after(end_seq_0
, tp
->undo_marker
))
1129 struct tcp_sacktag_state
{
1131 /* Timestamps for earliest and latest never-retransmitted segment
1132 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1133 * but congestion control should still get an accurate delay signal.
1137 struct rate_sample
*rate
;
1139 unsigned int mss_now
;
1142 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1143 * the incoming SACK may not exactly match but we can find smaller MSS
1144 * aligned portion of it that matches. Therefore we might need to fragment
1145 * which may fail and creates some hassle (caller must handle error case
1148 * FIXME: this could be merged to shift decision code
1150 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1151 u32 start_seq
, u32 end_seq
)
1155 unsigned int pkt_len
;
1158 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1159 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1161 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1162 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1163 mss
= tcp_skb_mss(skb
);
1164 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1167 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1171 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1176 /* Round if necessary so that SACKs cover only full MSSes
1177 * and/or the remaining small portion (if present)
1179 if (pkt_len
> mss
) {
1180 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1181 if (!in_sack
&& new_len
< pkt_len
)
1186 if (pkt_len
>= skb
->len
&& !in_sack
)
1189 err
= tcp_fragment(sk
, TCP_FRAG_IN_RTX_QUEUE
, skb
,
1190 pkt_len
, mss
, GFP_ATOMIC
);
1198 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1199 static u8
tcp_sacktag_one(struct sock
*sk
,
1200 struct tcp_sacktag_state
*state
, u8 sacked
,
1201 u32 start_seq
, u32 end_seq
,
1202 int dup_sack
, int pcount
,
1205 struct tcp_sock
*tp
= tcp_sk(sk
);
1207 /* Account D-SACK for retransmitted packet. */
1208 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1209 if (tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1210 after(end_seq
, tp
->undo_marker
))
1212 if ((sacked
& TCPCB_SACKED_ACKED
) &&
1213 before(start_seq
, state
->reord
))
1214 state
->reord
= start_seq
;
1217 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1218 if (!after(end_seq
, tp
->snd_una
))
1221 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1222 tcp_rack_advance(tp
, sacked
, end_seq
, xmit_time
);
1224 if (sacked
& TCPCB_SACKED_RETRANS
) {
1225 /* If the segment is not tagged as lost,
1226 * we do not clear RETRANS, believing
1227 * that retransmission is still in flight.
1229 if (sacked
& TCPCB_LOST
) {
1230 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1231 tp
->lost_out
-= pcount
;
1232 tp
->retrans_out
-= pcount
;
1235 if (!(sacked
& TCPCB_RETRANS
)) {
1236 /* New sack for not retransmitted frame,
1237 * which was in hole. It is reordering.
1239 if (before(start_seq
,
1240 tcp_highest_sack_seq(tp
)) &&
1241 before(start_seq
, state
->reord
))
1242 state
->reord
= start_seq
;
1244 if (!after(end_seq
, tp
->high_seq
))
1245 state
->flag
|= FLAG_ORIG_SACK_ACKED
;
1246 if (state
->first_sackt
== 0)
1247 state
->first_sackt
= xmit_time
;
1248 state
->last_sackt
= xmit_time
;
1251 if (sacked
& TCPCB_LOST
) {
1252 sacked
&= ~TCPCB_LOST
;
1253 tp
->lost_out
-= pcount
;
1257 sacked
|= TCPCB_SACKED_ACKED
;
1258 state
->flag
|= FLAG_DATA_SACKED
;
1259 tp
->sacked_out
+= pcount
;
1260 tp
->delivered
+= pcount
; /* Out-of-order packets delivered */
1262 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1263 if (tp
->lost_skb_hint
&&
1264 before(start_seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1265 tp
->lost_cnt_hint
+= pcount
;
1268 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1269 * frames and clear it. undo_retrans is decreased above, L|R frames
1270 * are accounted above as well.
1272 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1273 sacked
&= ~TCPCB_SACKED_RETRANS
;
1274 tp
->retrans_out
-= pcount
;
1280 /* Shift newly-SACKed bytes from this skb to the immediately previous
1281 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1283 static bool tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*prev
,
1284 struct sk_buff
*skb
,
1285 struct tcp_sacktag_state
*state
,
1286 unsigned int pcount
, int shifted
, int mss
,
1289 struct tcp_sock
*tp
= tcp_sk(sk
);
1290 u32 start_seq
= TCP_SKB_CB(skb
)->seq
; /* start of newly-SACKed */
1291 u32 end_seq
= start_seq
+ shifted
; /* end of newly-SACKed */
1295 /* Adjust counters and hints for the newly sacked sequence
1296 * range but discard the return value since prev is already
1297 * marked. We must tag the range first because the seq
1298 * advancement below implicitly advances
1299 * tcp_highest_sack_seq() when skb is highest_sack.
1301 tcp_sacktag_one(sk
, state
, TCP_SKB_CB(skb
)->sacked
,
1302 start_seq
, end_seq
, dup_sack
, pcount
,
1303 tcp_skb_timestamp_us(skb
));
1304 tcp_rate_skb_delivered(sk
, skb
, state
->rate
);
1306 if (skb
== tp
->lost_skb_hint
)
1307 tp
->lost_cnt_hint
+= pcount
;
1309 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1310 TCP_SKB_CB(skb
)->seq
+= shifted
;
1312 tcp_skb_pcount_add(prev
, pcount
);
1313 WARN_ON_ONCE(tcp_skb_pcount(skb
) < pcount
);
1314 tcp_skb_pcount_add(skb
, -pcount
);
1316 /* When we're adding to gso_segs == 1, gso_size will be zero,
1317 * in theory this shouldn't be necessary but as long as DSACK
1318 * code can come after this skb later on it's better to keep
1319 * setting gso_size to something.
1321 if (!TCP_SKB_CB(prev
)->tcp_gso_size
)
1322 TCP_SKB_CB(prev
)->tcp_gso_size
= mss
;
1324 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1325 if (tcp_skb_pcount(skb
) <= 1)
1326 TCP_SKB_CB(skb
)->tcp_gso_size
= 0;
1328 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1329 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1332 BUG_ON(!tcp_skb_pcount(skb
));
1333 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1337 /* Whole SKB was eaten :-) */
1339 if (skb
== tp
->retransmit_skb_hint
)
1340 tp
->retransmit_skb_hint
= prev
;
1341 if (skb
== tp
->lost_skb_hint
) {
1342 tp
->lost_skb_hint
= prev
;
1343 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1346 TCP_SKB_CB(prev
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
;
1347 TCP_SKB_CB(prev
)->eor
= TCP_SKB_CB(skb
)->eor
;
1348 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
1349 TCP_SKB_CB(prev
)->end_seq
++;
1351 if (skb
== tcp_highest_sack(sk
))
1352 tcp_advance_highest_sack(sk
, skb
);
1354 tcp_skb_collapse_tstamp(prev
, skb
);
1355 if (unlikely(TCP_SKB_CB(prev
)->tx
.delivered_mstamp
))
1356 TCP_SKB_CB(prev
)->tx
.delivered_mstamp
= 0;
1358 tcp_rtx_queue_unlink_and_free(skb
, sk
);
1360 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1365 /* I wish gso_size would have a bit more sane initialization than
1366 * something-or-zero which complicates things
1368 static int tcp_skb_seglen(const struct sk_buff
*skb
)
1370 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1373 /* Shifting pages past head area doesn't work */
1374 static int skb_can_shift(const struct sk_buff
*skb
)
1376 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1379 int tcp_skb_shift(struct sk_buff
*to
, struct sk_buff
*from
,
1380 int pcount
, int shiftlen
)
1382 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1383 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1384 * to make sure not storing more than 65535 * 8 bytes per skb,
1385 * even if current MSS is bigger.
1387 if (unlikely(to
->len
+ shiftlen
>= 65535 * TCP_MIN_GSO_SIZE
))
1389 if (unlikely(tcp_skb_pcount(to
) + pcount
> 65535))
1391 return skb_shift(to
, from
, shiftlen
);
1394 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1397 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1398 struct tcp_sacktag_state
*state
,
1399 u32 start_seq
, u32 end_seq
,
1402 struct tcp_sock
*tp
= tcp_sk(sk
);
1403 struct sk_buff
*prev
;
1409 /* Normally R but no L won't result in plain S */
1411 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1413 if (!skb_can_shift(skb
))
1415 /* This frame is about to be dropped (was ACKed). */
1416 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1419 /* Can only happen with delayed DSACK + discard craziness */
1420 prev
= skb_rb_prev(skb
);
1424 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1427 if (!tcp_skb_can_collapse(prev
, skb
))
1430 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1431 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1435 pcount
= tcp_skb_pcount(skb
);
1436 mss
= tcp_skb_seglen(skb
);
1438 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1439 * drop this restriction as unnecessary
1441 if (mss
!= tcp_skb_seglen(prev
))
1444 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1446 /* CHECKME: This is non-MSS split case only?, this will
1447 * cause skipped skbs due to advancing loop btw, original
1448 * has that feature too
1450 if (tcp_skb_pcount(skb
) <= 1)
1453 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1455 /* TODO: head merge to next could be attempted here
1456 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1457 * though it might not be worth of the additional hassle
1459 * ...we can probably just fallback to what was done
1460 * previously. We could try merging non-SACKed ones
1461 * as well but it probably isn't going to buy off
1462 * because later SACKs might again split them, and
1463 * it would make skb timestamp tracking considerably
1469 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1471 BUG_ON(len
> skb
->len
);
1473 /* MSS boundaries should be honoured or else pcount will
1474 * severely break even though it makes things bit trickier.
1475 * Optimize common case to avoid most of the divides
1477 mss
= tcp_skb_mss(skb
);
1479 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1480 * drop this restriction as unnecessary
1482 if (mss
!= tcp_skb_seglen(prev
))
1487 } else if (len
< mss
) {
1495 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1496 if (!after(TCP_SKB_CB(skb
)->seq
+ len
, tp
->snd_una
))
1499 if (!tcp_skb_shift(prev
, skb
, pcount
, len
))
1501 if (!tcp_shifted_skb(sk
, prev
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1504 /* Hole filled allows collapsing with the next as well, this is very
1505 * useful when hole on every nth skb pattern happens
1507 skb
= skb_rb_next(prev
);
1511 if (!skb_can_shift(skb
) ||
1512 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1513 (mss
!= tcp_skb_seglen(skb
)))
1517 pcount
= tcp_skb_pcount(skb
);
1518 if (tcp_skb_shift(prev
, skb
, pcount
, len
))
1519 tcp_shifted_skb(sk
, prev
, skb
, state
, pcount
,
1529 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1533 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1534 struct tcp_sack_block
*next_dup
,
1535 struct tcp_sacktag_state
*state
,
1536 u32 start_seq
, u32 end_seq
,
1539 struct tcp_sock
*tp
= tcp_sk(sk
);
1540 struct sk_buff
*tmp
;
1542 skb_rbtree_walk_from(skb
) {
1544 bool dup_sack
= dup_sack_in
;
1546 /* queue is in-order => we can short-circuit the walk early */
1547 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1551 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1552 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1553 next_dup
->start_seq
,
1559 /* skb reference here is a bit tricky to get right, since
1560 * shifting can eat and free both this skb and the next,
1561 * so not even _safe variant of the loop is enough.
1564 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1565 start_seq
, end_seq
, dup_sack
);
1574 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1580 if (unlikely(in_sack
< 0))
1584 TCP_SKB_CB(skb
)->sacked
=
1587 TCP_SKB_CB(skb
)->sacked
,
1588 TCP_SKB_CB(skb
)->seq
,
1589 TCP_SKB_CB(skb
)->end_seq
,
1591 tcp_skb_pcount(skb
),
1592 tcp_skb_timestamp_us(skb
));
1593 tcp_rate_skb_delivered(sk
, skb
, state
->rate
);
1594 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
1595 list_del_init(&skb
->tcp_tsorted_anchor
);
1597 if (!before(TCP_SKB_CB(skb
)->seq
,
1598 tcp_highest_sack_seq(tp
)))
1599 tcp_advance_highest_sack(sk
, skb
);
1605 static struct sk_buff
*tcp_sacktag_bsearch(struct sock
*sk
, u32 seq
)
1607 struct rb_node
*parent
, **p
= &sk
->tcp_rtx_queue
.rb_node
;
1608 struct sk_buff
*skb
;
1612 skb
= rb_to_skb(parent
);
1613 if (before(seq
, TCP_SKB_CB(skb
)->seq
)) {
1614 p
= &parent
->rb_left
;
1617 if (!before(seq
, TCP_SKB_CB(skb
)->end_seq
)) {
1618 p
= &parent
->rb_right
;
1626 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1629 if (skb
&& after(TCP_SKB_CB(skb
)->seq
, skip_to_seq
))
1632 return tcp_sacktag_bsearch(sk
, skip_to_seq
);
1635 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1637 struct tcp_sack_block
*next_dup
,
1638 struct tcp_sacktag_state
*state
,
1644 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1645 skb
= tcp_sacktag_skip(skb
, sk
, next_dup
->start_seq
);
1646 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1647 next_dup
->start_seq
, next_dup
->end_seq
,
1654 static int tcp_sack_cache_ok(const struct tcp_sock
*tp
, const struct tcp_sack_block
*cache
)
1656 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1660 tcp_sacktag_write_queue(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1661 u32 prior_snd_una
, struct tcp_sacktag_state
*state
)
1663 struct tcp_sock
*tp
= tcp_sk(sk
);
1664 const unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1665 TCP_SKB_CB(ack_skb
)->sacked
);
1666 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1667 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1668 struct tcp_sack_block
*cache
;
1669 struct sk_buff
*skb
;
1670 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1672 bool found_dup_sack
= false;
1674 int first_sack_index
;
1677 state
->reord
= tp
->snd_nxt
;
1679 if (!tp
->sacked_out
)
1680 tcp_highest_sack_reset(sk
);
1682 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1683 num_sacks
, prior_snd_una
);
1684 if (found_dup_sack
) {
1685 state
->flag
|= FLAG_DSACKING_ACK
;
1686 tp
->delivered
++; /* A spurious retransmission is delivered */
1689 /* Eliminate too old ACKs, but take into
1690 * account more or less fresh ones, they can
1691 * contain valid SACK info.
1693 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1696 if (!tp
->packets_out
)
1700 first_sack_index
= 0;
1701 for (i
= 0; i
< num_sacks
; i
++) {
1702 bool dup_sack
= !i
&& found_dup_sack
;
1704 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1705 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1707 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1708 sp
[used_sacks
].start_seq
,
1709 sp
[used_sacks
].end_seq
)) {
1713 if (!tp
->undo_marker
)
1714 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1716 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1718 /* Don't count olds caused by ACK reordering */
1719 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1720 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1722 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1725 NET_INC_STATS(sock_net(sk
), mib_idx
);
1727 first_sack_index
= -1;
1731 /* Ignore very old stuff early */
1732 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
)) {
1734 first_sack_index
= -1;
1741 /* order SACK blocks to allow in order walk of the retrans queue */
1742 for (i
= used_sacks
- 1; i
> 0; i
--) {
1743 for (j
= 0; j
< i
; j
++) {
1744 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1745 swap(sp
[j
], sp
[j
+ 1]);
1747 /* Track where the first SACK block goes to */
1748 if (j
== first_sack_index
)
1749 first_sack_index
= j
+ 1;
1754 state
->mss_now
= tcp_current_mss(sk
);
1758 if (!tp
->sacked_out
) {
1759 /* It's already past, so skip checking against it */
1760 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1762 cache
= tp
->recv_sack_cache
;
1763 /* Skip empty blocks in at head of the cache */
1764 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1769 while (i
< used_sacks
) {
1770 u32 start_seq
= sp
[i
].start_seq
;
1771 u32 end_seq
= sp
[i
].end_seq
;
1772 bool dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1773 struct tcp_sack_block
*next_dup
= NULL
;
1775 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1776 next_dup
= &sp
[i
+ 1];
1778 /* Skip too early cached blocks */
1779 while (tcp_sack_cache_ok(tp
, cache
) &&
1780 !before(start_seq
, cache
->end_seq
))
1783 /* Can skip some work by looking recv_sack_cache? */
1784 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1785 after(end_seq
, cache
->start_seq
)) {
1788 if (before(start_seq
, cache
->start_seq
)) {
1789 skb
= tcp_sacktag_skip(skb
, sk
, start_seq
);
1790 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1797 /* Rest of the block already fully processed? */
1798 if (!after(end_seq
, cache
->end_seq
))
1801 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1805 /* ...tail remains todo... */
1806 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1807 /* ...but better entrypoint exists! */
1808 skb
= tcp_highest_sack(sk
);
1815 skb
= tcp_sacktag_skip(skb
, sk
, cache
->end_seq
);
1816 /* Check overlap against next cached too (past this one already) */
1821 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1822 skb
= tcp_highest_sack(sk
);
1826 skb
= tcp_sacktag_skip(skb
, sk
, start_seq
);
1829 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, state
,
1830 start_seq
, end_seq
, dup_sack
);
1836 /* Clear the head of the cache sack blocks so we can skip it next time */
1837 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1838 tp
->recv_sack_cache
[i
].start_seq
= 0;
1839 tp
->recv_sack_cache
[i
].end_seq
= 0;
1841 for (j
= 0; j
< used_sacks
; j
++)
1842 tp
->recv_sack_cache
[i
++] = sp
[j
];
1844 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Loss
|| tp
->undo_marker
)
1845 tcp_check_sack_reordering(sk
, state
->reord
, 0);
1847 tcp_verify_left_out(tp
);
1850 #if FASTRETRANS_DEBUG > 0
1851 WARN_ON((int)tp
->sacked_out
< 0);
1852 WARN_ON((int)tp
->lost_out
< 0);
1853 WARN_ON((int)tp
->retrans_out
< 0);
1854 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1859 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1860 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1862 static bool tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1866 holes
= max(tp
->lost_out
, 1U);
1867 holes
= min(holes
, tp
->packets_out
);
1869 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1870 tp
->sacked_out
= tp
->packets_out
- holes
;
1876 /* If we receive more dupacks than we expected counting segments
1877 * in assumption of absent reordering, interpret this as reordering.
1878 * The only another reason could be bug in receiver TCP.
1880 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1882 struct tcp_sock
*tp
= tcp_sk(sk
);
1884 if (!tcp_limit_reno_sacked(tp
))
1887 tp
->reordering
= min_t(u32
, tp
->packets_out
+ addend
,
1888 sock_net(sk
)->ipv4
.sysctl_tcp_max_reordering
);
1890 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRENOREORDER
);
1893 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1895 static void tcp_add_reno_sack(struct sock
*sk
, int num_dupack
)
1898 struct tcp_sock
*tp
= tcp_sk(sk
);
1899 u32 prior_sacked
= tp
->sacked_out
;
1902 tp
->sacked_out
+= num_dupack
;
1903 tcp_check_reno_reordering(sk
, 0);
1904 delivered
= tp
->sacked_out
- prior_sacked
;
1906 tp
->delivered
+= delivered
;
1907 tcp_verify_left_out(tp
);
1911 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1913 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1915 struct tcp_sock
*tp
= tcp_sk(sk
);
1918 /* One ACK acked hole. The rest eat duplicate ACKs. */
1919 tp
->delivered
+= max_t(int, acked
- tp
->sacked_out
, 1);
1920 if (acked
- 1 >= tp
->sacked_out
)
1923 tp
->sacked_out
-= acked
- 1;
1925 tcp_check_reno_reordering(sk
, acked
);
1926 tcp_verify_left_out(tp
);
1929 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1934 void tcp_clear_retrans(struct tcp_sock
*tp
)
1936 tp
->retrans_out
= 0;
1938 tp
->undo_marker
= 0;
1939 tp
->undo_retrans
= -1;
1943 static inline void tcp_init_undo(struct tcp_sock
*tp
)
1945 tp
->undo_marker
= tp
->snd_una
;
1946 /* Retransmission still in flight may cause DSACKs later. */
1947 tp
->undo_retrans
= tp
->retrans_out
? : -1;
1950 static bool tcp_is_rack(const struct sock
*sk
)
1952 return sock_net(sk
)->ipv4
.sysctl_tcp_recovery
& TCP_RACK_LOSS_DETECTION
;
1955 /* If we detect SACK reneging, forget all SACK information
1956 * and reset tags completely, otherwise preserve SACKs. If receiver
1957 * dropped its ofo queue, we will know this due to reneging detection.
1959 static void tcp_timeout_mark_lost(struct sock
*sk
)
1961 struct tcp_sock
*tp
= tcp_sk(sk
);
1962 struct sk_buff
*skb
, *head
;
1963 bool is_reneg
; /* is receiver reneging on SACKs? */
1965 head
= tcp_rtx_queue_head(sk
);
1966 is_reneg
= head
&& (TCP_SKB_CB(head
)->sacked
& TCPCB_SACKED_ACKED
);
1968 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
1970 /* Mark SACK reneging until we recover from this loss event. */
1971 tp
->is_sack_reneg
= 1;
1972 } else if (tcp_is_reno(tp
)) {
1973 tcp_reset_reno_sack(tp
);
1977 skb_rbtree_walk_from(skb
) {
1979 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
1980 else if (tcp_is_rack(sk
) && skb
!= head
&&
1981 tcp_rack_skb_timeout(tp
, skb
, 0) > 0)
1982 continue; /* Don't mark recently sent ones lost yet */
1983 tcp_mark_skb_lost(sk
, skb
);
1985 tcp_verify_left_out(tp
);
1986 tcp_clear_all_retrans_hints(tp
);
1989 /* Enter Loss state. */
1990 void tcp_enter_loss(struct sock
*sk
)
1992 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1993 struct tcp_sock
*tp
= tcp_sk(sk
);
1994 struct net
*net
= sock_net(sk
);
1995 bool new_recovery
= icsk
->icsk_ca_state
< TCP_CA_Recovery
;
1997 tcp_timeout_mark_lost(sk
);
1999 /* Reduce ssthresh if it has not yet been made inside this window. */
2000 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
||
2001 !after(tp
->high_seq
, tp
->snd_una
) ||
2002 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
2003 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2004 tp
->prior_cwnd
= tp
->snd_cwnd
;
2005 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2006 tcp_ca_event(sk
, CA_EVENT_LOSS
);
2009 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + 1;
2010 tp
->snd_cwnd_cnt
= 0;
2011 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
2013 /* Timeout in disordered state after receiving substantial DUPACKs
2014 * suggests that the degree of reordering is over-estimated.
2016 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
&&
2017 tp
->sacked_out
>= net
->ipv4
.sysctl_tcp_reordering
)
2018 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2019 net
->ipv4
.sysctl_tcp_reordering
);
2020 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2021 tp
->high_seq
= tp
->snd_nxt
;
2022 tcp_ecn_queue_cwr(tp
);
2024 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2025 * loss recovery is underway except recurring timeout(s) on
2026 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2028 tp
->frto
= net
->ipv4
.sysctl_tcp_frto
&&
2029 (new_recovery
|| icsk
->icsk_retransmits
) &&
2030 !inet_csk(sk
)->icsk_mtup
.probe_size
;
2033 /* If ACK arrived pointing to a remembered SACK, it means that our
2034 * remembered SACKs do not reflect real state of receiver i.e.
2035 * receiver _host_ is heavily congested (or buggy).
2037 * To avoid big spurious retransmission bursts due to transient SACK
2038 * scoreboard oddities that look like reneging, we give the receiver a
2039 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2040 * restore sanity to the SACK scoreboard. If the apparent reneging
2041 * persists until this RTO then we'll clear the SACK scoreboard.
2043 static bool tcp_check_sack_reneging(struct sock
*sk
, int flag
)
2045 if (flag
& FLAG_SACK_RENEGING
) {
2046 struct tcp_sock
*tp
= tcp_sk(sk
);
2047 unsigned long delay
= max(usecs_to_jiffies(tp
->srtt_us
>> 4),
2048 msecs_to_jiffies(10));
2050 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2051 delay
, TCP_RTO_MAX
);
2057 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2058 * counter when SACK is enabled (without SACK, sacked_out is used for
2061 * With reordering, holes may still be in flight, so RFC3517 recovery
2062 * uses pure sacked_out (total number of SACKed segments) even though
2063 * it violates the RFC that uses duplicate ACKs, often these are equal
2064 * but when e.g. out-of-window ACKs or packet duplication occurs,
2065 * they differ. Since neither occurs due to loss, TCP should really
2068 static inline int tcp_dupack_heuristics(const struct tcp_sock
*tp
)
2070 return tp
->sacked_out
+ 1;
2073 /* Linux NewReno/SACK/ECN state machine.
2074 * --------------------------------------
2076 * "Open" Normal state, no dubious events, fast path.
2077 * "Disorder" In all the respects it is "Open",
2078 * but requires a bit more attention. It is entered when
2079 * we see some SACKs or dupacks. It is split of "Open"
2080 * mainly to move some processing from fast path to slow one.
2081 * "CWR" CWND was reduced due to some Congestion Notification event.
2082 * It can be ECN, ICMP source quench, local device congestion.
2083 * "Recovery" CWND was reduced, we are fast-retransmitting.
2084 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2086 * tcp_fastretrans_alert() is entered:
2087 * - each incoming ACK, if state is not "Open"
2088 * - when arrived ACK is unusual, namely:
2093 * Counting packets in flight is pretty simple.
2095 * in_flight = packets_out - left_out + retrans_out
2097 * packets_out is SND.NXT-SND.UNA counted in packets.
2099 * retrans_out is number of retransmitted segments.
2101 * left_out is number of segments left network, but not ACKed yet.
2103 * left_out = sacked_out + lost_out
2105 * sacked_out: Packets, which arrived to receiver out of order
2106 * and hence not ACKed. With SACKs this number is simply
2107 * amount of SACKed data. Even without SACKs
2108 * it is easy to give pretty reliable estimate of this number,
2109 * counting duplicate ACKs.
2111 * lost_out: Packets lost by network. TCP has no explicit
2112 * "loss notification" feedback from network (for now).
2113 * It means that this number can be only _guessed_.
2114 * Actually, it is the heuristics to predict lossage that
2115 * distinguishes different algorithms.
2117 * F.e. after RTO, when all the queue is considered as lost,
2118 * lost_out = packets_out and in_flight = retrans_out.
2120 * Essentially, we have now a few algorithms detecting
2123 * If the receiver supports SACK:
2125 * RFC6675/3517: It is the conventional algorithm. A packet is
2126 * considered lost if the number of higher sequence packets
2127 * SACKed is greater than or equal the DUPACK thoreshold
2128 * (reordering). This is implemented in tcp_mark_head_lost and
2129 * tcp_update_scoreboard.
2131 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2132 * (2017-) that checks timing instead of counting DUPACKs.
2133 * Essentially a packet is considered lost if it's not S/ACKed
2134 * after RTT + reordering_window, where both metrics are
2135 * dynamically measured and adjusted. This is implemented in
2136 * tcp_rack_mark_lost.
2138 * If the receiver does not support SACK:
2140 * NewReno (RFC6582): in Recovery we assume that one segment
2141 * is lost (classic Reno). While we are in Recovery and
2142 * a partial ACK arrives, we assume that one more packet
2143 * is lost (NewReno). This heuristics are the same in NewReno
2146 * Really tricky (and requiring careful tuning) part of algorithm
2147 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2148 * The first determines the moment _when_ we should reduce CWND and,
2149 * hence, slow down forward transmission. In fact, it determines the moment
2150 * when we decide that hole is caused by loss, rather than by a reorder.
2152 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2153 * holes, caused by lost packets.
2155 * And the most logically complicated part of algorithm is undo
2156 * heuristics. We detect false retransmits due to both too early
2157 * fast retransmit (reordering) and underestimated RTO, analyzing
2158 * timestamps and D-SACKs. When we detect that some segments were
2159 * retransmitted by mistake and CWND reduction was wrong, we undo
2160 * window reduction and abort recovery phase. This logic is hidden
2161 * inside several functions named tcp_try_undo_<something>.
2164 /* This function decides, when we should leave Disordered state
2165 * and enter Recovery phase, reducing congestion window.
2167 * Main question: may we further continue forward transmission
2168 * with the same cwnd?
2170 static bool tcp_time_to_recover(struct sock
*sk
, int flag
)
2172 struct tcp_sock
*tp
= tcp_sk(sk
);
2174 /* Trick#1: The loss is proven. */
2178 /* Not-A-Trick#2 : Classic rule... */
2179 if (!tcp_is_rack(sk
) && tcp_dupack_heuristics(tp
) > tp
->reordering
)
2185 /* Detect loss in event "A" above by marking head of queue up as lost.
2186 * For non-SACK(Reno) senders, the first "packets" number of segments
2187 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2188 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2189 * the maximum SACKed segments to pass before reaching this limit.
2191 static void tcp_mark_head_lost(struct sock
*sk
, int packets
, int mark_head
)
2193 struct tcp_sock
*tp
= tcp_sk(sk
);
2194 struct sk_buff
*skb
;
2195 int cnt
, oldcnt
, lost
;
2197 /* Use SACK to deduce losses of new sequences sent during recovery */
2198 const u32 loss_high
= tcp_is_sack(tp
) ? tp
->snd_nxt
: tp
->high_seq
;
2200 WARN_ON(packets
> tp
->packets_out
);
2201 skb
= tp
->lost_skb_hint
;
2203 /* Head already handled? */
2204 if (mark_head
&& after(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
))
2206 cnt
= tp
->lost_cnt_hint
;
2208 skb
= tcp_rtx_queue_head(sk
);
2212 skb_rbtree_walk_from(skb
) {
2213 /* TODO: do this better */
2214 /* this is not the most efficient way to do this... */
2215 tp
->lost_skb_hint
= skb
;
2216 tp
->lost_cnt_hint
= cnt
;
2218 if (after(TCP_SKB_CB(skb
)->end_seq
, loss_high
))
2222 if (tcp_is_reno(tp
) ||
2223 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2224 cnt
+= tcp_skb_pcount(skb
);
2226 if (cnt
> packets
) {
2227 if (tcp_is_sack(tp
) ||
2228 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
) ||
2229 (oldcnt
>= packets
))
2232 mss
= tcp_skb_mss(skb
);
2233 /* If needed, chop off the prefix to mark as lost. */
2234 lost
= (packets
- oldcnt
) * mss
;
2235 if (lost
< skb
->len
&&
2236 tcp_fragment(sk
, TCP_FRAG_IN_RTX_QUEUE
, skb
,
2237 lost
, mss
, GFP_ATOMIC
) < 0)
2242 tcp_skb_mark_lost(tp
, skb
);
2247 tcp_verify_left_out(tp
);
2250 /* Account newly detected lost packet(s) */
2252 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2254 struct tcp_sock
*tp
= tcp_sk(sk
);
2256 if (tcp_is_sack(tp
)) {
2257 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2258 if (sacked_upto
>= 0)
2259 tcp_mark_head_lost(sk
, sacked_upto
, 0);
2260 else if (fast_rexmit
)
2261 tcp_mark_head_lost(sk
, 1, 1);
2265 static bool tcp_tsopt_ecr_before(const struct tcp_sock
*tp
, u32 when
)
2267 return tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2268 before(tp
->rx_opt
.rcv_tsecr
, when
);
2271 /* skb is spurious retransmitted if the returned timestamp echo
2272 * reply is prior to the skb transmission time
2274 static bool tcp_skb_spurious_retrans(const struct tcp_sock
*tp
,
2275 const struct sk_buff
*skb
)
2277 return (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
) &&
2278 tcp_tsopt_ecr_before(tp
, tcp_skb_timestamp(skb
));
2281 /* Nothing was retransmitted or returned timestamp is less
2282 * than timestamp of the first retransmission.
2284 static inline bool tcp_packet_delayed(const struct tcp_sock
*tp
)
2286 return tp
->retrans_stamp
&&
2287 tcp_tsopt_ecr_before(tp
, tp
->retrans_stamp
);
2290 /* Undo procedures. */
2292 /* We can clear retrans_stamp when there are no retransmissions in the
2293 * window. It would seem that it is trivially available for us in
2294 * tp->retrans_out, however, that kind of assumptions doesn't consider
2295 * what will happen if errors occur when sending retransmission for the
2296 * second time. ...It could the that such segment has only
2297 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2298 * the head skb is enough except for some reneging corner cases that
2299 * are not worth the effort.
2301 * Main reason for all this complexity is the fact that connection dying
2302 * time now depends on the validity of the retrans_stamp, in particular,
2303 * that successive retransmissions of a segment must not advance
2304 * retrans_stamp under any conditions.
2306 static bool tcp_any_retrans_done(const struct sock
*sk
)
2308 const struct tcp_sock
*tp
= tcp_sk(sk
);
2309 struct sk_buff
*skb
;
2311 if (tp
->retrans_out
)
2314 skb
= tcp_rtx_queue_head(sk
);
2315 if (unlikely(skb
&& TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
))
2321 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2323 #if FASTRETRANS_DEBUG > 1
2324 struct tcp_sock
*tp
= tcp_sk(sk
);
2325 struct inet_sock
*inet
= inet_sk(sk
);
2327 if (sk
->sk_family
== AF_INET
) {
2328 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2330 &inet
->inet_daddr
, ntohs(inet
->inet_dport
),
2331 tp
->snd_cwnd
, tcp_left_out(tp
),
2332 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2335 #if IS_ENABLED(CONFIG_IPV6)
2336 else if (sk
->sk_family
== AF_INET6
) {
2337 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2339 &sk
->sk_v6_daddr
, ntohs(inet
->inet_dport
),
2340 tp
->snd_cwnd
, tcp_left_out(tp
),
2341 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2348 static void tcp_undo_cwnd_reduction(struct sock
*sk
, bool unmark_loss
)
2350 struct tcp_sock
*tp
= tcp_sk(sk
);
2353 struct sk_buff
*skb
;
2355 skb_rbtree_walk(skb
, &sk
->tcp_rtx_queue
) {
2356 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2359 tcp_clear_all_retrans_hints(tp
);
2362 if (tp
->prior_ssthresh
) {
2363 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2365 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2367 if (tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2368 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2369 tcp_ecn_withdraw_cwr(tp
);
2372 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
2373 tp
->undo_marker
= 0;
2374 tp
->rack
.advanced
= 1; /* Force RACK to re-exam losses */
2377 static inline bool tcp_may_undo(const struct tcp_sock
*tp
)
2379 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2382 /* People celebrate: "We love our President!" */
2383 static bool tcp_try_undo_recovery(struct sock
*sk
)
2385 struct tcp_sock
*tp
= tcp_sk(sk
);
2387 if (tcp_may_undo(tp
)) {
2390 /* Happy end! We did not retransmit anything
2391 * or our original transmission succeeded.
2393 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2394 tcp_undo_cwnd_reduction(sk
, false);
2395 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2396 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2398 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2400 NET_INC_STATS(sock_net(sk
), mib_idx
);
2401 } else if (tp
->rack
.reo_wnd_persist
) {
2402 tp
->rack
.reo_wnd_persist
--;
2404 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2405 /* Hold old state until something *above* high_seq
2406 * is ACKed. For Reno it is MUST to prevent false
2407 * fast retransmits (RFC2582). SACK TCP is safe. */
2408 if (!tcp_any_retrans_done(sk
))
2409 tp
->retrans_stamp
= 0;
2412 tcp_set_ca_state(sk
, TCP_CA_Open
);
2413 tp
->is_sack_reneg
= 0;
2417 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2418 static bool tcp_try_undo_dsack(struct sock
*sk
)
2420 struct tcp_sock
*tp
= tcp_sk(sk
);
2422 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2423 tp
->rack
.reo_wnd_persist
= min(TCP_RACK_RECOVERY_THRESH
,
2424 tp
->rack
.reo_wnd_persist
+ 1);
2425 DBGUNDO(sk
, "D-SACK");
2426 tcp_undo_cwnd_reduction(sk
, false);
2427 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2433 /* Undo during loss recovery after partial ACK or using F-RTO. */
2434 static bool tcp_try_undo_loss(struct sock
*sk
, bool frto_undo
)
2436 struct tcp_sock
*tp
= tcp_sk(sk
);
2438 if (frto_undo
|| tcp_may_undo(tp
)) {
2439 tcp_undo_cwnd_reduction(sk
, true);
2441 DBGUNDO(sk
, "partial loss");
2442 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2444 NET_INC_STATS(sock_net(sk
),
2445 LINUX_MIB_TCPSPURIOUSRTOS
);
2446 inet_csk(sk
)->icsk_retransmits
= 0;
2447 if (frto_undo
|| tcp_is_sack(tp
)) {
2448 tcp_set_ca_state(sk
, TCP_CA_Open
);
2449 tp
->is_sack_reneg
= 0;
2456 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2457 * It computes the number of packets to send (sndcnt) based on packets newly
2459 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2460 * cwnd reductions across a full RTT.
2461 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2462 * But when the retransmits are acked without further losses, PRR
2463 * slow starts cwnd up to ssthresh to speed up the recovery.
2465 static void tcp_init_cwnd_reduction(struct sock
*sk
)
2467 struct tcp_sock
*tp
= tcp_sk(sk
);
2469 tp
->high_seq
= tp
->snd_nxt
;
2470 tp
->tlp_high_seq
= 0;
2471 tp
->snd_cwnd_cnt
= 0;
2472 tp
->prior_cwnd
= tp
->snd_cwnd
;
2473 tp
->prr_delivered
= 0;
2475 tp
->snd_ssthresh
= inet_csk(sk
)->icsk_ca_ops
->ssthresh(sk
);
2476 tcp_ecn_queue_cwr(tp
);
2479 void tcp_cwnd_reduction(struct sock
*sk
, int newly_acked_sacked
, int flag
)
2481 struct tcp_sock
*tp
= tcp_sk(sk
);
2483 int delta
= tp
->snd_ssthresh
- tcp_packets_in_flight(tp
);
2485 if (newly_acked_sacked
<= 0 || WARN_ON_ONCE(!tp
->prior_cwnd
))
2488 tp
->prr_delivered
+= newly_acked_sacked
;
2490 u64 dividend
= (u64
)tp
->snd_ssthresh
* tp
->prr_delivered
+
2492 sndcnt
= div_u64(dividend
, tp
->prior_cwnd
) - tp
->prr_out
;
2493 } else if ((flag
& (FLAG_RETRANS_DATA_ACKED
| FLAG_LOST_RETRANS
)) ==
2494 FLAG_RETRANS_DATA_ACKED
) {
2495 sndcnt
= min_t(int, delta
,
2496 max_t(int, tp
->prr_delivered
- tp
->prr_out
,
2497 newly_acked_sacked
) + 1);
2499 sndcnt
= min(delta
, newly_acked_sacked
);
2501 /* Force a fast retransmit upon entering fast recovery */
2502 sndcnt
= max(sndcnt
, (tp
->prr_out
? 0 : 1));
2503 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + sndcnt
;
2506 static inline void tcp_end_cwnd_reduction(struct sock
*sk
)
2508 struct tcp_sock
*tp
= tcp_sk(sk
);
2510 if (inet_csk(sk
)->icsk_ca_ops
->cong_control
)
2513 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2514 if (tp
->snd_ssthresh
< TCP_INFINITE_SSTHRESH
&&
2515 (inet_csk(sk
)->icsk_ca_state
== TCP_CA_CWR
|| tp
->undo_marker
)) {
2516 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2517 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
2519 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2522 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2523 void tcp_enter_cwr(struct sock
*sk
)
2525 struct tcp_sock
*tp
= tcp_sk(sk
);
2527 tp
->prior_ssthresh
= 0;
2528 if (inet_csk(sk
)->icsk_ca_state
< TCP_CA_CWR
) {
2529 tp
->undo_marker
= 0;
2530 tcp_init_cwnd_reduction(sk
);
2531 tcp_set_ca_state(sk
, TCP_CA_CWR
);
2534 EXPORT_SYMBOL(tcp_enter_cwr
);
2536 static void tcp_try_keep_open(struct sock
*sk
)
2538 struct tcp_sock
*tp
= tcp_sk(sk
);
2539 int state
= TCP_CA_Open
;
2541 if (tcp_left_out(tp
) || tcp_any_retrans_done(sk
))
2542 state
= TCP_CA_Disorder
;
2544 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2545 tcp_set_ca_state(sk
, state
);
2546 tp
->high_seq
= tp
->snd_nxt
;
2550 static void tcp_try_to_open(struct sock
*sk
, int flag
)
2552 struct tcp_sock
*tp
= tcp_sk(sk
);
2554 tcp_verify_left_out(tp
);
2556 if (!tcp_any_retrans_done(sk
))
2557 tp
->retrans_stamp
= 0;
2559 if (flag
& FLAG_ECE
)
2562 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2563 tcp_try_keep_open(sk
);
2567 static void tcp_mtup_probe_failed(struct sock
*sk
)
2569 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2571 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2572 icsk
->icsk_mtup
.probe_size
= 0;
2573 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMTUPFAIL
);
2576 static void tcp_mtup_probe_success(struct sock
*sk
)
2578 struct tcp_sock
*tp
= tcp_sk(sk
);
2579 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2581 /* FIXME: breaks with very large cwnd */
2582 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2583 tp
->snd_cwnd
= tp
->snd_cwnd
*
2584 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2585 icsk
->icsk_mtup
.probe_size
;
2586 tp
->snd_cwnd_cnt
= 0;
2587 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
2588 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2590 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2591 icsk
->icsk_mtup
.probe_size
= 0;
2592 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2593 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMTUPSUCCESS
);
2596 /* Do a simple retransmit without using the backoff mechanisms in
2597 * tcp_timer. This is used for path mtu discovery.
2598 * The socket is already locked here.
2600 void tcp_simple_retransmit(struct sock
*sk
)
2602 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2603 struct tcp_sock
*tp
= tcp_sk(sk
);
2604 struct sk_buff
*skb
;
2605 unsigned int mss
= tcp_current_mss(sk
);
2607 skb_rbtree_walk(skb
, &sk
->tcp_rtx_queue
) {
2608 if (tcp_skb_seglen(skb
) > mss
&&
2609 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2610 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2611 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2612 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2614 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2618 tcp_clear_retrans_hints_partial(tp
);
2623 if (tcp_is_reno(tp
))
2624 tcp_limit_reno_sacked(tp
);
2626 tcp_verify_left_out(tp
);
2628 /* Don't muck with the congestion window here.
2629 * Reason is that we do not increase amount of _data_
2630 * in network, but units changed and effective
2631 * cwnd/ssthresh really reduced now.
2633 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2634 tp
->high_seq
= tp
->snd_nxt
;
2635 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2636 tp
->prior_ssthresh
= 0;
2637 tp
->undo_marker
= 0;
2638 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2640 tcp_xmit_retransmit_queue(sk
);
2642 EXPORT_SYMBOL(tcp_simple_retransmit
);
2644 void tcp_enter_recovery(struct sock
*sk
, bool ece_ack
)
2646 struct tcp_sock
*tp
= tcp_sk(sk
);
2649 if (tcp_is_reno(tp
))
2650 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
2652 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
2654 NET_INC_STATS(sock_net(sk
), mib_idx
);
2656 tp
->prior_ssthresh
= 0;
2659 if (!tcp_in_cwnd_reduction(sk
)) {
2661 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2662 tcp_init_cwnd_reduction(sk
);
2664 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
2667 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2668 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2670 static void tcp_process_loss(struct sock
*sk
, int flag
, int num_dupack
,
2673 struct tcp_sock
*tp
= tcp_sk(sk
);
2674 bool recovered
= !before(tp
->snd_una
, tp
->high_seq
);
2676 if ((flag
& FLAG_SND_UNA_ADVANCED
|| rcu_access_pointer(tp
->fastopen_rsk
)) &&
2677 tcp_try_undo_loss(sk
, false))
2680 if (tp
->frto
) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2681 /* Step 3.b. A timeout is spurious if not all data are
2682 * lost, i.e., never-retransmitted data are (s)acked.
2684 if ((flag
& FLAG_ORIG_SACK_ACKED
) &&
2685 tcp_try_undo_loss(sk
, true))
2688 if (after(tp
->snd_nxt
, tp
->high_seq
)) {
2689 if (flag
& FLAG_DATA_SACKED
|| num_dupack
)
2690 tp
->frto
= 0; /* Step 3.a. loss was real */
2691 } else if (flag
& FLAG_SND_UNA_ADVANCED
&& !recovered
) {
2692 tp
->high_seq
= tp
->snd_nxt
;
2693 /* Step 2.b. Try send new data (but deferred until cwnd
2694 * is updated in tcp_ack()). Otherwise fall back to
2695 * the conventional recovery.
2697 if (!tcp_write_queue_empty(sk
) &&
2698 after(tcp_wnd_end(tp
), tp
->snd_nxt
)) {
2699 *rexmit
= REXMIT_NEW
;
2707 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2708 tcp_try_undo_recovery(sk
);
2711 if (tcp_is_reno(tp
)) {
2712 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2713 * delivered. Lower inflight to clock out (re)tranmissions.
2715 if (after(tp
->snd_nxt
, tp
->high_seq
) && num_dupack
)
2716 tcp_add_reno_sack(sk
, num_dupack
);
2717 else if (flag
& FLAG_SND_UNA_ADVANCED
)
2718 tcp_reset_reno_sack(tp
);
2720 *rexmit
= REXMIT_LOST
;
2723 /* Undo during fast recovery after partial ACK. */
2724 static bool tcp_try_undo_partial(struct sock
*sk
, u32 prior_snd_una
)
2726 struct tcp_sock
*tp
= tcp_sk(sk
);
2728 if (tp
->undo_marker
&& tcp_packet_delayed(tp
)) {
2729 /* Plain luck! Hole if filled with delayed
2730 * packet, rather than with a retransmit. Check reordering.
2732 tcp_check_sack_reordering(sk
, prior_snd_una
, 1);
2734 /* We are getting evidence that the reordering degree is higher
2735 * than we realized. If there are no retransmits out then we
2736 * can undo. Otherwise we clock out new packets but do not
2737 * mark more packets lost or retransmit more.
2739 if (tp
->retrans_out
)
2742 if (!tcp_any_retrans_done(sk
))
2743 tp
->retrans_stamp
= 0;
2745 DBGUNDO(sk
, "partial recovery");
2746 tcp_undo_cwnd_reduction(sk
, true);
2747 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2748 tcp_try_keep_open(sk
);
2754 static void tcp_identify_packet_loss(struct sock
*sk
, int *ack_flag
)
2756 struct tcp_sock
*tp
= tcp_sk(sk
);
2758 if (tcp_rtx_queue_empty(sk
))
2761 if (unlikely(tcp_is_reno(tp
))) {
2762 tcp_newreno_mark_lost(sk
, *ack_flag
& FLAG_SND_UNA_ADVANCED
);
2763 } else if (tcp_is_rack(sk
)) {
2764 u32 prior_retrans
= tp
->retrans_out
;
2766 tcp_rack_mark_lost(sk
);
2767 if (prior_retrans
> tp
->retrans_out
)
2768 *ack_flag
|= FLAG_LOST_RETRANS
;
2772 static bool tcp_force_fast_retransmit(struct sock
*sk
)
2774 struct tcp_sock
*tp
= tcp_sk(sk
);
2776 return after(tcp_highest_sack_seq(tp
),
2777 tp
->snd_una
+ tp
->reordering
* tp
->mss_cache
);
2780 /* Process an event, which can update packets-in-flight not trivially.
2781 * Main goal of this function is to calculate new estimate for left_out,
2782 * taking into account both packets sitting in receiver's buffer and
2783 * packets lost by network.
2785 * Besides that it updates the congestion state when packet loss or ECN
2786 * is detected. But it does not reduce the cwnd, it is done by the
2787 * congestion control later.
2789 * It does _not_ decide what to send, it is made in function
2790 * tcp_xmit_retransmit_queue().
2792 static void tcp_fastretrans_alert(struct sock
*sk
, const u32 prior_snd_una
,
2793 int num_dupack
, int *ack_flag
, int *rexmit
)
2795 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2796 struct tcp_sock
*tp
= tcp_sk(sk
);
2797 int fast_rexmit
= 0, flag
= *ack_flag
;
2798 bool do_lost
= num_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
2799 tcp_force_fast_retransmit(sk
));
2801 if (!tp
->packets_out
&& tp
->sacked_out
)
2804 /* Now state machine starts.
2805 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2806 if (flag
& FLAG_ECE
)
2807 tp
->prior_ssthresh
= 0;
2809 /* B. In all the states check for reneging SACKs. */
2810 if (tcp_check_sack_reneging(sk
, flag
))
2813 /* C. Check consistency of the current state. */
2814 tcp_verify_left_out(tp
);
2816 /* D. Check state exit conditions. State can be terminated
2817 * when high_seq is ACKed. */
2818 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
2819 WARN_ON(tp
->retrans_out
!= 0);
2820 tp
->retrans_stamp
= 0;
2821 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
2822 switch (icsk
->icsk_ca_state
) {
2824 /* CWR is to be held something *above* high_seq
2825 * is ACKed for CWR bit to reach receiver. */
2826 if (tp
->snd_una
!= tp
->high_seq
) {
2827 tcp_end_cwnd_reduction(sk
);
2828 tcp_set_ca_state(sk
, TCP_CA_Open
);
2832 case TCP_CA_Recovery
:
2833 if (tcp_is_reno(tp
))
2834 tcp_reset_reno_sack(tp
);
2835 if (tcp_try_undo_recovery(sk
))
2837 tcp_end_cwnd_reduction(sk
);
2842 /* E. Process state. */
2843 switch (icsk
->icsk_ca_state
) {
2844 case TCP_CA_Recovery
:
2845 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
2846 if (tcp_is_reno(tp
))
2847 tcp_add_reno_sack(sk
, num_dupack
);
2849 if (tcp_try_undo_partial(sk
, prior_snd_una
))
2851 /* Partial ACK arrived. Force fast retransmit. */
2852 do_lost
= tcp_is_reno(tp
) ||
2853 tcp_force_fast_retransmit(sk
);
2855 if (tcp_try_undo_dsack(sk
)) {
2856 tcp_try_keep_open(sk
);
2859 tcp_identify_packet_loss(sk
, ack_flag
);
2862 tcp_process_loss(sk
, flag
, num_dupack
, rexmit
);
2863 tcp_identify_packet_loss(sk
, ack_flag
);
2864 if (!(icsk
->icsk_ca_state
== TCP_CA_Open
||
2865 (*ack_flag
& FLAG_LOST_RETRANS
)))
2867 /* Change state if cwnd is undone or retransmits are lost */
2870 if (tcp_is_reno(tp
)) {
2871 if (flag
& FLAG_SND_UNA_ADVANCED
)
2872 tcp_reset_reno_sack(tp
);
2873 tcp_add_reno_sack(sk
, num_dupack
);
2876 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
)
2877 tcp_try_undo_dsack(sk
);
2879 tcp_identify_packet_loss(sk
, ack_flag
);
2880 if (!tcp_time_to_recover(sk
, flag
)) {
2881 tcp_try_to_open(sk
, flag
);
2885 /* MTU probe failure: don't reduce cwnd */
2886 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
2887 icsk
->icsk_mtup
.probe_size
&&
2888 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
2889 tcp_mtup_probe_failed(sk
);
2890 /* Restores the reduction we did in tcp_mtup_probe() */
2892 tcp_simple_retransmit(sk
);
2896 /* Otherwise enter Recovery state */
2897 tcp_enter_recovery(sk
, (flag
& FLAG_ECE
));
2901 if (!tcp_is_rack(sk
) && do_lost
)
2902 tcp_update_scoreboard(sk
, fast_rexmit
);
2903 *rexmit
= REXMIT_LOST
;
2906 static void tcp_update_rtt_min(struct sock
*sk
, u32 rtt_us
, const int flag
)
2908 u32 wlen
= sock_net(sk
)->ipv4
.sysctl_tcp_min_rtt_wlen
* HZ
;
2909 struct tcp_sock
*tp
= tcp_sk(sk
);
2911 if ((flag
& FLAG_ACK_MAYBE_DELAYED
) && rtt_us
> tcp_min_rtt(tp
)) {
2912 /* If the remote keeps returning delayed ACKs, eventually
2913 * the min filter would pick it up and overestimate the
2914 * prop. delay when it expires. Skip suspected delayed ACKs.
2918 minmax_running_min(&tp
->rtt_min
, wlen
, tcp_jiffies32
,
2919 rtt_us
? : jiffies_to_usecs(1));
2922 static bool tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
2923 long seq_rtt_us
, long sack_rtt_us
,
2924 long ca_rtt_us
, struct rate_sample
*rs
)
2926 const struct tcp_sock
*tp
= tcp_sk(sk
);
2928 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2929 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2930 * Karn's algorithm forbids taking RTT if some retransmitted data
2931 * is acked (RFC6298).
2934 seq_rtt_us
= sack_rtt_us
;
2936 /* RTTM Rule: A TSecr value received in a segment is used to
2937 * update the averaged RTT measurement only if the segment
2938 * acknowledges some new data, i.e., only if it advances the
2939 * left edge of the send window.
2940 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2942 if (seq_rtt_us
< 0 && tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2943 flag
& FLAG_ACKED
) {
2944 u32 delta
= tcp_time_stamp(tp
) - tp
->rx_opt
.rcv_tsecr
;
2946 if (likely(delta
< INT_MAX
/ (USEC_PER_SEC
/ TCP_TS_HZ
))) {
2947 seq_rtt_us
= delta
* (USEC_PER_SEC
/ TCP_TS_HZ
);
2948 ca_rtt_us
= seq_rtt_us
;
2951 rs
->rtt_us
= ca_rtt_us
; /* RTT of last (S)ACKed packet (or -1) */
2955 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2956 * always taken together with ACK, SACK, or TS-opts. Any negative
2957 * values will be skipped with the seq_rtt_us < 0 check above.
2959 tcp_update_rtt_min(sk
, ca_rtt_us
, flag
);
2960 tcp_rtt_estimator(sk
, seq_rtt_us
);
2963 /* RFC6298: only reset backoff on valid RTT measurement. */
2964 inet_csk(sk
)->icsk_backoff
= 0;
2968 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2969 void tcp_synack_rtt_meas(struct sock
*sk
, struct request_sock
*req
)
2971 struct rate_sample rs
;
2974 if (req
&& !req
->num_retrans
&& tcp_rsk(req
)->snt_synack
)
2975 rtt_us
= tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req
)->snt_synack
);
2977 tcp_ack_update_rtt(sk
, FLAG_SYN_ACKED
, rtt_us
, -1L, rtt_us
, &rs
);
2981 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 acked
)
2983 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2985 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, acked
);
2986 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_jiffies32
;
2989 /* Restart timer after forward progress on connection.
2990 * RFC2988 recommends to restart timer to now+rto.
2992 void tcp_rearm_rto(struct sock
*sk
)
2994 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2995 struct tcp_sock
*tp
= tcp_sk(sk
);
2997 /* If the retrans timer is currently being used by Fast Open
2998 * for SYN-ACK retrans purpose, stay put.
3000 if (rcu_access_pointer(tp
->fastopen_rsk
))
3003 if (!tp
->packets_out
) {
3004 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
3006 u32 rto
= inet_csk(sk
)->icsk_rto
;
3007 /* Offset the time elapsed after installing regular RTO */
3008 if (icsk
->icsk_pending
== ICSK_TIME_REO_TIMEOUT
||
3009 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
) {
3010 s64 delta_us
= tcp_rto_delta_us(sk
);
3011 /* delta_us may not be positive if the socket is locked
3012 * when the retrans timer fires and is rescheduled.
3014 rto
= usecs_to_jiffies(max_t(int, delta_us
, 1));
3016 tcp_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
, rto
,
3017 TCP_RTO_MAX
, tcp_rtx_queue_head(sk
));
3021 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3022 static void tcp_set_xmit_timer(struct sock
*sk
)
3024 if (!tcp_schedule_loss_probe(sk
, true))
3028 /* If we get here, the whole TSO packet has not been acked. */
3029 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3031 struct tcp_sock
*tp
= tcp_sk(sk
);
3034 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3036 packets_acked
= tcp_skb_pcount(skb
);
3037 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3039 packets_acked
-= tcp_skb_pcount(skb
);
3041 if (packets_acked
) {
3042 BUG_ON(tcp_skb_pcount(skb
) == 0);
3043 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3046 return packets_acked
;
3049 static void tcp_ack_tstamp(struct sock
*sk
, struct sk_buff
*skb
,
3052 const struct skb_shared_info
*shinfo
;
3054 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3055 if (likely(!TCP_SKB_CB(skb
)->txstamp_ack
))
3058 shinfo
= skb_shinfo(skb
);
3059 if (!before(shinfo
->tskey
, prior_snd_una
) &&
3060 before(shinfo
->tskey
, tcp_sk(sk
)->snd_una
)) {
3061 tcp_skb_tsorted_save(skb
) {
3062 __skb_tstamp_tx(skb
, NULL
, sk
, SCM_TSTAMP_ACK
);
3063 } tcp_skb_tsorted_restore(skb
);
3067 /* Remove acknowledged frames from the retransmission queue. If our packet
3068 * is before the ack sequence we can discard it as it's confirmed to have
3069 * arrived at the other end.
3071 static int tcp_clean_rtx_queue(struct sock
*sk
, u32 prior_fack
,
3073 struct tcp_sacktag_state
*sack
)
3075 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3076 u64 first_ackt
, last_ackt
;
3077 struct tcp_sock
*tp
= tcp_sk(sk
);
3078 u32 prior_sacked
= tp
->sacked_out
;
3079 u32 reord
= tp
->snd_nxt
; /* lowest acked un-retx un-sacked seq */
3080 struct sk_buff
*skb
, *next
;
3081 bool fully_acked
= true;
3082 long sack_rtt_us
= -1L;
3083 long seq_rtt_us
= -1L;
3084 long ca_rtt_us
= -1L;
3086 u32 last_in_flight
= 0;
3092 for (skb
= skb_rb_first(&sk
->tcp_rtx_queue
); skb
; skb
= next
) {
3093 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3094 const u32 start_seq
= scb
->seq
;
3095 u8 sacked
= scb
->sacked
;
3098 tcp_ack_tstamp(sk
, skb
, prior_snd_una
);
3100 /* Determine how many packets and what bytes were acked, tso and else */
3101 if (after(scb
->end_seq
, tp
->snd_una
)) {
3102 if (tcp_skb_pcount(skb
) == 1 ||
3103 !after(tp
->snd_una
, scb
->seq
))
3106 acked_pcount
= tcp_tso_acked(sk
, skb
);
3109 fully_acked
= false;
3111 acked_pcount
= tcp_skb_pcount(skb
);
3114 if (unlikely(sacked
& TCPCB_RETRANS
)) {
3115 if (sacked
& TCPCB_SACKED_RETRANS
)
3116 tp
->retrans_out
-= acked_pcount
;
3117 flag
|= FLAG_RETRANS_DATA_ACKED
;
3118 } else if (!(sacked
& TCPCB_SACKED_ACKED
)) {
3119 last_ackt
= tcp_skb_timestamp_us(skb
);
3120 WARN_ON_ONCE(last_ackt
== 0);
3122 first_ackt
= last_ackt
;
3124 last_in_flight
= TCP_SKB_CB(skb
)->tx
.in_flight
;
3125 if (before(start_seq
, reord
))
3127 if (!after(scb
->end_seq
, tp
->high_seq
))
3128 flag
|= FLAG_ORIG_SACK_ACKED
;
3131 if (sacked
& TCPCB_SACKED_ACKED
) {
3132 tp
->sacked_out
-= acked_pcount
;
3133 } else if (tcp_is_sack(tp
)) {
3134 tp
->delivered
+= acked_pcount
;
3135 if (!tcp_skb_spurious_retrans(tp
, skb
))
3136 tcp_rack_advance(tp
, sacked
, scb
->end_seq
,
3137 tcp_skb_timestamp_us(skb
));
3139 if (sacked
& TCPCB_LOST
)
3140 tp
->lost_out
-= acked_pcount
;
3142 tp
->packets_out
-= acked_pcount
;
3143 pkts_acked
+= acked_pcount
;
3144 tcp_rate_skb_delivered(sk
, skb
, sack
->rate
);
3146 /* Initial outgoing SYN's get put onto the write_queue
3147 * just like anything else we transmit. It is not
3148 * true data, and if we misinform our callers that
3149 * this ACK acks real data, we will erroneously exit
3150 * connection startup slow start one packet too
3151 * quickly. This is severely frowned upon behavior.
3153 if (likely(!(scb
->tcp_flags
& TCPHDR_SYN
))) {
3154 flag
|= FLAG_DATA_ACKED
;
3156 flag
|= FLAG_SYN_ACKED
;
3157 tp
->retrans_stamp
= 0;
3163 next
= skb_rb_next(skb
);
3164 if (unlikely(skb
== tp
->retransmit_skb_hint
))
3165 tp
->retransmit_skb_hint
= NULL
;
3166 if (unlikely(skb
== tp
->lost_skb_hint
))
3167 tp
->lost_skb_hint
= NULL
;
3168 tcp_highest_sack_replace(sk
, skb
, next
);
3169 tcp_rtx_queue_unlink_and_free(skb
, sk
);
3173 tcp_chrono_stop(sk
, TCP_CHRONO_BUSY
);
3175 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3176 tp
->snd_up
= tp
->snd_una
;
3178 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3179 flag
|= FLAG_SACK_RENEGING
;
3181 if (likely(first_ackt
) && !(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3182 seq_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, first_ackt
);
3183 ca_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, last_ackt
);
3185 if (pkts_acked
== 1 && last_in_flight
< tp
->mss_cache
&&
3186 last_in_flight
&& !prior_sacked
&& fully_acked
&&
3187 sack
->rate
->prior_delivered
+ 1 == tp
->delivered
&&
3188 !(flag
& (FLAG_CA_ALERT
| FLAG_SYN_ACKED
))) {
3189 /* Conservatively mark a delayed ACK. It's typically
3190 * from a lone runt packet over the round trip to
3191 * a receiver w/o out-of-order or CE events.
3193 flag
|= FLAG_ACK_MAYBE_DELAYED
;
3196 if (sack
->first_sackt
) {
3197 sack_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, sack
->first_sackt
);
3198 ca_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, sack
->last_sackt
);
3200 rtt_update
= tcp_ack_update_rtt(sk
, flag
, seq_rtt_us
, sack_rtt_us
,
3201 ca_rtt_us
, sack
->rate
);
3203 if (flag
& FLAG_ACKED
) {
3204 flag
|= FLAG_SET_XMIT_TIMER
; /* set TLP or RTO timer */
3205 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3206 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3207 tcp_mtup_probe_success(sk
);
3210 if (tcp_is_reno(tp
)) {
3211 tcp_remove_reno_sacks(sk
, pkts_acked
);
3213 /* If any of the cumulatively ACKed segments was
3214 * retransmitted, non-SACK case cannot confirm that
3215 * progress was due to original transmission due to
3216 * lack of TCPCB_SACKED_ACKED bits even if some of
3217 * the packets may have been never retransmitted.
3219 if (flag
& FLAG_RETRANS_DATA_ACKED
)
3220 flag
&= ~FLAG_ORIG_SACK_ACKED
;
3224 /* Non-retransmitted hole got filled? That's reordering */
3225 if (before(reord
, prior_fack
))
3226 tcp_check_sack_reordering(sk
, reord
, 0);
3228 delta
= prior_sacked
- tp
->sacked_out
;
3229 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3231 } else if (skb
&& rtt_update
&& sack_rtt_us
>= 0 &&
3232 sack_rtt_us
> tcp_stamp_us_delta(tp
->tcp_mstamp
,
3233 tcp_skb_timestamp_us(skb
))) {
3234 /* Do not re-arm RTO if the sack RTT is measured from data sent
3235 * after when the head was last (re)transmitted. Otherwise the
3236 * timeout may continue to extend in loss recovery.
3238 flag
|= FLAG_SET_XMIT_TIMER
; /* set TLP or RTO timer */
3241 if (icsk
->icsk_ca_ops
->pkts_acked
) {
3242 struct ack_sample sample
= { .pkts_acked
= pkts_acked
,
3243 .rtt_us
= sack
->rate
->rtt_us
,
3244 .in_flight
= last_in_flight
};
3246 icsk
->icsk_ca_ops
->pkts_acked(sk
, &sample
);
3249 #if FASTRETRANS_DEBUG > 0
3250 WARN_ON((int)tp
->sacked_out
< 0);
3251 WARN_ON((int)tp
->lost_out
< 0);
3252 WARN_ON((int)tp
->retrans_out
< 0);
3253 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3254 icsk
= inet_csk(sk
);
3256 pr_debug("Leak l=%u %d\n",
3257 tp
->lost_out
, icsk
->icsk_ca_state
);
3260 if (tp
->sacked_out
) {
3261 pr_debug("Leak s=%u %d\n",
3262 tp
->sacked_out
, icsk
->icsk_ca_state
);
3265 if (tp
->retrans_out
) {
3266 pr_debug("Leak r=%u %d\n",
3267 tp
->retrans_out
, icsk
->icsk_ca_state
);
3268 tp
->retrans_out
= 0;
3275 static void tcp_ack_probe(struct sock
*sk
)
3277 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3278 struct sk_buff
*head
= tcp_send_head(sk
);
3279 const struct tcp_sock
*tp
= tcp_sk(sk
);
3281 /* Was it a usable window open? */
3284 if (!after(TCP_SKB_CB(head
)->end_seq
, tcp_wnd_end(tp
))) {
3285 icsk
->icsk_backoff
= 0;
3286 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3287 /* Socket must be waked up by subsequent tcp_data_snd_check().
3288 * This function is not for random using!
3291 unsigned long when
= tcp_probe0_when(sk
, TCP_RTO_MAX
);
3293 tcp_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3294 when
, TCP_RTO_MAX
, NULL
);
3298 static inline bool tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3300 return !(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3301 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
;
3304 /* Decide wheather to run the increase function of congestion control. */
3305 static inline bool tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3307 /* If reordering is high then always grow cwnd whenever data is
3308 * delivered regardless of its ordering. Otherwise stay conservative
3309 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3310 * new SACK or ECE mark may first advance cwnd here and later reduce
3311 * cwnd in tcp_fastretrans_alert() based on more states.
3313 if (tcp_sk(sk
)->reordering
> sock_net(sk
)->ipv4
.sysctl_tcp_reordering
)
3314 return flag
& FLAG_FORWARD_PROGRESS
;
3316 return flag
& FLAG_DATA_ACKED
;
3319 /* The "ultimate" congestion control function that aims to replace the rigid
3320 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3321 * It's called toward the end of processing an ACK with precise rate
3322 * information. All transmission or retransmission are delayed afterwards.
3324 static void tcp_cong_control(struct sock
*sk
, u32 ack
, u32 acked_sacked
,
3325 int flag
, const struct rate_sample
*rs
)
3327 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3329 if (icsk
->icsk_ca_ops
->cong_control
) {
3330 icsk
->icsk_ca_ops
->cong_control(sk
, rs
);
3334 if (tcp_in_cwnd_reduction(sk
)) {
3335 /* Reduce cwnd if state mandates */
3336 tcp_cwnd_reduction(sk
, acked_sacked
, flag
);
3337 } else if (tcp_may_raise_cwnd(sk
, flag
)) {
3338 /* Advance cwnd if state allows */
3339 tcp_cong_avoid(sk
, ack
, acked_sacked
);
3341 tcp_update_pacing_rate(sk
);
3344 /* Check that window update is acceptable.
3345 * The function assumes that snd_una<=ack<=snd_next.
3347 static inline bool tcp_may_update_window(const struct tcp_sock
*tp
,
3348 const u32 ack
, const u32 ack_seq
,
3351 return after(ack
, tp
->snd_una
) ||
3352 after(ack_seq
, tp
->snd_wl1
) ||
3353 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
);
3356 /* If we update tp->snd_una, also update tp->bytes_acked */
3357 static void tcp_snd_una_update(struct tcp_sock
*tp
, u32 ack
)
3359 u32 delta
= ack
- tp
->snd_una
;
3361 sock_owned_by_me((struct sock
*)tp
);
3362 tp
->bytes_acked
+= delta
;
3366 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3367 static void tcp_rcv_nxt_update(struct tcp_sock
*tp
, u32 seq
)
3369 u32 delta
= seq
- tp
->rcv_nxt
;
3371 sock_owned_by_me((struct sock
*)tp
);
3372 tp
->bytes_received
+= delta
;
3373 WRITE_ONCE(tp
->rcv_nxt
, seq
);
3376 /* Update our send window.
3378 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3379 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3381 static int tcp_ack_update_window(struct sock
*sk
, const struct sk_buff
*skb
, u32 ack
,
3384 struct tcp_sock
*tp
= tcp_sk(sk
);
3386 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3388 if (likely(!tcp_hdr(skb
)->syn
))
3389 nwin
<<= tp
->rx_opt
.snd_wscale
;
3391 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3392 flag
|= FLAG_WIN_UPDATE
;
3393 tcp_update_wl(tp
, ack_seq
);
3395 if (tp
->snd_wnd
!= nwin
) {
3398 /* Note, it is the only place, where
3399 * fast path is recovered for sending TCP.
3402 tcp_fast_path_check(sk
);
3404 if (!tcp_write_queue_empty(sk
))
3405 tcp_slow_start_after_idle_check(sk
);
3407 if (nwin
> tp
->max_window
) {
3408 tp
->max_window
= nwin
;
3409 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3414 tcp_snd_una_update(tp
, ack
);
3419 static bool __tcp_oow_rate_limited(struct net
*net
, int mib_idx
,
3420 u32
*last_oow_ack_time
)
3422 if (*last_oow_ack_time
) {
3423 s32 elapsed
= (s32
)(tcp_jiffies32
- *last_oow_ack_time
);
3425 if (0 <= elapsed
&& elapsed
< net
->ipv4
.sysctl_tcp_invalid_ratelimit
) {
3426 NET_INC_STATS(net
, mib_idx
);
3427 return true; /* rate-limited: don't send yet! */
3431 *last_oow_ack_time
= tcp_jiffies32
;
3433 return false; /* not rate-limited: go ahead, send dupack now! */
3436 /* Return true if we're currently rate-limiting out-of-window ACKs and
3437 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3438 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3439 * attacks that send repeated SYNs or ACKs for the same connection. To
3440 * do this, we do not send a duplicate SYNACK or ACK if the remote
3441 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3443 bool tcp_oow_rate_limited(struct net
*net
, const struct sk_buff
*skb
,
3444 int mib_idx
, u32
*last_oow_ack_time
)
3446 /* Data packets without SYNs are not likely part of an ACK loop. */
3447 if ((TCP_SKB_CB(skb
)->seq
!= TCP_SKB_CB(skb
)->end_seq
) &&
3451 return __tcp_oow_rate_limited(net
, mib_idx
, last_oow_ack_time
);
3454 /* RFC 5961 7 [ACK Throttling] */
3455 static void tcp_send_challenge_ack(struct sock
*sk
, const struct sk_buff
*skb
)
3457 /* unprotected vars, we dont care of overwrites */
3458 static u32 challenge_timestamp
;
3459 static unsigned int challenge_count
;
3460 struct tcp_sock
*tp
= tcp_sk(sk
);
3461 struct net
*net
= sock_net(sk
);
3464 /* First check our per-socket dupack rate limit. */
3465 if (__tcp_oow_rate_limited(net
,
3466 LINUX_MIB_TCPACKSKIPPEDCHALLENGE
,
3467 &tp
->last_oow_ack_time
))
3470 /* Then check host-wide RFC 5961 rate limit. */
3472 if (now
!= challenge_timestamp
) {
3473 u32 ack_limit
= net
->ipv4
.sysctl_tcp_challenge_ack_limit
;
3474 u32 half
= (ack_limit
+ 1) >> 1;
3476 challenge_timestamp
= now
;
3477 WRITE_ONCE(challenge_count
, half
+ prandom_u32_max(ack_limit
));
3479 count
= READ_ONCE(challenge_count
);
3481 WRITE_ONCE(challenge_count
, count
- 1);
3482 NET_INC_STATS(net
, LINUX_MIB_TCPCHALLENGEACK
);
3487 static void tcp_store_ts_recent(struct tcp_sock
*tp
)
3489 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3490 tp
->rx_opt
.ts_recent_stamp
= ktime_get_seconds();
3493 static void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3495 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3496 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3497 * extra check below makes sure this can only happen
3498 * for pure ACK frames. -DaveM
3500 * Not only, also it occurs for expired timestamps.
3503 if (tcp_paws_check(&tp
->rx_opt
, 0))
3504 tcp_store_ts_recent(tp
);
3508 /* This routine deals with acks during a TLP episode.
3509 * We mark the end of a TLP episode on receiving TLP dupack or when
3510 * ack is after tlp_high_seq.
3511 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3513 static void tcp_process_tlp_ack(struct sock
*sk
, u32 ack
, int flag
)
3515 struct tcp_sock
*tp
= tcp_sk(sk
);
3517 if (before(ack
, tp
->tlp_high_seq
))
3520 if (flag
& FLAG_DSACKING_ACK
) {
3521 /* This DSACK means original and TLP probe arrived; no loss */
3522 tp
->tlp_high_seq
= 0;
3523 } else if (after(ack
, tp
->tlp_high_seq
)) {
3524 /* ACK advances: there was a loss, so reduce cwnd. Reset
3525 * tlp_high_seq in tcp_init_cwnd_reduction()
3527 tcp_init_cwnd_reduction(sk
);
3528 tcp_set_ca_state(sk
, TCP_CA_CWR
);
3529 tcp_end_cwnd_reduction(sk
);
3530 tcp_try_keep_open(sk
);
3531 NET_INC_STATS(sock_net(sk
),
3532 LINUX_MIB_TCPLOSSPROBERECOVERY
);
3533 } else if (!(flag
& (FLAG_SND_UNA_ADVANCED
|
3534 FLAG_NOT_DUP
| FLAG_DATA_SACKED
))) {
3535 /* Pure dupack: original and TLP probe arrived; no loss */
3536 tp
->tlp_high_seq
= 0;
3540 static inline void tcp_in_ack_event(struct sock
*sk
, u32 flags
)
3542 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3544 if (icsk
->icsk_ca_ops
->in_ack_event
)
3545 icsk
->icsk_ca_ops
->in_ack_event(sk
, flags
);
3548 /* Congestion control has updated the cwnd already. So if we're in
3549 * loss recovery then now we do any new sends (for FRTO) or
3550 * retransmits (for CA_Loss or CA_recovery) that make sense.
3552 static void tcp_xmit_recovery(struct sock
*sk
, int rexmit
)
3554 struct tcp_sock
*tp
= tcp_sk(sk
);
3556 if (rexmit
== REXMIT_NONE
|| sk
->sk_state
== TCP_SYN_SENT
)
3559 if (unlikely(rexmit
== REXMIT_NEW
)) {
3560 __tcp_push_pending_frames(sk
, tcp_current_mss(sk
),
3562 if (after(tp
->snd_nxt
, tp
->high_seq
))
3566 tcp_xmit_retransmit_queue(sk
);
3569 /* Returns the number of packets newly acked or sacked by the current ACK */
3570 static u32
tcp_newly_delivered(struct sock
*sk
, u32 prior_delivered
, int flag
)
3572 const struct net
*net
= sock_net(sk
);
3573 struct tcp_sock
*tp
= tcp_sk(sk
);
3576 delivered
= tp
->delivered
- prior_delivered
;
3577 NET_ADD_STATS(net
, LINUX_MIB_TCPDELIVERED
, delivered
);
3578 if (flag
& FLAG_ECE
) {
3579 tp
->delivered_ce
+= delivered
;
3580 NET_ADD_STATS(net
, LINUX_MIB_TCPDELIVEREDCE
, delivered
);
3585 /* This routine deals with incoming acks, but not outgoing ones. */
3586 static int tcp_ack(struct sock
*sk
, const struct sk_buff
*skb
, int flag
)
3588 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3589 struct tcp_sock
*tp
= tcp_sk(sk
);
3590 struct tcp_sacktag_state sack_state
;
3591 struct rate_sample rs
= { .prior_delivered
= 0 };
3592 u32 prior_snd_una
= tp
->snd_una
;
3593 bool is_sack_reneg
= tp
->is_sack_reneg
;
3594 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3595 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3597 int prior_packets
= tp
->packets_out
;
3598 u32 delivered
= tp
->delivered
;
3599 u32 lost
= tp
->lost
;
3600 int rexmit
= REXMIT_NONE
; /* Flag to (re)transmit to recover losses */
3603 sack_state
.first_sackt
= 0;
3604 sack_state
.rate
= &rs
;
3606 /* We very likely will need to access rtx queue. */
3607 prefetch(sk
->tcp_rtx_queue
.rb_node
);
3609 /* If the ack is older than previous acks
3610 * then we can probably ignore it.
3612 if (before(ack
, prior_snd_una
)) {
3613 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3614 if (before(ack
, prior_snd_una
- tp
->max_window
)) {
3615 if (!(flag
& FLAG_NO_CHALLENGE_ACK
))
3616 tcp_send_challenge_ack(sk
, skb
);
3622 /* If the ack includes data we haven't sent yet, discard
3623 * this segment (RFC793 Section 3.9).
3625 if (after(ack
, tp
->snd_nxt
))
3628 if (after(ack
, prior_snd_una
)) {
3629 flag
|= FLAG_SND_UNA_ADVANCED
;
3630 icsk
->icsk_retransmits
= 0;
3632 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3633 if (static_branch_unlikely(&clean_acked_data_enabled
.key
))
3634 if (icsk
->icsk_clean_acked
)
3635 icsk
->icsk_clean_acked(sk
, ack
);
3639 prior_fack
= tcp_is_sack(tp
) ? tcp_highest_sack_seq(tp
) : tp
->snd_una
;
3640 rs
.prior_in_flight
= tcp_packets_in_flight(tp
);
3642 /* ts_recent update must be made after we are sure that the packet
3645 if (flag
& FLAG_UPDATE_TS_RECENT
)
3646 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
3648 if ((flag
& (FLAG_SLOWPATH
| FLAG_SND_UNA_ADVANCED
)) ==
3649 FLAG_SND_UNA_ADVANCED
) {
3650 /* Window is constant, pure forward advance.
3651 * No more checks are required.
3652 * Note, we use the fact that SND.UNA>=SND.WL2.
3654 tcp_update_wl(tp
, ack_seq
);
3655 tcp_snd_una_update(tp
, ack
);
3656 flag
|= FLAG_WIN_UPDATE
;
3658 tcp_in_ack_event(sk
, CA_ACK_WIN_UPDATE
);
3660 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3662 u32 ack_ev_flags
= CA_ACK_SLOWPATH
;
3664 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3667 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3669 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3671 if (TCP_SKB_CB(skb
)->sacked
)
3672 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3675 if (tcp_ecn_rcv_ecn_echo(tp
, tcp_hdr(skb
))) {
3677 ack_ev_flags
|= CA_ACK_ECE
;
3680 if (flag
& FLAG_WIN_UPDATE
)
3681 ack_ev_flags
|= CA_ACK_WIN_UPDATE
;
3683 tcp_in_ack_event(sk
, ack_ev_flags
);
3686 /* We passed data and got it acked, remove any soft error
3687 * log. Something worked...
3689 sk
->sk_err_soft
= 0;
3690 icsk
->icsk_probes_out
= 0;
3691 tp
->rcv_tstamp
= tcp_jiffies32
;
3695 /* See if we can take anything off of the retransmit queue. */
3696 flag
|= tcp_clean_rtx_queue(sk
, prior_fack
, prior_snd_una
, &sack_state
);
3698 tcp_rack_update_reo_wnd(sk
, &rs
);
3700 if (tp
->tlp_high_seq
)
3701 tcp_process_tlp_ack(sk
, ack
, flag
);
3702 /* If needed, reset TLP/RTO timer; RACK may later override this. */
3703 if (flag
& FLAG_SET_XMIT_TIMER
)
3704 tcp_set_xmit_timer(sk
);
3706 if (tcp_ack_is_dubious(sk
, flag
)) {
3707 if (!(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
))) {
3709 /* Consider if pure acks were aggregated in tcp_add_backlog() */
3710 if (!(flag
& FLAG_DATA
))
3711 num_dupack
= max_t(u16
, 1, skb_shinfo(skb
)->gso_segs
);
3713 tcp_fastretrans_alert(sk
, prior_snd_una
, num_dupack
, &flag
,
3717 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
))
3720 delivered
= tcp_newly_delivered(sk
, delivered
, flag
);
3721 lost
= tp
->lost
- lost
; /* freshly marked lost */
3722 rs
.is_ack_delayed
= !!(flag
& FLAG_ACK_MAYBE_DELAYED
);
3723 tcp_rate_gen(sk
, delivered
, lost
, is_sack_reneg
, sack_state
.rate
);
3724 tcp_cong_control(sk
, ack
, delivered
, flag
, sack_state
.rate
);
3725 tcp_xmit_recovery(sk
, rexmit
);
3729 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3730 if (flag
& FLAG_DSACKING_ACK
) {
3731 tcp_fastretrans_alert(sk
, prior_snd_una
, num_dupack
, &flag
,
3733 tcp_newly_delivered(sk
, delivered
, flag
);
3735 /* If this ack opens up a zero window, clear backoff. It was
3736 * being used to time the probes, and is probably far higher than
3737 * it needs to be for normal retransmission.
3741 if (tp
->tlp_high_seq
)
3742 tcp_process_tlp_ack(sk
, ack
, flag
);
3746 /* If data was SACKed, tag it and see if we should send more data.
3747 * If data was DSACKed, see if we can undo a cwnd reduction.
3749 if (TCP_SKB_CB(skb
)->sacked
) {
3750 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3752 tcp_fastretrans_alert(sk
, prior_snd_una
, num_dupack
, &flag
,
3754 tcp_newly_delivered(sk
, delivered
, flag
);
3755 tcp_xmit_recovery(sk
, rexmit
);
3761 static void tcp_parse_fastopen_option(int len
, const unsigned char *cookie
,
3762 bool syn
, struct tcp_fastopen_cookie
*foc
,
3765 /* Valid only in SYN or SYN-ACK with an even length. */
3766 if (!foc
|| !syn
|| len
< 0 || (len
& 1))
3769 if (len
>= TCP_FASTOPEN_COOKIE_MIN
&&
3770 len
<= TCP_FASTOPEN_COOKIE_MAX
)
3771 memcpy(foc
->val
, cookie
, len
);
3778 static void smc_parse_options(const struct tcphdr
*th
,
3779 struct tcp_options_received
*opt_rx
,
3780 const unsigned char *ptr
,
3783 #if IS_ENABLED(CONFIG_SMC)
3784 if (static_branch_unlikely(&tcp_have_smc
)) {
3785 if (th
->syn
&& !(opsize
& 1) &&
3786 opsize
>= TCPOLEN_EXP_SMC_BASE
&&
3787 get_unaligned_be32(ptr
) == TCPOPT_SMC_MAGIC
)
3793 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3796 static u16
tcp_parse_mss_option(const struct tcphdr
*th
, u16 user_mss
)
3798 const unsigned char *ptr
= (const unsigned char *)(th
+ 1);
3799 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3802 while (length
> 0) {
3803 int opcode
= *ptr
++;
3809 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3816 if (opsize
< 2) /* "silly options" */
3818 if (opsize
> length
)
3819 return mss
; /* fail on partial options */
3820 if (opcode
== TCPOPT_MSS
&& opsize
== TCPOLEN_MSS
) {
3821 u16 in_mss
= get_unaligned_be16(ptr
);
3824 if (user_mss
&& user_mss
< in_mss
)
3836 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3837 * But, this can also be called on packets in the established flow when
3838 * the fast version below fails.
3840 void tcp_parse_options(const struct net
*net
,
3841 const struct sk_buff
*skb
,
3842 struct tcp_options_received
*opt_rx
, int estab
,
3843 struct tcp_fastopen_cookie
*foc
)
3845 const unsigned char *ptr
;
3846 const struct tcphdr
*th
= tcp_hdr(skb
);
3847 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3849 ptr
= (const unsigned char *)(th
+ 1);
3850 opt_rx
->saw_tstamp
= 0;
3852 while (length
> 0) {
3853 int opcode
= *ptr
++;
3859 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3866 if (opsize
< 2) /* "silly options" */
3868 if (opsize
> length
)
3869 return; /* don't parse partial options */
3872 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3873 u16 in_mss
= get_unaligned_be16(ptr
);
3875 if (opt_rx
->user_mss
&&
3876 opt_rx
->user_mss
< in_mss
)
3877 in_mss
= opt_rx
->user_mss
;
3878 opt_rx
->mss_clamp
= in_mss
;
3883 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3884 !estab
&& net
->ipv4
.sysctl_tcp_window_scaling
) {
3885 __u8 snd_wscale
= *(__u8
*)ptr
;
3886 opt_rx
->wscale_ok
= 1;
3887 if (snd_wscale
> TCP_MAX_WSCALE
) {
3888 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3892 snd_wscale
= TCP_MAX_WSCALE
;
3894 opt_rx
->snd_wscale
= snd_wscale
;
3897 case TCPOPT_TIMESTAMP
:
3898 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3899 ((estab
&& opt_rx
->tstamp_ok
) ||
3900 (!estab
&& net
->ipv4
.sysctl_tcp_timestamps
))) {
3901 opt_rx
->saw_tstamp
= 1;
3902 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3903 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3906 case TCPOPT_SACK_PERM
:
3907 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3908 !estab
&& net
->ipv4
.sysctl_tcp_sack
) {
3909 opt_rx
->sack_ok
= TCP_SACK_SEEN
;
3910 tcp_sack_reset(opt_rx
);
3915 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3916 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3918 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3921 #ifdef CONFIG_TCP_MD5SIG
3924 * The MD5 Hash has already been
3925 * checked (see tcp_v{4,6}_do_rcv()).
3930 mptcp_parse_option(skb
, ptr
, opsize
, opt_rx
);
3933 case TCPOPT_FASTOPEN
:
3934 tcp_parse_fastopen_option(
3935 opsize
- TCPOLEN_FASTOPEN_BASE
,
3936 ptr
, th
->syn
, foc
, false);
3940 /* Fast Open option shares code 254 using a
3941 * 16 bits magic number.
3943 if (opsize
>= TCPOLEN_EXP_FASTOPEN_BASE
&&
3944 get_unaligned_be16(ptr
) ==
3945 TCPOPT_FASTOPEN_MAGIC
)
3946 tcp_parse_fastopen_option(opsize
-
3947 TCPOLEN_EXP_FASTOPEN_BASE
,
3948 ptr
+ 2, th
->syn
, foc
, true);
3950 smc_parse_options(th
, opt_rx
, ptr
,
3960 EXPORT_SYMBOL(tcp_parse_options
);
3962 static bool tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, const struct tcphdr
*th
)
3964 const __be32
*ptr
= (const __be32
*)(th
+ 1);
3966 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3967 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3968 tp
->rx_opt
.saw_tstamp
= 1;
3970 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3973 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
) - tp
->tsoffset
;
3975 tp
->rx_opt
.rcv_tsecr
= 0;
3981 /* Fast parse options. This hopes to only see timestamps.
3982 * If it is wrong it falls back on tcp_parse_options().
3984 static bool tcp_fast_parse_options(const struct net
*net
,
3985 const struct sk_buff
*skb
,
3986 const struct tcphdr
*th
, struct tcp_sock
*tp
)
3988 /* In the spirit of fast parsing, compare doff directly to constant
3989 * values. Because equality is used, short doff can be ignored here.
3991 if (th
->doff
== (sizeof(*th
) / 4)) {
3992 tp
->rx_opt
.saw_tstamp
= 0;
3994 } else if (tp
->rx_opt
.tstamp_ok
&&
3995 th
->doff
== ((sizeof(*th
) + TCPOLEN_TSTAMP_ALIGNED
) / 4)) {
3996 if (tcp_parse_aligned_timestamp(tp
, th
))
4000 tcp_parse_options(net
, skb
, &tp
->rx_opt
, 1, NULL
);
4001 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
4002 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
4007 #ifdef CONFIG_TCP_MD5SIG
4009 * Parse MD5 Signature option
4011 const u8
*tcp_parse_md5sig_option(const struct tcphdr
*th
)
4013 int length
= (th
->doff
<< 2) - sizeof(*th
);
4014 const u8
*ptr
= (const u8
*)(th
+ 1);
4016 /* If not enough data remaining, we can short cut */
4017 while (length
>= TCPOLEN_MD5SIG
) {
4018 int opcode
= *ptr
++;
4029 if (opsize
< 2 || opsize
> length
)
4031 if (opcode
== TCPOPT_MD5SIG
)
4032 return opsize
== TCPOLEN_MD5SIG
? ptr
: NULL
;
4039 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
4042 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4044 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4045 * it can pass through stack. So, the following predicate verifies that
4046 * this segment is not used for anything but congestion avoidance or
4047 * fast retransmit. Moreover, we even are able to eliminate most of such
4048 * second order effects, if we apply some small "replay" window (~RTO)
4049 * to timestamp space.
4051 * All these measures still do not guarantee that we reject wrapped ACKs
4052 * on networks with high bandwidth, when sequence space is recycled fastly,
4053 * but it guarantees that such events will be very rare and do not affect
4054 * connection seriously. This doesn't look nice, but alas, PAWS is really
4057 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4058 * states that events when retransmit arrives after original data are rare.
4059 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4060 * the biggest problem on large power networks even with minor reordering.
4061 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4062 * up to bandwidth of 18Gigabit/sec. 8) ]
4065 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
4067 const struct tcp_sock
*tp
= tcp_sk(sk
);
4068 const struct tcphdr
*th
= tcp_hdr(skb
);
4069 u32 seq
= TCP_SKB_CB(skb
)->seq
;
4070 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
4072 return (/* 1. Pure ACK with correct sequence number. */
4073 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
4075 /* 2. ... and duplicate ACK. */
4076 ack
== tp
->snd_una
&&
4078 /* 3. ... and does not update window. */
4079 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
4081 /* 4. ... and sits in replay window. */
4082 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
4085 static inline bool tcp_paws_discard(const struct sock
*sk
,
4086 const struct sk_buff
*skb
)
4088 const struct tcp_sock
*tp
= tcp_sk(sk
);
4090 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
4091 !tcp_disordered_ack(sk
, skb
);
4094 /* Check segment sequence number for validity.
4096 * Segment controls are considered valid, if the segment
4097 * fits to the window after truncation to the window. Acceptability
4098 * of data (and SYN, FIN, of course) is checked separately.
4099 * See tcp_data_queue(), for example.
4101 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4102 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4103 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4104 * (borrowed from freebsd)
4107 static inline bool tcp_sequence(const struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
4109 return !before(end_seq
, tp
->rcv_wup
) &&
4110 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
4113 /* When we get a reset we do this. */
4114 void tcp_reset(struct sock
*sk
)
4116 trace_tcp_receive_reset(sk
);
4118 /* We want the right error as BSD sees it (and indeed as we do). */
4119 switch (sk
->sk_state
) {
4121 sk
->sk_err
= ECONNREFUSED
;
4123 case TCP_CLOSE_WAIT
:
4129 sk
->sk_err
= ECONNRESET
;
4131 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4134 tcp_write_queue_purge(sk
);
4137 if (!sock_flag(sk
, SOCK_DEAD
))
4138 sk
->sk_error_report(sk
);
4142 * Process the FIN bit. This now behaves as it is supposed to work
4143 * and the FIN takes effect when it is validly part of sequence
4144 * space. Not before when we get holes.
4146 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4147 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4150 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4151 * close and we go into CLOSING (and later onto TIME-WAIT)
4153 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4155 void tcp_fin(struct sock
*sk
)
4157 struct tcp_sock
*tp
= tcp_sk(sk
);
4159 inet_csk_schedule_ack(sk
);
4161 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
4162 sock_set_flag(sk
, SOCK_DONE
);
4164 switch (sk
->sk_state
) {
4166 case TCP_ESTABLISHED
:
4167 /* Move to CLOSE_WAIT */
4168 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4169 inet_csk_enter_pingpong_mode(sk
);
4172 case TCP_CLOSE_WAIT
:
4174 /* Received a retransmission of the FIN, do
4179 /* RFC793: Remain in the LAST-ACK state. */
4183 /* This case occurs when a simultaneous close
4184 * happens, we must ack the received FIN and
4185 * enter the CLOSING state.
4188 tcp_set_state(sk
, TCP_CLOSING
);
4191 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4193 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4196 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4197 * cases we should never reach this piece of code.
4199 pr_err("%s: Impossible, sk->sk_state=%d\n",
4200 __func__
, sk
->sk_state
);
4204 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4205 * Probably, we should reset in this case. For now drop them.
4207 skb_rbtree_purge(&tp
->out_of_order_queue
);
4208 if (tcp_is_sack(tp
))
4209 tcp_sack_reset(&tp
->rx_opt
);
4212 if (!sock_flag(sk
, SOCK_DEAD
)) {
4213 sk
->sk_state_change(sk
);
4215 /* Do not send POLL_HUP for half duplex close. */
4216 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4217 sk
->sk_state
== TCP_CLOSE
)
4218 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4220 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4224 static inline bool tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4227 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4228 if (before(seq
, sp
->start_seq
))
4229 sp
->start_seq
= seq
;
4230 if (after(end_seq
, sp
->end_seq
))
4231 sp
->end_seq
= end_seq
;
4237 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4239 struct tcp_sock
*tp
= tcp_sk(sk
);
4241 if (tcp_is_sack(tp
) && sock_net(sk
)->ipv4
.sysctl_tcp_dsack
) {
4244 if (before(seq
, tp
->rcv_nxt
))
4245 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4247 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4249 NET_INC_STATS(sock_net(sk
), mib_idx
);
4251 tp
->rx_opt
.dsack
= 1;
4252 tp
->duplicate_sack
[0].start_seq
= seq
;
4253 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4257 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4259 struct tcp_sock
*tp
= tcp_sk(sk
);
4261 if (!tp
->rx_opt
.dsack
)
4262 tcp_dsack_set(sk
, seq
, end_seq
);
4264 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4267 static void tcp_rcv_spurious_retrans(struct sock
*sk
, const struct sk_buff
*skb
)
4269 /* When the ACK path fails or drops most ACKs, the sender would
4270 * timeout and spuriously retransmit the same segment repeatedly.
4271 * The receiver remembers and reflects via DSACKs. Leverage the
4272 * DSACK state and change the txhash to re-route speculatively.
4274 if (TCP_SKB_CB(skb
)->seq
== tcp_sk(sk
)->duplicate_sack
[0].start_seq
) {
4275 sk_rethink_txhash(sk
);
4276 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDUPLICATEDATAREHASH
);
4280 static void tcp_send_dupack(struct sock
*sk
, const struct sk_buff
*skb
)
4282 struct tcp_sock
*tp
= tcp_sk(sk
);
4284 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4285 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4286 NET_INC_STATS(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4287 tcp_enter_quickack_mode(sk
, TCP_MAX_QUICKACKS
);
4289 if (tcp_is_sack(tp
) && sock_net(sk
)->ipv4
.sysctl_tcp_dsack
) {
4290 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4292 tcp_rcv_spurious_retrans(sk
, skb
);
4293 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4294 end_seq
= tp
->rcv_nxt
;
4295 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4302 /* These routines update the SACK block as out-of-order packets arrive or
4303 * in-order packets close up the sequence space.
4305 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4308 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4309 struct tcp_sack_block
*swalk
= sp
+ 1;
4311 /* See if the recent change to the first SACK eats into
4312 * or hits the sequence space of other SACK blocks, if so coalesce.
4314 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4315 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4318 /* Zap SWALK, by moving every further SACK up by one slot.
4319 * Decrease num_sacks.
4321 tp
->rx_opt
.num_sacks
--;
4322 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4326 this_sack
++, swalk
++;
4330 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4332 struct tcp_sock
*tp
= tcp_sk(sk
);
4333 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4334 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4340 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4341 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4342 /* Rotate this_sack to the first one. */
4343 for (; this_sack
> 0; this_sack
--, sp
--)
4344 swap(*sp
, *(sp
- 1));
4346 tcp_sack_maybe_coalesce(tp
);
4351 /* Could not find an adjacent existing SACK, build a new one,
4352 * put it at the front, and shift everyone else down. We
4353 * always know there is at least one SACK present already here.
4355 * If the sack array is full, forget about the last one.
4357 if (this_sack
>= TCP_NUM_SACKS
) {
4358 if (tp
->compressed_ack
> TCP_FASTRETRANS_THRESH
)
4361 tp
->rx_opt
.num_sacks
--;
4364 for (; this_sack
> 0; this_sack
--, sp
--)
4368 /* Build the new head SACK, and we're done. */
4369 sp
->start_seq
= seq
;
4370 sp
->end_seq
= end_seq
;
4371 tp
->rx_opt
.num_sacks
++;
4374 /* RCV.NXT advances, some SACKs should be eaten. */
4376 static void tcp_sack_remove(struct tcp_sock
*tp
)
4378 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4379 int num_sacks
= tp
->rx_opt
.num_sacks
;
4382 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4383 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4384 tp
->rx_opt
.num_sacks
= 0;
4388 for (this_sack
= 0; this_sack
< num_sacks
;) {
4389 /* Check if the start of the sack is covered by RCV.NXT. */
4390 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4393 /* RCV.NXT must cover all the block! */
4394 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4396 /* Zap this SACK, by moving forward any other SACKS. */
4397 for (i
= this_sack
+1; i
< num_sacks
; i
++)
4398 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4405 tp
->rx_opt
.num_sacks
= num_sacks
;
4409 * tcp_try_coalesce - try to merge skb to prior one
4411 * @dest: destination queue
4413 * @from: buffer to add in queue
4414 * @fragstolen: pointer to boolean
4416 * Before queueing skb @from after @to, try to merge them
4417 * to reduce overall memory use and queue lengths, if cost is small.
4418 * Packets in ofo or receive queues can stay a long time.
4419 * Better try to coalesce them right now to avoid future collapses.
4420 * Returns true if caller should free @from instead of queueing it
4422 static bool tcp_try_coalesce(struct sock
*sk
,
4424 struct sk_buff
*from
,
4429 *fragstolen
= false;
4431 /* Its possible this segment overlaps with prior segment in queue */
4432 if (TCP_SKB_CB(from
)->seq
!= TCP_SKB_CB(to
)->end_seq
)
4435 if (!mptcp_skb_can_collapse(to
, from
))
4438 #ifdef CONFIG_TLS_DEVICE
4439 if (from
->decrypted
!= to
->decrypted
)
4443 if (!skb_try_coalesce(to
, from
, fragstolen
, &delta
))
4446 atomic_add(delta
, &sk
->sk_rmem_alloc
);
4447 sk_mem_charge(sk
, delta
);
4448 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVCOALESCE
);
4449 TCP_SKB_CB(to
)->end_seq
= TCP_SKB_CB(from
)->end_seq
;
4450 TCP_SKB_CB(to
)->ack_seq
= TCP_SKB_CB(from
)->ack_seq
;
4451 TCP_SKB_CB(to
)->tcp_flags
|= TCP_SKB_CB(from
)->tcp_flags
;
4453 if (TCP_SKB_CB(from
)->has_rxtstamp
) {
4454 TCP_SKB_CB(to
)->has_rxtstamp
= true;
4455 to
->tstamp
= from
->tstamp
;
4456 skb_hwtstamps(to
)->hwtstamp
= skb_hwtstamps(from
)->hwtstamp
;
4462 static bool tcp_ooo_try_coalesce(struct sock
*sk
,
4464 struct sk_buff
*from
,
4467 bool res
= tcp_try_coalesce(sk
, to
, from
, fragstolen
);
4469 /* In case tcp_drop() is called later, update to->gso_segs */
4471 u32 gso_segs
= max_t(u16
, 1, skb_shinfo(to
)->gso_segs
) +
4472 max_t(u16
, 1, skb_shinfo(from
)->gso_segs
);
4474 skb_shinfo(to
)->gso_segs
= min_t(u32
, gso_segs
, 0xFFFF);
4479 static void tcp_drop(struct sock
*sk
, struct sk_buff
*skb
)
4481 sk_drops_add(sk
, skb
);
4485 /* This one checks to see if we can put data from the
4486 * out_of_order queue into the receive_queue.
4488 static void tcp_ofo_queue(struct sock
*sk
)
4490 struct tcp_sock
*tp
= tcp_sk(sk
);
4491 __u32 dsack_high
= tp
->rcv_nxt
;
4492 bool fin
, fragstolen
, eaten
;
4493 struct sk_buff
*skb
, *tail
;
4496 p
= rb_first(&tp
->out_of_order_queue
);
4499 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4502 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4503 __u32 dsack
= dsack_high
;
4504 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4505 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4506 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4509 rb_erase(&skb
->rbnode
, &tp
->out_of_order_queue
);
4511 if (unlikely(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))) {
4516 tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4517 eaten
= tail
&& tcp_try_coalesce(sk
, tail
, skb
, &fragstolen
);
4518 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
4519 fin
= TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
;
4521 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4523 kfree_skb_partial(skb
, fragstolen
);
4525 if (unlikely(fin
)) {
4527 /* tcp_fin() purges tp->out_of_order_queue,
4528 * so we must end this loop right now.
4535 static bool tcp_prune_ofo_queue(struct sock
*sk
);
4536 static int tcp_prune_queue(struct sock
*sk
);
4538 static int tcp_try_rmem_schedule(struct sock
*sk
, struct sk_buff
*skb
,
4541 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4542 !sk_rmem_schedule(sk
, skb
, size
)) {
4544 if (tcp_prune_queue(sk
) < 0)
4547 while (!sk_rmem_schedule(sk
, skb
, size
)) {
4548 if (!tcp_prune_ofo_queue(sk
))
4555 static void tcp_data_queue_ofo(struct sock
*sk
, struct sk_buff
*skb
)
4557 struct tcp_sock
*tp
= tcp_sk(sk
);
4558 struct rb_node
**p
, *parent
;
4559 struct sk_buff
*skb1
;
4563 tcp_ecn_check_ce(sk
, skb
);
4565 if (unlikely(tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))) {
4566 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFODROP
);
4571 /* Disable header prediction. */
4573 inet_csk_schedule_ack(sk
);
4575 tp
->rcv_ooopack
+= max_t(u16
, 1, skb_shinfo(skb
)->gso_segs
);
4576 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFOQUEUE
);
4577 seq
= TCP_SKB_CB(skb
)->seq
;
4578 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4580 p
= &tp
->out_of_order_queue
.rb_node
;
4581 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4582 /* Initial out of order segment, build 1 SACK. */
4583 if (tcp_is_sack(tp
)) {
4584 tp
->rx_opt
.num_sacks
= 1;
4585 tp
->selective_acks
[0].start_seq
= seq
;
4586 tp
->selective_acks
[0].end_seq
= end_seq
;
4588 rb_link_node(&skb
->rbnode
, NULL
, p
);
4589 rb_insert_color(&skb
->rbnode
, &tp
->out_of_order_queue
);
4590 tp
->ooo_last_skb
= skb
;
4594 /* In the typical case, we are adding an skb to the end of the list.
4595 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4597 if (tcp_ooo_try_coalesce(sk
, tp
->ooo_last_skb
,
4598 skb
, &fragstolen
)) {
4600 tcp_grow_window(sk
, skb
);
4601 kfree_skb_partial(skb
, fragstolen
);
4605 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4606 if (!before(seq
, TCP_SKB_CB(tp
->ooo_last_skb
)->end_seq
)) {
4607 parent
= &tp
->ooo_last_skb
->rbnode
;
4608 p
= &parent
->rb_right
;
4612 /* Find place to insert this segment. Handle overlaps on the way. */
4616 skb1
= rb_to_skb(parent
);
4617 if (before(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4618 p
= &parent
->rb_left
;
4621 if (before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4622 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4623 /* All the bits are present. Drop. */
4624 NET_INC_STATS(sock_net(sk
),
4625 LINUX_MIB_TCPOFOMERGE
);
4628 tcp_dsack_set(sk
, seq
, end_seq
);
4631 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4632 /* Partial overlap. */
4633 tcp_dsack_set(sk
, seq
, TCP_SKB_CB(skb1
)->end_seq
);
4635 /* skb's seq == skb1's seq and skb covers skb1.
4636 * Replace skb1 with skb.
4638 rb_replace_node(&skb1
->rbnode
, &skb
->rbnode
,
4639 &tp
->out_of_order_queue
);
4640 tcp_dsack_extend(sk
,
4641 TCP_SKB_CB(skb1
)->seq
,
4642 TCP_SKB_CB(skb1
)->end_seq
);
4643 NET_INC_STATS(sock_net(sk
),
4644 LINUX_MIB_TCPOFOMERGE
);
4648 } else if (tcp_ooo_try_coalesce(sk
, skb1
,
4649 skb
, &fragstolen
)) {
4652 p
= &parent
->rb_right
;
4655 /* Insert segment into RB tree. */
4656 rb_link_node(&skb
->rbnode
, parent
, p
);
4657 rb_insert_color(&skb
->rbnode
, &tp
->out_of_order_queue
);
4660 /* Remove other segments covered by skb. */
4661 while ((skb1
= skb_rb_next(skb
)) != NULL
) {
4662 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4664 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4665 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4669 rb_erase(&skb1
->rbnode
, &tp
->out_of_order_queue
);
4670 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4671 TCP_SKB_CB(skb1
)->end_seq
);
4672 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFOMERGE
);
4675 /* If there is no skb after us, we are the last_skb ! */
4677 tp
->ooo_last_skb
= skb
;
4680 if (tcp_is_sack(tp
))
4681 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4684 tcp_grow_window(sk
, skb
);
4686 skb_set_owner_r(skb
, sk
);
4690 static int __must_check
tcp_queue_rcv(struct sock
*sk
, struct sk_buff
*skb
,
4694 struct sk_buff
*tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4697 tcp_try_coalesce(sk
, tail
,
4698 skb
, fragstolen
)) ? 1 : 0;
4699 tcp_rcv_nxt_update(tcp_sk(sk
), TCP_SKB_CB(skb
)->end_seq
);
4701 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4702 skb_set_owner_r(skb
, sk
);
4707 int tcp_send_rcvq(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
4709 struct sk_buff
*skb
;
4717 if (size
> PAGE_SIZE
) {
4718 int npages
= min_t(size_t, size
>> PAGE_SHIFT
, MAX_SKB_FRAGS
);
4720 data_len
= npages
<< PAGE_SHIFT
;
4721 size
= data_len
+ (size
& ~PAGE_MASK
);
4723 skb
= alloc_skb_with_frags(size
- data_len
, data_len
,
4724 PAGE_ALLOC_COSTLY_ORDER
,
4725 &err
, sk
->sk_allocation
);
4729 skb_put(skb
, size
- data_len
);
4730 skb
->data_len
= data_len
;
4733 if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
)) {
4734 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVQDROP
);
4738 err
= skb_copy_datagram_from_iter(skb
, 0, &msg
->msg_iter
, size
);
4742 TCP_SKB_CB(skb
)->seq
= tcp_sk(sk
)->rcv_nxt
;
4743 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ size
;
4744 TCP_SKB_CB(skb
)->ack_seq
= tcp_sk(sk
)->snd_una
- 1;
4746 if (tcp_queue_rcv(sk
, skb
, &fragstolen
)) {
4747 WARN_ON_ONCE(fragstolen
); /* should not happen */
4759 void tcp_data_ready(struct sock
*sk
)
4761 const struct tcp_sock
*tp
= tcp_sk(sk
);
4762 int avail
= tp
->rcv_nxt
- tp
->copied_seq
;
4764 if (avail
< sk
->sk_rcvlowat
&& !sock_flag(sk
, SOCK_DONE
))
4767 sk
->sk_data_ready(sk
);
4770 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4772 struct tcp_sock
*tp
= tcp_sk(sk
);
4776 if (sk_is_mptcp(sk
))
4777 mptcp_incoming_options(sk
, skb
, &tp
->rx_opt
);
4779 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
) {
4784 __skb_pull(skb
, tcp_hdr(skb
)->doff
* 4);
4786 tcp_ecn_accept_cwr(sk
, skb
);
4788 tp
->rx_opt
.dsack
= 0;
4790 /* Queue data for delivery to the user.
4791 * Packets in sequence go to the receive queue.
4792 * Out of sequence packets to the out_of_order_queue.
4794 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4795 if (tcp_receive_window(tp
) == 0) {
4796 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPZEROWINDOWDROP
);
4800 /* Ok. In sequence. In window. */
4802 if (skb_queue_len(&sk
->sk_receive_queue
) == 0)
4803 sk_forced_mem_schedule(sk
, skb
->truesize
);
4804 else if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
)) {
4805 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVQDROP
);
4809 eaten
= tcp_queue_rcv(sk
, skb
, &fragstolen
);
4811 tcp_event_data_recv(sk
, skb
);
4812 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
4815 if (!RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4818 /* RFC5681. 4.2. SHOULD send immediate ACK, when
4819 * gap in queue is filled.
4821 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
))
4822 inet_csk(sk
)->icsk_ack
.pending
|= ICSK_ACK_NOW
;
4825 if (tp
->rx_opt
.num_sacks
)
4826 tcp_sack_remove(tp
);
4828 tcp_fast_path_check(sk
);
4831 kfree_skb_partial(skb
, fragstolen
);
4832 if (!sock_flag(sk
, SOCK_DEAD
))
4837 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4838 tcp_rcv_spurious_retrans(sk
, skb
);
4839 /* A retransmit, 2nd most common case. Force an immediate ack. */
4840 NET_INC_STATS(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4841 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4844 tcp_enter_quickack_mode(sk
, TCP_MAX_QUICKACKS
);
4845 inet_csk_schedule_ack(sk
);
4851 /* Out of window. F.e. zero window probe. */
4852 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4855 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4856 /* Partial packet, seq < rcv_next < end_seq */
4857 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4859 /* If window is closed, drop tail of packet. But after
4860 * remembering D-SACK for its head made in previous line.
4862 if (!tcp_receive_window(tp
)) {
4863 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPZEROWINDOWDROP
);
4869 tcp_data_queue_ofo(sk
, skb
);
4872 static struct sk_buff
*tcp_skb_next(struct sk_buff
*skb
, struct sk_buff_head
*list
)
4875 return !skb_queue_is_last(list
, skb
) ? skb
->next
: NULL
;
4877 return skb_rb_next(skb
);
4880 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4881 struct sk_buff_head
*list
,
4882 struct rb_root
*root
)
4884 struct sk_buff
*next
= tcp_skb_next(skb
, list
);
4887 __skb_unlink(skb
, list
);
4889 rb_erase(&skb
->rbnode
, root
);
4892 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4897 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4898 void tcp_rbtree_insert(struct rb_root
*root
, struct sk_buff
*skb
)
4900 struct rb_node
**p
= &root
->rb_node
;
4901 struct rb_node
*parent
= NULL
;
4902 struct sk_buff
*skb1
;
4906 skb1
= rb_to_skb(parent
);
4907 if (before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb1
)->seq
))
4908 p
= &parent
->rb_left
;
4910 p
= &parent
->rb_right
;
4912 rb_link_node(&skb
->rbnode
, parent
, p
);
4913 rb_insert_color(&skb
->rbnode
, root
);
4916 /* Collapse contiguous sequence of skbs head..tail with
4917 * sequence numbers start..end.
4919 * If tail is NULL, this means until the end of the queue.
4921 * Segments with FIN/SYN are not collapsed (only because this
4925 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
, struct rb_root
*root
,
4926 struct sk_buff
*head
, struct sk_buff
*tail
, u32 start
, u32 end
)
4928 struct sk_buff
*skb
= head
, *n
;
4929 struct sk_buff_head tmp
;
4932 /* First, check that queue is collapsible and find
4933 * the point where collapsing can be useful.
4936 for (end_of_skbs
= true; skb
!= NULL
&& skb
!= tail
; skb
= n
) {
4937 n
= tcp_skb_next(skb
, list
);
4939 /* No new bits? It is possible on ofo queue. */
4940 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4941 skb
= tcp_collapse_one(sk
, skb
, list
, root
);
4947 /* The first skb to collapse is:
4949 * - bloated or contains data before "start" or
4950 * overlaps to the next one and mptcp allow collapsing.
4952 if (!(TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)) &&
4953 (tcp_win_from_space(sk
, skb
->truesize
) > skb
->len
||
4954 before(TCP_SKB_CB(skb
)->seq
, start
))) {
4955 end_of_skbs
= false;
4959 if (n
&& n
!= tail
&& mptcp_skb_can_collapse(skb
, n
) &&
4960 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(n
)->seq
) {
4961 end_of_skbs
= false;
4965 /* Decided to skip this, advance start seq. */
4966 start
= TCP_SKB_CB(skb
)->end_seq
;
4969 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
4972 __skb_queue_head_init(&tmp
);
4974 while (before(start
, end
)) {
4975 int copy
= min_t(int, SKB_MAX_ORDER(0, 0), end
- start
);
4976 struct sk_buff
*nskb
;
4978 nskb
= alloc_skb(copy
, GFP_ATOMIC
);
4982 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4983 #ifdef CONFIG_TLS_DEVICE
4984 nskb
->decrypted
= skb
->decrypted
;
4986 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4988 __skb_queue_before(list
, skb
, nskb
);
4990 __skb_queue_tail(&tmp
, nskb
); /* defer rbtree insertion */
4991 skb_set_owner_r(nskb
, sk
);
4992 mptcp_skb_ext_move(nskb
, skb
);
4994 /* Copy data, releasing collapsed skbs. */
4996 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4997 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
5001 size
= min(copy
, size
);
5002 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
5004 TCP_SKB_CB(nskb
)->end_seq
+= size
;
5008 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
5009 skb
= tcp_collapse_one(sk
, skb
, list
, root
);
5012 !mptcp_skb_can_collapse(nskb
, skb
) ||
5013 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
5015 #ifdef CONFIG_TLS_DEVICE
5016 if (skb
->decrypted
!= nskb
->decrypted
)
5023 skb_queue_walk_safe(&tmp
, skb
, n
)
5024 tcp_rbtree_insert(root
, skb
);
5027 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5028 * and tcp_collapse() them until all the queue is collapsed.
5030 static void tcp_collapse_ofo_queue(struct sock
*sk
)
5032 struct tcp_sock
*tp
= tcp_sk(sk
);
5033 u32 range_truesize
, sum_tiny
= 0;
5034 struct sk_buff
*skb
, *head
;
5037 skb
= skb_rb_first(&tp
->out_of_order_queue
);
5040 tp
->ooo_last_skb
= skb_rb_last(&tp
->out_of_order_queue
);
5043 start
= TCP_SKB_CB(skb
)->seq
;
5044 end
= TCP_SKB_CB(skb
)->end_seq
;
5045 range_truesize
= skb
->truesize
;
5047 for (head
= skb
;;) {
5048 skb
= skb_rb_next(skb
);
5050 /* Range is terminated when we see a gap or when
5051 * we are at the queue end.
5054 after(TCP_SKB_CB(skb
)->seq
, end
) ||
5055 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
5056 /* Do not attempt collapsing tiny skbs */
5057 if (range_truesize
!= head
->truesize
||
5058 end
- start
>= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM
)) {
5059 tcp_collapse(sk
, NULL
, &tp
->out_of_order_queue
,
5060 head
, skb
, start
, end
);
5062 sum_tiny
+= range_truesize
;
5063 if (sum_tiny
> sk
->sk_rcvbuf
>> 3)
5069 range_truesize
+= skb
->truesize
;
5070 if (unlikely(before(TCP_SKB_CB(skb
)->seq
, start
)))
5071 start
= TCP_SKB_CB(skb
)->seq
;
5072 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
5073 end
= TCP_SKB_CB(skb
)->end_seq
;
5078 * Clean the out-of-order queue to make room.
5079 * We drop high sequences packets to :
5080 * 1) Let a chance for holes to be filled.
5081 * 2) not add too big latencies if thousands of packets sit there.
5082 * (But if application shrinks SO_RCVBUF, we could still end up
5083 * freeing whole queue here)
5084 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5086 * Return true if queue has shrunk.
5088 static bool tcp_prune_ofo_queue(struct sock
*sk
)
5090 struct tcp_sock
*tp
= tcp_sk(sk
);
5091 struct rb_node
*node
, *prev
;
5094 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
))
5097 NET_INC_STATS(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
5098 goal
= sk
->sk_rcvbuf
>> 3;
5099 node
= &tp
->ooo_last_skb
->rbnode
;
5101 prev
= rb_prev(node
);
5102 rb_erase(node
, &tp
->out_of_order_queue
);
5103 goal
-= rb_to_skb(node
)->truesize
;
5104 tcp_drop(sk
, rb_to_skb(node
));
5105 if (!prev
|| goal
<= 0) {
5107 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
&&
5108 !tcp_under_memory_pressure(sk
))
5110 goal
= sk
->sk_rcvbuf
>> 3;
5114 tp
->ooo_last_skb
= rb_to_skb(prev
);
5116 /* Reset SACK state. A conforming SACK implementation will
5117 * do the same at a timeout based retransmit. When a connection
5118 * is in a sad state like this, we care only about integrity
5119 * of the connection not performance.
5121 if (tp
->rx_opt
.sack_ok
)
5122 tcp_sack_reset(&tp
->rx_opt
);
5126 /* Reduce allocated memory if we can, trying to get
5127 * the socket within its memory limits again.
5129 * Return less than zero if we should start dropping frames
5130 * until the socket owning process reads some of the data
5131 * to stabilize the situation.
5133 static int tcp_prune_queue(struct sock
*sk
)
5135 struct tcp_sock
*tp
= tcp_sk(sk
);
5137 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
5139 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
5140 tcp_clamp_window(sk
);
5141 else if (tcp_under_memory_pressure(sk
))
5142 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
5144 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
5147 tcp_collapse_ofo_queue(sk
);
5148 if (!skb_queue_empty(&sk
->sk_receive_queue
))
5149 tcp_collapse(sk
, &sk
->sk_receive_queue
, NULL
,
5150 skb_peek(&sk
->sk_receive_queue
),
5152 tp
->copied_seq
, tp
->rcv_nxt
);
5155 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
5158 /* Collapsing did not help, destructive actions follow.
5159 * This must not ever occur. */
5161 tcp_prune_ofo_queue(sk
);
5163 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
5166 /* If we are really being abused, tell the caller to silently
5167 * drop receive data on the floor. It will get retransmitted
5168 * and hopefully then we'll have sufficient space.
5170 NET_INC_STATS(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
5172 /* Massive buffer overcommit. */
5177 static bool tcp_should_expand_sndbuf(const struct sock
*sk
)
5179 const struct tcp_sock
*tp
= tcp_sk(sk
);
5181 /* If the user specified a specific send buffer setting, do
5184 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
5187 /* If we are under global TCP memory pressure, do not expand. */
5188 if (tcp_under_memory_pressure(sk
))
5191 /* If we are under soft global TCP memory pressure, do not expand. */
5192 if (sk_memory_allocated(sk
) >= sk_prot_mem_limits(sk
, 0))
5195 /* If we filled the congestion window, do not expand. */
5196 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
5202 /* When incoming ACK allowed to free some skb from write_queue,
5203 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5204 * on the exit from tcp input handler.
5206 * PROBLEM: sndbuf expansion does not work well with largesend.
5208 static void tcp_new_space(struct sock
*sk
)
5210 struct tcp_sock
*tp
= tcp_sk(sk
);
5212 if (tcp_should_expand_sndbuf(sk
)) {
5213 tcp_sndbuf_expand(sk
);
5214 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
5217 sk
->sk_write_space(sk
);
5220 static void tcp_check_space(struct sock
*sk
)
5222 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
5223 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
5224 /* pairs with tcp_poll() */
5226 if (sk
->sk_socket
&&
5227 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
5229 if (!test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
5230 tcp_chrono_stop(sk
, TCP_CHRONO_SNDBUF_LIMITED
);
5235 static inline void tcp_data_snd_check(struct sock
*sk
)
5237 tcp_push_pending_frames(sk
);
5238 tcp_check_space(sk
);
5242 * Check if sending an ack is needed.
5244 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
5246 struct tcp_sock
*tp
= tcp_sk(sk
);
5247 unsigned long rtt
, delay
;
5249 /* More than one full frame received... */
5250 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
&&
5251 /* ... and right edge of window advances far enough.
5252 * (tcp_recvmsg() will send ACK otherwise).
5253 * If application uses SO_RCVLOWAT, we want send ack now if
5254 * we have not received enough bytes to satisfy the condition.
5256 (tp
->rcv_nxt
- tp
->copied_seq
< sk
->sk_rcvlowat
||
5257 __tcp_select_window(sk
) >= tp
->rcv_wnd
)) ||
5258 /* We ACK each frame or... */
5259 tcp_in_quickack_mode(sk
) ||
5260 /* Protocol state mandates a one-time immediate ACK */
5261 inet_csk(sk
)->icsk_ack
.pending
& ICSK_ACK_NOW
) {
5267 if (!ofo_possible
|| RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
5268 tcp_send_delayed_ack(sk
);
5272 if (!tcp_is_sack(tp
) ||
5273 tp
->compressed_ack
>= sock_net(sk
)->ipv4
.sysctl_tcp_comp_sack_nr
)
5276 if (tp
->compressed_ack_rcv_nxt
!= tp
->rcv_nxt
) {
5277 tp
->compressed_ack_rcv_nxt
= tp
->rcv_nxt
;
5278 if (tp
->compressed_ack
> TCP_FASTRETRANS_THRESH
)
5279 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPACKCOMPRESSED
,
5280 tp
->compressed_ack
- TCP_FASTRETRANS_THRESH
);
5281 tp
->compressed_ack
= 0;
5284 if (++tp
->compressed_ack
<= TCP_FASTRETRANS_THRESH
)
5287 if (hrtimer_is_queued(&tp
->compressed_ack_timer
))
5290 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5292 rtt
= tp
->rcv_rtt_est
.rtt_us
;
5293 if (tp
->srtt_us
&& tp
->srtt_us
< rtt
)
5296 delay
= min_t(unsigned long, sock_net(sk
)->ipv4
.sysctl_tcp_comp_sack_delay_ns
,
5297 rtt
* (NSEC_PER_USEC
>> 3)/20);
5299 hrtimer_start(&tp
->compressed_ack_timer
, ns_to_ktime(delay
),
5300 HRTIMER_MODE_REL_PINNED_SOFT
);
5303 static inline void tcp_ack_snd_check(struct sock
*sk
)
5305 if (!inet_csk_ack_scheduled(sk
)) {
5306 /* We sent a data segment already. */
5309 __tcp_ack_snd_check(sk
, 1);
5313 * This routine is only called when we have urgent data
5314 * signaled. Its the 'slow' part of tcp_urg. It could be
5315 * moved inline now as tcp_urg is only called from one
5316 * place. We handle URGent data wrong. We have to - as
5317 * BSD still doesn't use the correction from RFC961.
5318 * For 1003.1g we should support a new option TCP_STDURG to permit
5319 * either form (or just set the sysctl tcp_stdurg).
5322 static void tcp_check_urg(struct sock
*sk
, const struct tcphdr
*th
)
5324 struct tcp_sock
*tp
= tcp_sk(sk
);
5325 u32 ptr
= ntohs(th
->urg_ptr
);
5327 if (ptr
&& !sock_net(sk
)->ipv4
.sysctl_tcp_stdurg
)
5329 ptr
+= ntohl(th
->seq
);
5331 /* Ignore urgent data that we've already seen and read. */
5332 if (after(tp
->copied_seq
, ptr
))
5335 /* Do not replay urg ptr.
5337 * NOTE: interesting situation not covered by specs.
5338 * Misbehaving sender may send urg ptr, pointing to segment,
5339 * which we already have in ofo queue. We are not able to fetch
5340 * such data and will stay in TCP_URG_NOTYET until will be eaten
5341 * by recvmsg(). Seems, we are not obliged to handle such wicked
5342 * situations. But it is worth to think about possibility of some
5343 * DoSes using some hypothetical application level deadlock.
5345 if (before(ptr
, tp
->rcv_nxt
))
5348 /* Do we already have a newer (or duplicate) urgent pointer? */
5349 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
5352 /* Tell the world about our new urgent pointer. */
5355 /* We may be adding urgent data when the last byte read was
5356 * urgent. To do this requires some care. We cannot just ignore
5357 * tp->copied_seq since we would read the last urgent byte again
5358 * as data, nor can we alter copied_seq until this data arrives
5359 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5361 * NOTE. Double Dutch. Rendering to plain English: author of comment
5362 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5363 * and expect that both A and B disappear from stream. This is _wrong_.
5364 * Though this happens in BSD with high probability, this is occasional.
5365 * Any application relying on this is buggy. Note also, that fix "works"
5366 * only in this artificial test. Insert some normal data between A and B and we will
5367 * decline of BSD again. Verdict: it is better to remove to trap
5370 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
5371 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
5372 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
5374 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5375 __skb_unlink(skb
, &sk
->sk_receive_queue
);
5380 tp
->urg_data
= TCP_URG_NOTYET
;
5381 WRITE_ONCE(tp
->urg_seq
, ptr
);
5383 /* Disable header prediction. */
5387 /* This is the 'fast' part of urgent handling. */
5388 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, const struct tcphdr
*th
)
5390 struct tcp_sock
*tp
= tcp_sk(sk
);
5392 /* Check if we get a new urgent pointer - normally not. */
5394 tcp_check_urg(sk
, th
);
5396 /* Do we wait for any urgent data? - normally not... */
5397 if (tp
->urg_data
== TCP_URG_NOTYET
) {
5398 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
5401 /* Is the urgent pointer pointing into this packet? */
5402 if (ptr
< skb
->len
) {
5404 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
5406 tp
->urg_data
= TCP_URG_VALID
| tmp
;
5407 if (!sock_flag(sk
, SOCK_DEAD
))
5408 sk
->sk_data_ready(sk
);
5413 /* Accept RST for rcv_nxt - 1 after a FIN.
5414 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5415 * FIN is sent followed by a RST packet. The RST is sent with the same
5416 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5417 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5418 * ACKs on the closed socket. In addition middleboxes can drop either the
5419 * challenge ACK or a subsequent RST.
5421 static bool tcp_reset_check(const struct sock
*sk
, const struct sk_buff
*skb
)
5423 struct tcp_sock
*tp
= tcp_sk(sk
);
5425 return unlikely(TCP_SKB_CB(skb
)->seq
== (tp
->rcv_nxt
- 1) &&
5426 (1 << sk
->sk_state
) & (TCPF_CLOSE_WAIT
| TCPF_LAST_ACK
|
5430 /* Does PAWS and seqno based validation of an incoming segment, flags will
5431 * play significant role here.
5433 static bool tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5434 const struct tcphdr
*th
, int syn_inerr
)
5436 struct tcp_sock
*tp
= tcp_sk(sk
);
5437 bool rst_seq_match
= false;
5439 /* RFC1323: H1. Apply PAWS check first. */
5440 if (tcp_fast_parse_options(sock_net(sk
), skb
, th
, tp
) &&
5441 tp
->rx_opt
.saw_tstamp
&&
5442 tcp_paws_discard(sk
, skb
)) {
5444 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5445 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5446 LINUX_MIB_TCPACKSKIPPEDPAWS
,
5447 &tp
->last_oow_ack_time
))
5448 tcp_send_dupack(sk
, skb
);
5451 /* Reset is accepted even if it did not pass PAWS. */
5454 /* Step 1: check sequence number */
5455 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5456 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5457 * (RST) segments are validated by checking their SEQ-fields."
5458 * And page 69: "If an incoming segment is not acceptable,
5459 * an acknowledgment should be sent in reply (unless the RST
5460 * bit is set, if so drop the segment and return)".
5465 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5466 LINUX_MIB_TCPACKSKIPPEDSEQ
,
5467 &tp
->last_oow_ack_time
))
5468 tcp_send_dupack(sk
, skb
);
5469 } else if (tcp_reset_check(sk
, skb
)) {
5475 /* Step 2: check RST bit */
5477 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5478 * FIN and SACK too if available):
5479 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5480 * the right-most SACK block,
5482 * RESET the connection
5484 * Send a challenge ACK
5486 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
||
5487 tcp_reset_check(sk
, skb
)) {
5488 rst_seq_match
= true;
5489 } else if (tcp_is_sack(tp
) && tp
->rx_opt
.num_sacks
> 0) {
5490 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
5491 int max_sack
= sp
[0].end_seq
;
5494 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;
5496 max_sack
= after(sp
[this_sack
].end_seq
,
5498 sp
[this_sack
].end_seq
: max_sack
;
5501 if (TCP_SKB_CB(skb
)->seq
== max_sack
)
5502 rst_seq_match
= true;
5508 /* Disable TFO if RST is out-of-order
5509 * and no data has been received
5510 * for current active TFO socket
5512 if (tp
->syn_fastopen
&& !tp
->data_segs_in
&&
5513 sk
->sk_state
== TCP_ESTABLISHED
)
5514 tcp_fastopen_active_disable(sk
);
5515 tcp_send_challenge_ack(sk
, skb
);
5520 /* step 3: check security and precedence [ignored] */
5522 /* step 4: Check for a SYN
5523 * RFC 5961 4.2 : Send a challenge ack
5528 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5529 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSYNCHALLENGE
);
5530 tcp_send_challenge_ack(sk
, skb
);
5542 * TCP receive function for the ESTABLISHED state.
5544 * It is split into a fast path and a slow path. The fast path is
5546 * - A zero window was announced from us - zero window probing
5547 * is only handled properly in the slow path.
5548 * - Out of order segments arrived.
5549 * - Urgent data is expected.
5550 * - There is no buffer space left
5551 * - Unexpected TCP flags/window values/header lengths are received
5552 * (detected by checking the TCP header against pred_flags)
5553 * - Data is sent in both directions. Fast path only supports pure senders
5554 * or pure receivers (this means either the sequence number or the ack
5555 * value must stay constant)
5556 * - Unexpected TCP option.
5558 * When these conditions are not satisfied it drops into a standard
5559 * receive procedure patterned after RFC793 to handle all cases.
5560 * The first three cases are guaranteed by proper pred_flags setting,
5561 * the rest is checked inline. Fast processing is turned on in
5562 * tcp_data_queue when everything is OK.
5564 void tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
)
5566 const struct tcphdr
*th
= (const struct tcphdr
*)skb
->data
;
5567 struct tcp_sock
*tp
= tcp_sk(sk
);
5568 unsigned int len
= skb
->len
;
5570 /* TCP congestion window tracking */
5571 trace_tcp_probe(sk
, skb
);
5573 tcp_mstamp_refresh(tp
);
5574 if (unlikely(!sk
->sk_rx_dst
))
5575 inet_csk(sk
)->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5577 * Header prediction.
5578 * The code loosely follows the one in the famous
5579 * "30 instruction TCP receive" Van Jacobson mail.
5581 * Van's trick is to deposit buffers into socket queue
5582 * on a device interrupt, to call tcp_recv function
5583 * on the receive process context and checksum and copy
5584 * the buffer to user space. smart...
5586 * Our current scheme is not silly either but we take the
5587 * extra cost of the net_bh soft interrupt processing...
5588 * We do checksum and copy also but from device to kernel.
5591 tp
->rx_opt
.saw_tstamp
= 0;
5593 /* pred_flags is 0xS?10 << 16 + snd_wnd
5594 * if header_prediction is to be made
5595 * 'S' will always be tp->tcp_header_len >> 2
5596 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5597 * turn it off (when there are holes in the receive
5598 * space for instance)
5599 * PSH flag is ignored.
5602 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5603 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5604 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5605 int tcp_header_len
= tp
->tcp_header_len
;
5607 /* Timestamp header prediction: tcp_header_len
5608 * is automatically equal to th->doff*4 due to pred_flags
5612 /* Check timestamp */
5613 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5614 /* No? Slow path! */
5615 if (!tcp_parse_aligned_timestamp(tp
, th
))
5618 /* If PAWS failed, check it more carefully in slow path */
5619 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5622 /* DO NOT update ts_recent here, if checksum fails
5623 * and timestamp was corrupted part, it will result
5624 * in a hung connection since we will drop all
5625 * future packets due to the PAWS test.
5629 if (len
<= tcp_header_len
) {
5630 /* Bulk data transfer: sender */
5631 if (len
== tcp_header_len
) {
5632 /* Predicted packet is in window by definition.
5633 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5634 * Hence, check seq<=rcv_wup reduces to:
5636 if (tcp_header_len
==
5637 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5638 tp
->rcv_nxt
== tp
->rcv_wup
)
5639 tcp_store_ts_recent(tp
);
5641 /* We know that such packets are checksummed
5644 tcp_ack(sk
, skb
, 0);
5646 tcp_data_snd_check(sk
);
5647 /* When receiving pure ack in fast path, update
5648 * last ts ecr directly instead of calling
5649 * tcp_rcv_rtt_measure_ts()
5651 tp
->rcv_rtt_last_tsecr
= tp
->rx_opt
.rcv_tsecr
;
5653 } else { /* Header too small */
5654 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5659 bool fragstolen
= false;
5661 if (tcp_checksum_complete(skb
))
5664 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5667 /* Predicted packet is in window by definition.
5668 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5669 * Hence, check seq<=rcv_wup reduces to:
5671 if (tcp_header_len
==
5672 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5673 tp
->rcv_nxt
== tp
->rcv_wup
)
5674 tcp_store_ts_recent(tp
);
5676 tcp_rcv_rtt_measure_ts(sk
, skb
);
5678 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5680 /* Bulk data transfer: receiver */
5681 __skb_pull(skb
, tcp_header_len
);
5682 eaten
= tcp_queue_rcv(sk
, skb
, &fragstolen
);
5684 tcp_event_data_recv(sk
, skb
);
5686 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5687 /* Well, only one small jumplet in fast path... */
5688 tcp_ack(sk
, skb
, FLAG_DATA
);
5689 tcp_data_snd_check(sk
);
5690 if (!inet_csk_ack_scheduled(sk
))
5694 __tcp_ack_snd_check(sk
, 0);
5697 kfree_skb_partial(skb
, fragstolen
);
5704 if (len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
))
5707 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
5711 * Standard slow path.
5714 if (!tcp_validate_incoming(sk
, skb
, th
, 1))
5718 if (tcp_ack(sk
, skb
, FLAG_SLOWPATH
| FLAG_UPDATE_TS_RECENT
) < 0)
5721 tcp_rcv_rtt_measure_ts(sk
, skb
);
5723 /* Process urgent data. */
5724 tcp_urg(sk
, skb
, th
);
5726 /* step 7: process the segment text */
5727 tcp_data_queue(sk
, skb
);
5729 tcp_data_snd_check(sk
);
5730 tcp_ack_snd_check(sk
);
5734 TCP_INC_STATS(sock_net(sk
), TCP_MIB_CSUMERRORS
);
5735 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5740 EXPORT_SYMBOL(tcp_rcv_established
);
5742 void tcp_init_transfer(struct sock
*sk
, int bpf_op
)
5744 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5745 struct tcp_sock
*tp
= tcp_sk(sk
);
5748 icsk
->icsk_af_ops
->rebuild_header(sk
);
5749 tcp_init_metrics(sk
);
5751 /* Initialize the congestion window to start the transfer.
5752 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5753 * retransmitted. In light of RFC6298 more aggressive 1sec
5754 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5755 * retransmission has occurred.
5757 if (tp
->total_retrans
> 1 && tp
->undo_marker
)
5760 tp
->snd_cwnd
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
5761 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
5763 tcp_call_bpf(sk
, bpf_op
, 0, NULL
);
5764 tcp_init_congestion_control(sk
);
5765 tcp_init_buffer_space(sk
);
5768 void tcp_finish_connect(struct sock
*sk
, struct sk_buff
*skb
)
5770 struct tcp_sock
*tp
= tcp_sk(sk
);
5771 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5773 tcp_set_state(sk
, TCP_ESTABLISHED
);
5774 icsk
->icsk_ack
.lrcvtime
= tcp_jiffies32
;
5777 icsk
->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5778 security_inet_conn_established(sk
, skb
);
5779 sk_mark_napi_id(sk
, skb
);
5782 tcp_init_transfer(sk
, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB
);
5784 /* Prevent spurious tcp_cwnd_restart() on first data
5787 tp
->lsndtime
= tcp_jiffies32
;
5789 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5790 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5792 if (!tp
->rx_opt
.snd_wscale
)
5793 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5798 static bool tcp_rcv_fastopen_synack(struct sock
*sk
, struct sk_buff
*synack
,
5799 struct tcp_fastopen_cookie
*cookie
)
5801 struct tcp_sock
*tp
= tcp_sk(sk
);
5802 struct sk_buff
*data
= tp
->syn_data
? tcp_rtx_queue_head(sk
) : NULL
;
5803 u16 mss
= tp
->rx_opt
.mss_clamp
, try_exp
= 0;
5804 bool syn_drop
= false;
5806 if (mss
== tp
->rx_opt
.user_mss
) {
5807 struct tcp_options_received opt
;
5809 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5810 tcp_clear_options(&opt
);
5811 opt
.user_mss
= opt
.mss_clamp
= 0;
5812 tcp_parse_options(sock_net(sk
), synack
, &opt
, 0, NULL
);
5813 mss
= opt
.mss_clamp
;
5816 if (!tp
->syn_fastopen
) {
5817 /* Ignore an unsolicited cookie */
5819 } else if (tp
->total_retrans
) {
5820 /* SYN timed out and the SYN-ACK neither has a cookie nor
5821 * acknowledges data. Presumably the remote received only
5822 * the retransmitted (regular) SYNs: either the original
5823 * SYN-data or the corresponding SYN-ACK was dropped.
5825 syn_drop
= (cookie
->len
< 0 && data
);
5826 } else if (cookie
->len
< 0 && !tp
->syn_data
) {
5827 /* We requested a cookie but didn't get it. If we did not use
5828 * the (old) exp opt format then try so next time (try_exp=1).
5829 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5831 try_exp
= tp
->syn_fastopen_exp
? 2 : 1;
5834 tcp_fastopen_cache_set(sk
, mss
, cookie
, syn_drop
, try_exp
);
5836 if (data
) { /* Retransmit unacked data in SYN */
5837 if (tp
->total_retrans
)
5838 tp
->fastopen_client_fail
= TFO_SYN_RETRANSMITTED
;
5840 tp
->fastopen_client_fail
= TFO_DATA_NOT_ACKED
;
5841 skb_rbtree_walk_from(data
) {
5842 if (__tcp_retransmit_skb(sk
, data
, 1))
5846 NET_INC_STATS(sock_net(sk
),
5847 LINUX_MIB_TCPFASTOPENACTIVEFAIL
);
5850 tp
->syn_data_acked
= tp
->syn_data
;
5851 if (tp
->syn_data_acked
) {
5852 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPFASTOPENACTIVE
);
5853 /* SYN-data is counted as two separate packets in tcp_ack() */
5854 if (tp
->delivered
> 1)
5858 tcp_fastopen_add_skb(sk
, synack
);
5863 static void smc_check_reset_syn(struct tcp_sock
*tp
)
5865 #if IS_ENABLED(CONFIG_SMC)
5866 if (static_branch_unlikely(&tcp_have_smc
)) {
5867 if (tp
->syn_smc
&& !tp
->rx_opt
.smc_ok
)
5873 static void tcp_try_undo_spurious_syn(struct sock
*sk
)
5875 struct tcp_sock
*tp
= tcp_sk(sk
);
5878 /* undo_marker is set when SYN or SYNACK times out. The timeout is
5879 * spurious if the ACK's timestamp option echo value matches the
5880 * original SYN timestamp.
5882 syn_stamp
= tp
->retrans_stamp
;
5883 if (tp
->undo_marker
&& syn_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5884 syn_stamp
== tp
->rx_opt
.rcv_tsecr
)
5885 tp
->undo_marker
= 0;
5888 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5889 const struct tcphdr
*th
)
5891 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5892 struct tcp_sock
*tp
= tcp_sk(sk
);
5893 struct tcp_fastopen_cookie foc
= { .len
= -1 };
5894 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5897 tcp_parse_options(sock_net(sk
), skb
, &tp
->rx_opt
, 0, &foc
);
5898 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
5899 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
5903 * "If the state is SYN-SENT then
5904 * first check the ACK bit
5905 * If the ACK bit is set
5906 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5907 * a reset (unless the RST bit is set, if so drop
5908 * the segment and return)"
5910 if (!after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_una
) ||
5911 after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
))
5912 goto reset_and_undo
;
5914 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5915 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5916 tcp_time_stamp(tp
))) {
5917 NET_INC_STATS(sock_net(sk
),
5918 LINUX_MIB_PAWSACTIVEREJECTED
);
5919 goto reset_and_undo
;
5922 /* Now ACK is acceptable.
5924 * "If the RST bit is set
5925 * If the ACK was acceptable then signal the user "error:
5926 * connection reset", drop the segment, enter CLOSED state,
5927 * delete TCB, and return."
5936 * "fifth, if neither of the SYN or RST bits is set then
5937 * drop the segment and return."
5943 goto discard_and_undo
;
5946 * "If the SYN bit is on ...
5947 * are acceptable then ...
5948 * (our SYN has been ACKed), change the connection
5949 * state to ESTABLISHED..."
5952 tcp_ecn_rcv_synack(tp
, th
);
5954 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5955 tcp_try_undo_spurious_syn(sk
);
5956 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5958 /* Ok.. it's good. Set up sequence numbers and
5959 * move to established.
5961 WRITE_ONCE(tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
+ 1);
5962 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5964 /* RFC1323: The window in SYN & SYN/ACK segments is
5967 tp
->snd_wnd
= ntohs(th
->window
);
5969 if (!tp
->rx_opt
.wscale_ok
) {
5970 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5971 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5974 if (tp
->rx_opt
.saw_tstamp
) {
5975 tp
->rx_opt
.tstamp_ok
= 1;
5976 tp
->tcp_header_len
=
5977 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5978 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5979 tcp_store_ts_recent(tp
);
5981 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5984 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5985 tcp_initialize_rcv_mss(sk
);
5987 if (sk_is_mptcp(sk
))
5988 mptcp_rcv_synsent(sk
);
5990 /* Remember, tcp_poll() does not lock socket!
5991 * Change state from SYN-SENT only after copied_seq
5992 * is initialized. */
5993 WRITE_ONCE(tp
->copied_seq
, tp
->rcv_nxt
);
5995 smc_check_reset_syn(tp
);
5999 tcp_finish_connect(sk
, skb
);
6001 fastopen_fail
= (tp
->syn_fastopen
|| tp
->syn_data
) &&
6002 tcp_rcv_fastopen_synack(sk
, skb
, &foc
);
6004 if (!sock_flag(sk
, SOCK_DEAD
)) {
6005 sk
->sk_state_change(sk
);
6006 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
6010 if (sk
->sk_write_pending
||
6011 icsk
->icsk_accept_queue
.rskq_defer_accept
||
6012 inet_csk_in_pingpong_mode(sk
)) {
6013 /* Save one ACK. Data will be ready after
6014 * several ticks, if write_pending is set.
6016 * It may be deleted, but with this feature tcpdumps
6017 * look so _wonderfully_ clever, that I was not able
6018 * to stand against the temptation 8) --ANK
6020 inet_csk_schedule_ack(sk
);
6021 tcp_enter_quickack_mode(sk
, TCP_MAX_QUICKACKS
);
6022 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
6023 TCP_DELACK_MAX
, TCP_RTO_MAX
);
6034 /* No ACK in the segment */
6038 * "If the RST bit is set
6040 * Otherwise (no ACK) drop the segment and return."
6043 goto discard_and_undo
;
6047 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
6048 tcp_paws_reject(&tp
->rx_opt
, 0))
6049 goto discard_and_undo
;
6052 /* We see SYN without ACK. It is attempt of
6053 * simultaneous connect with crossed SYNs.
6054 * Particularly, it can be connect to self.
6056 tcp_set_state(sk
, TCP_SYN_RECV
);
6058 if (tp
->rx_opt
.saw_tstamp
) {
6059 tp
->rx_opt
.tstamp_ok
= 1;
6060 tcp_store_ts_recent(tp
);
6061 tp
->tcp_header_len
=
6062 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
6064 tp
->tcp_header_len
= sizeof(struct tcphdr
);
6067 WRITE_ONCE(tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
+ 1);
6068 WRITE_ONCE(tp
->copied_seq
, tp
->rcv_nxt
);
6069 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
6071 /* RFC1323: The window in SYN & SYN/ACK segments is
6074 tp
->snd_wnd
= ntohs(th
->window
);
6075 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
6076 tp
->max_window
= tp
->snd_wnd
;
6078 tcp_ecn_rcv_syn(tp
, th
);
6081 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
6082 tcp_initialize_rcv_mss(sk
);
6084 tcp_send_synack(sk
);
6086 /* Note, we could accept data and URG from this segment.
6087 * There are no obstacles to make this (except that we must
6088 * either change tcp_recvmsg() to prevent it from returning data
6089 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6091 * However, if we ignore data in ACKless segments sometimes,
6092 * we have no reasons to accept it sometimes.
6093 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6094 * is not flawless. So, discard packet for sanity.
6095 * Uncomment this return to process the data.
6102 /* "fifth, if neither of the SYN or RST bits is set then
6103 * drop the segment and return."
6107 tcp_clear_options(&tp
->rx_opt
);
6108 tp
->rx_opt
.mss_clamp
= saved_clamp
;
6112 tcp_clear_options(&tp
->rx_opt
);
6113 tp
->rx_opt
.mss_clamp
= saved_clamp
;
6117 static void tcp_rcv_synrecv_state_fastopen(struct sock
*sk
)
6119 struct request_sock
*req
;
6121 tcp_try_undo_loss(sk
, false);
6123 /* Reset rtx states to prevent spurious retransmits_timed_out() */
6124 tcp_sk(sk
)->retrans_stamp
= 0;
6125 inet_csk(sk
)->icsk_retransmits
= 0;
6127 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6128 * we no longer need req so release it.
6130 req
= rcu_dereference_protected(tcp_sk(sk
)->fastopen_rsk
,
6131 lockdep_sock_is_held(sk
));
6132 reqsk_fastopen_remove(sk
, req
, false);
6134 /* Re-arm the timer because data may have been sent out.
6135 * This is similar to the regular data transmission case
6136 * when new data has just been ack'ed.
6138 * (TFO) - we could try to be more aggressive and
6139 * retransmitting any data sooner based on when they
6146 * This function implements the receiving procedure of RFC 793 for
6147 * all states except ESTABLISHED and TIME_WAIT.
6148 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6149 * address independent.
6152 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
)
6154 struct tcp_sock
*tp
= tcp_sk(sk
);
6155 struct inet_connection_sock
*icsk
= inet_csk(sk
);
6156 const struct tcphdr
*th
= tcp_hdr(skb
);
6157 struct request_sock
*req
;
6161 switch (sk
->sk_state
) {
6175 /* It is possible that we process SYN packets from backlog,
6176 * so we need to make sure to disable BH and RCU right there.
6180 acceptable
= icsk
->icsk_af_ops
->conn_request(sk
, skb
) >= 0;
6192 tp
->rx_opt
.saw_tstamp
= 0;
6193 tcp_mstamp_refresh(tp
);
6194 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
);
6198 /* Do step6 onward by hand. */
6199 tcp_urg(sk
, skb
, th
);
6201 tcp_data_snd_check(sk
);
6205 tcp_mstamp_refresh(tp
);
6206 tp
->rx_opt
.saw_tstamp
= 0;
6207 req
= rcu_dereference_protected(tp
->fastopen_rsk
,
6208 lockdep_sock_is_held(sk
));
6212 WARN_ON_ONCE(sk
->sk_state
!= TCP_SYN_RECV
&&
6213 sk
->sk_state
!= TCP_FIN_WAIT1
);
6215 if (!tcp_check_req(sk
, skb
, req
, true, &req_stolen
))
6219 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
6222 if (!tcp_validate_incoming(sk
, skb
, th
, 0))
6225 /* step 5: check the ACK field */
6226 acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
|
6227 FLAG_UPDATE_TS_RECENT
|
6228 FLAG_NO_CHALLENGE_ACK
) > 0;
6231 if (sk
->sk_state
== TCP_SYN_RECV
)
6232 return 1; /* send one RST */
6233 tcp_send_challenge_ack(sk
, skb
);
6236 switch (sk
->sk_state
) {
6238 tp
->delivered
++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6240 tcp_synack_rtt_meas(sk
, req
);
6243 tcp_rcv_synrecv_state_fastopen(sk
);
6245 tcp_try_undo_spurious_syn(sk
);
6246 tp
->retrans_stamp
= 0;
6247 tcp_init_transfer(sk
, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB
);
6248 WRITE_ONCE(tp
->copied_seq
, tp
->rcv_nxt
);
6251 tcp_set_state(sk
, TCP_ESTABLISHED
);
6252 sk
->sk_state_change(sk
);
6254 /* Note, that this wakeup is only for marginal crossed SYN case.
6255 * Passively open sockets are not waked up, because
6256 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6259 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
6261 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
6262 tp
->snd_wnd
= ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
;
6263 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
6265 if (tp
->rx_opt
.tstamp_ok
)
6266 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
6268 if (!inet_csk(sk
)->icsk_ca_ops
->cong_control
)
6269 tcp_update_pacing_rate(sk
);
6271 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6272 tp
->lsndtime
= tcp_jiffies32
;
6274 tcp_initialize_rcv_mss(sk
);
6275 tcp_fast_path_on(tp
);
6278 case TCP_FIN_WAIT1
: {
6282 tcp_rcv_synrecv_state_fastopen(sk
);
6284 if (tp
->snd_una
!= tp
->write_seq
)
6287 tcp_set_state(sk
, TCP_FIN_WAIT2
);
6288 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
6292 if (!sock_flag(sk
, SOCK_DEAD
)) {
6293 /* Wake up lingering close() */
6294 sk
->sk_state_change(sk
);
6298 if (tp
->linger2
< 0) {
6300 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6303 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6304 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
6305 /* Receive out of order FIN after close() */
6306 if (tp
->syn_fastopen
&& th
->fin
)
6307 tcp_fastopen_active_disable(sk
);
6309 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6313 tmo
= tcp_fin_time(sk
);
6314 if (tmo
> TCP_TIMEWAIT_LEN
) {
6315 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
6316 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
6317 /* Bad case. We could lose such FIN otherwise.
6318 * It is not a big problem, but it looks confusing
6319 * and not so rare event. We still can lose it now,
6320 * if it spins in bh_lock_sock(), but it is really
6323 inet_csk_reset_keepalive_timer(sk
, tmo
);
6325 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
6332 if (tp
->snd_una
== tp
->write_seq
) {
6333 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
6339 if (tp
->snd_una
== tp
->write_seq
) {
6340 tcp_update_metrics(sk
);
6347 /* step 6: check the URG bit */
6348 tcp_urg(sk
, skb
, th
);
6350 /* step 7: process the segment text */
6351 switch (sk
->sk_state
) {
6352 case TCP_CLOSE_WAIT
:
6355 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
6356 if (sk_is_mptcp(sk
))
6357 mptcp_incoming_options(sk
, skb
, &tp
->rx_opt
);
6363 /* RFC 793 says to queue data in these states,
6364 * RFC 1122 says we MUST send a reset.
6365 * BSD 4.4 also does reset.
6367 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
6368 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6369 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
6370 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6376 case TCP_ESTABLISHED
:
6377 tcp_data_queue(sk
, skb
);
6382 /* tcp_data could move socket to TIME-WAIT */
6383 if (sk
->sk_state
!= TCP_CLOSE
) {
6384 tcp_data_snd_check(sk
);
6385 tcp_ack_snd_check(sk
);
6394 EXPORT_SYMBOL(tcp_rcv_state_process
);
6396 static inline void pr_drop_req(struct request_sock
*req
, __u16 port
, int family
)
6398 struct inet_request_sock
*ireq
= inet_rsk(req
);
6400 if (family
== AF_INET
)
6401 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6402 &ireq
->ir_rmt_addr
, port
);
6403 #if IS_ENABLED(CONFIG_IPV6)
6404 else if (family
== AF_INET6
)
6405 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6406 &ireq
->ir_v6_rmt_addr
, port
);
6410 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6412 * If we receive a SYN packet with these bits set, it means a
6413 * network is playing bad games with TOS bits. In order to
6414 * avoid possible false congestion notifications, we disable
6415 * TCP ECN negotiation.
6417 * Exception: tcp_ca wants ECN. This is required for DCTCP
6418 * congestion control: Linux DCTCP asserts ECT on all packets,
6419 * including SYN, which is most optimal solution; however,
6420 * others, such as FreeBSD do not.
6422 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6423 * set, indicating the use of a future TCP extension (such as AccECN). See
6424 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6427 static void tcp_ecn_create_request(struct request_sock
*req
,
6428 const struct sk_buff
*skb
,
6429 const struct sock
*listen_sk
,
6430 const struct dst_entry
*dst
)
6432 const struct tcphdr
*th
= tcp_hdr(skb
);
6433 const struct net
*net
= sock_net(listen_sk
);
6434 bool th_ecn
= th
->ece
&& th
->cwr
;
6441 ect
= !INET_ECN_is_not_ect(TCP_SKB_CB(skb
)->ip_dsfield
);
6442 ecn_ok_dst
= dst_feature(dst
, DST_FEATURE_ECN_MASK
);
6443 ecn_ok
= net
->ipv4
.sysctl_tcp_ecn
|| ecn_ok_dst
;
6445 if (((!ect
|| th
->res1
) && ecn_ok
) || tcp_ca_needs_ecn(listen_sk
) ||
6446 (ecn_ok_dst
& DST_FEATURE_ECN_CA
) ||
6447 tcp_bpf_ca_needs_ecn((struct sock
*)req
))
6448 inet_rsk(req
)->ecn_ok
= 1;
6451 static void tcp_openreq_init(struct request_sock
*req
,
6452 const struct tcp_options_received
*rx_opt
,
6453 struct sk_buff
*skb
, const struct sock
*sk
)
6455 struct inet_request_sock
*ireq
= inet_rsk(req
);
6457 req
->rsk_rcv_wnd
= 0; /* So that tcp_send_synack() knows! */
6459 tcp_rsk(req
)->rcv_isn
= TCP_SKB_CB(skb
)->seq
;
6460 tcp_rsk(req
)->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
6461 tcp_rsk(req
)->snt_synack
= 0;
6462 tcp_rsk(req
)->last_oow_ack_time
= 0;
6463 req
->mss
= rx_opt
->mss_clamp
;
6464 req
->ts_recent
= rx_opt
->saw_tstamp
? rx_opt
->rcv_tsval
: 0;
6465 ireq
->tstamp_ok
= rx_opt
->tstamp_ok
;
6466 ireq
->sack_ok
= rx_opt
->sack_ok
;
6467 ireq
->snd_wscale
= rx_opt
->snd_wscale
;
6468 ireq
->wscale_ok
= rx_opt
->wscale_ok
;
6471 ireq
->ir_rmt_port
= tcp_hdr(skb
)->source
;
6472 ireq
->ir_num
= ntohs(tcp_hdr(skb
)->dest
);
6473 ireq
->ir_mark
= inet_request_mark(sk
, skb
);
6474 #if IS_ENABLED(CONFIG_SMC)
6475 ireq
->smc_ok
= rx_opt
->smc_ok
;
6479 struct request_sock
*inet_reqsk_alloc(const struct request_sock_ops
*ops
,
6480 struct sock
*sk_listener
,
6481 bool attach_listener
)
6483 struct request_sock
*req
= reqsk_alloc(ops
, sk_listener
,
6487 struct inet_request_sock
*ireq
= inet_rsk(req
);
6489 ireq
->ireq_opt
= NULL
;
6490 #if IS_ENABLED(CONFIG_IPV6)
6491 ireq
->pktopts
= NULL
;
6493 atomic64_set(&ireq
->ir_cookie
, 0);
6494 ireq
->ireq_state
= TCP_NEW_SYN_RECV
;
6495 write_pnet(&ireq
->ireq_net
, sock_net(sk_listener
));
6496 ireq
->ireq_family
= sk_listener
->sk_family
;
6501 EXPORT_SYMBOL(inet_reqsk_alloc
);
6504 * Return true if a syncookie should be sent
6506 static bool tcp_syn_flood_action(const struct sock
*sk
, const char *proto
)
6508 struct request_sock_queue
*queue
= &inet_csk(sk
)->icsk_accept_queue
;
6509 const char *msg
= "Dropping request";
6510 bool want_cookie
= false;
6511 struct net
*net
= sock_net(sk
);
6513 #ifdef CONFIG_SYN_COOKIES
6514 if (net
->ipv4
.sysctl_tcp_syncookies
) {
6515 msg
= "Sending cookies";
6517 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPREQQFULLDOCOOKIES
);
6520 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPREQQFULLDROP
);
6522 if (!queue
->synflood_warned
&&
6523 net
->ipv4
.sysctl_tcp_syncookies
!= 2 &&
6524 xchg(&queue
->synflood_warned
, 1) == 0)
6525 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6526 proto
, sk
->sk_num
, msg
);
6531 static void tcp_reqsk_record_syn(const struct sock
*sk
,
6532 struct request_sock
*req
,
6533 const struct sk_buff
*skb
)
6535 if (tcp_sk(sk
)->save_syn
) {
6536 u32 len
= skb_network_header_len(skb
) + tcp_hdrlen(skb
);
6539 copy
= kmalloc(len
+ sizeof(u32
), GFP_ATOMIC
);
6542 memcpy(©
[1], skb_network_header(skb
), len
);
6543 req
->saved_syn
= copy
;
6548 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6549 * used for SYN cookie generation.
6551 u16
tcp_get_syncookie_mss(struct request_sock_ops
*rsk_ops
,
6552 const struct tcp_request_sock_ops
*af_ops
,
6553 struct sock
*sk
, struct tcphdr
*th
)
6555 struct tcp_sock
*tp
= tcp_sk(sk
);
6558 if (sock_net(sk
)->ipv4
.sysctl_tcp_syncookies
!= 2 &&
6559 !inet_csk_reqsk_queue_is_full(sk
))
6562 if (!tcp_syn_flood_action(sk
, rsk_ops
->slab_name
))
6565 if (sk_acceptq_is_full(sk
)) {
6566 NET_INC_STATS(sock_net(sk
), LINUX_MIB_LISTENOVERFLOWS
);
6570 mss
= tcp_parse_mss_option(th
, tp
->rx_opt
.user_mss
);
6572 mss
= af_ops
->mss_clamp
;
6576 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss
);
6578 int tcp_conn_request(struct request_sock_ops
*rsk_ops
,
6579 const struct tcp_request_sock_ops
*af_ops
,
6580 struct sock
*sk
, struct sk_buff
*skb
)
6582 struct tcp_fastopen_cookie foc
= { .len
= -1 };
6583 __u32 isn
= TCP_SKB_CB(skb
)->tcp_tw_isn
;
6584 struct tcp_options_received tmp_opt
;
6585 struct tcp_sock
*tp
= tcp_sk(sk
);
6586 struct net
*net
= sock_net(sk
);
6587 struct sock
*fastopen_sk
= NULL
;
6588 struct request_sock
*req
;
6589 bool want_cookie
= false;
6590 struct dst_entry
*dst
;
6593 /* TW buckets are converted to open requests without
6594 * limitations, they conserve resources and peer is
6595 * evidently real one.
6597 if ((net
->ipv4
.sysctl_tcp_syncookies
== 2 ||
6598 inet_csk_reqsk_queue_is_full(sk
)) && !isn
) {
6599 want_cookie
= tcp_syn_flood_action(sk
, rsk_ops
->slab_name
);
6604 if (sk_acceptq_is_full(sk
)) {
6605 NET_INC_STATS(sock_net(sk
), LINUX_MIB_LISTENOVERFLOWS
);
6609 req
= inet_reqsk_alloc(rsk_ops
, sk
, !want_cookie
);
6613 tcp_rsk(req
)->af_specific
= af_ops
;
6614 tcp_rsk(req
)->ts_off
= 0;
6615 #if IS_ENABLED(CONFIG_MPTCP)
6616 tcp_rsk(req
)->is_mptcp
= 0;
6619 tcp_clear_options(&tmp_opt
);
6620 tmp_opt
.mss_clamp
= af_ops
->mss_clamp
;
6621 tmp_opt
.user_mss
= tp
->rx_opt
.user_mss
;
6622 tcp_parse_options(sock_net(sk
), skb
, &tmp_opt
, 0,
6623 want_cookie
? NULL
: &foc
);
6625 if (want_cookie
&& !tmp_opt
.saw_tstamp
)
6626 tcp_clear_options(&tmp_opt
);
6628 if (IS_ENABLED(CONFIG_SMC
) && want_cookie
)
6631 tmp_opt
.tstamp_ok
= tmp_opt
.saw_tstamp
;
6632 tcp_openreq_init(req
, &tmp_opt
, skb
, sk
);
6633 inet_rsk(req
)->no_srccheck
= inet_sk(sk
)->transparent
;
6635 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6636 inet_rsk(req
)->ir_iif
= inet_request_bound_dev_if(sk
, skb
);
6638 af_ops
->init_req(req
, sk
, skb
);
6640 if (IS_ENABLED(CONFIG_MPTCP
) && want_cookie
)
6641 tcp_rsk(req
)->is_mptcp
= 0;
6643 if (security_inet_conn_request(sk
, skb
, req
))
6646 if (tmp_opt
.tstamp_ok
)
6647 tcp_rsk(req
)->ts_off
= af_ops
->init_ts_off(net
, skb
);
6649 dst
= af_ops
->route_req(sk
, &fl
, req
);
6653 if (!want_cookie
&& !isn
) {
6654 /* Kill the following clause, if you dislike this way. */
6655 if (!net
->ipv4
.sysctl_tcp_syncookies
&&
6656 (net
->ipv4
.sysctl_max_syn_backlog
- inet_csk_reqsk_queue_len(sk
) <
6657 (net
->ipv4
.sysctl_max_syn_backlog
>> 2)) &&
6658 !tcp_peer_is_proven(req
, dst
)) {
6659 /* Without syncookies last quarter of
6660 * backlog is filled with destinations,
6661 * proven to be alive.
6662 * It means that we continue to communicate
6663 * to destinations, already remembered
6664 * to the moment of synflood.
6666 pr_drop_req(req
, ntohs(tcp_hdr(skb
)->source
),
6668 goto drop_and_release
;
6671 isn
= af_ops
->init_seq(skb
);
6674 tcp_ecn_create_request(req
, skb
, sk
, dst
);
6677 isn
= cookie_init_sequence(af_ops
, sk
, skb
, &req
->mss
);
6678 req
->cookie_ts
= tmp_opt
.tstamp_ok
;
6679 if (!tmp_opt
.tstamp_ok
)
6680 inet_rsk(req
)->ecn_ok
= 0;
6683 tcp_rsk(req
)->snt_isn
= isn
;
6684 tcp_rsk(req
)->txhash
= net_tx_rndhash();
6685 tcp_openreq_init_rwin(req
, sk
, dst
);
6686 sk_rx_queue_set(req_to_sk(req
), skb
);
6688 tcp_reqsk_record_syn(sk
, req
, skb
);
6689 fastopen_sk
= tcp_try_fastopen(sk
, skb
, req
, &foc
, dst
);
6692 af_ops
->send_synack(fastopen_sk
, dst
, &fl
, req
,
6693 &foc
, TCP_SYNACK_FASTOPEN
);
6694 /* Add the child socket directly into the accept queue */
6695 if (!inet_csk_reqsk_queue_add(sk
, req
, fastopen_sk
)) {
6696 reqsk_fastopen_remove(fastopen_sk
, req
, false);
6697 bh_unlock_sock(fastopen_sk
);
6698 sock_put(fastopen_sk
);
6701 sk
->sk_data_ready(sk
);
6702 bh_unlock_sock(fastopen_sk
);
6703 sock_put(fastopen_sk
);
6705 tcp_rsk(req
)->tfo_listener
= false;
6707 inet_csk_reqsk_queue_hash_add(sk
, req
,
6708 tcp_timeout_init((struct sock
*)req
));
6709 af_ops
->send_synack(sk
, dst
, &fl
, req
, &foc
,
6710 !want_cookie
? TCP_SYNACK_NORMAL
:
6728 EXPORT_SYMBOL(tcp_conn_request
);