ARM: dma-api: fix max_pfn off-by-one error in __dma_supported()
[linux/fpc-iii.git] / net / ipv4 / tcp_output.c
blob306e25d743e8de1bfe23d6e3b3a9fb0f23664912
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Implementation of the Transmission Control Protocol(TCP).
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Changes: Pedro Roque : Retransmit queue handled by TCP.
24 * : Fragmentation on mtu decrease
25 * : Segment collapse on retransmit
26 * : AF independence
28 * Linus Torvalds : send_delayed_ack
29 * David S. Miller : Charge memory using the right skb
30 * during syn/ack processing.
31 * David S. Miller : Output engine completely rewritten.
32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
33 * Cacophonix Gaul : draft-minshall-nagle-01
34 * J Hadi Salim : ECN support
38 #define pr_fmt(fmt) "TCP: " fmt
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
48 #include <trace/events/tcp.h>
50 /* Refresh clocks of a TCP socket,
51 * ensuring monotically increasing values.
53 void tcp_mstamp_refresh(struct tcp_sock *tp)
55 u64 val = tcp_clock_ns();
57 tp->tcp_clock_cache = val;
58 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 int push_one, gfp_t gfp);
64 /* Account for new data that has been sent to the network. */
65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
67 struct inet_connection_sock *icsk = inet_csk(sk);
68 struct tcp_sock *tp = tcp_sk(sk);
69 unsigned int prior_packets = tp->packets_out;
71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
73 __skb_unlink(skb, &sk->sk_write_queue);
74 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
76 if (tp->highest_sack == NULL)
77 tp->highest_sack = skb;
79 tp->packets_out += tcp_skb_pcount(skb);
80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81 tcp_rearm_rto(sk);
83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84 tcp_skb_pcount(skb));
87 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
88 * window scaling factor due to loss of precision.
89 * If window has been shrunk, what should we make? It is not clear at all.
90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92 * invalid. OK, let's make this for now:
94 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
96 const struct tcp_sock *tp = tcp_sk(sk);
98 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
99 (tp->rx_opt.wscale_ok &&
100 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
101 return tp->snd_nxt;
102 else
103 return tcp_wnd_end(tp);
106 /* Calculate mss to advertise in SYN segment.
107 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109 * 1. It is independent of path mtu.
110 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
111 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
112 * attached devices, because some buggy hosts are confused by
113 * large MSS.
114 * 4. We do not make 3, we advertise MSS, calculated from first
115 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
116 * This may be overridden via information stored in routing table.
117 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
118 * probably even Jumbo".
120 static __u16 tcp_advertise_mss(struct sock *sk)
122 struct tcp_sock *tp = tcp_sk(sk);
123 const struct dst_entry *dst = __sk_dst_get(sk);
124 int mss = tp->advmss;
126 if (dst) {
127 unsigned int metric = dst_metric_advmss(dst);
129 if (metric < mss) {
130 mss = metric;
131 tp->advmss = mss;
135 return (__u16)mss;
138 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
139 * This is the first part of cwnd validation mechanism.
141 void tcp_cwnd_restart(struct sock *sk, s32 delta)
143 struct tcp_sock *tp = tcp_sk(sk);
144 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
145 u32 cwnd = tp->snd_cwnd;
147 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149 tp->snd_ssthresh = tcp_current_ssthresh(sk);
150 restart_cwnd = min(restart_cwnd, cwnd);
152 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
153 cwnd >>= 1;
154 tp->snd_cwnd = max(cwnd, restart_cwnd);
155 tp->snd_cwnd_stamp = tcp_jiffies32;
156 tp->snd_cwnd_used = 0;
159 /* Congestion state accounting after a packet has been sent. */
160 static void tcp_event_data_sent(struct tcp_sock *tp,
161 struct sock *sk)
163 struct inet_connection_sock *icsk = inet_csk(sk);
164 const u32 now = tcp_jiffies32;
166 if (tcp_packets_in_flight(tp) == 0)
167 tcp_ca_event(sk, CA_EVENT_TX_START);
169 /* If this is the first data packet sent in response to the
170 * previous received data,
171 * and it is a reply for ato after last received packet,
172 * increase pingpong count.
174 if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) &&
175 (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 inet_csk_inc_pingpong_cnt(sk);
178 tp->lsndtime = now;
181 /* Account for an ACK we sent. */
182 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
183 u32 rcv_nxt)
185 struct tcp_sock *tp = tcp_sk(sk);
187 if (unlikely(tp->compressed_ack > TCP_FASTRETRANS_THRESH)) {
188 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
189 tp->compressed_ack - TCP_FASTRETRANS_THRESH);
190 tp->compressed_ack = TCP_FASTRETRANS_THRESH;
191 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
192 __sock_put(sk);
195 if (unlikely(rcv_nxt != tp->rcv_nxt))
196 return; /* Special ACK sent by DCTCP to reflect ECN */
197 tcp_dec_quickack_mode(sk, pkts);
198 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
201 /* Determine a window scaling and initial window to offer.
202 * Based on the assumption that the given amount of space
203 * will be offered. Store the results in the tp structure.
204 * NOTE: for smooth operation initial space offering should
205 * be a multiple of mss if possible. We assume here that mss >= 1.
206 * This MUST be enforced by all callers.
208 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
209 __u32 *rcv_wnd, __u32 *window_clamp,
210 int wscale_ok, __u8 *rcv_wscale,
211 __u32 init_rcv_wnd)
213 unsigned int space = (__space < 0 ? 0 : __space);
215 /* If no clamp set the clamp to the max possible scaled window */
216 if (*window_clamp == 0)
217 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
218 space = min(*window_clamp, space);
220 /* Quantize space offering to a multiple of mss if possible. */
221 if (space > mss)
222 space = rounddown(space, mss);
224 /* NOTE: offering an initial window larger than 32767
225 * will break some buggy TCP stacks. If the admin tells us
226 * it is likely we could be speaking with such a buggy stack
227 * we will truncate our initial window offering to 32K-1
228 * unless the remote has sent us a window scaling option,
229 * which we interpret as a sign the remote TCP is not
230 * misinterpreting the window field as a signed quantity.
232 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
233 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
234 else
235 (*rcv_wnd) = min_t(u32, space, U16_MAX);
237 if (init_rcv_wnd)
238 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
240 *rcv_wscale = 0;
241 if (wscale_ok) {
242 /* Set window scaling on max possible window */
243 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
244 space = max_t(u32, space, sysctl_rmem_max);
245 space = min_t(u32, space, *window_clamp);
246 *rcv_wscale = clamp_t(int, ilog2(space) - 15,
247 0, TCP_MAX_WSCALE);
249 /* Set the clamp no higher than max representable value */
250 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
252 EXPORT_SYMBOL(tcp_select_initial_window);
254 /* Chose a new window to advertise, update state in tcp_sock for the
255 * socket, and return result with RFC1323 scaling applied. The return
256 * value can be stuffed directly into th->window for an outgoing
257 * frame.
259 static u16 tcp_select_window(struct sock *sk)
261 struct tcp_sock *tp = tcp_sk(sk);
262 u32 old_win = tp->rcv_wnd;
263 u32 cur_win = tcp_receive_window(tp);
264 u32 new_win = __tcp_select_window(sk);
266 /* Never shrink the offered window */
267 if (new_win < cur_win) {
268 /* Danger Will Robinson!
269 * Don't update rcv_wup/rcv_wnd here or else
270 * we will not be able to advertise a zero
271 * window in time. --DaveM
273 * Relax Will Robinson.
275 if (new_win == 0)
276 NET_INC_STATS(sock_net(sk),
277 LINUX_MIB_TCPWANTZEROWINDOWADV);
278 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
280 tp->rcv_wnd = new_win;
281 tp->rcv_wup = tp->rcv_nxt;
283 /* Make sure we do not exceed the maximum possible
284 * scaled window.
286 if (!tp->rx_opt.rcv_wscale &&
287 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
288 new_win = min(new_win, MAX_TCP_WINDOW);
289 else
290 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
292 /* RFC1323 scaling applied */
293 new_win >>= tp->rx_opt.rcv_wscale;
295 /* If we advertise zero window, disable fast path. */
296 if (new_win == 0) {
297 tp->pred_flags = 0;
298 if (old_win)
299 NET_INC_STATS(sock_net(sk),
300 LINUX_MIB_TCPTOZEROWINDOWADV);
301 } else if (old_win == 0) {
302 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
305 return new_win;
308 /* Packet ECN state for a SYN-ACK */
309 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
311 const struct tcp_sock *tp = tcp_sk(sk);
313 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
314 if (!(tp->ecn_flags & TCP_ECN_OK))
315 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
316 else if (tcp_ca_needs_ecn(sk) ||
317 tcp_bpf_ca_needs_ecn(sk))
318 INET_ECN_xmit(sk);
321 /* Packet ECN state for a SYN. */
322 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
324 struct tcp_sock *tp = tcp_sk(sk);
325 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
326 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
327 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
329 if (!use_ecn) {
330 const struct dst_entry *dst = __sk_dst_get(sk);
332 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
333 use_ecn = true;
336 tp->ecn_flags = 0;
338 if (use_ecn) {
339 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
340 tp->ecn_flags = TCP_ECN_OK;
341 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
342 INET_ECN_xmit(sk);
346 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
348 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
349 /* tp->ecn_flags are cleared at a later point in time when
350 * SYN ACK is ultimatively being received.
352 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
355 static void
356 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
358 if (inet_rsk(req)->ecn_ok)
359 th->ece = 1;
362 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
363 * be sent.
365 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
366 struct tcphdr *th, int tcp_header_len)
368 struct tcp_sock *tp = tcp_sk(sk);
370 if (tp->ecn_flags & TCP_ECN_OK) {
371 /* Not-retransmitted data segment: set ECT and inject CWR. */
372 if (skb->len != tcp_header_len &&
373 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
374 INET_ECN_xmit(sk);
375 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
376 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
377 th->cwr = 1;
378 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
380 } else if (!tcp_ca_needs_ecn(sk)) {
381 /* ACK or retransmitted segment: clear ECT|CE */
382 INET_ECN_dontxmit(sk);
384 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
385 th->ece = 1;
389 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
390 * auto increment end seqno.
392 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
394 skb->ip_summed = CHECKSUM_PARTIAL;
396 TCP_SKB_CB(skb)->tcp_flags = flags;
397 TCP_SKB_CB(skb)->sacked = 0;
399 tcp_skb_pcount_set(skb, 1);
401 TCP_SKB_CB(skb)->seq = seq;
402 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
403 seq++;
404 TCP_SKB_CB(skb)->end_seq = seq;
407 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
409 return tp->snd_una != tp->snd_up;
412 #define OPTION_SACK_ADVERTISE (1 << 0)
413 #define OPTION_TS (1 << 1)
414 #define OPTION_MD5 (1 << 2)
415 #define OPTION_WSCALE (1 << 3)
416 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
417 #define OPTION_SMC (1 << 9)
418 #define OPTION_MPTCP (1 << 10)
420 static void smc_options_write(__be32 *ptr, u16 *options)
422 #if IS_ENABLED(CONFIG_SMC)
423 if (static_branch_unlikely(&tcp_have_smc)) {
424 if (unlikely(OPTION_SMC & *options)) {
425 *ptr++ = htonl((TCPOPT_NOP << 24) |
426 (TCPOPT_NOP << 16) |
427 (TCPOPT_EXP << 8) |
428 (TCPOLEN_EXP_SMC_BASE));
429 *ptr++ = htonl(TCPOPT_SMC_MAGIC);
432 #endif
435 struct tcp_out_options {
436 u16 options; /* bit field of OPTION_* */
437 u16 mss; /* 0 to disable */
438 u8 ws; /* window scale, 0 to disable */
439 u8 num_sack_blocks; /* number of SACK blocks to include */
440 u8 hash_size; /* bytes in hash_location */
441 __u8 *hash_location; /* temporary pointer, overloaded */
442 __u32 tsval, tsecr; /* need to include OPTION_TS */
443 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
444 struct mptcp_out_options mptcp;
447 static void mptcp_options_write(__be32 *ptr, struct tcp_out_options *opts)
449 #if IS_ENABLED(CONFIG_MPTCP)
450 if (unlikely(OPTION_MPTCP & opts->options))
451 mptcp_write_options(ptr, &opts->mptcp);
452 #endif
455 /* Write previously computed TCP options to the packet.
457 * Beware: Something in the Internet is very sensitive to the ordering of
458 * TCP options, we learned this through the hard way, so be careful here.
459 * Luckily we can at least blame others for their non-compliance but from
460 * inter-operability perspective it seems that we're somewhat stuck with
461 * the ordering which we have been using if we want to keep working with
462 * those broken things (not that it currently hurts anybody as there isn't
463 * particular reason why the ordering would need to be changed).
465 * At least SACK_PERM as the first option is known to lead to a disaster
466 * (but it may well be that other scenarios fail similarly).
468 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
469 struct tcp_out_options *opts)
471 u16 options = opts->options; /* mungable copy */
473 if (unlikely(OPTION_MD5 & options)) {
474 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
475 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
476 /* overload cookie hash location */
477 opts->hash_location = (__u8 *)ptr;
478 ptr += 4;
481 if (unlikely(opts->mss)) {
482 *ptr++ = htonl((TCPOPT_MSS << 24) |
483 (TCPOLEN_MSS << 16) |
484 opts->mss);
487 if (likely(OPTION_TS & options)) {
488 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
489 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
490 (TCPOLEN_SACK_PERM << 16) |
491 (TCPOPT_TIMESTAMP << 8) |
492 TCPOLEN_TIMESTAMP);
493 options &= ~OPTION_SACK_ADVERTISE;
494 } else {
495 *ptr++ = htonl((TCPOPT_NOP << 24) |
496 (TCPOPT_NOP << 16) |
497 (TCPOPT_TIMESTAMP << 8) |
498 TCPOLEN_TIMESTAMP);
500 *ptr++ = htonl(opts->tsval);
501 *ptr++ = htonl(opts->tsecr);
504 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
505 *ptr++ = htonl((TCPOPT_NOP << 24) |
506 (TCPOPT_NOP << 16) |
507 (TCPOPT_SACK_PERM << 8) |
508 TCPOLEN_SACK_PERM);
511 if (unlikely(OPTION_WSCALE & options)) {
512 *ptr++ = htonl((TCPOPT_NOP << 24) |
513 (TCPOPT_WINDOW << 16) |
514 (TCPOLEN_WINDOW << 8) |
515 opts->ws);
518 if (unlikely(opts->num_sack_blocks)) {
519 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
520 tp->duplicate_sack : tp->selective_acks;
521 int this_sack;
523 *ptr++ = htonl((TCPOPT_NOP << 24) |
524 (TCPOPT_NOP << 16) |
525 (TCPOPT_SACK << 8) |
526 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
527 TCPOLEN_SACK_PERBLOCK)));
529 for (this_sack = 0; this_sack < opts->num_sack_blocks;
530 ++this_sack) {
531 *ptr++ = htonl(sp[this_sack].start_seq);
532 *ptr++ = htonl(sp[this_sack].end_seq);
535 tp->rx_opt.dsack = 0;
538 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
539 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
540 u8 *p = (u8 *)ptr;
541 u32 len; /* Fast Open option length */
543 if (foc->exp) {
544 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
545 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
546 TCPOPT_FASTOPEN_MAGIC);
547 p += TCPOLEN_EXP_FASTOPEN_BASE;
548 } else {
549 len = TCPOLEN_FASTOPEN_BASE + foc->len;
550 *p++ = TCPOPT_FASTOPEN;
551 *p++ = len;
554 memcpy(p, foc->val, foc->len);
555 if ((len & 3) == 2) {
556 p[foc->len] = TCPOPT_NOP;
557 p[foc->len + 1] = TCPOPT_NOP;
559 ptr += (len + 3) >> 2;
562 smc_options_write(ptr, &options);
564 mptcp_options_write(ptr, opts);
567 static void smc_set_option(const struct tcp_sock *tp,
568 struct tcp_out_options *opts,
569 unsigned int *remaining)
571 #if IS_ENABLED(CONFIG_SMC)
572 if (static_branch_unlikely(&tcp_have_smc)) {
573 if (tp->syn_smc) {
574 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
575 opts->options |= OPTION_SMC;
576 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
580 #endif
583 static void smc_set_option_cond(const struct tcp_sock *tp,
584 const struct inet_request_sock *ireq,
585 struct tcp_out_options *opts,
586 unsigned int *remaining)
588 #if IS_ENABLED(CONFIG_SMC)
589 if (static_branch_unlikely(&tcp_have_smc)) {
590 if (tp->syn_smc && ireq->smc_ok) {
591 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
592 opts->options |= OPTION_SMC;
593 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
597 #endif
600 static void mptcp_set_option_cond(const struct request_sock *req,
601 struct tcp_out_options *opts,
602 unsigned int *remaining)
604 if (rsk_is_mptcp(req)) {
605 unsigned int size;
607 if (mptcp_synack_options(req, &size, &opts->mptcp)) {
608 if (*remaining >= size) {
609 opts->options |= OPTION_MPTCP;
610 *remaining -= size;
616 /* Compute TCP options for SYN packets. This is not the final
617 * network wire format yet.
619 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
620 struct tcp_out_options *opts,
621 struct tcp_md5sig_key **md5)
623 struct tcp_sock *tp = tcp_sk(sk);
624 unsigned int remaining = MAX_TCP_OPTION_SPACE;
625 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
627 *md5 = NULL;
628 #ifdef CONFIG_TCP_MD5SIG
629 if (static_branch_unlikely(&tcp_md5_needed) &&
630 rcu_access_pointer(tp->md5sig_info)) {
631 *md5 = tp->af_specific->md5_lookup(sk, sk);
632 if (*md5) {
633 opts->options |= OPTION_MD5;
634 remaining -= TCPOLEN_MD5SIG_ALIGNED;
637 #endif
639 /* We always get an MSS option. The option bytes which will be seen in
640 * normal data packets should timestamps be used, must be in the MSS
641 * advertised. But we subtract them from tp->mss_cache so that
642 * calculations in tcp_sendmsg are simpler etc. So account for this
643 * fact here if necessary. If we don't do this correctly, as a
644 * receiver we won't recognize data packets as being full sized when we
645 * should, and thus we won't abide by the delayed ACK rules correctly.
646 * SACKs don't matter, we never delay an ACK when we have any of those
647 * going out. */
648 opts->mss = tcp_advertise_mss(sk);
649 remaining -= TCPOLEN_MSS_ALIGNED;
651 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
652 opts->options |= OPTION_TS;
653 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
654 opts->tsecr = tp->rx_opt.ts_recent;
655 remaining -= TCPOLEN_TSTAMP_ALIGNED;
657 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
658 opts->ws = tp->rx_opt.rcv_wscale;
659 opts->options |= OPTION_WSCALE;
660 remaining -= TCPOLEN_WSCALE_ALIGNED;
662 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
663 opts->options |= OPTION_SACK_ADVERTISE;
664 if (unlikely(!(OPTION_TS & opts->options)))
665 remaining -= TCPOLEN_SACKPERM_ALIGNED;
668 if (fastopen && fastopen->cookie.len >= 0) {
669 u32 need = fastopen->cookie.len;
671 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
672 TCPOLEN_FASTOPEN_BASE;
673 need = (need + 3) & ~3U; /* Align to 32 bits */
674 if (remaining >= need) {
675 opts->options |= OPTION_FAST_OPEN_COOKIE;
676 opts->fastopen_cookie = &fastopen->cookie;
677 remaining -= need;
678 tp->syn_fastopen = 1;
679 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
683 smc_set_option(tp, opts, &remaining);
685 if (sk_is_mptcp(sk)) {
686 unsigned int size;
688 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
689 opts->options |= OPTION_MPTCP;
690 remaining -= size;
694 return MAX_TCP_OPTION_SPACE - remaining;
697 /* Set up TCP options for SYN-ACKs. */
698 static unsigned int tcp_synack_options(const struct sock *sk,
699 struct request_sock *req,
700 unsigned int mss, struct sk_buff *skb,
701 struct tcp_out_options *opts,
702 const struct tcp_md5sig_key *md5,
703 struct tcp_fastopen_cookie *foc)
705 struct inet_request_sock *ireq = inet_rsk(req);
706 unsigned int remaining = MAX_TCP_OPTION_SPACE;
708 #ifdef CONFIG_TCP_MD5SIG
709 if (md5) {
710 opts->options |= OPTION_MD5;
711 remaining -= TCPOLEN_MD5SIG_ALIGNED;
713 /* We can't fit any SACK blocks in a packet with MD5 + TS
714 * options. There was discussion about disabling SACK
715 * rather than TS in order to fit in better with old,
716 * buggy kernels, but that was deemed to be unnecessary.
718 ireq->tstamp_ok &= !ireq->sack_ok;
720 #endif
722 /* We always send an MSS option. */
723 opts->mss = mss;
724 remaining -= TCPOLEN_MSS_ALIGNED;
726 if (likely(ireq->wscale_ok)) {
727 opts->ws = ireq->rcv_wscale;
728 opts->options |= OPTION_WSCALE;
729 remaining -= TCPOLEN_WSCALE_ALIGNED;
731 if (likely(ireq->tstamp_ok)) {
732 opts->options |= OPTION_TS;
733 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
734 opts->tsecr = req->ts_recent;
735 remaining -= TCPOLEN_TSTAMP_ALIGNED;
737 if (likely(ireq->sack_ok)) {
738 opts->options |= OPTION_SACK_ADVERTISE;
739 if (unlikely(!ireq->tstamp_ok))
740 remaining -= TCPOLEN_SACKPERM_ALIGNED;
742 if (foc != NULL && foc->len >= 0) {
743 u32 need = foc->len;
745 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
746 TCPOLEN_FASTOPEN_BASE;
747 need = (need + 3) & ~3U; /* Align to 32 bits */
748 if (remaining >= need) {
749 opts->options |= OPTION_FAST_OPEN_COOKIE;
750 opts->fastopen_cookie = foc;
751 remaining -= need;
755 mptcp_set_option_cond(req, opts, &remaining);
757 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
759 return MAX_TCP_OPTION_SPACE - remaining;
762 /* Compute TCP options for ESTABLISHED sockets. This is not the
763 * final wire format yet.
765 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
766 struct tcp_out_options *opts,
767 struct tcp_md5sig_key **md5)
769 struct tcp_sock *tp = tcp_sk(sk);
770 unsigned int size = 0;
771 unsigned int eff_sacks;
773 opts->options = 0;
775 *md5 = NULL;
776 #ifdef CONFIG_TCP_MD5SIG
777 if (static_branch_unlikely(&tcp_md5_needed) &&
778 rcu_access_pointer(tp->md5sig_info)) {
779 *md5 = tp->af_specific->md5_lookup(sk, sk);
780 if (*md5) {
781 opts->options |= OPTION_MD5;
782 size += TCPOLEN_MD5SIG_ALIGNED;
785 #endif
787 if (likely(tp->rx_opt.tstamp_ok)) {
788 opts->options |= OPTION_TS;
789 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
790 opts->tsecr = tp->rx_opt.ts_recent;
791 size += TCPOLEN_TSTAMP_ALIGNED;
794 /* MPTCP options have precedence over SACK for the limited TCP
795 * option space because a MPTCP connection would be forced to
796 * fall back to regular TCP if a required multipath option is
797 * missing. SACK still gets a chance to use whatever space is
798 * left.
800 if (sk_is_mptcp(sk)) {
801 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
802 unsigned int opt_size = 0;
804 if (mptcp_established_options(sk, skb, &opt_size, remaining,
805 &opts->mptcp)) {
806 opts->options |= OPTION_MPTCP;
807 size += opt_size;
811 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
812 if (unlikely(eff_sacks)) {
813 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
814 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
815 TCPOLEN_SACK_PERBLOCK))
816 return size;
818 opts->num_sack_blocks =
819 min_t(unsigned int, eff_sacks,
820 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
821 TCPOLEN_SACK_PERBLOCK);
823 size += TCPOLEN_SACK_BASE_ALIGNED +
824 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
827 return size;
831 /* TCP SMALL QUEUES (TSQ)
833 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
834 * to reduce RTT and bufferbloat.
835 * We do this using a special skb destructor (tcp_wfree).
837 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
838 * needs to be reallocated in a driver.
839 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
841 * Since transmit from skb destructor is forbidden, we use a tasklet
842 * to process all sockets that eventually need to send more skbs.
843 * We use one tasklet per cpu, with its own queue of sockets.
845 struct tsq_tasklet {
846 struct tasklet_struct tasklet;
847 struct list_head head; /* queue of tcp sockets */
849 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
851 static void tcp_tsq_write(struct sock *sk)
853 if ((1 << sk->sk_state) &
854 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
855 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
856 struct tcp_sock *tp = tcp_sk(sk);
858 if (tp->lost_out > tp->retrans_out &&
859 tp->snd_cwnd > tcp_packets_in_flight(tp)) {
860 tcp_mstamp_refresh(tp);
861 tcp_xmit_retransmit_queue(sk);
864 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
865 0, GFP_ATOMIC);
869 static void tcp_tsq_handler(struct sock *sk)
871 bh_lock_sock(sk);
872 if (!sock_owned_by_user(sk))
873 tcp_tsq_write(sk);
874 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
875 sock_hold(sk);
876 bh_unlock_sock(sk);
879 * One tasklet per cpu tries to send more skbs.
880 * We run in tasklet context but need to disable irqs when
881 * transferring tsq->head because tcp_wfree() might
882 * interrupt us (non NAPI drivers)
884 static void tcp_tasklet_func(unsigned long data)
886 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
887 LIST_HEAD(list);
888 unsigned long flags;
889 struct list_head *q, *n;
890 struct tcp_sock *tp;
891 struct sock *sk;
893 local_irq_save(flags);
894 list_splice_init(&tsq->head, &list);
895 local_irq_restore(flags);
897 list_for_each_safe(q, n, &list) {
898 tp = list_entry(q, struct tcp_sock, tsq_node);
899 list_del(&tp->tsq_node);
901 sk = (struct sock *)tp;
902 smp_mb__before_atomic();
903 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
905 tcp_tsq_handler(sk);
906 sk_free(sk);
910 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
911 TCPF_WRITE_TIMER_DEFERRED | \
912 TCPF_DELACK_TIMER_DEFERRED | \
913 TCPF_MTU_REDUCED_DEFERRED)
915 * tcp_release_cb - tcp release_sock() callback
916 * @sk: socket
918 * called from release_sock() to perform protocol dependent
919 * actions before socket release.
921 void tcp_release_cb(struct sock *sk)
923 unsigned long flags, nflags;
925 /* perform an atomic operation only if at least one flag is set */
926 do {
927 flags = sk->sk_tsq_flags;
928 if (!(flags & TCP_DEFERRED_ALL))
929 return;
930 nflags = flags & ~TCP_DEFERRED_ALL;
931 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
933 if (flags & TCPF_TSQ_DEFERRED) {
934 tcp_tsq_write(sk);
935 __sock_put(sk);
937 /* Here begins the tricky part :
938 * We are called from release_sock() with :
939 * 1) BH disabled
940 * 2) sk_lock.slock spinlock held
941 * 3) socket owned by us (sk->sk_lock.owned == 1)
943 * But following code is meant to be called from BH handlers,
944 * so we should keep BH disabled, but early release socket ownership
946 sock_release_ownership(sk);
948 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
949 tcp_write_timer_handler(sk);
950 __sock_put(sk);
952 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
953 tcp_delack_timer_handler(sk);
954 __sock_put(sk);
956 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
957 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
958 __sock_put(sk);
961 EXPORT_SYMBOL(tcp_release_cb);
963 void __init tcp_tasklet_init(void)
965 int i;
967 for_each_possible_cpu(i) {
968 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
970 INIT_LIST_HEAD(&tsq->head);
971 tasklet_init(&tsq->tasklet,
972 tcp_tasklet_func,
973 (unsigned long)tsq);
978 * Write buffer destructor automatically called from kfree_skb.
979 * We can't xmit new skbs from this context, as we might already
980 * hold qdisc lock.
982 void tcp_wfree(struct sk_buff *skb)
984 struct sock *sk = skb->sk;
985 struct tcp_sock *tp = tcp_sk(sk);
986 unsigned long flags, nval, oval;
988 /* Keep one reference on sk_wmem_alloc.
989 * Will be released by sk_free() from here or tcp_tasklet_func()
991 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
993 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
994 * Wait until our queues (qdisc + devices) are drained.
995 * This gives :
996 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
997 * - chance for incoming ACK (processed by another cpu maybe)
998 * to migrate this flow (skb->ooo_okay will be eventually set)
1000 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1001 goto out;
1003 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
1004 struct tsq_tasklet *tsq;
1005 bool empty;
1007 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1008 goto out;
1010 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1011 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
1012 if (nval != oval)
1013 continue;
1015 /* queue this socket to tasklet queue */
1016 local_irq_save(flags);
1017 tsq = this_cpu_ptr(&tsq_tasklet);
1018 empty = list_empty(&tsq->head);
1019 list_add(&tp->tsq_node, &tsq->head);
1020 if (empty)
1021 tasklet_schedule(&tsq->tasklet);
1022 local_irq_restore(flags);
1023 return;
1025 out:
1026 sk_free(sk);
1029 /* Note: Called under soft irq.
1030 * We can call TCP stack right away, unless socket is owned by user.
1032 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1034 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1035 struct sock *sk = (struct sock *)tp;
1037 tcp_tsq_handler(sk);
1038 sock_put(sk);
1040 return HRTIMER_NORESTART;
1043 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1044 u64 prior_wstamp)
1046 struct tcp_sock *tp = tcp_sk(sk);
1048 if (sk->sk_pacing_status != SK_PACING_NONE) {
1049 unsigned long rate = sk->sk_pacing_rate;
1051 /* Original sch_fq does not pace first 10 MSS
1052 * Note that tp->data_segs_out overflows after 2^32 packets,
1053 * this is a minor annoyance.
1055 if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1056 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1057 u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1059 /* take into account OS jitter */
1060 len_ns -= min_t(u64, len_ns / 2, credit);
1061 tp->tcp_wstamp_ns += len_ns;
1064 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1067 /* This routine actually transmits TCP packets queued in by
1068 * tcp_do_sendmsg(). This is used by both the initial
1069 * transmission and possible later retransmissions.
1070 * All SKB's seen here are completely headerless. It is our
1071 * job to build the TCP header, and pass the packet down to
1072 * IP so it can do the same plus pass the packet off to the
1073 * device.
1075 * We are working here with either a clone of the original
1076 * SKB, or a fresh unique copy made by the retransmit engine.
1078 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1079 int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1081 const struct inet_connection_sock *icsk = inet_csk(sk);
1082 struct inet_sock *inet;
1083 struct tcp_sock *tp;
1084 struct tcp_skb_cb *tcb;
1085 struct tcp_out_options opts;
1086 unsigned int tcp_options_size, tcp_header_size;
1087 struct sk_buff *oskb = NULL;
1088 struct tcp_md5sig_key *md5;
1089 struct tcphdr *th;
1090 u64 prior_wstamp;
1091 int err;
1093 BUG_ON(!skb || !tcp_skb_pcount(skb));
1094 tp = tcp_sk(sk);
1095 prior_wstamp = tp->tcp_wstamp_ns;
1096 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1097 skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1098 if (clone_it) {
1099 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1100 - tp->snd_una;
1101 oskb = skb;
1103 tcp_skb_tsorted_save(oskb) {
1104 if (unlikely(skb_cloned(oskb)))
1105 skb = pskb_copy(oskb, gfp_mask);
1106 else
1107 skb = skb_clone(oskb, gfp_mask);
1108 } tcp_skb_tsorted_restore(oskb);
1110 if (unlikely(!skb))
1111 return -ENOBUFS;
1114 inet = inet_sk(sk);
1115 tcb = TCP_SKB_CB(skb);
1116 memset(&opts, 0, sizeof(opts));
1118 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1119 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1120 } else {
1121 tcp_options_size = tcp_established_options(sk, skb, &opts,
1122 &md5);
1123 /* Force a PSH flag on all (GSO) packets to expedite GRO flush
1124 * at receiver : This slightly improve GRO performance.
1125 * Note that we do not force the PSH flag for non GSO packets,
1126 * because they might be sent under high congestion events,
1127 * and in this case it is better to delay the delivery of 1-MSS
1128 * packets and thus the corresponding ACK packet that would
1129 * release the following packet.
1131 if (tcp_skb_pcount(skb) > 1)
1132 tcb->tcp_flags |= TCPHDR_PSH;
1134 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1136 /* if no packet is in qdisc/device queue, then allow XPS to select
1137 * another queue. We can be called from tcp_tsq_handler()
1138 * which holds one reference to sk.
1140 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1141 * One way to get this would be to set skb->truesize = 2 on them.
1143 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1145 /* If we had to use memory reserve to allocate this skb,
1146 * this might cause drops if packet is looped back :
1147 * Other socket might not have SOCK_MEMALLOC.
1148 * Packets not looped back do not care about pfmemalloc.
1150 skb->pfmemalloc = 0;
1152 skb_push(skb, tcp_header_size);
1153 skb_reset_transport_header(skb);
1155 skb_orphan(skb);
1156 skb->sk = sk;
1157 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1158 skb_set_hash_from_sk(skb, sk);
1159 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1161 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1163 /* Build TCP header and checksum it. */
1164 th = (struct tcphdr *)skb->data;
1165 th->source = inet->inet_sport;
1166 th->dest = inet->inet_dport;
1167 th->seq = htonl(tcb->seq);
1168 th->ack_seq = htonl(rcv_nxt);
1169 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1170 tcb->tcp_flags);
1172 th->check = 0;
1173 th->urg_ptr = 0;
1175 /* The urg_mode check is necessary during a below snd_una win probe */
1176 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1177 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1178 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1179 th->urg = 1;
1180 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1181 th->urg_ptr = htons(0xFFFF);
1182 th->urg = 1;
1186 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1187 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1188 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1189 th->window = htons(tcp_select_window(sk));
1190 tcp_ecn_send(sk, skb, th, tcp_header_size);
1191 } else {
1192 /* RFC1323: The window in SYN & SYN/ACK segments
1193 * is never scaled.
1195 th->window = htons(min(tp->rcv_wnd, 65535U));
1197 #ifdef CONFIG_TCP_MD5SIG
1198 /* Calculate the MD5 hash, as we have all we need now */
1199 if (md5) {
1200 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1201 tp->af_specific->calc_md5_hash(opts.hash_location,
1202 md5, sk, skb);
1204 #endif
1206 icsk->icsk_af_ops->send_check(sk, skb);
1208 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1209 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1211 if (skb->len != tcp_header_size) {
1212 tcp_event_data_sent(tp, sk);
1213 tp->data_segs_out += tcp_skb_pcount(skb);
1214 tp->bytes_sent += skb->len - tcp_header_size;
1217 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1218 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1219 tcp_skb_pcount(skb));
1221 tp->segs_out += tcp_skb_pcount(skb);
1222 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1223 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1224 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1226 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1228 /* Cleanup our debris for IP stacks */
1229 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1230 sizeof(struct inet6_skb_parm)));
1232 tcp_add_tx_delay(skb, tp);
1234 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1236 if (unlikely(err > 0)) {
1237 tcp_enter_cwr(sk);
1238 err = net_xmit_eval(err);
1240 if (!err && oskb) {
1241 tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1242 tcp_rate_skb_sent(sk, oskb);
1244 return err;
1247 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1248 gfp_t gfp_mask)
1250 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1251 tcp_sk(sk)->rcv_nxt);
1254 /* This routine just queues the buffer for sending.
1256 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1257 * otherwise socket can stall.
1259 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1261 struct tcp_sock *tp = tcp_sk(sk);
1263 /* Advance write_seq and place onto the write_queue. */
1264 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1265 __skb_header_release(skb);
1266 tcp_add_write_queue_tail(sk, skb);
1267 sk_wmem_queued_add(sk, skb->truesize);
1268 sk_mem_charge(sk, skb->truesize);
1271 /* Initialize TSO segments for a packet. */
1272 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1274 if (skb->len <= mss_now) {
1275 /* Avoid the costly divide in the normal
1276 * non-TSO case.
1278 tcp_skb_pcount_set(skb, 1);
1279 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1280 } else {
1281 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1282 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1286 /* Pcount in the middle of the write queue got changed, we need to do various
1287 * tweaks to fix counters
1289 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1291 struct tcp_sock *tp = tcp_sk(sk);
1293 tp->packets_out -= decr;
1295 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1296 tp->sacked_out -= decr;
1297 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1298 tp->retrans_out -= decr;
1299 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1300 tp->lost_out -= decr;
1302 /* Reno case is special. Sigh... */
1303 if (tcp_is_reno(tp) && decr > 0)
1304 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1306 if (tp->lost_skb_hint &&
1307 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1308 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1309 tp->lost_cnt_hint -= decr;
1311 tcp_verify_left_out(tp);
1314 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1316 return TCP_SKB_CB(skb)->txstamp_ack ||
1317 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1320 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1322 struct skb_shared_info *shinfo = skb_shinfo(skb);
1324 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1325 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1326 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1327 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1329 shinfo->tx_flags &= ~tsflags;
1330 shinfo2->tx_flags |= tsflags;
1331 swap(shinfo->tskey, shinfo2->tskey);
1332 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1333 TCP_SKB_CB(skb)->txstamp_ack = 0;
1337 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1339 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1340 TCP_SKB_CB(skb)->eor = 0;
1343 /* Insert buff after skb on the write or rtx queue of sk. */
1344 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1345 struct sk_buff *buff,
1346 struct sock *sk,
1347 enum tcp_queue tcp_queue)
1349 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1350 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1351 else
1352 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1355 /* Function to create two new TCP segments. Shrinks the given segment
1356 * to the specified size and appends a new segment with the rest of the
1357 * packet to the list. This won't be called frequently, I hope.
1358 * Remember, these are still headerless SKBs at this point.
1360 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1361 struct sk_buff *skb, u32 len,
1362 unsigned int mss_now, gfp_t gfp)
1364 struct tcp_sock *tp = tcp_sk(sk);
1365 struct sk_buff *buff;
1366 int nsize, old_factor;
1367 long limit;
1368 int nlen;
1369 u8 flags;
1371 if (WARN_ON(len > skb->len))
1372 return -EINVAL;
1374 nsize = skb_headlen(skb) - len;
1375 if (nsize < 0)
1376 nsize = 0;
1378 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1379 * We need some allowance to not penalize applications setting small
1380 * SO_SNDBUF values.
1381 * Also allow first and last skb in retransmit queue to be split.
1383 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1384 if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1385 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1386 skb != tcp_rtx_queue_head(sk) &&
1387 skb != tcp_rtx_queue_tail(sk))) {
1388 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1389 return -ENOMEM;
1392 if (skb_unclone(skb, gfp))
1393 return -ENOMEM;
1395 /* Get a new skb... force flag on. */
1396 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1397 if (!buff)
1398 return -ENOMEM; /* We'll just try again later. */
1399 skb_copy_decrypted(buff, skb);
1401 sk_wmem_queued_add(sk, buff->truesize);
1402 sk_mem_charge(sk, buff->truesize);
1403 nlen = skb->len - len - nsize;
1404 buff->truesize += nlen;
1405 skb->truesize -= nlen;
1407 /* Correct the sequence numbers. */
1408 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1409 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1410 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1412 /* PSH and FIN should only be set in the second packet. */
1413 flags = TCP_SKB_CB(skb)->tcp_flags;
1414 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1415 TCP_SKB_CB(buff)->tcp_flags = flags;
1416 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1417 tcp_skb_fragment_eor(skb, buff);
1419 skb_split(skb, buff, len);
1421 buff->ip_summed = CHECKSUM_PARTIAL;
1423 buff->tstamp = skb->tstamp;
1424 tcp_fragment_tstamp(skb, buff);
1426 old_factor = tcp_skb_pcount(skb);
1428 /* Fix up tso_factor for both original and new SKB. */
1429 tcp_set_skb_tso_segs(skb, mss_now);
1430 tcp_set_skb_tso_segs(buff, mss_now);
1432 /* Update delivered info for the new segment */
1433 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1435 /* If this packet has been sent out already, we must
1436 * adjust the various packet counters.
1438 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1439 int diff = old_factor - tcp_skb_pcount(skb) -
1440 tcp_skb_pcount(buff);
1442 if (diff)
1443 tcp_adjust_pcount(sk, skb, diff);
1446 /* Link BUFF into the send queue. */
1447 __skb_header_release(buff);
1448 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1449 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1450 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1452 return 0;
1455 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1456 * data is not copied, but immediately discarded.
1458 static int __pskb_trim_head(struct sk_buff *skb, int len)
1460 struct skb_shared_info *shinfo;
1461 int i, k, eat;
1463 eat = min_t(int, len, skb_headlen(skb));
1464 if (eat) {
1465 __skb_pull(skb, eat);
1466 len -= eat;
1467 if (!len)
1468 return 0;
1470 eat = len;
1471 k = 0;
1472 shinfo = skb_shinfo(skb);
1473 for (i = 0; i < shinfo->nr_frags; i++) {
1474 int size = skb_frag_size(&shinfo->frags[i]);
1476 if (size <= eat) {
1477 skb_frag_unref(skb, i);
1478 eat -= size;
1479 } else {
1480 shinfo->frags[k] = shinfo->frags[i];
1481 if (eat) {
1482 skb_frag_off_add(&shinfo->frags[k], eat);
1483 skb_frag_size_sub(&shinfo->frags[k], eat);
1484 eat = 0;
1486 k++;
1489 shinfo->nr_frags = k;
1491 skb->data_len -= len;
1492 skb->len = skb->data_len;
1493 return len;
1496 /* Remove acked data from a packet in the transmit queue. */
1497 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1499 u32 delta_truesize;
1501 if (skb_unclone(skb, GFP_ATOMIC))
1502 return -ENOMEM;
1504 delta_truesize = __pskb_trim_head(skb, len);
1506 TCP_SKB_CB(skb)->seq += len;
1507 skb->ip_summed = CHECKSUM_PARTIAL;
1509 if (delta_truesize) {
1510 skb->truesize -= delta_truesize;
1511 sk_wmem_queued_add(sk, -delta_truesize);
1512 sk_mem_uncharge(sk, delta_truesize);
1513 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1516 /* Any change of skb->len requires recalculation of tso factor. */
1517 if (tcp_skb_pcount(skb) > 1)
1518 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1520 return 0;
1523 /* Calculate MSS not accounting any TCP options. */
1524 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1526 const struct tcp_sock *tp = tcp_sk(sk);
1527 const struct inet_connection_sock *icsk = inet_csk(sk);
1528 int mss_now;
1530 /* Calculate base mss without TCP options:
1531 It is MMS_S - sizeof(tcphdr) of rfc1122
1533 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1535 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1536 if (icsk->icsk_af_ops->net_frag_header_len) {
1537 const struct dst_entry *dst = __sk_dst_get(sk);
1539 if (dst && dst_allfrag(dst))
1540 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1543 /* Clamp it (mss_clamp does not include tcp options) */
1544 if (mss_now > tp->rx_opt.mss_clamp)
1545 mss_now = tp->rx_opt.mss_clamp;
1547 /* Now subtract optional transport overhead */
1548 mss_now -= icsk->icsk_ext_hdr_len;
1550 /* Then reserve room for full set of TCP options and 8 bytes of data */
1551 mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss);
1552 return mss_now;
1555 /* Calculate MSS. Not accounting for SACKs here. */
1556 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1558 /* Subtract TCP options size, not including SACKs */
1559 return __tcp_mtu_to_mss(sk, pmtu) -
1560 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1563 /* Inverse of above */
1564 int tcp_mss_to_mtu(struct sock *sk, int mss)
1566 const struct tcp_sock *tp = tcp_sk(sk);
1567 const struct inet_connection_sock *icsk = inet_csk(sk);
1568 int mtu;
1570 mtu = mss +
1571 tp->tcp_header_len +
1572 icsk->icsk_ext_hdr_len +
1573 icsk->icsk_af_ops->net_header_len;
1575 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1576 if (icsk->icsk_af_ops->net_frag_header_len) {
1577 const struct dst_entry *dst = __sk_dst_get(sk);
1579 if (dst && dst_allfrag(dst))
1580 mtu += icsk->icsk_af_ops->net_frag_header_len;
1582 return mtu;
1584 EXPORT_SYMBOL(tcp_mss_to_mtu);
1586 /* MTU probing init per socket */
1587 void tcp_mtup_init(struct sock *sk)
1589 struct tcp_sock *tp = tcp_sk(sk);
1590 struct inet_connection_sock *icsk = inet_csk(sk);
1591 struct net *net = sock_net(sk);
1593 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1594 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1595 icsk->icsk_af_ops->net_header_len;
1596 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1597 icsk->icsk_mtup.probe_size = 0;
1598 if (icsk->icsk_mtup.enabled)
1599 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1601 EXPORT_SYMBOL(tcp_mtup_init);
1603 /* This function synchronize snd mss to current pmtu/exthdr set.
1605 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1606 for TCP options, but includes only bare TCP header.
1608 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1609 It is minimum of user_mss and mss received with SYN.
1610 It also does not include TCP options.
1612 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1614 tp->mss_cache is current effective sending mss, including
1615 all tcp options except for SACKs. It is evaluated,
1616 taking into account current pmtu, but never exceeds
1617 tp->rx_opt.mss_clamp.
1619 NOTE1. rfc1122 clearly states that advertised MSS
1620 DOES NOT include either tcp or ip options.
1622 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1623 are READ ONLY outside this function. --ANK (980731)
1625 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1627 struct tcp_sock *tp = tcp_sk(sk);
1628 struct inet_connection_sock *icsk = inet_csk(sk);
1629 int mss_now;
1631 if (icsk->icsk_mtup.search_high > pmtu)
1632 icsk->icsk_mtup.search_high = pmtu;
1634 mss_now = tcp_mtu_to_mss(sk, pmtu);
1635 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1637 /* And store cached results */
1638 icsk->icsk_pmtu_cookie = pmtu;
1639 if (icsk->icsk_mtup.enabled)
1640 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1641 tp->mss_cache = mss_now;
1643 return mss_now;
1645 EXPORT_SYMBOL(tcp_sync_mss);
1647 /* Compute the current effective MSS, taking SACKs and IP options,
1648 * and even PMTU discovery events into account.
1650 unsigned int tcp_current_mss(struct sock *sk)
1652 const struct tcp_sock *tp = tcp_sk(sk);
1653 const struct dst_entry *dst = __sk_dst_get(sk);
1654 u32 mss_now;
1655 unsigned int header_len;
1656 struct tcp_out_options opts;
1657 struct tcp_md5sig_key *md5;
1659 mss_now = tp->mss_cache;
1661 if (dst) {
1662 u32 mtu = dst_mtu(dst);
1663 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1664 mss_now = tcp_sync_mss(sk, mtu);
1667 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1668 sizeof(struct tcphdr);
1669 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1670 * some common options. If this is an odd packet (because we have SACK
1671 * blocks etc) then our calculated header_len will be different, and
1672 * we have to adjust mss_now correspondingly */
1673 if (header_len != tp->tcp_header_len) {
1674 int delta = (int) header_len - tp->tcp_header_len;
1675 mss_now -= delta;
1678 return mss_now;
1681 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1682 * As additional protections, we do not touch cwnd in retransmission phases,
1683 * and if application hit its sndbuf limit recently.
1685 static void tcp_cwnd_application_limited(struct sock *sk)
1687 struct tcp_sock *tp = tcp_sk(sk);
1689 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1690 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1691 /* Limited by application or receiver window. */
1692 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1693 u32 win_used = max(tp->snd_cwnd_used, init_win);
1694 if (win_used < tp->snd_cwnd) {
1695 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1696 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1698 tp->snd_cwnd_used = 0;
1700 tp->snd_cwnd_stamp = tcp_jiffies32;
1703 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1705 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1706 struct tcp_sock *tp = tcp_sk(sk);
1708 /* Track the maximum number of outstanding packets in each
1709 * window, and remember whether we were cwnd-limited then.
1711 if (!before(tp->snd_una, tp->max_packets_seq) ||
1712 tp->packets_out > tp->max_packets_out) {
1713 tp->max_packets_out = tp->packets_out;
1714 tp->max_packets_seq = tp->snd_nxt;
1715 tp->is_cwnd_limited = is_cwnd_limited;
1718 if (tcp_is_cwnd_limited(sk)) {
1719 /* Network is feed fully. */
1720 tp->snd_cwnd_used = 0;
1721 tp->snd_cwnd_stamp = tcp_jiffies32;
1722 } else {
1723 /* Network starves. */
1724 if (tp->packets_out > tp->snd_cwnd_used)
1725 tp->snd_cwnd_used = tp->packets_out;
1727 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1728 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1729 !ca_ops->cong_control)
1730 tcp_cwnd_application_limited(sk);
1732 /* The following conditions together indicate the starvation
1733 * is caused by insufficient sender buffer:
1734 * 1) just sent some data (see tcp_write_xmit)
1735 * 2) not cwnd limited (this else condition)
1736 * 3) no more data to send (tcp_write_queue_empty())
1737 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1739 if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1740 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1741 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1742 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1746 /* Minshall's variant of the Nagle send check. */
1747 static bool tcp_minshall_check(const struct tcp_sock *tp)
1749 return after(tp->snd_sml, tp->snd_una) &&
1750 !after(tp->snd_sml, tp->snd_nxt);
1753 /* Update snd_sml if this skb is under mss
1754 * Note that a TSO packet might end with a sub-mss segment
1755 * The test is really :
1756 * if ((skb->len % mss) != 0)
1757 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1758 * But we can avoid doing the divide again given we already have
1759 * skb_pcount = skb->len / mss_now
1761 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1762 const struct sk_buff *skb)
1764 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1765 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1768 /* Return false, if packet can be sent now without violation Nagle's rules:
1769 * 1. It is full sized. (provided by caller in %partial bool)
1770 * 2. Or it contains FIN. (already checked by caller)
1771 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1772 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1773 * With Minshall's modification: all sent small packets are ACKed.
1775 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1776 int nonagle)
1778 return partial &&
1779 ((nonagle & TCP_NAGLE_CORK) ||
1780 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1783 /* Return how many segs we'd like on a TSO packet,
1784 * to send one TSO packet per ms
1786 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1787 int min_tso_segs)
1789 u32 bytes, segs;
1791 bytes = min_t(unsigned long,
1792 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift),
1793 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1795 /* Goal is to send at least one packet per ms,
1796 * not one big TSO packet every 100 ms.
1797 * This preserves ACK clocking and is consistent
1798 * with tcp_tso_should_defer() heuristic.
1800 segs = max_t(u32, bytes / mss_now, min_tso_segs);
1802 return segs;
1805 /* Return the number of segments we want in the skb we are transmitting.
1806 * See if congestion control module wants to decide; otherwise, autosize.
1808 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1810 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1811 u32 min_tso, tso_segs;
1813 min_tso = ca_ops->min_tso_segs ?
1814 ca_ops->min_tso_segs(sk) :
1815 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1817 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1818 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1821 /* Returns the portion of skb which can be sent right away */
1822 static unsigned int tcp_mss_split_point(const struct sock *sk,
1823 const struct sk_buff *skb,
1824 unsigned int mss_now,
1825 unsigned int max_segs,
1826 int nonagle)
1828 const struct tcp_sock *tp = tcp_sk(sk);
1829 u32 partial, needed, window, max_len;
1831 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1832 max_len = mss_now * max_segs;
1834 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1835 return max_len;
1837 needed = min(skb->len, window);
1839 if (max_len <= needed)
1840 return max_len;
1842 partial = needed % mss_now;
1843 /* If last segment is not a full MSS, check if Nagle rules allow us
1844 * to include this last segment in this skb.
1845 * Otherwise, we'll split the skb at last MSS boundary
1847 if (tcp_nagle_check(partial != 0, tp, nonagle))
1848 return needed - partial;
1850 return needed;
1853 /* Can at least one segment of SKB be sent right now, according to the
1854 * congestion window rules? If so, return how many segments are allowed.
1856 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1857 const struct sk_buff *skb)
1859 u32 in_flight, cwnd, halfcwnd;
1861 /* Don't be strict about the congestion window for the final FIN. */
1862 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1863 tcp_skb_pcount(skb) == 1)
1864 return 1;
1866 in_flight = tcp_packets_in_flight(tp);
1867 cwnd = tp->snd_cwnd;
1868 if (in_flight >= cwnd)
1869 return 0;
1871 /* For better scheduling, ensure we have at least
1872 * 2 GSO packets in flight.
1874 halfcwnd = max(cwnd >> 1, 1U);
1875 return min(halfcwnd, cwnd - in_flight);
1878 /* Initialize TSO state of a skb.
1879 * This must be invoked the first time we consider transmitting
1880 * SKB onto the wire.
1882 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1884 int tso_segs = tcp_skb_pcount(skb);
1886 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1887 tcp_set_skb_tso_segs(skb, mss_now);
1888 tso_segs = tcp_skb_pcount(skb);
1890 return tso_segs;
1894 /* Return true if the Nagle test allows this packet to be
1895 * sent now.
1897 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1898 unsigned int cur_mss, int nonagle)
1900 /* Nagle rule does not apply to frames, which sit in the middle of the
1901 * write_queue (they have no chances to get new data).
1903 * This is implemented in the callers, where they modify the 'nonagle'
1904 * argument based upon the location of SKB in the send queue.
1906 if (nonagle & TCP_NAGLE_PUSH)
1907 return true;
1909 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1910 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1911 return true;
1913 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1914 return true;
1916 return false;
1919 /* Does at least the first segment of SKB fit into the send window? */
1920 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1921 const struct sk_buff *skb,
1922 unsigned int cur_mss)
1924 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1926 if (skb->len > cur_mss)
1927 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1929 return !after(end_seq, tcp_wnd_end(tp));
1932 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1933 * which is put after SKB on the list. It is very much like
1934 * tcp_fragment() except that it may make several kinds of assumptions
1935 * in order to speed up the splitting operation. In particular, we
1936 * know that all the data is in scatter-gather pages, and that the
1937 * packet has never been sent out before (and thus is not cloned).
1939 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1940 unsigned int mss_now, gfp_t gfp)
1942 int nlen = skb->len - len;
1943 struct sk_buff *buff;
1944 u8 flags;
1946 /* All of a TSO frame must be composed of paged data. */
1947 if (skb->len != skb->data_len)
1948 return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
1949 skb, len, mss_now, gfp);
1951 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1952 if (unlikely(!buff))
1953 return -ENOMEM;
1954 skb_copy_decrypted(buff, skb);
1956 sk_wmem_queued_add(sk, buff->truesize);
1957 sk_mem_charge(sk, buff->truesize);
1958 buff->truesize += nlen;
1959 skb->truesize -= nlen;
1961 /* Correct the sequence numbers. */
1962 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1963 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1964 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1966 /* PSH and FIN should only be set in the second packet. */
1967 flags = TCP_SKB_CB(skb)->tcp_flags;
1968 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1969 TCP_SKB_CB(buff)->tcp_flags = flags;
1971 /* This packet was never sent out yet, so no SACK bits. */
1972 TCP_SKB_CB(buff)->sacked = 0;
1974 tcp_skb_fragment_eor(skb, buff);
1976 buff->ip_summed = CHECKSUM_PARTIAL;
1977 skb_split(skb, buff, len);
1978 tcp_fragment_tstamp(skb, buff);
1980 /* Fix up tso_factor for both original and new SKB. */
1981 tcp_set_skb_tso_segs(skb, mss_now);
1982 tcp_set_skb_tso_segs(buff, mss_now);
1984 /* Link BUFF into the send queue. */
1985 __skb_header_release(buff);
1986 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
1988 return 0;
1991 /* Try to defer sending, if possible, in order to minimize the amount
1992 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1994 * This algorithm is from John Heffner.
1996 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1997 bool *is_cwnd_limited,
1998 bool *is_rwnd_limited,
1999 u32 max_segs)
2001 const struct inet_connection_sock *icsk = inet_csk(sk);
2002 u32 send_win, cong_win, limit, in_flight;
2003 struct tcp_sock *tp = tcp_sk(sk);
2004 struct sk_buff *head;
2005 int win_divisor;
2006 s64 delta;
2008 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2009 goto send_now;
2011 /* Avoid bursty behavior by allowing defer
2012 * only if the last write was recent (1 ms).
2013 * Note that tp->tcp_wstamp_ns can be in the future if we have
2014 * packets waiting in a qdisc or device for EDT delivery.
2016 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2017 if (delta > 0)
2018 goto send_now;
2020 in_flight = tcp_packets_in_flight(tp);
2022 BUG_ON(tcp_skb_pcount(skb) <= 1);
2023 BUG_ON(tp->snd_cwnd <= in_flight);
2025 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2027 /* From in_flight test above, we know that cwnd > in_flight. */
2028 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
2030 limit = min(send_win, cong_win);
2032 /* If a full-sized TSO skb can be sent, do it. */
2033 if (limit >= max_segs * tp->mss_cache)
2034 goto send_now;
2036 /* Middle in queue won't get any more data, full sendable already? */
2037 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2038 goto send_now;
2040 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2041 if (win_divisor) {
2042 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
2044 /* If at least some fraction of a window is available,
2045 * just use it.
2047 chunk /= win_divisor;
2048 if (limit >= chunk)
2049 goto send_now;
2050 } else {
2051 /* Different approach, try not to defer past a single
2052 * ACK. Receiver should ACK every other full sized
2053 * frame, so if we have space for more than 3 frames
2054 * then send now.
2056 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2057 goto send_now;
2060 /* TODO : use tsorted_sent_queue ? */
2061 head = tcp_rtx_queue_head(sk);
2062 if (!head)
2063 goto send_now;
2064 delta = tp->tcp_clock_cache - head->tstamp;
2065 /* If next ACK is likely to come too late (half srtt), do not defer */
2066 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2067 goto send_now;
2069 /* Ok, it looks like it is advisable to defer.
2070 * Three cases are tracked :
2071 * 1) We are cwnd-limited
2072 * 2) We are rwnd-limited
2073 * 3) We are application limited.
2075 if (cong_win < send_win) {
2076 if (cong_win <= skb->len) {
2077 *is_cwnd_limited = true;
2078 return true;
2080 } else {
2081 if (send_win <= skb->len) {
2082 *is_rwnd_limited = true;
2083 return true;
2087 /* If this packet won't get more data, do not wait. */
2088 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2089 TCP_SKB_CB(skb)->eor)
2090 goto send_now;
2092 return true;
2094 send_now:
2095 return false;
2098 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2100 struct inet_connection_sock *icsk = inet_csk(sk);
2101 struct tcp_sock *tp = tcp_sk(sk);
2102 struct net *net = sock_net(sk);
2103 u32 interval;
2104 s32 delta;
2106 interval = net->ipv4.sysctl_tcp_probe_interval;
2107 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2108 if (unlikely(delta >= interval * HZ)) {
2109 int mss = tcp_current_mss(sk);
2111 /* Update current search range */
2112 icsk->icsk_mtup.probe_size = 0;
2113 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2114 sizeof(struct tcphdr) +
2115 icsk->icsk_af_ops->net_header_len;
2116 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2118 /* Update probe time stamp */
2119 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2123 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2125 struct sk_buff *skb, *next;
2127 skb = tcp_send_head(sk);
2128 tcp_for_write_queue_from_safe(skb, next, sk) {
2129 if (len <= skb->len)
2130 break;
2132 if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
2133 return false;
2135 len -= skb->len;
2138 return true;
2141 /* Create a new MTU probe if we are ready.
2142 * MTU probe is regularly attempting to increase the path MTU by
2143 * deliberately sending larger packets. This discovers routing
2144 * changes resulting in larger path MTUs.
2146 * Returns 0 if we should wait to probe (no cwnd available),
2147 * 1 if a probe was sent,
2148 * -1 otherwise
2150 static int tcp_mtu_probe(struct sock *sk)
2152 struct inet_connection_sock *icsk = inet_csk(sk);
2153 struct tcp_sock *tp = tcp_sk(sk);
2154 struct sk_buff *skb, *nskb, *next;
2155 struct net *net = sock_net(sk);
2156 int probe_size;
2157 int size_needed;
2158 int copy, len;
2159 int mss_now;
2160 int interval;
2162 /* Not currently probing/verifying,
2163 * not in recovery,
2164 * have enough cwnd, and
2165 * not SACKing (the variable headers throw things off)
2167 if (likely(!icsk->icsk_mtup.enabled ||
2168 icsk->icsk_mtup.probe_size ||
2169 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2170 tp->snd_cwnd < 11 ||
2171 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2172 return -1;
2174 /* Use binary search for probe_size between tcp_mss_base,
2175 * and current mss_clamp. if (search_high - search_low)
2176 * smaller than a threshold, backoff from probing.
2178 mss_now = tcp_current_mss(sk);
2179 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2180 icsk->icsk_mtup.search_low) >> 1);
2181 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2182 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2183 /* When misfortune happens, we are reprobing actively,
2184 * and then reprobe timer has expired. We stick with current
2185 * probing process by not resetting search range to its orignal.
2187 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2188 interval < net->ipv4.sysctl_tcp_probe_threshold) {
2189 /* Check whether enough time has elaplased for
2190 * another round of probing.
2192 tcp_mtu_check_reprobe(sk);
2193 return -1;
2196 /* Have enough data in the send queue to probe? */
2197 if (tp->write_seq - tp->snd_nxt < size_needed)
2198 return -1;
2200 if (tp->snd_wnd < size_needed)
2201 return -1;
2202 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2203 return 0;
2205 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2206 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2207 if (!tcp_packets_in_flight(tp))
2208 return -1;
2209 else
2210 return 0;
2213 if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2214 return -1;
2216 /* We're allowed to probe. Build it now. */
2217 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2218 if (!nskb)
2219 return -1;
2220 sk_wmem_queued_add(sk, nskb->truesize);
2221 sk_mem_charge(sk, nskb->truesize);
2223 skb = tcp_send_head(sk);
2224 skb_copy_decrypted(nskb, skb);
2226 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2227 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2228 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2229 TCP_SKB_CB(nskb)->sacked = 0;
2230 nskb->csum = 0;
2231 nskb->ip_summed = CHECKSUM_PARTIAL;
2233 tcp_insert_write_queue_before(nskb, skb, sk);
2234 tcp_highest_sack_replace(sk, skb, nskb);
2236 len = 0;
2237 tcp_for_write_queue_from_safe(skb, next, sk) {
2238 copy = min_t(int, skb->len, probe_size - len);
2239 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2241 if (skb->len <= copy) {
2242 /* We've eaten all the data from this skb.
2243 * Throw it away. */
2244 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2245 /* If this is the last SKB we copy and eor is set
2246 * we need to propagate it to the new skb.
2248 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2249 tcp_skb_collapse_tstamp(nskb, skb);
2250 tcp_unlink_write_queue(skb, sk);
2251 sk_wmem_free_skb(sk, skb);
2252 } else {
2253 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2254 ~(TCPHDR_FIN|TCPHDR_PSH);
2255 if (!skb_shinfo(skb)->nr_frags) {
2256 skb_pull(skb, copy);
2257 } else {
2258 __pskb_trim_head(skb, copy);
2259 tcp_set_skb_tso_segs(skb, mss_now);
2261 TCP_SKB_CB(skb)->seq += copy;
2264 len += copy;
2266 if (len >= probe_size)
2267 break;
2269 tcp_init_tso_segs(nskb, nskb->len);
2271 /* We're ready to send. If this fails, the probe will
2272 * be resegmented into mss-sized pieces by tcp_write_xmit().
2274 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2275 /* Decrement cwnd here because we are sending
2276 * effectively two packets. */
2277 tp->snd_cwnd--;
2278 tcp_event_new_data_sent(sk, nskb);
2280 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2281 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2282 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2284 return 1;
2287 return -1;
2290 static bool tcp_pacing_check(struct sock *sk)
2292 struct tcp_sock *tp = tcp_sk(sk);
2294 if (!tcp_needs_internal_pacing(sk))
2295 return false;
2297 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2298 return false;
2300 if (!hrtimer_is_queued(&tp->pacing_timer)) {
2301 hrtimer_start(&tp->pacing_timer,
2302 ns_to_ktime(tp->tcp_wstamp_ns),
2303 HRTIMER_MODE_ABS_PINNED_SOFT);
2304 sock_hold(sk);
2306 return true;
2309 /* TCP Small Queues :
2310 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2311 * (These limits are doubled for retransmits)
2312 * This allows for :
2313 * - better RTT estimation and ACK scheduling
2314 * - faster recovery
2315 * - high rates
2316 * Alas, some drivers / subsystems require a fair amount
2317 * of queued bytes to ensure line rate.
2318 * One example is wifi aggregation (802.11 AMPDU)
2320 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2321 unsigned int factor)
2323 unsigned long limit;
2325 limit = max_t(unsigned long,
2326 2 * skb->truesize,
2327 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2328 if (sk->sk_pacing_status == SK_PACING_NONE)
2329 limit = min_t(unsigned long, limit,
2330 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2331 limit <<= factor;
2333 if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2334 tcp_sk(sk)->tcp_tx_delay) {
2335 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2337 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2338 * approximate our needs assuming an ~100% skb->truesize overhead.
2339 * USEC_PER_SEC is approximated by 2^20.
2340 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2342 extra_bytes >>= (20 - 1);
2343 limit += extra_bytes;
2345 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2346 /* Always send skb if rtx queue is empty.
2347 * No need to wait for TX completion to call us back,
2348 * after softirq/tasklet schedule.
2349 * This helps when TX completions are delayed too much.
2351 if (tcp_rtx_queue_empty(sk))
2352 return false;
2354 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2355 /* It is possible TX completion already happened
2356 * before we set TSQ_THROTTLED, so we must
2357 * test again the condition.
2359 smp_mb__after_atomic();
2360 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2361 return true;
2363 return false;
2366 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2368 const u32 now = tcp_jiffies32;
2369 enum tcp_chrono old = tp->chrono_type;
2371 if (old > TCP_CHRONO_UNSPEC)
2372 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2373 tp->chrono_start = now;
2374 tp->chrono_type = new;
2377 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2379 struct tcp_sock *tp = tcp_sk(sk);
2381 /* If there are multiple conditions worthy of tracking in a
2382 * chronograph then the highest priority enum takes precedence
2383 * over the other conditions. So that if something "more interesting"
2384 * starts happening, stop the previous chrono and start a new one.
2386 if (type > tp->chrono_type)
2387 tcp_chrono_set(tp, type);
2390 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2392 struct tcp_sock *tp = tcp_sk(sk);
2395 /* There are multiple conditions worthy of tracking in a
2396 * chronograph, so that the highest priority enum takes
2397 * precedence over the other conditions (see tcp_chrono_start).
2398 * If a condition stops, we only stop chrono tracking if
2399 * it's the "most interesting" or current chrono we are
2400 * tracking and starts busy chrono if we have pending data.
2402 if (tcp_rtx_and_write_queues_empty(sk))
2403 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2404 else if (type == tp->chrono_type)
2405 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2408 /* This routine writes packets to the network. It advances the
2409 * send_head. This happens as incoming acks open up the remote
2410 * window for us.
2412 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2413 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2414 * account rare use of URG, this is not a big flaw.
2416 * Send at most one packet when push_one > 0. Temporarily ignore
2417 * cwnd limit to force at most one packet out when push_one == 2.
2419 * Returns true, if no segments are in flight and we have queued segments,
2420 * but cannot send anything now because of SWS or another problem.
2422 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2423 int push_one, gfp_t gfp)
2425 struct tcp_sock *tp = tcp_sk(sk);
2426 struct sk_buff *skb;
2427 unsigned int tso_segs, sent_pkts;
2428 int cwnd_quota;
2429 int result;
2430 bool is_cwnd_limited = false, is_rwnd_limited = false;
2431 u32 max_segs;
2433 sent_pkts = 0;
2435 tcp_mstamp_refresh(tp);
2436 if (!push_one) {
2437 /* Do MTU probing. */
2438 result = tcp_mtu_probe(sk);
2439 if (!result) {
2440 return false;
2441 } else if (result > 0) {
2442 sent_pkts = 1;
2446 max_segs = tcp_tso_segs(sk, mss_now);
2447 while ((skb = tcp_send_head(sk))) {
2448 unsigned int limit;
2450 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2451 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2452 skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2453 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2454 tcp_init_tso_segs(skb, mss_now);
2455 goto repair; /* Skip network transmission */
2458 if (tcp_pacing_check(sk))
2459 break;
2461 tso_segs = tcp_init_tso_segs(skb, mss_now);
2462 BUG_ON(!tso_segs);
2464 cwnd_quota = tcp_cwnd_test(tp, skb);
2465 if (!cwnd_quota) {
2466 if (push_one == 2)
2467 /* Force out a loss probe pkt. */
2468 cwnd_quota = 1;
2469 else
2470 break;
2473 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2474 is_rwnd_limited = true;
2475 break;
2478 if (tso_segs == 1) {
2479 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2480 (tcp_skb_is_last(sk, skb) ?
2481 nonagle : TCP_NAGLE_PUSH))))
2482 break;
2483 } else {
2484 if (!push_one &&
2485 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2486 &is_rwnd_limited, max_segs))
2487 break;
2490 limit = mss_now;
2491 if (tso_segs > 1 && !tcp_urg_mode(tp))
2492 limit = tcp_mss_split_point(sk, skb, mss_now,
2493 min_t(unsigned int,
2494 cwnd_quota,
2495 max_segs),
2496 nonagle);
2498 if (skb->len > limit &&
2499 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2500 break;
2502 if (tcp_small_queue_check(sk, skb, 0))
2503 break;
2505 /* Argh, we hit an empty skb(), presumably a thread
2506 * is sleeping in sendmsg()/sk_stream_wait_memory().
2507 * We do not want to send a pure-ack packet and have
2508 * a strange looking rtx queue with empty packet(s).
2510 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2511 break;
2513 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2514 break;
2516 repair:
2517 /* Advance the send_head. This one is sent out.
2518 * This call will increment packets_out.
2520 tcp_event_new_data_sent(sk, skb);
2522 tcp_minshall_update(tp, mss_now, skb);
2523 sent_pkts += tcp_skb_pcount(skb);
2525 if (push_one)
2526 break;
2529 if (is_rwnd_limited)
2530 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2531 else
2532 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2534 if (likely(sent_pkts)) {
2535 if (tcp_in_cwnd_reduction(sk))
2536 tp->prr_out += sent_pkts;
2538 /* Send one loss probe per tail loss episode. */
2539 if (push_one != 2)
2540 tcp_schedule_loss_probe(sk, false);
2541 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2542 tcp_cwnd_validate(sk, is_cwnd_limited);
2543 return false;
2545 return !tp->packets_out && !tcp_write_queue_empty(sk);
2548 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2550 struct inet_connection_sock *icsk = inet_csk(sk);
2551 struct tcp_sock *tp = tcp_sk(sk);
2552 u32 timeout, rto_delta_us;
2553 int early_retrans;
2555 /* Don't do any loss probe on a Fast Open connection before 3WHS
2556 * finishes.
2558 if (rcu_access_pointer(tp->fastopen_rsk))
2559 return false;
2561 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2562 /* Schedule a loss probe in 2*RTT for SACK capable connections
2563 * not in loss recovery, that are either limited by cwnd or application.
2565 if ((early_retrans != 3 && early_retrans != 4) ||
2566 !tp->packets_out || !tcp_is_sack(tp) ||
2567 (icsk->icsk_ca_state != TCP_CA_Open &&
2568 icsk->icsk_ca_state != TCP_CA_CWR))
2569 return false;
2571 /* Probe timeout is 2*rtt. Add minimum RTO to account
2572 * for delayed ack when there's one outstanding packet. If no RTT
2573 * sample is available then probe after TCP_TIMEOUT_INIT.
2575 if (tp->srtt_us) {
2576 timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2577 if (tp->packets_out == 1)
2578 timeout += TCP_RTO_MIN;
2579 else
2580 timeout += TCP_TIMEOUT_MIN;
2581 } else {
2582 timeout = TCP_TIMEOUT_INIT;
2585 /* If the RTO formula yields an earlier time, then use that time. */
2586 rto_delta_us = advancing_rto ?
2587 jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2588 tcp_rto_delta_us(sk); /* How far in future is RTO? */
2589 if (rto_delta_us > 0)
2590 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2592 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2593 TCP_RTO_MAX, NULL);
2594 return true;
2597 /* Thanks to skb fast clones, we can detect if a prior transmit of
2598 * a packet is still in a qdisc or driver queue.
2599 * In this case, there is very little point doing a retransmit !
2601 static bool skb_still_in_host_queue(const struct sock *sk,
2602 const struct sk_buff *skb)
2604 if (unlikely(skb_fclone_busy(sk, skb))) {
2605 NET_INC_STATS(sock_net(sk),
2606 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2607 return true;
2609 return false;
2612 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2613 * retransmit the last segment.
2615 void tcp_send_loss_probe(struct sock *sk)
2617 struct tcp_sock *tp = tcp_sk(sk);
2618 struct sk_buff *skb;
2619 int pcount;
2620 int mss = tcp_current_mss(sk);
2622 skb = tcp_send_head(sk);
2623 if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2624 pcount = tp->packets_out;
2625 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2626 if (tp->packets_out > pcount)
2627 goto probe_sent;
2628 goto rearm_timer;
2630 skb = skb_rb_last(&sk->tcp_rtx_queue);
2631 if (unlikely(!skb)) {
2632 WARN_ONCE(tp->packets_out,
2633 "invalid inflight: %u state %u cwnd %u mss %d\n",
2634 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2635 inet_csk(sk)->icsk_pending = 0;
2636 return;
2639 /* At most one outstanding TLP retransmission. */
2640 if (tp->tlp_high_seq)
2641 goto rearm_timer;
2643 if (skb_still_in_host_queue(sk, skb))
2644 goto rearm_timer;
2646 pcount = tcp_skb_pcount(skb);
2647 if (WARN_ON(!pcount))
2648 goto rearm_timer;
2650 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2651 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2652 (pcount - 1) * mss, mss,
2653 GFP_ATOMIC)))
2654 goto rearm_timer;
2655 skb = skb_rb_next(skb);
2658 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2659 goto rearm_timer;
2661 if (__tcp_retransmit_skb(sk, skb, 1))
2662 goto rearm_timer;
2664 /* Record snd_nxt for loss detection. */
2665 tp->tlp_high_seq = tp->snd_nxt;
2667 probe_sent:
2668 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2669 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2670 inet_csk(sk)->icsk_pending = 0;
2671 rearm_timer:
2672 tcp_rearm_rto(sk);
2675 /* Push out any pending frames which were held back due to
2676 * TCP_CORK or attempt at coalescing tiny packets.
2677 * The socket must be locked by the caller.
2679 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2680 int nonagle)
2682 /* If we are closed, the bytes will have to remain here.
2683 * In time closedown will finish, we empty the write queue and
2684 * all will be happy.
2686 if (unlikely(sk->sk_state == TCP_CLOSE))
2687 return;
2689 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2690 sk_gfp_mask(sk, GFP_ATOMIC)))
2691 tcp_check_probe_timer(sk);
2694 /* Send _single_ skb sitting at the send head. This function requires
2695 * true push pending frames to setup probe timer etc.
2697 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2699 struct sk_buff *skb = tcp_send_head(sk);
2701 BUG_ON(!skb || skb->len < mss_now);
2703 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2706 /* This function returns the amount that we can raise the
2707 * usable window based on the following constraints
2709 * 1. The window can never be shrunk once it is offered (RFC 793)
2710 * 2. We limit memory per socket
2712 * RFC 1122:
2713 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2714 * RECV.NEXT + RCV.WIN fixed until:
2715 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2717 * i.e. don't raise the right edge of the window until you can raise
2718 * it at least MSS bytes.
2720 * Unfortunately, the recommended algorithm breaks header prediction,
2721 * since header prediction assumes th->window stays fixed.
2723 * Strictly speaking, keeping th->window fixed violates the receiver
2724 * side SWS prevention criteria. The problem is that under this rule
2725 * a stream of single byte packets will cause the right side of the
2726 * window to always advance by a single byte.
2728 * Of course, if the sender implements sender side SWS prevention
2729 * then this will not be a problem.
2731 * BSD seems to make the following compromise:
2733 * If the free space is less than the 1/4 of the maximum
2734 * space available and the free space is less than 1/2 mss,
2735 * then set the window to 0.
2736 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2737 * Otherwise, just prevent the window from shrinking
2738 * and from being larger than the largest representable value.
2740 * This prevents incremental opening of the window in the regime
2741 * where TCP is limited by the speed of the reader side taking
2742 * data out of the TCP receive queue. It does nothing about
2743 * those cases where the window is constrained on the sender side
2744 * because the pipeline is full.
2746 * BSD also seems to "accidentally" limit itself to windows that are a
2747 * multiple of MSS, at least until the free space gets quite small.
2748 * This would appear to be a side effect of the mbuf implementation.
2749 * Combining these two algorithms results in the observed behavior
2750 * of having a fixed window size at almost all times.
2752 * Below we obtain similar behavior by forcing the offered window to
2753 * a multiple of the mss when it is feasible to do so.
2755 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2756 * Regular options like TIMESTAMP are taken into account.
2758 u32 __tcp_select_window(struct sock *sk)
2760 struct inet_connection_sock *icsk = inet_csk(sk);
2761 struct tcp_sock *tp = tcp_sk(sk);
2762 /* MSS for the peer's data. Previous versions used mss_clamp
2763 * here. I don't know if the value based on our guesses
2764 * of peer's MSS is better for the performance. It's more correct
2765 * but may be worse for the performance because of rcv_mss
2766 * fluctuations. --SAW 1998/11/1
2768 int mss = icsk->icsk_ack.rcv_mss;
2769 int free_space = tcp_space(sk);
2770 int allowed_space = tcp_full_space(sk);
2771 int full_space = min_t(int, tp->window_clamp, allowed_space);
2772 int window;
2774 if (unlikely(mss > full_space)) {
2775 mss = full_space;
2776 if (mss <= 0)
2777 return 0;
2779 if (free_space < (full_space >> 1)) {
2780 icsk->icsk_ack.quick = 0;
2782 if (tcp_under_memory_pressure(sk))
2783 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2784 4U * tp->advmss);
2786 /* free_space might become our new window, make sure we don't
2787 * increase it due to wscale.
2789 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2791 /* if free space is less than mss estimate, or is below 1/16th
2792 * of the maximum allowed, try to move to zero-window, else
2793 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2794 * new incoming data is dropped due to memory limits.
2795 * With large window, mss test triggers way too late in order
2796 * to announce zero window in time before rmem limit kicks in.
2798 if (free_space < (allowed_space >> 4) || free_space < mss)
2799 return 0;
2802 if (free_space > tp->rcv_ssthresh)
2803 free_space = tp->rcv_ssthresh;
2805 /* Don't do rounding if we are using window scaling, since the
2806 * scaled window will not line up with the MSS boundary anyway.
2808 if (tp->rx_opt.rcv_wscale) {
2809 window = free_space;
2811 /* Advertise enough space so that it won't get scaled away.
2812 * Import case: prevent zero window announcement if
2813 * 1<<rcv_wscale > mss.
2815 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2816 } else {
2817 window = tp->rcv_wnd;
2818 /* Get the largest window that is a nice multiple of mss.
2819 * Window clamp already applied above.
2820 * If our current window offering is within 1 mss of the
2821 * free space we just keep it. This prevents the divide
2822 * and multiply from happening most of the time.
2823 * We also don't do any window rounding when the free space
2824 * is too small.
2826 if (window <= free_space - mss || window > free_space)
2827 window = rounddown(free_space, mss);
2828 else if (mss == full_space &&
2829 free_space > window + (full_space >> 1))
2830 window = free_space;
2833 return window;
2836 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2837 const struct sk_buff *next_skb)
2839 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2840 const struct skb_shared_info *next_shinfo =
2841 skb_shinfo(next_skb);
2842 struct skb_shared_info *shinfo = skb_shinfo(skb);
2844 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2845 shinfo->tskey = next_shinfo->tskey;
2846 TCP_SKB_CB(skb)->txstamp_ack |=
2847 TCP_SKB_CB(next_skb)->txstamp_ack;
2851 /* Collapses two adjacent SKB's during retransmission. */
2852 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2854 struct tcp_sock *tp = tcp_sk(sk);
2855 struct sk_buff *next_skb = skb_rb_next(skb);
2856 int next_skb_size;
2858 next_skb_size = next_skb->len;
2860 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2862 if (next_skb_size) {
2863 if (next_skb_size <= skb_availroom(skb))
2864 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2865 next_skb_size);
2866 else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
2867 return false;
2869 tcp_highest_sack_replace(sk, next_skb, skb);
2871 /* Update sequence range on original skb. */
2872 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2874 /* Merge over control information. This moves PSH/FIN etc. over */
2875 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2877 /* All done, get rid of second SKB and account for it so
2878 * packet counting does not break.
2880 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2881 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2883 /* changed transmit queue under us so clear hints */
2884 tcp_clear_retrans_hints_partial(tp);
2885 if (next_skb == tp->retransmit_skb_hint)
2886 tp->retransmit_skb_hint = skb;
2888 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2890 tcp_skb_collapse_tstamp(skb, next_skb);
2892 tcp_rtx_queue_unlink_and_free(next_skb, sk);
2893 return true;
2896 /* Check if coalescing SKBs is legal. */
2897 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2899 if (tcp_skb_pcount(skb) > 1)
2900 return false;
2901 if (skb_cloned(skb))
2902 return false;
2903 /* Some heuristics for collapsing over SACK'd could be invented */
2904 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2905 return false;
2907 return true;
2910 /* Collapse packets in the retransmit queue to make to create
2911 * less packets on the wire. This is only done on retransmission.
2913 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2914 int space)
2916 struct tcp_sock *tp = tcp_sk(sk);
2917 struct sk_buff *skb = to, *tmp;
2918 bool first = true;
2920 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2921 return;
2922 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2923 return;
2925 skb_rbtree_walk_from_safe(skb, tmp) {
2926 if (!tcp_can_collapse(sk, skb))
2927 break;
2929 if (!tcp_skb_can_collapse(to, skb))
2930 break;
2932 space -= skb->len;
2934 if (first) {
2935 first = false;
2936 continue;
2939 if (space < 0)
2940 break;
2942 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2943 break;
2945 if (!tcp_collapse_retrans(sk, to))
2946 break;
2950 /* This retransmits one SKB. Policy decisions and retransmit queue
2951 * state updates are done by the caller. Returns non-zero if an
2952 * error occurred which prevented the send.
2954 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2956 struct inet_connection_sock *icsk = inet_csk(sk);
2957 struct tcp_sock *tp = tcp_sk(sk);
2958 unsigned int cur_mss;
2959 int diff, len, err;
2962 /* Inconclusive MTU probe */
2963 if (icsk->icsk_mtup.probe_size)
2964 icsk->icsk_mtup.probe_size = 0;
2966 /* Do not sent more than we queued. 1/4 is reserved for possible
2967 * copying overhead: fragmentation, tunneling, mangling etc.
2969 if (refcount_read(&sk->sk_wmem_alloc) >
2970 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2971 sk->sk_sndbuf))
2972 return -EAGAIN;
2974 if (skb_still_in_host_queue(sk, skb))
2975 return -EBUSY;
2977 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2978 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2979 WARN_ON_ONCE(1);
2980 return -EINVAL;
2982 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2983 return -ENOMEM;
2986 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2987 return -EHOSTUNREACH; /* Routing failure or similar. */
2989 cur_mss = tcp_current_mss(sk);
2991 /* If receiver has shrunk his window, and skb is out of
2992 * new window, do not retransmit it. The exception is the
2993 * case, when window is shrunk to zero. In this case
2994 * our retransmit serves as a zero window probe.
2996 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2997 TCP_SKB_CB(skb)->seq != tp->snd_una)
2998 return -EAGAIN;
3000 len = cur_mss * segs;
3001 if (skb->len > len) {
3002 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3003 cur_mss, GFP_ATOMIC))
3004 return -ENOMEM; /* We'll try again later. */
3005 } else {
3006 if (skb_unclone(skb, GFP_ATOMIC))
3007 return -ENOMEM;
3009 diff = tcp_skb_pcount(skb);
3010 tcp_set_skb_tso_segs(skb, cur_mss);
3011 diff -= tcp_skb_pcount(skb);
3012 if (diff)
3013 tcp_adjust_pcount(sk, skb, diff);
3014 if (skb->len < cur_mss)
3015 tcp_retrans_try_collapse(sk, skb, cur_mss);
3018 /* RFC3168, section 6.1.1.1. ECN fallback */
3019 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3020 tcp_ecn_clear_syn(sk, skb);
3022 /* Update global and local TCP statistics. */
3023 segs = tcp_skb_pcount(skb);
3024 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3025 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3026 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3027 tp->total_retrans += segs;
3028 tp->bytes_retrans += skb->len;
3030 /* make sure skb->data is aligned on arches that require it
3031 * and check if ack-trimming & collapsing extended the headroom
3032 * beyond what csum_start can cover.
3034 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3035 skb_headroom(skb) >= 0xFFFF)) {
3036 struct sk_buff *nskb;
3038 tcp_skb_tsorted_save(skb) {
3039 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3040 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
3041 -ENOBUFS;
3042 } tcp_skb_tsorted_restore(skb);
3044 if (!err) {
3045 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3046 tcp_rate_skb_sent(sk, skb);
3048 } else {
3049 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3052 /* To avoid taking spuriously low RTT samples based on a timestamp
3053 * for a transmit that never happened, always mark EVER_RETRANS
3055 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3057 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3058 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3059 TCP_SKB_CB(skb)->seq, segs, err);
3061 if (likely(!err)) {
3062 trace_tcp_retransmit_skb(sk, skb);
3063 } else if (err != -EBUSY) {
3064 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3066 return err;
3069 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3071 struct tcp_sock *tp = tcp_sk(sk);
3072 int err = __tcp_retransmit_skb(sk, skb, segs);
3074 if (err == 0) {
3075 #if FASTRETRANS_DEBUG > 0
3076 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3077 net_dbg_ratelimited("retrans_out leaked\n");
3079 #endif
3080 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3081 tp->retrans_out += tcp_skb_pcount(skb);
3084 /* Save stamp of the first (attempted) retransmit. */
3085 if (!tp->retrans_stamp)
3086 tp->retrans_stamp = tcp_skb_timestamp(skb);
3088 if (tp->undo_retrans < 0)
3089 tp->undo_retrans = 0;
3090 tp->undo_retrans += tcp_skb_pcount(skb);
3091 return err;
3094 /* This gets called after a retransmit timeout, and the initially
3095 * retransmitted data is acknowledged. It tries to continue
3096 * resending the rest of the retransmit queue, until either
3097 * we've sent it all or the congestion window limit is reached.
3099 void tcp_xmit_retransmit_queue(struct sock *sk)
3101 const struct inet_connection_sock *icsk = inet_csk(sk);
3102 struct sk_buff *skb, *rtx_head, *hole = NULL;
3103 struct tcp_sock *tp = tcp_sk(sk);
3104 u32 max_segs;
3105 int mib_idx;
3107 if (!tp->packets_out)
3108 return;
3110 rtx_head = tcp_rtx_queue_head(sk);
3111 skb = tp->retransmit_skb_hint ?: rtx_head;
3112 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3113 skb_rbtree_walk_from(skb) {
3114 __u8 sacked;
3115 int segs;
3117 if (tcp_pacing_check(sk))
3118 break;
3120 /* we could do better than to assign each time */
3121 if (!hole)
3122 tp->retransmit_skb_hint = skb;
3124 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3125 if (segs <= 0)
3126 return;
3127 sacked = TCP_SKB_CB(skb)->sacked;
3128 /* In case tcp_shift_skb_data() have aggregated large skbs,
3129 * we need to make sure not sending too bigs TSO packets
3131 segs = min_t(int, segs, max_segs);
3133 if (tp->retrans_out >= tp->lost_out) {
3134 break;
3135 } else if (!(sacked & TCPCB_LOST)) {
3136 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3137 hole = skb;
3138 continue;
3140 } else {
3141 if (icsk->icsk_ca_state != TCP_CA_Loss)
3142 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3143 else
3144 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3147 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3148 continue;
3150 if (tcp_small_queue_check(sk, skb, 1))
3151 return;
3153 if (tcp_retransmit_skb(sk, skb, segs))
3154 return;
3156 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3158 if (tcp_in_cwnd_reduction(sk))
3159 tp->prr_out += tcp_skb_pcount(skb);
3161 if (skb == rtx_head &&
3162 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3163 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3164 inet_csk(sk)->icsk_rto,
3165 TCP_RTO_MAX,
3166 skb);
3170 /* We allow to exceed memory limits for FIN packets to expedite
3171 * connection tear down and (memory) recovery.
3172 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3173 * or even be forced to close flow without any FIN.
3174 * In general, we want to allow one skb per socket to avoid hangs
3175 * with edge trigger epoll()
3177 void sk_forced_mem_schedule(struct sock *sk, int size)
3179 int amt;
3181 if (size <= sk->sk_forward_alloc)
3182 return;
3183 amt = sk_mem_pages(size);
3184 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3185 sk_memory_allocated_add(sk, amt);
3187 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3188 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3191 /* Send a FIN. The caller locks the socket for us.
3192 * We should try to send a FIN packet really hard, but eventually give up.
3194 void tcp_send_fin(struct sock *sk)
3196 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3197 struct tcp_sock *tp = tcp_sk(sk);
3199 /* Optimization, tack on the FIN if we have one skb in write queue and
3200 * this skb was not yet sent, or we are under memory pressure.
3201 * Note: in the latter case, FIN packet will be sent after a timeout,
3202 * as TCP stack thinks it has already been transmitted.
3204 tskb = tail;
3205 if (!tskb && tcp_under_memory_pressure(sk))
3206 tskb = skb_rb_last(&sk->tcp_rtx_queue);
3208 if (tskb) {
3209 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3210 TCP_SKB_CB(tskb)->end_seq++;
3211 tp->write_seq++;
3212 if (!tail) {
3213 /* This means tskb was already sent.
3214 * Pretend we included the FIN on previous transmit.
3215 * We need to set tp->snd_nxt to the value it would have
3216 * if FIN had been sent. This is because retransmit path
3217 * does not change tp->snd_nxt.
3219 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3220 return;
3222 } else {
3223 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3224 if (unlikely(!skb))
3225 return;
3227 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3228 skb_reserve(skb, MAX_TCP_HEADER);
3229 sk_forced_mem_schedule(sk, skb->truesize);
3230 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3231 tcp_init_nondata_skb(skb, tp->write_seq,
3232 TCPHDR_ACK | TCPHDR_FIN);
3233 tcp_queue_skb(sk, skb);
3235 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3238 /* We get here when a process closes a file descriptor (either due to
3239 * an explicit close() or as a byproduct of exit()'ing) and there
3240 * was unread data in the receive queue. This behavior is recommended
3241 * by RFC 2525, section 2.17. -DaveM
3243 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3245 struct sk_buff *skb;
3247 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3249 /* NOTE: No TCP options attached and we never retransmit this. */
3250 skb = alloc_skb(MAX_TCP_HEADER, priority);
3251 if (!skb) {
3252 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3253 return;
3256 /* Reserve space for headers and prepare control bits. */
3257 skb_reserve(skb, MAX_TCP_HEADER);
3258 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3259 TCPHDR_ACK | TCPHDR_RST);
3260 tcp_mstamp_refresh(tcp_sk(sk));
3261 /* Send it off. */
3262 if (tcp_transmit_skb(sk, skb, 0, priority))
3263 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3265 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3266 * skb here is different to the troublesome skb, so use NULL
3268 trace_tcp_send_reset(sk, NULL);
3271 /* Send a crossed SYN-ACK during socket establishment.
3272 * WARNING: This routine must only be called when we have already sent
3273 * a SYN packet that crossed the incoming SYN that caused this routine
3274 * to get called. If this assumption fails then the initial rcv_wnd
3275 * and rcv_wscale values will not be correct.
3277 int tcp_send_synack(struct sock *sk)
3279 struct sk_buff *skb;
3281 skb = tcp_rtx_queue_head(sk);
3282 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3283 pr_err("%s: wrong queue state\n", __func__);
3284 return -EFAULT;
3286 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3287 if (skb_cloned(skb)) {
3288 struct sk_buff *nskb;
3290 tcp_skb_tsorted_save(skb) {
3291 nskb = skb_copy(skb, GFP_ATOMIC);
3292 } tcp_skb_tsorted_restore(skb);
3293 if (!nskb)
3294 return -ENOMEM;
3295 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3296 tcp_highest_sack_replace(sk, skb, nskb);
3297 tcp_rtx_queue_unlink_and_free(skb, sk);
3298 __skb_header_release(nskb);
3299 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3300 sk_wmem_queued_add(sk, nskb->truesize);
3301 sk_mem_charge(sk, nskb->truesize);
3302 skb = nskb;
3305 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3306 tcp_ecn_send_synack(sk, skb);
3308 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3312 * tcp_make_synack - Prepare a SYN-ACK.
3313 * sk: listener socket
3314 * dst: dst entry attached to the SYNACK
3315 * req: request_sock pointer
3317 * Allocate one skb and build a SYNACK packet.
3318 * @dst is consumed : Caller should not use it again.
3320 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3321 struct request_sock *req,
3322 struct tcp_fastopen_cookie *foc,
3323 enum tcp_synack_type synack_type)
3325 struct inet_request_sock *ireq = inet_rsk(req);
3326 const struct tcp_sock *tp = tcp_sk(sk);
3327 struct tcp_md5sig_key *md5 = NULL;
3328 struct tcp_out_options opts;
3329 struct sk_buff *skb;
3330 int tcp_header_size;
3331 struct tcphdr *th;
3332 int mss;
3333 u64 now;
3335 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3336 if (unlikely(!skb)) {
3337 dst_release(dst);
3338 return NULL;
3340 /* Reserve space for headers. */
3341 skb_reserve(skb, MAX_TCP_HEADER);
3343 switch (synack_type) {
3344 case TCP_SYNACK_NORMAL:
3345 skb_set_owner_w(skb, req_to_sk(req));
3346 break;
3347 case TCP_SYNACK_COOKIE:
3348 /* Under synflood, we do not attach skb to a socket,
3349 * to avoid false sharing.
3351 break;
3352 case TCP_SYNACK_FASTOPEN:
3353 /* sk is a const pointer, because we want to express multiple
3354 * cpu might call us concurrently.
3355 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3357 skb_set_owner_w(skb, (struct sock *)sk);
3358 break;
3360 skb_dst_set(skb, dst);
3362 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3364 memset(&opts, 0, sizeof(opts));
3365 now = tcp_clock_ns();
3366 #ifdef CONFIG_SYN_COOKIES
3367 if (unlikely(req->cookie_ts))
3368 skb->skb_mstamp_ns = cookie_init_timestamp(req, now);
3369 else
3370 #endif
3372 skb->skb_mstamp_ns = now;
3373 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3374 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3377 #ifdef CONFIG_TCP_MD5SIG
3378 rcu_read_lock();
3379 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3380 #endif
3381 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3382 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3383 foc) + sizeof(*th);
3385 skb_push(skb, tcp_header_size);
3386 skb_reset_transport_header(skb);
3388 th = (struct tcphdr *)skb->data;
3389 memset(th, 0, sizeof(struct tcphdr));
3390 th->syn = 1;
3391 th->ack = 1;
3392 tcp_ecn_make_synack(req, th);
3393 th->source = htons(ireq->ir_num);
3394 th->dest = ireq->ir_rmt_port;
3395 skb->mark = ireq->ir_mark;
3396 skb->ip_summed = CHECKSUM_PARTIAL;
3397 th->seq = htonl(tcp_rsk(req)->snt_isn);
3398 /* XXX data is queued and acked as is. No buffer/window check */
3399 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3401 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3402 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3403 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3404 th->doff = (tcp_header_size >> 2);
3405 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3407 #ifdef CONFIG_TCP_MD5SIG
3408 /* Okay, we have all we need - do the md5 hash if needed */
3409 if (md5)
3410 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3411 md5, req_to_sk(req), skb);
3412 rcu_read_unlock();
3413 #endif
3415 skb->skb_mstamp_ns = now;
3416 tcp_add_tx_delay(skb, tp);
3418 return skb;
3420 EXPORT_SYMBOL(tcp_make_synack);
3422 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3424 struct inet_connection_sock *icsk = inet_csk(sk);
3425 const struct tcp_congestion_ops *ca;
3426 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3428 if (ca_key == TCP_CA_UNSPEC)
3429 return;
3431 rcu_read_lock();
3432 ca = tcp_ca_find_key(ca_key);
3433 if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3434 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3435 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3436 icsk->icsk_ca_ops = ca;
3438 rcu_read_unlock();
3441 /* Do all connect socket setups that can be done AF independent. */
3442 static void tcp_connect_init(struct sock *sk)
3444 const struct dst_entry *dst = __sk_dst_get(sk);
3445 struct tcp_sock *tp = tcp_sk(sk);
3446 __u8 rcv_wscale;
3447 u32 rcv_wnd;
3449 /* We'll fix this up when we get a response from the other end.
3450 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3452 tp->tcp_header_len = sizeof(struct tcphdr);
3453 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3454 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3456 #ifdef CONFIG_TCP_MD5SIG
3457 if (tp->af_specific->md5_lookup(sk, sk))
3458 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3459 #endif
3461 /* If user gave his TCP_MAXSEG, record it to clamp */
3462 if (tp->rx_opt.user_mss)
3463 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3464 tp->max_window = 0;
3465 tcp_mtup_init(sk);
3466 tcp_sync_mss(sk, dst_mtu(dst));
3468 tcp_ca_dst_init(sk, dst);
3470 if (!tp->window_clamp)
3471 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3472 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3474 tcp_initialize_rcv_mss(sk);
3476 /* limit the window selection if the user enforce a smaller rx buffer */
3477 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3478 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3479 tp->window_clamp = tcp_full_space(sk);
3481 rcv_wnd = tcp_rwnd_init_bpf(sk);
3482 if (rcv_wnd == 0)
3483 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3485 tcp_select_initial_window(sk, tcp_full_space(sk),
3486 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3487 &tp->rcv_wnd,
3488 &tp->window_clamp,
3489 sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3490 &rcv_wscale,
3491 rcv_wnd);
3493 tp->rx_opt.rcv_wscale = rcv_wscale;
3494 tp->rcv_ssthresh = tp->rcv_wnd;
3496 sk->sk_err = 0;
3497 sock_reset_flag(sk, SOCK_DONE);
3498 tp->snd_wnd = 0;
3499 tcp_init_wl(tp, 0);
3500 tcp_write_queue_purge(sk);
3501 tp->snd_una = tp->write_seq;
3502 tp->snd_sml = tp->write_seq;
3503 tp->snd_up = tp->write_seq;
3504 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3506 if (likely(!tp->repair))
3507 tp->rcv_nxt = 0;
3508 else
3509 tp->rcv_tstamp = tcp_jiffies32;
3510 tp->rcv_wup = tp->rcv_nxt;
3511 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3513 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3514 inet_csk(sk)->icsk_retransmits = 0;
3515 tcp_clear_retrans(tp);
3518 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3520 struct tcp_sock *tp = tcp_sk(sk);
3521 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3523 tcb->end_seq += skb->len;
3524 __skb_header_release(skb);
3525 sk_wmem_queued_add(sk, skb->truesize);
3526 sk_mem_charge(sk, skb->truesize);
3527 WRITE_ONCE(tp->write_seq, tcb->end_seq);
3528 tp->packets_out += tcp_skb_pcount(skb);
3531 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3532 * queue a data-only packet after the regular SYN, such that regular SYNs
3533 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3534 * only the SYN sequence, the data are retransmitted in the first ACK.
3535 * If cookie is not cached or other error occurs, falls back to send a
3536 * regular SYN with Fast Open cookie request option.
3538 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3540 struct tcp_sock *tp = tcp_sk(sk);
3541 struct tcp_fastopen_request *fo = tp->fastopen_req;
3542 int space, err = 0;
3543 struct sk_buff *syn_data;
3545 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3546 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3547 goto fallback;
3549 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3550 * user-MSS. Reserve maximum option space for middleboxes that add
3551 * private TCP options. The cost is reduced data space in SYN :(
3553 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3555 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3556 MAX_TCP_OPTION_SPACE;
3558 space = min_t(size_t, space, fo->size);
3560 /* limit to order-0 allocations */
3561 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3563 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3564 if (!syn_data)
3565 goto fallback;
3566 syn_data->ip_summed = CHECKSUM_PARTIAL;
3567 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3568 if (space) {
3569 int copied = copy_from_iter(skb_put(syn_data, space), space,
3570 &fo->data->msg_iter);
3571 if (unlikely(!copied)) {
3572 tcp_skb_tsorted_anchor_cleanup(syn_data);
3573 kfree_skb(syn_data);
3574 goto fallback;
3576 if (copied != space) {
3577 skb_trim(syn_data, copied);
3578 space = copied;
3580 skb_zcopy_set(syn_data, fo->uarg, NULL);
3582 /* No more data pending in inet_wait_for_connect() */
3583 if (space == fo->size)
3584 fo->data = NULL;
3585 fo->copied = space;
3587 tcp_connect_queue_skb(sk, syn_data);
3588 if (syn_data->len)
3589 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3591 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3593 syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3595 /* Now full SYN+DATA was cloned and sent (or not),
3596 * remove the SYN from the original skb (syn_data)
3597 * we keep in write queue in case of a retransmit, as we
3598 * also have the SYN packet (with no data) in the same queue.
3600 TCP_SKB_CB(syn_data)->seq++;
3601 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3602 if (!err) {
3603 tp->syn_data = (fo->copied > 0);
3604 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3605 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3606 goto done;
3609 /* data was not sent, put it in write_queue */
3610 __skb_queue_tail(&sk->sk_write_queue, syn_data);
3611 tp->packets_out -= tcp_skb_pcount(syn_data);
3613 fallback:
3614 /* Send a regular SYN with Fast Open cookie request option */
3615 if (fo->cookie.len > 0)
3616 fo->cookie.len = 0;
3617 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3618 if (err)
3619 tp->syn_fastopen = 0;
3620 done:
3621 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3622 return err;
3625 /* Build a SYN and send it off. */
3626 int tcp_connect(struct sock *sk)
3628 struct tcp_sock *tp = tcp_sk(sk);
3629 struct sk_buff *buff;
3630 int err;
3632 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3634 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3635 return -EHOSTUNREACH; /* Routing failure or similar. */
3637 tcp_connect_init(sk);
3639 if (unlikely(tp->repair)) {
3640 tcp_finish_connect(sk, NULL);
3641 return 0;
3644 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3645 if (unlikely(!buff))
3646 return -ENOBUFS;
3648 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3649 tcp_mstamp_refresh(tp);
3650 tp->retrans_stamp = tcp_time_stamp(tp);
3651 tcp_connect_queue_skb(sk, buff);
3652 tcp_ecn_send_syn(sk, buff);
3653 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3655 /* Send off SYN; include data in Fast Open. */
3656 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3657 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3658 if (err == -ECONNREFUSED)
3659 return err;
3661 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3662 * in order to make this packet get counted in tcpOutSegs.
3664 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3665 tp->pushed_seq = tp->write_seq;
3666 buff = tcp_send_head(sk);
3667 if (unlikely(buff)) {
3668 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3669 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
3671 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3673 /* Timer for repeating the SYN until an answer. */
3674 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3675 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3676 return 0;
3678 EXPORT_SYMBOL(tcp_connect);
3680 /* Send out a delayed ack, the caller does the policy checking
3681 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3682 * for details.
3684 void tcp_send_delayed_ack(struct sock *sk)
3686 struct inet_connection_sock *icsk = inet_csk(sk);
3687 int ato = icsk->icsk_ack.ato;
3688 unsigned long timeout;
3690 if (ato > TCP_DELACK_MIN) {
3691 const struct tcp_sock *tp = tcp_sk(sk);
3692 int max_ato = HZ / 2;
3694 if (inet_csk_in_pingpong_mode(sk) ||
3695 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3696 max_ato = TCP_DELACK_MAX;
3698 /* Slow path, intersegment interval is "high". */
3700 /* If some rtt estimate is known, use it to bound delayed ack.
3701 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3702 * directly.
3704 if (tp->srtt_us) {
3705 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3706 TCP_DELACK_MIN);
3708 if (rtt < max_ato)
3709 max_ato = rtt;
3712 ato = min(ato, max_ato);
3715 /* Stay within the limit we were given */
3716 timeout = jiffies + ato;
3718 /* Use new timeout only if there wasn't a older one earlier. */
3719 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3720 /* If delack timer was blocked or is about to expire,
3721 * send ACK now.
3723 if (icsk->icsk_ack.blocked ||
3724 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3725 tcp_send_ack(sk);
3726 return;
3729 if (!time_before(timeout, icsk->icsk_ack.timeout))
3730 timeout = icsk->icsk_ack.timeout;
3732 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3733 icsk->icsk_ack.timeout = timeout;
3734 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3737 /* This routine sends an ack and also updates the window. */
3738 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3740 struct sk_buff *buff;
3742 /* If we have been reset, we may not send again. */
3743 if (sk->sk_state == TCP_CLOSE)
3744 return;
3746 /* We are not putting this on the write queue, so
3747 * tcp_transmit_skb() will set the ownership to this
3748 * sock.
3750 buff = alloc_skb(MAX_TCP_HEADER,
3751 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3752 if (unlikely(!buff)) {
3753 inet_csk_schedule_ack(sk);
3754 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3755 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3756 TCP_DELACK_MAX, TCP_RTO_MAX);
3757 return;
3760 /* Reserve space for headers and prepare control bits. */
3761 skb_reserve(buff, MAX_TCP_HEADER);
3762 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3764 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3765 * too much.
3766 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3768 skb_set_tcp_pure_ack(buff);
3770 /* Send it off, this clears delayed acks for us. */
3771 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3773 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3775 void tcp_send_ack(struct sock *sk)
3777 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3780 /* This routine sends a packet with an out of date sequence
3781 * number. It assumes the other end will try to ack it.
3783 * Question: what should we make while urgent mode?
3784 * 4.4BSD forces sending single byte of data. We cannot send
3785 * out of window data, because we have SND.NXT==SND.MAX...
3787 * Current solution: to send TWO zero-length segments in urgent mode:
3788 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3789 * out-of-date with SND.UNA-1 to probe window.
3791 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3793 struct tcp_sock *tp = tcp_sk(sk);
3794 struct sk_buff *skb;
3796 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3797 skb = alloc_skb(MAX_TCP_HEADER,
3798 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3799 if (!skb)
3800 return -1;
3802 /* Reserve space for headers and set control bits. */
3803 skb_reserve(skb, MAX_TCP_HEADER);
3804 /* Use a previous sequence. This should cause the other
3805 * end to send an ack. Don't queue or clone SKB, just
3806 * send it.
3808 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3809 NET_INC_STATS(sock_net(sk), mib);
3810 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3813 /* Called from setsockopt( ... TCP_REPAIR ) */
3814 void tcp_send_window_probe(struct sock *sk)
3816 if (sk->sk_state == TCP_ESTABLISHED) {
3817 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3818 tcp_mstamp_refresh(tcp_sk(sk));
3819 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3823 /* Initiate keepalive or window probe from timer. */
3824 int tcp_write_wakeup(struct sock *sk, int mib)
3826 struct tcp_sock *tp = tcp_sk(sk);
3827 struct sk_buff *skb;
3829 if (sk->sk_state == TCP_CLOSE)
3830 return -1;
3832 skb = tcp_send_head(sk);
3833 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3834 int err;
3835 unsigned int mss = tcp_current_mss(sk);
3836 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3838 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3839 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3841 /* We are probing the opening of a window
3842 * but the window size is != 0
3843 * must have been a result SWS avoidance ( sender )
3845 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3846 skb->len > mss) {
3847 seg_size = min(seg_size, mss);
3848 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3849 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3850 skb, seg_size, mss, GFP_ATOMIC))
3851 return -1;
3852 } else if (!tcp_skb_pcount(skb))
3853 tcp_set_skb_tso_segs(skb, mss);
3855 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3856 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3857 if (!err)
3858 tcp_event_new_data_sent(sk, skb);
3859 return err;
3860 } else {
3861 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3862 tcp_xmit_probe_skb(sk, 1, mib);
3863 return tcp_xmit_probe_skb(sk, 0, mib);
3867 /* A window probe timeout has occurred. If window is not closed send
3868 * a partial packet else a zero probe.
3870 void tcp_send_probe0(struct sock *sk)
3872 struct inet_connection_sock *icsk = inet_csk(sk);
3873 struct tcp_sock *tp = tcp_sk(sk);
3874 struct net *net = sock_net(sk);
3875 unsigned long timeout;
3876 int err;
3878 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3880 if (tp->packets_out || tcp_write_queue_empty(sk)) {
3881 /* Cancel probe timer, if it is not required. */
3882 icsk->icsk_probes_out = 0;
3883 icsk->icsk_backoff = 0;
3884 return;
3887 icsk->icsk_probes_out++;
3888 if (err <= 0) {
3889 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3890 icsk->icsk_backoff++;
3891 timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
3892 } else {
3893 /* If packet was not sent due to local congestion,
3894 * Let senders fight for local resources conservatively.
3896 timeout = TCP_RESOURCE_PROBE_INTERVAL;
3898 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX, NULL);
3901 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3903 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3904 struct flowi fl;
3905 int res;
3907 tcp_rsk(req)->txhash = net_tx_rndhash();
3908 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3909 if (!res) {
3910 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3911 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3912 if (unlikely(tcp_passive_fastopen(sk)))
3913 tcp_sk(sk)->total_retrans++;
3914 trace_tcp_retransmit_synack(sk, req);
3916 return res;
3918 EXPORT_SYMBOL(tcp_rtx_synack);