1 // SPDX-License-Identifier: GPL-2.0-only
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Implementation of the Transmission Control Protocol(TCP).
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Changes: Pedro Roque : Retransmit queue handled by TCP.
24 * : Fragmentation on mtu decrease
25 * : Segment collapse on retransmit
28 * Linus Torvalds : send_delayed_ack
29 * David S. Miller : Charge memory using the right skb
30 * during syn/ack processing.
31 * David S. Miller : Output engine completely rewritten.
32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
33 * Cacophonix Gaul : draft-minshall-nagle-01
34 * J Hadi Salim : ECN support
38 #define pr_fmt(fmt) "TCP: " fmt
41 #include <net/mptcp.h>
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
48 #include <trace/events/tcp.h>
50 /* Refresh clocks of a TCP socket,
51 * ensuring monotically increasing values.
53 void tcp_mstamp_refresh(struct tcp_sock
*tp
)
55 u64 val
= tcp_clock_ns();
57 tp
->tcp_clock_cache
= val
;
58 tp
->tcp_mstamp
= div_u64(val
, NSEC_PER_USEC
);
61 static bool tcp_write_xmit(struct sock
*sk
, unsigned int mss_now
, int nonagle
,
62 int push_one
, gfp_t gfp
);
64 /* Account for new data that has been sent to the network. */
65 static void tcp_event_new_data_sent(struct sock
*sk
, struct sk_buff
*skb
)
67 struct inet_connection_sock
*icsk
= inet_csk(sk
);
68 struct tcp_sock
*tp
= tcp_sk(sk
);
69 unsigned int prior_packets
= tp
->packets_out
;
71 WRITE_ONCE(tp
->snd_nxt
, TCP_SKB_CB(skb
)->end_seq
);
73 __skb_unlink(skb
, &sk
->sk_write_queue
);
74 tcp_rbtree_insert(&sk
->tcp_rtx_queue
, skb
);
76 if (tp
->highest_sack
== NULL
)
77 tp
->highest_sack
= skb
;
79 tp
->packets_out
+= tcp_skb_pcount(skb
);
80 if (!prior_packets
|| icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
)
83 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPORIGDATASENT
,
87 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
88 * window scaling factor due to loss of precision.
89 * If window has been shrunk, what should we make? It is not clear at all.
90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92 * invalid. OK, let's make this for now:
94 static inline __u32
tcp_acceptable_seq(const struct sock
*sk
)
96 const struct tcp_sock
*tp
= tcp_sk(sk
);
98 if (!before(tcp_wnd_end(tp
), tp
->snd_nxt
) ||
99 (tp
->rx_opt
.wscale_ok
&&
100 ((tp
->snd_nxt
- tcp_wnd_end(tp
)) < (1 << tp
->rx_opt
.rcv_wscale
))))
103 return tcp_wnd_end(tp
);
106 /* Calculate mss to advertise in SYN segment.
107 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109 * 1. It is independent of path mtu.
110 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
111 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
112 * attached devices, because some buggy hosts are confused by
114 * 4. We do not make 3, we advertise MSS, calculated from first
115 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
116 * This may be overridden via information stored in routing table.
117 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
118 * probably even Jumbo".
120 static __u16
tcp_advertise_mss(struct sock
*sk
)
122 struct tcp_sock
*tp
= tcp_sk(sk
);
123 const struct dst_entry
*dst
= __sk_dst_get(sk
);
124 int mss
= tp
->advmss
;
127 unsigned int metric
= dst_metric_advmss(dst
);
138 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
139 * This is the first part of cwnd validation mechanism.
141 void tcp_cwnd_restart(struct sock
*sk
, s32 delta
)
143 struct tcp_sock
*tp
= tcp_sk(sk
);
144 u32 restart_cwnd
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
145 u32 cwnd
= tp
->snd_cwnd
;
147 tcp_ca_event(sk
, CA_EVENT_CWND_RESTART
);
149 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
150 restart_cwnd
= min(restart_cwnd
, cwnd
);
152 while ((delta
-= inet_csk(sk
)->icsk_rto
) > 0 && cwnd
> restart_cwnd
)
154 tp
->snd_cwnd
= max(cwnd
, restart_cwnd
);
155 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
156 tp
->snd_cwnd_used
= 0;
159 /* Congestion state accounting after a packet has been sent. */
160 static void tcp_event_data_sent(struct tcp_sock
*tp
,
163 struct inet_connection_sock
*icsk
= inet_csk(sk
);
164 const u32 now
= tcp_jiffies32
;
166 if (tcp_packets_in_flight(tp
) == 0)
167 tcp_ca_event(sk
, CA_EVENT_TX_START
);
169 /* If this is the first data packet sent in response to the
170 * previous received data,
171 * and it is a reply for ato after last received packet,
172 * increase pingpong count.
174 if (before(tp
->lsndtime
, icsk
->icsk_ack
.lrcvtime
) &&
175 (u32
)(now
- icsk
->icsk_ack
.lrcvtime
) < icsk
->icsk_ack
.ato
)
176 inet_csk_inc_pingpong_cnt(sk
);
181 /* Account for an ACK we sent. */
182 static inline void tcp_event_ack_sent(struct sock
*sk
, unsigned int pkts
,
185 struct tcp_sock
*tp
= tcp_sk(sk
);
187 if (unlikely(tp
->compressed_ack
> TCP_FASTRETRANS_THRESH
)) {
188 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPACKCOMPRESSED
,
189 tp
->compressed_ack
- TCP_FASTRETRANS_THRESH
);
190 tp
->compressed_ack
= TCP_FASTRETRANS_THRESH
;
191 if (hrtimer_try_to_cancel(&tp
->compressed_ack_timer
) == 1)
195 if (unlikely(rcv_nxt
!= tp
->rcv_nxt
))
196 return; /* Special ACK sent by DCTCP to reflect ECN */
197 tcp_dec_quickack_mode(sk
, pkts
);
198 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_DACK
);
201 /* Determine a window scaling and initial window to offer.
202 * Based on the assumption that the given amount of space
203 * will be offered. Store the results in the tp structure.
204 * NOTE: for smooth operation initial space offering should
205 * be a multiple of mss if possible. We assume here that mss >= 1.
206 * This MUST be enforced by all callers.
208 void tcp_select_initial_window(const struct sock
*sk
, int __space
, __u32 mss
,
209 __u32
*rcv_wnd
, __u32
*window_clamp
,
210 int wscale_ok
, __u8
*rcv_wscale
,
213 unsigned int space
= (__space
< 0 ? 0 : __space
);
215 /* If no clamp set the clamp to the max possible scaled window */
216 if (*window_clamp
== 0)
217 (*window_clamp
) = (U16_MAX
<< TCP_MAX_WSCALE
);
218 space
= min(*window_clamp
, space
);
220 /* Quantize space offering to a multiple of mss if possible. */
222 space
= rounddown(space
, mss
);
224 /* NOTE: offering an initial window larger than 32767
225 * will break some buggy TCP stacks. If the admin tells us
226 * it is likely we could be speaking with such a buggy stack
227 * we will truncate our initial window offering to 32K-1
228 * unless the remote has sent us a window scaling option,
229 * which we interpret as a sign the remote TCP is not
230 * misinterpreting the window field as a signed quantity.
232 if (sock_net(sk
)->ipv4
.sysctl_tcp_workaround_signed_windows
)
233 (*rcv_wnd
) = min(space
, MAX_TCP_WINDOW
);
235 (*rcv_wnd
) = min_t(u32
, space
, U16_MAX
);
238 *rcv_wnd
= min(*rcv_wnd
, init_rcv_wnd
* mss
);
242 /* Set window scaling on max possible window */
243 space
= max_t(u32
, space
, sock_net(sk
)->ipv4
.sysctl_tcp_rmem
[2]);
244 space
= max_t(u32
, space
, sysctl_rmem_max
);
245 space
= min_t(u32
, space
, *window_clamp
);
246 *rcv_wscale
= clamp_t(int, ilog2(space
) - 15,
249 /* Set the clamp no higher than max representable value */
250 (*window_clamp
) = min_t(__u32
, U16_MAX
<< (*rcv_wscale
), *window_clamp
);
252 EXPORT_SYMBOL(tcp_select_initial_window
);
254 /* Chose a new window to advertise, update state in tcp_sock for the
255 * socket, and return result with RFC1323 scaling applied. The return
256 * value can be stuffed directly into th->window for an outgoing
259 static u16
tcp_select_window(struct sock
*sk
)
261 struct tcp_sock
*tp
= tcp_sk(sk
);
262 u32 old_win
= tp
->rcv_wnd
;
263 u32 cur_win
= tcp_receive_window(tp
);
264 u32 new_win
= __tcp_select_window(sk
);
266 /* Never shrink the offered window */
267 if (new_win
< cur_win
) {
268 /* Danger Will Robinson!
269 * Don't update rcv_wup/rcv_wnd here or else
270 * we will not be able to advertise a zero
271 * window in time. --DaveM
273 * Relax Will Robinson.
276 NET_INC_STATS(sock_net(sk
),
277 LINUX_MIB_TCPWANTZEROWINDOWADV
);
278 new_win
= ALIGN(cur_win
, 1 << tp
->rx_opt
.rcv_wscale
);
280 tp
->rcv_wnd
= new_win
;
281 tp
->rcv_wup
= tp
->rcv_nxt
;
283 /* Make sure we do not exceed the maximum possible
286 if (!tp
->rx_opt
.rcv_wscale
&&
287 sock_net(sk
)->ipv4
.sysctl_tcp_workaround_signed_windows
)
288 new_win
= min(new_win
, MAX_TCP_WINDOW
);
290 new_win
= min(new_win
, (65535U << tp
->rx_opt
.rcv_wscale
));
292 /* RFC1323 scaling applied */
293 new_win
>>= tp
->rx_opt
.rcv_wscale
;
295 /* If we advertise zero window, disable fast path. */
299 NET_INC_STATS(sock_net(sk
),
300 LINUX_MIB_TCPTOZEROWINDOWADV
);
301 } else if (old_win
== 0) {
302 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPFROMZEROWINDOWADV
);
308 /* Packet ECN state for a SYN-ACK */
309 static void tcp_ecn_send_synack(struct sock
*sk
, struct sk_buff
*skb
)
311 const struct tcp_sock
*tp
= tcp_sk(sk
);
313 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_CWR
;
314 if (!(tp
->ecn_flags
& TCP_ECN_OK
))
315 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_ECE
;
316 else if (tcp_ca_needs_ecn(sk
) ||
317 tcp_bpf_ca_needs_ecn(sk
))
321 /* Packet ECN state for a SYN. */
322 static void tcp_ecn_send_syn(struct sock
*sk
, struct sk_buff
*skb
)
324 struct tcp_sock
*tp
= tcp_sk(sk
);
325 bool bpf_needs_ecn
= tcp_bpf_ca_needs_ecn(sk
);
326 bool use_ecn
= sock_net(sk
)->ipv4
.sysctl_tcp_ecn
== 1 ||
327 tcp_ca_needs_ecn(sk
) || bpf_needs_ecn
;
330 const struct dst_entry
*dst
= __sk_dst_get(sk
);
332 if (dst
&& dst_feature(dst
, RTAX_FEATURE_ECN
))
339 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_ECE
| TCPHDR_CWR
;
340 tp
->ecn_flags
= TCP_ECN_OK
;
341 if (tcp_ca_needs_ecn(sk
) || bpf_needs_ecn
)
346 static void tcp_ecn_clear_syn(struct sock
*sk
, struct sk_buff
*skb
)
348 if (sock_net(sk
)->ipv4
.sysctl_tcp_ecn_fallback
)
349 /* tp->ecn_flags are cleared at a later point in time when
350 * SYN ACK is ultimatively being received.
352 TCP_SKB_CB(skb
)->tcp_flags
&= ~(TCPHDR_ECE
| TCPHDR_CWR
);
356 tcp_ecn_make_synack(const struct request_sock
*req
, struct tcphdr
*th
)
358 if (inet_rsk(req
)->ecn_ok
)
362 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
365 static void tcp_ecn_send(struct sock
*sk
, struct sk_buff
*skb
,
366 struct tcphdr
*th
, int tcp_header_len
)
368 struct tcp_sock
*tp
= tcp_sk(sk
);
370 if (tp
->ecn_flags
& TCP_ECN_OK
) {
371 /* Not-retransmitted data segment: set ECT and inject CWR. */
372 if (skb
->len
!= tcp_header_len
&&
373 !before(TCP_SKB_CB(skb
)->seq
, tp
->snd_nxt
)) {
375 if (tp
->ecn_flags
& TCP_ECN_QUEUE_CWR
) {
376 tp
->ecn_flags
&= ~TCP_ECN_QUEUE_CWR
;
378 skb_shinfo(skb
)->gso_type
|= SKB_GSO_TCP_ECN
;
380 } else if (!tcp_ca_needs_ecn(sk
)) {
381 /* ACK or retransmitted segment: clear ECT|CE */
382 INET_ECN_dontxmit(sk
);
384 if (tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)
389 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
390 * auto increment end seqno.
392 static void tcp_init_nondata_skb(struct sk_buff
*skb
, u32 seq
, u8 flags
)
394 skb
->ip_summed
= CHECKSUM_PARTIAL
;
396 TCP_SKB_CB(skb
)->tcp_flags
= flags
;
397 TCP_SKB_CB(skb
)->sacked
= 0;
399 tcp_skb_pcount_set(skb
, 1);
401 TCP_SKB_CB(skb
)->seq
= seq
;
402 if (flags
& (TCPHDR_SYN
| TCPHDR_FIN
))
404 TCP_SKB_CB(skb
)->end_seq
= seq
;
407 static inline bool tcp_urg_mode(const struct tcp_sock
*tp
)
409 return tp
->snd_una
!= tp
->snd_up
;
412 #define OPTION_SACK_ADVERTISE (1 << 0)
413 #define OPTION_TS (1 << 1)
414 #define OPTION_MD5 (1 << 2)
415 #define OPTION_WSCALE (1 << 3)
416 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
417 #define OPTION_SMC (1 << 9)
418 #define OPTION_MPTCP (1 << 10)
420 static void smc_options_write(__be32
*ptr
, u16
*options
)
422 #if IS_ENABLED(CONFIG_SMC)
423 if (static_branch_unlikely(&tcp_have_smc
)) {
424 if (unlikely(OPTION_SMC
& *options
)) {
425 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
428 (TCPOLEN_EXP_SMC_BASE
));
429 *ptr
++ = htonl(TCPOPT_SMC_MAGIC
);
435 struct tcp_out_options
{
436 u16 options
; /* bit field of OPTION_* */
437 u16 mss
; /* 0 to disable */
438 u8 ws
; /* window scale, 0 to disable */
439 u8 num_sack_blocks
; /* number of SACK blocks to include */
440 u8 hash_size
; /* bytes in hash_location */
441 __u8
*hash_location
; /* temporary pointer, overloaded */
442 __u32 tsval
, tsecr
; /* need to include OPTION_TS */
443 struct tcp_fastopen_cookie
*fastopen_cookie
; /* Fast open cookie */
444 struct mptcp_out_options mptcp
;
447 static void mptcp_options_write(__be32
*ptr
, struct tcp_out_options
*opts
)
449 #if IS_ENABLED(CONFIG_MPTCP)
450 if (unlikely(OPTION_MPTCP
& opts
->options
))
451 mptcp_write_options(ptr
, &opts
->mptcp
);
455 /* Write previously computed TCP options to the packet.
457 * Beware: Something in the Internet is very sensitive to the ordering of
458 * TCP options, we learned this through the hard way, so be careful here.
459 * Luckily we can at least blame others for their non-compliance but from
460 * inter-operability perspective it seems that we're somewhat stuck with
461 * the ordering which we have been using if we want to keep working with
462 * those broken things (not that it currently hurts anybody as there isn't
463 * particular reason why the ordering would need to be changed).
465 * At least SACK_PERM as the first option is known to lead to a disaster
466 * (but it may well be that other scenarios fail similarly).
468 static void tcp_options_write(__be32
*ptr
, struct tcp_sock
*tp
,
469 struct tcp_out_options
*opts
)
471 u16 options
= opts
->options
; /* mungable copy */
473 if (unlikely(OPTION_MD5
& options
)) {
474 *ptr
++ = htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16) |
475 (TCPOPT_MD5SIG
<< 8) | TCPOLEN_MD5SIG
);
476 /* overload cookie hash location */
477 opts
->hash_location
= (__u8
*)ptr
;
481 if (unlikely(opts
->mss
)) {
482 *ptr
++ = htonl((TCPOPT_MSS
<< 24) |
483 (TCPOLEN_MSS
<< 16) |
487 if (likely(OPTION_TS
& options
)) {
488 if (unlikely(OPTION_SACK_ADVERTISE
& options
)) {
489 *ptr
++ = htonl((TCPOPT_SACK_PERM
<< 24) |
490 (TCPOLEN_SACK_PERM
<< 16) |
491 (TCPOPT_TIMESTAMP
<< 8) |
493 options
&= ~OPTION_SACK_ADVERTISE
;
495 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
497 (TCPOPT_TIMESTAMP
<< 8) |
500 *ptr
++ = htonl(opts
->tsval
);
501 *ptr
++ = htonl(opts
->tsecr
);
504 if (unlikely(OPTION_SACK_ADVERTISE
& options
)) {
505 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
507 (TCPOPT_SACK_PERM
<< 8) |
511 if (unlikely(OPTION_WSCALE
& options
)) {
512 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
513 (TCPOPT_WINDOW
<< 16) |
514 (TCPOLEN_WINDOW
<< 8) |
518 if (unlikely(opts
->num_sack_blocks
)) {
519 struct tcp_sack_block
*sp
= tp
->rx_opt
.dsack
?
520 tp
->duplicate_sack
: tp
->selective_acks
;
523 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
526 (TCPOLEN_SACK_BASE
+ (opts
->num_sack_blocks
*
527 TCPOLEN_SACK_PERBLOCK
)));
529 for (this_sack
= 0; this_sack
< opts
->num_sack_blocks
;
531 *ptr
++ = htonl(sp
[this_sack
].start_seq
);
532 *ptr
++ = htonl(sp
[this_sack
].end_seq
);
535 tp
->rx_opt
.dsack
= 0;
538 if (unlikely(OPTION_FAST_OPEN_COOKIE
& options
)) {
539 struct tcp_fastopen_cookie
*foc
= opts
->fastopen_cookie
;
541 u32 len
; /* Fast Open option length */
544 len
= TCPOLEN_EXP_FASTOPEN_BASE
+ foc
->len
;
545 *ptr
= htonl((TCPOPT_EXP
<< 24) | (len
<< 16) |
546 TCPOPT_FASTOPEN_MAGIC
);
547 p
+= TCPOLEN_EXP_FASTOPEN_BASE
;
549 len
= TCPOLEN_FASTOPEN_BASE
+ foc
->len
;
550 *p
++ = TCPOPT_FASTOPEN
;
554 memcpy(p
, foc
->val
, foc
->len
);
555 if ((len
& 3) == 2) {
556 p
[foc
->len
] = TCPOPT_NOP
;
557 p
[foc
->len
+ 1] = TCPOPT_NOP
;
559 ptr
+= (len
+ 3) >> 2;
562 smc_options_write(ptr
, &options
);
564 mptcp_options_write(ptr
, opts
);
567 static void smc_set_option(const struct tcp_sock
*tp
,
568 struct tcp_out_options
*opts
,
569 unsigned int *remaining
)
571 #if IS_ENABLED(CONFIG_SMC)
572 if (static_branch_unlikely(&tcp_have_smc
)) {
574 if (*remaining
>= TCPOLEN_EXP_SMC_BASE_ALIGNED
) {
575 opts
->options
|= OPTION_SMC
;
576 *remaining
-= TCPOLEN_EXP_SMC_BASE_ALIGNED
;
583 static void smc_set_option_cond(const struct tcp_sock
*tp
,
584 const struct inet_request_sock
*ireq
,
585 struct tcp_out_options
*opts
,
586 unsigned int *remaining
)
588 #if IS_ENABLED(CONFIG_SMC)
589 if (static_branch_unlikely(&tcp_have_smc
)) {
590 if (tp
->syn_smc
&& ireq
->smc_ok
) {
591 if (*remaining
>= TCPOLEN_EXP_SMC_BASE_ALIGNED
) {
592 opts
->options
|= OPTION_SMC
;
593 *remaining
-= TCPOLEN_EXP_SMC_BASE_ALIGNED
;
600 static void mptcp_set_option_cond(const struct request_sock
*req
,
601 struct tcp_out_options
*opts
,
602 unsigned int *remaining
)
604 if (rsk_is_mptcp(req
)) {
607 if (mptcp_synack_options(req
, &size
, &opts
->mptcp
)) {
608 if (*remaining
>= size
) {
609 opts
->options
|= OPTION_MPTCP
;
616 /* Compute TCP options for SYN packets. This is not the final
617 * network wire format yet.
619 static unsigned int tcp_syn_options(struct sock
*sk
, struct sk_buff
*skb
,
620 struct tcp_out_options
*opts
,
621 struct tcp_md5sig_key
**md5
)
623 struct tcp_sock
*tp
= tcp_sk(sk
);
624 unsigned int remaining
= MAX_TCP_OPTION_SPACE
;
625 struct tcp_fastopen_request
*fastopen
= tp
->fastopen_req
;
628 #ifdef CONFIG_TCP_MD5SIG
629 if (static_branch_unlikely(&tcp_md5_needed
) &&
630 rcu_access_pointer(tp
->md5sig_info
)) {
631 *md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
633 opts
->options
|= OPTION_MD5
;
634 remaining
-= TCPOLEN_MD5SIG_ALIGNED
;
639 /* We always get an MSS option. The option bytes which will be seen in
640 * normal data packets should timestamps be used, must be in the MSS
641 * advertised. But we subtract them from tp->mss_cache so that
642 * calculations in tcp_sendmsg are simpler etc. So account for this
643 * fact here if necessary. If we don't do this correctly, as a
644 * receiver we won't recognize data packets as being full sized when we
645 * should, and thus we won't abide by the delayed ACK rules correctly.
646 * SACKs don't matter, we never delay an ACK when we have any of those
648 opts
->mss
= tcp_advertise_mss(sk
);
649 remaining
-= TCPOLEN_MSS_ALIGNED
;
651 if (likely(sock_net(sk
)->ipv4
.sysctl_tcp_timestamps
&& !*md5
)) {
652 opts
->options
|= OPTION_TS
;
653 opts
->tsval
= tcp_skb_timestamp(skb
) + tp
->tsoffset
;
654 opts
->tsecr
= tp
->rx_opt
.ts_recent
;
655 remaining
-= TCPOLEN_TSTAMP_ALIGNED
;
657 if (likely(sock_net(sk
)->ipv4
.sysctl_tcp_window_scaling
)) {
658 opts
->ws
= tp
->rx_opt
.rcv_wscale
;
659 opts
->options
|= OPTION_WSCALE
;
660 remaining
-= TCPOLEN_WSCALE_ALIGNED
;
662 if (likely(sock_net(sk
)->ipv4
.sysctl_tcp_sack
)) {
663 opts
->options
|= OPTION_SACK_ADVERTISE
;
664 if (unlikely(!(OPTION_TS
& opts
->options
)))
665 remaining
-= TCPOLEN_SACKPERM_ALIGNED
;
668 if (fastopen
&& fastopen
->cookie
.len
>= 0) {
669 u32 need
= fastopen
->cookie
.len
;
671 need
+= fastopen
->cookie
.exp
? TCPOLEN_EXP_FASTOPEN_BASE
:
672 TCPOLEN_FASTOPEN_BASE
;
673 need
= (need
+ 3) & ~3U; /* Align to 32 bits */
674 if (remaining
>= need
) {
675 opts
->options
|= OPTION_FAST_OPEN_COOKIE
;
676 opts
->fastopen_cookie
= &fastopen
->cookie
;
678 tp
->syn_fastopen
= 1;
679 tp
->syn_fastopen_exp
= fastopen
->cookie
.exp
? 1 : 0;
683 smc_set_option(tp
, opts
, &remaining
);
685 if (sk_is_mptcp(sk
)) {
688 if (mptcp_syn_options(sk
, skb
, &size
, &opts
->mptcp
)) {
689 opts
->options
|= OPTION_MPTCP
;
694 return MAX_TCP_OPTION_SPACE
- remaining
;
697 /* Set up TCP options for SYN-ACKs. */
698 static unsigned int tcp_synack_options(const struct sock
*sk
,
699 struct request_sock
*req
,
700 unsigned int mss
, struct sk_buff
*skb
,
701 struct tcp_out_options
*opts
,
702 const struct tcp_md5sig_key
*md5
,
703 struct tcp_fastopen_cookie
*foc
)
705 struct inet_request_sock
*ireq
= inet_rsk(req
);
706 unsigned int remaining
= MAX_TCP_OPTION_SPACE
;
708 #ifdef CONFIG_TCP_MD5SIG
710 opts
->options
|= OPTION_MD5
;
711 remaining
-= TCPOLEN_MD5SIG_ALIGNED
;
713 /* We can't fit any SACK blocks in a packet with MD5 + TS
714 * options. There was discussion about disabling SACK
715 * rather than TS in order to fit in better with old,
716 * buggy kernels, but that was deemed to be unnecessary.
718 ireq
->tstamp_ok
&= !ireq
->sack_ok
;
722 /* We always send an MSS option. */
724 remaining
-= TCPOLEN_MSS_ALIGNED
;
726 if (likely(ireq
->wscale_ok
)) {
727 opts
->ws
= ireq
->rcv_wscale
;
728 opts
->options
|= OPTION_WSCALE
;
729 remaining
-= TCPOLEN_WSCALE_ALIGNED
;
731 if (likely(ireq
->tstamp_ok
)) {
732 opts
->options
|= OPTION_TS
;
733 opts
->tsval
= tcp_skb_timestamp(skb
) + tcp_rsk(req
)->ts_off
;
734 opts
->tsecr
= req
->ts_recent
;
735 remaining
-= TCPOLEN_TSTAMP_ALIGNED
;
737 if (likely(ireq
->sack_ok
)) {
738 opts
->options
|= OPTION_SACK_ADVERTISE
;
739 if (unlikely(!ireq
->tstamp_ok
))
740 remaining
-= TCPOLEN_SACKPERM_ALIGNED
;
742 if (foc
!= NULL
&& foc
->len
>= 0) {
745 need
+= foc
->exp
? TCPOLEN_EXP_FASTOPEN_BASE
:
746 TCPOLEN_FASTOPEN_BASE
;
747 need
= (need
+ 3) & ~3U; /* Align to 32 bits */
748 if (remaining
>= need
) {
749 opts
->options
|= OPTION_FAST_OPEN_COOKIE
;
750 opts
->fastopen_cookie
= foc
;
755 mptcp_set_option_cond(req
, opts
, &remaining
);
757 smc_set_option_cond(tcp_sk(sk
), ireq
, opts
, &remaining
);
759 return MAX_TCP_OPTION_SPACE
- remaining
;
762 /* Compute TCP options for ESTABLISHED sockets. This is not the
763 * final wire format yet.
765 static unsigned int tcp_established_options(struct sock
*sk
, struct sk_buff
*skb
,
766 struct tcp_out_options
*opts
,
767 struct tcp_md5sig_key
**md5
)
769 struct tcp_sock
*tp
= tcp_sk(sk
);
770 unsigned int size
= 0;
771 unsigned int eff_sacks
;
776 #ifdef CONFIG_TCP_MD5SIG
777 if (static_branch_unlikely(&tcp_md5_needed
) &&
778 rcu_access_pointer(tp
->md5sig_info
)) {
779 *md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
781 opts
->options
|= OPTION_MD5
;
782 size
+= TCPOLEN_MD5SIG_ALIGNED
;
787 if (likely(tp
->rx_opt
.tstamp_ok
)) {
788 opts
->options
|= OPTION_TS
;
789 opts
->tsval
= skb
? tcp_skb_timestamp(skb
) + tp
->tsoffset
: 0;
790 opts
->tsecr
= tp
->rx_opt
.ts_recent
;
791 size
+= TCPOLEN_TSTAMP_ALIGNED
;
794 /* MPTCP options have precedence over SACK for the limited TCP
795 * option space because a MPTCP connection would be forced to
796 * fall back to regular TCP if a required multipath option is
797 * missing. SACK still gets a chance to use whatever space is
800 if (sk_is_mptcp(sk
)) {
801 unsigned int remaining
= MAX_TCP_OPTION_SPACE
- size
;
802 unsigned int opt_size
= 0;
804 if (mptcp_established_options(sk
, skb
, &opt_size
, remaining
,
806 opts
->options
|= OPTION_MPTCP
;
811 eff_sacks
= tp
->rx_opt
.num_sacks
+ tp
->rx_opt
.dsack
;
812 if (unlikely(eff_sacks
)) {
813 const unsigned int remaining
= MAX_TCP_OPTION_SPACE
- size
;
814 if (unlikely(remaining
< TCPOLEN_SACK_BASE_ALIGNED
+
815 TCPOLEN_SACK_PERBLOCK
))
818 opts
->num_sack_blocks
=
819 min_t(unsigned int, eff_sacks
,
820 (remaining
- TCPOLEN_SACK_BASE_ALIGNED
) /
821 TCPOLEN_SACK_PERBLOCK
);
823 size
+= TCPOLEN_SACK_BASE_ALIGNED
+
824 opts
->num_sack_blocks
* TCPOLEN_SACK_PERBLOCK
;
831 /* TCP SMALL QUEUES (TSQ)
833 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
834 * to reduce RTT and bufferbloat.
835 * We do this using a special skb destructor (tcp_wfree).
837 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
838 * needs to be reallocated in a driver.
839 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
841 * Since transmit from skb destructor is forbidden, we use a tasklet
842 * to process all sockets that eventually need to send more skbs.
843 * We use one tasklet per cpu, with its own queue of sockets.
846 struct tasklet_struct tasklet
;
847 struct list_head head
; /* queue of tcp sockets */
849 static DEFINE_PER_CPU(struct tsq_tasklet
, tsq_tasklet
);
851 static void tcp_tsq_write(struct sock
*sk
)
853 if ((1 << sk
->sk_state
) &
854 (TCPF_ESTABLISHED
| TCPF_FIN_WAIT1
| TCPF_CLOSING
|
855 TCPF_CLOSE_WAIT
| TCPF_LAST_ACK
)) {
856 struct tcp_sock
*tp
= tcp_sk(sk
);
858 if (tp
->lost_out
> tp
->retrans_out
&&
859 tp
->snd_cwnd
> tcp_packets_in_flight(tp
)) {
860 tcp_mstamp_refresh(tp
);
861 tcp_xmit_retransmit_queue(sk
);
864 tcp_write_xmit(sk
, tcp_current_mss(sk
), tp
->nonagle
,
869 static void tcp_tsq_handler(struct sock
*sk
)
872 if (!sock_owned_by_user(sk
))
874 else if (!test_and_set_bit(TCP_TSQ_DEFERRED
, &sk
->sk_tsq_flags
))
879 * One tasklet per cpu tries to send more skbs.
880 * We run in tasklet context but need to disable irqs when
881 * transferring tsq->head because tcp_wfree() might
882 * interrupt us (non NAPI drivers)
884 static void tcp_tasklet_func(unsigned long data
)
886 struct tsq_tasklet
*tsq
= (struct tsq_tasklet
*)data
;
889 struct list_head
*q
, *n
;
893 local_irq_save(flags
);
894 list_splice_init(&tsq
->head
, &list
);
895 local_irq_restore(flags
);
897 list_for_each_safe(q
, n
, &list
) {
898 tp
= list_entry(q
, struct tcp_sock
, tsq_node
);
899 list_del(&tp
->tsq_node
);
901 sk
= (struct sock
*)tp
;
902 smp_mb__before_atomic();
903 clear_bit(TSQ_QUEUED
, &sk
->sk_tsq_flags
);
910 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
911 TCPF_WRITE_TIMER_DEFERRED | \
912 TCPF_DELACK_TIMER_DEFERRED | \
913 TCPF_MTU_REDUCED_DEFERRED)
915 * tcp_release_cb - tcp release_sock() callback
918 * called from release_sock() to perform protocol dependent
919 * actions before socket release.
921 void tcp_release_cb(struct sock
*sk
)
923 unsigned long flags
, nflags
;
925 /* perform an atomic operation only if at least one flag is set */
927 flags
= sk
->sk_tsq_flags
;
928 if (!(flags
& TCP_DEFERRED_ALL
))
930 nflags
= flags
& ~TCP_DEFERRED_ALL
;
931 } while (cmpxchg(&sk
->sk_tsq_flags
, flags
, nflags
) != flags
);
933 if (flags
& TCPF_TSQ_DEFERRED
) {
937 /* Here begins the tricky part :
938 * We are called from release_sock() with :
940 * 2) sk_lock.slock spinlock held
941 * 3) socket owned by us (sk->sk_lock.owned == 1)
943 * But following code is meant to be called from BH handlers,
944 * so we should keep BH disabled, but early release socket ownership
946 sock_release_ownership(sk
);
948 if (flags
& TCPF_WRITE_TIMER_DEFERRED
) {
949 tcp_write_timer_handler(sk
);
952 if (flags
& TCPF_DELACK_TIMER_DEFERRED
) {
953 tcp_delack_timer_handler(sk
);
956 if (flags
& TCPF_MTU_REDUCED_DEFERRED
) {
957 inet_csk(sk
)->icsk_af_ops
->mtu_reduced(sk
);
961 EXPORT_SYMBOL(tcp_release_cb
);
963 void __init
tcp_tasklet_init(void)
967 for_each_possible_cpu(i
) {
968 struct tsq_tasklet
*tsq
= &per_cpu(tsq_tasklet
, i
);
970 INIT_LIST_HEAD(&tsq
->head
);
971 tasklet_init(&tsq
->tasklet
,
978 * Write buffer destructor automatically called from kfree_skb.
979 * We can't xmit new skbs from this context, as we might already
982 void tcp_wfree(struct sk_buff
*skb
)
984 struct sock
*sk
= skb
->sk
;
985 struct tcp_sock
*tp
= tcp_sk(sk
);
986 unsigned long flags
, nval
, oval
;
988 /* Keep one reference on sk_wmem_alloc.
989 * Will be released by sk_free() from here or tcp_tasklet_func()
991 WARN_ON(refcount_sub_and_test(skb
->truesize
- 1, &sk
->sk_wmem_alloc
));
993 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
994 * Wait until our queues (qdisc + devices) are drained.
996 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
997 * - chance for incoming ACK (processed by another cpu maybe)
998 * to migrate this flow (skb->ooo_okay will be eventually set)
1000 if (refcount_read(&sk
->sk_wmem_alloc
) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current
)
1003 for (oval
= READ_ONCE(sk
->sk_tsq_flags
);; oval
= nval
) {
1004 struct tsq_tasklet
*tsq
;
1007 if (!(oval
& TSQF_THROTTLED
) || (oval
& TSQF_QUEUED
))
1010 nval
= (oval
& ~TSQF_THROTTLED
) | TSQF_QUEUED
;
1011 nval
= cmpxchg(&sk
->sk_tsq_flags
, oval
, nval
);
1015 /* queue this socket to tasklet queue */
1016 local_irq_save(flags
);
1017 tsq
= this_cpu_ptr(&tsq_tasklet
);
1018 empty
= list_empty(&tsq
->head
);
1019 list_add(&tp
->tsq_node
, &tsq
->head
);
1021 tasklet_schedule(&tsq
->tasklet
);
1022 local_irq_restore(flags
);
1029 /* Note: Called under soft irq.
1030 * We can call TCP stack right away, unless socket is owned by user.
1032 enum hrtimer_restart
tcp_pace_kick(struct hrtimer
*timer
)
1034 struct tcp_sock
*tp
= container_of(timer
, struct tcp_sock
, pacing_timer
);
1035 struct sock
*sk
= (struct sock
*)tp
;
1037 tcp_tsq_handler(sk
);
1040 return HRTIMER_NORESTART
;
1043 static void tcp_update_skb_after_send(struct sock
*sk
, struct sk_buff
*skb
,
1046 struct tcp_sock
*tp
= tcp_sk(sk
);
1048 if (sk
->sk_pacing_status
!= SK_PACING_NONE
) {
1049 unsigned long rate
= sk
->sk_pacing_rate
;
1051 /* Original sch_fq does not pace first 10 MSS
1052 * Note that tp->data_segs_out overflows after 2^32 packets,
1053 * this is a minor annoyance.
1055 if (rate
!= ~0UL && rate
&& tp
->data_segs_out
>= 10) {
1056 u64 len_ns
= div64_ul((u64
)skb
->len
* NSEC_PER_SEC
, rate
);
1057 u64 credit
= tp
->tcp_wstamp_ns
- prior_wstamp
;
1059 /* take into account OS jitter */
1060 len_ns
-= min_t(u64
, len_ns
/ 2, credit
);
1061 tp
->tcp_wstamp_ns
+= len_ns
;
1064 list_move_tail(&skb
->tcp_tsorted_anchor
, &tp
->tsorted_sent_queue
);
1067 /* This routine actually transmits TCP packets queued in by
1068 * tcp_do_sendmsg(). This is used by both the initial
1069 * transmission and possible later retransmissions.
1070 * All SKB's seen here are completely headerless. It is our
1071 * job to build the TCP header, and pass the packet down to
1072 * IP so it can do the same plus pass the packet off to the
1075 * We are working here with either a clone of the original
1076 * SKB, or a fresh unique copy made by the retransmit engine.
1078 static int __tcp_transmit_skb(struct sock
*sk
, struct sk_buff
*skb
,
1079 int clone_it
, gfp_t gfp_mask
, u32 rcv_nxt
)
1081 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1082 struct inet_sock
*inet
;
1083 struct tcp_sock
*tp
;
1084 struct tcp_skb_cb
*tcb
;
1085 struct tcp_out_options opts
;
1086 unsigned int tcp_options_size
, tcp_header_size
;
1087 struct sk_buff
*oskb
= NULL
;
1088 struct tcp_md5sig_key
*md5
;
1093 BUG_ON(!skb
|| !tcp_skb_pcount(skb
));
1095 prior_wstamp
= tp
->tcp_wstamp_ns
;
1096 tp
->tcp_wstamp_ns
= max(tp
->tcp_wstamp_ns
, tp
->tcp_clock_cache
);
1097 skb
->skb_mstamp_ns
= tp
->tcp_wstamp_ns
;
1099 TCP_SKB_CB(skb
)->tx
.in_flight
= TCP_SKB_CB(skb
)->end_seq
1103 tcp_skb_tsorted_save(oskb
) {
1104 if (unlikely(skb_cloned(oskb
)))
1105 skb
= pskb_copy(oskb
, gfp_mask
);
1107 skb
= skb_clone(oskb
, gfp_mask
);
1108 } tcp_skb_tsorted_restore(oskb
);
1115 tcb
= TCP_SKB_CB(skb
);
1116 memset(&opts
, 0, sizeof(opts
));
1118 if (unlikely(tcb
->tcp_flags
& TCPHDR_SYN
)) {
1119 tcp_options_size
= tcp_syn_options(sk
, skb
, &opts
, &md5
);
1121 tcp_options_size
= tcp_established_options(sk
, skb
, &opts
,
1123 /* Force a PSH flag on all (GSO) packets to expedite GRO flush
1124 * at receiver : This slightly improve GRO performance.
1125 * Note that we do not force the PSH flag for non GSO packets,
1126 * because they might be sent under high congestion events,
1127 * and in this case it is better to delay the delivery of 1-MSS
1128 * packets and thus the corresponding ACK packet that would
1129 * release the following packet.
1131 if (tcp_skb_pcount(skb
) > 1)
1132 tcb
->tcp_flags
|= TCPHDR_PSH
;
1134 tcp_header_size
= tcp_options_size
+ sizeof(struct tcphdr
);
1136 /* if no packet is in qdisc/device queue, then allow XPS to select
1137 * another queue. We can be called from tcp_tsq_handler()
1138 * which holds one reference to sk.
1140 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1141 * One way to get this would be to set skb->truesize = 2 on them.
1143 skb
->ooo_okay
= sk_wmem_alloc_get(sk
) < SKB_TRUESIZE(1);
1145 /* If we had to use memory reserve to allocate this skb,
1146 * this might cause drops if packet is looped back :
1147 * Other socket might not have SOCK_MEMALLOC.
1148 * Packets not looped back do not care about pfmemalloc.
1150 skb
->pfmemalloc
= 0;
1152 skb_push(skb
, tcp_header_size
);
1153 skb_reset_transport_header(skb
);
1157 skb
->destructor
= skb_is_tcp_pure_ack(skb
) ? __sock_wfree
: tcp_wfree
;
1158 skb_set_hash_from_sk(skb
, sk
);
1159 refcount_add(skb
->truesize
, &sk
->sk_wmem_alloc
);
1161 skb_set_dst_pending_confirm(skb
, sk
->sk_dst_pending_confirm
);
1163 /* Build TCP header and checksum it. */
1164 th
= (struct tcphdr
*)skb
->data
;
1165 th
->source
= inet
->inet_sport
;
1166 th
->dest
= inet
->inet_dport
;
1167 th
->seq
= htonl(tcb
->seq
);
1168 th
->ack_seq
= htonl(rcv_nxt
);
1169 *(((__be16
*)th
) + 6) = htons(((tcp_header_size
>> 2) << 12) |
1175 /* The urg_mode check is necessary during a below snd_una win probe */
1176 if (unlikely(tcp_urg_mode(tp
) && before(tcb
->seq
, tp
->snd_up
))) {
1177 if (before(tp
->snd_up
, tcb
->seq
+ 0x10000)) {
1178 th
->urg_ptr
= htons(tp
->snd_up
- tcb
->seq
);
1180 } else if (after(tcb
->seq
+ 0xFFFF, tp
->snd_nxt
)) {
1181 th
->urg_ptr
= htons(0xFFFF);
1186 tcp_options_write((__be32
*)(th
+ 1), tp
, &opts
);
1187 skb_shinfo(skb
)->gso_type
= sk
->sk_gso_type
;
1188 if (likely(!(tcb
->tcp_flags
& TCPHDR_SYN
))) {
1189 th
->window
= htons(tcp_select_window(sk
));
1190 tcp_ecn_send(sk
, skb
, th
, tcp_header_size
);
1192 /* RFC1323: The window in SYN & SYN/ACK segments
1195 th
->window
= htons(min(tp
->rcv_wnd
, 65535U));
1197 #ifdef CONFIG_TCP_MD5SIG
1198 /* Calculate the MD5 hash, as we have all we need now */
1200 sk_nocaps_add(sk
, NETIF_F_GSO_MASK
);
1201 tp
->af_specific
->calc_md5_hash(opts
.hash_location
,
1206 icsk
->icsk_af_ops
->send_check(sk
, skb
);
1208 if (likely(tcb
->tcp_flags
& TCPHDR_ACK
))
1209 tcp_event_ack_sent(sk
, tcp_skb_pcount(skb
), rcv_nxt
);
1211 if (skb
->len
!= tcp_header_size
) {
1212 tcp_event_data_sent(tp
, sk
);
1213 tp
->data_segs_out
+= tcp_skb_pcount(skb
);
1214 tp
->bytes_sent
+= skb
->len
- tcp_header_size
;
1217 if (after(tcb
->end_seq
, tp
->snd_nxt
) || tcb
->seq
== tcb
->end_seq
)
1218 TCP_ADD_STATS(sock_net(sk
), TCP_MIB_OUTSEGS
,
1219 tcp_skb_pcount(skb
));
1221 tp
->segs_out
+= tcp_skb_pcount(skb
);
1222 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1223 skb_shinfo(skb
)->gso_segs
= tcp_skb_pcount(skb
);
1224 skb_shinfo(skb
)->gso_size
= tcp_skb_mss(skb
);
1226 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1228 /* Cleanup our debris for IP stacks */
1229 memset(skb
->cb
, 0, max(sizeof(struct inet_skb_parm
),
1230 sizeof(struct inet6_skb_parm
)));
1232 tcp_add_tx_delay(skb
, tp
);
1234 err
= icsk
->icsk_af_ops
->queue_xmit(sk
, skb
, &inet
->cork
.fl
);
1236 if (unlikely(err
> 0)) {
1238 err
= net_xmit_eval(err
);
1241 tcp_update_skb_after_send(sk
, oskb
, prior_wstamp
);
1242 tcp_rate_skb_sent(sk
, oskb
);
1247 static int tcp_transmit_skb(struct sock
*sk
, struct sk_buff
*skb
, int clone_it
,
1250 return __tcp_transmit_skb(sk
, skb
, clone_it
, gfp_mask
,
1251 tcp_sk(sk
)->rcv_nxt
);
1254 /* This routine just queues the buffer for sending.
1256 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1257 * otherwise socket can stall.
1259 static void tcp_queue_skb(struct sock
*sk
, struct sk_buff
*skb
)
1261 struct tcp_sock
*tp
= tcp_sk(sk
);
1263 /* Advance write_seq and place onto the write_queue. */
1264 WRITE_ONCE(tp
->write_seq
, TCP_SKB_CB(skb
)->end_seq
);
1265 __skb_header_release(skb
);
1266 tcp_add_write_queue_tail(sk
, skb
);
1267 sk_wmem_queued_add(sk
, skb
->truesize
);
1268 sk_mem_charge(sk
, skb
->truesize
);
1271 /* Initialize TSO segments for a packet. */
1272 static void tcp_set_skb_tso_segs(struct sk_buff
*skb
, unsigned int mss_now
)
1274 if (skb
->len
<= mss_now
) {
1275 /* Avoid the costly divide in the normal
1278 tcp_skb_pcount_set(skb
, 1);
1279 TCP_SKB_CB(skb
)->tcp_gso_size
= 0;
1281 tcp_skb_pcount_set(skb
, DIV_ROUND_UP(skb
->len
, mss_now
));
1282 TCP_SKB_CB(skb
)->tcp_gso_size
= mss_now
;
1286 /* Pcount in the middle of the write queue got changed, we need to do various
1287 * tweaks to fix counters
1289 static void tcp_adjust_pcount(struct sock
*sk
, const struct sk_buff
*skb
, int decr
)
1291 struct tcp_sock
*tp
= tcp_sk(sk
);
1293 tp
->packets_out
-= decr
;
1295 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
1296 tp
->sacked_out
-= decr
;
1297 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
1298 tp
->retrans_out
-= decr
;
1299 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_LOST
)
1300 tp
->lost_out
-= decr
;
1302 /* Reno case is special. Sigh... */
1303 if (tcp_is_reno(tp
) && decr
> 0)
1304 tp
->sacked_out
-= min_t(u32
, tp
->sacked_out
, decr
);
1306 if (tp
->lost_skb_hint
&&
1307 before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
) &&
1308 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
1309 tp
->lost_cnt_hint
-= decr
;
1311 tcp_verify_left_out(tp
);
1314 static bool tcp_has_tx_tstamp(const struct sk_buff
*skb
)
1316 return TCP_SKB_CB(skb
)->txstamp_ack
||
1317 (skb_shinfo(skb
)->tx_flags
& SKBTX_ANY_TSTAMP
);
1320 static void tcp_fragment_tstamp(struct sk_buff
*skb
, struct sk_buff
*skb2
)
1322 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
1324 if (unlikely(tcp_has_tx_tstamp(skb
)) &&
1325 !before(shinfo
->tskey
, TCP_SKB_CB(skb2
)->seq
)) {
1326 struct skb_shared_info
*shinfo2
= skb_shinfo(skb2
);
1327 u8 tsflags
= shinfo
->tx_flags
& SKBTX_ANY_TSTAMP
;
1329 shinfo
->tx_flags
&= ~tsflags
;
1330 shinfo2
->tx_flags
|= tsflags
;
1331 swap(shinfo
->tskey
, shinfo2
->tskey
);
1332 TCP_SKB_CB(skb2
)->txstamp_ack
= TCP_SKB_CB(skb
)->txstamp_ack
;
1333 TCP_SKB_CB(skb
)->txstamp_ack
= 0;
1337 static void tcp_skb_fragment_eor(struct sk_buff
*skb
, struct sk_buff
*skb2
)
1339 TCP_SKB_CB(skb2
)->eor
= TCP_SKB_CB(skb
)->eor
;
1340 TCP_SKB_CB(skb
)->eor
= 0;
1343 /* Insert buff after skb on the write or rtx queue of sk. */
1344 static void tcp_insert_write_queue_after(struct sk_buff
*skb
,
1345 struct sk_buff
*buff
,
1347 enum tcp_queue tcp_queue
)
1349 if (tcp_queue
== TCP_FRAG_IN_WRITE_QUEUE
)
1350 __skb_queue_after(&sk
->sk_write_queue
, skb
, buff
);
1352 tcp_rbtree_insert(&sk
->tcp_rtx_queue
, buff
);
1355 /* Function to create two new TCP segments. Shrinks the given segment
1356 * to the specified size and appends a new segment with the rest of the
1357 * packet to the list. This won't be called frequently, I hope.
1358 * Remember, these are still headerless SKBs at this point.
1360 int tcp_fragment(struct sock
*sk
, enum tcp_queue tcp_queue
,
1361 struct sk_buff
*skb
, u32 len
,
1362 unsigned int mss_now
, gfp_t gfp
)
1364 struct tcp_sock
*tp
= tcp_sk(sk
);
1365 struct sk_buff
*buff
;
1366 int nsize
, old_factor
;
1371 if (WARN_ON(len
> skb
->len
))
1374 nsize
= skb_headlen(skb
) - len
;
1378 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1379 * We need some allowance to not penalize applications setting small
1381 * Also allow first and last skb in retransmit queue to be split.
1383 limit
= sk
->sk_sndbuf
+ 2 * SKB_TRUESIZE(GSO_MAX_SIZE
);
1384 if (unlikely((sk
->sk_wmem_queued
>> 1) > limit
&&
1385 tcp_queue
!= TCP_FRAG_IN_WRITE_QUEUE
&&
1386 skb
!= tcp_rtx_queue_head(sk
) &&
1387 skb
!= tcp_rtx_queue_tail(sk
))) {
1388 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPWQUEUETOOBIG
);
1392 if (skb_unclone(skb
, gfp
))
1395 /* Get a new skb... force flag on. */
1396 buff
= sk_stream_alloc_skb(sk
, nsize
, gfp
, true);
1398 return -ENOMEM
; /* We'll just try again later. */
1399 skb_copy_decrypted(buff
, skb
);
1401 sk_wmem_queued_add(sk
, buff
->truesize
);
1402 sk_mem_charge(sk
, buff
->truesize
);
1403 nlen
= skb
->len
- len
- nsize
;
1404 buff
->truesize
+= nlen
;
1405 skb
->truesize
-= nlen
;
1407 /* Correct the sequence numbers. */
1408 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
1409 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1410 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
1412 /* PSH and FIN should only be set in the second packet. */
1413 flags
= TCP_SKB_CB(skb
)->tcp_flags
;
1414 TCP_SKB_CB(skb
)->tcp_flags
= flags
& ~(TCPHDR_FIN
| TCPHDR_PSH
);
1415 TCP_SKB_CB(buff
)->tcp_flags
= flags
;
1416 TCP_SKB_CB(buff
)->sacked
= TCP_SKB_CB(skb
)->sacked
;
1417 tcp_skb_fragment_eor(skb
, buff
);
1419 skb_split(skb
, buff
, len
);
1421 buff
->ip_summed
= CHECKSUM_PARTIAL
;
1423 buff
->tstamp
= skb
->tstamp
;
1424 tcp_fragment_tstamp(skb
, buff
);
1426 old_factor
= tcp_skb_pcount(skb
);
1428 /* Fix up tso_factor for both original and new SKB. */
1429 tcp_set_skb_tso_segs(skb
, mss_now
);
1430 tcp_set_skb_tso_segs(buff
, mss_now
);
1432 /* Update delivered info for the new segment */
1433 TCP_SKB_CB(buff
)->tx
= TCP_SKB_CB(skb
)->tx
;
1435 /* If this packet has been sent out already, we must
1436 * adjust the various packet counters.
1438 if (!before(tp
->snd_nxt
, TCP_SKB_CB(buff
)->end_seq
)) {
1439 int diff
= old_factor
- tcp_skb_pcount(skb
) -
1440 tcp_skb_pcount(buff
);
1443 tcp_adjust_pcount(sk
, skb
, diff
);
1446 /* Link BUFF into the send queue. */
1447 __skb_header_release(buff
);
1448 tcp_insert_write_queue_after(skb
, buff
, sk
, tcp_queue
);
1449 if (tcp_queue
== TCP_FRAG_IN_RTX_QUEUE
)
1450 list_add(&buff
->tcp_tsorted_anchor
, &skb
->tcp_tsorted_anchor
);
1455 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1456 * data is not copied, but immediately discarded.
1458 static int __pskb_trim_head(struct sk_buff
*skb
, int len
)
1460 struct skb_shared_info
*shinfo
;
1463 eat
= min_t(int, len
, skb_headlen(skb
));
1465 __skb_pull(skb
, eat
);
1472 shinfo
= skb_shinfo(skb
);
1473 for (i
= 0; i
< shinfo
->nr_frags
; i
++) {
1474 int size
= skb_frag_size(&shinfo
->frags
[i
]);
1477 skb_frag_unref(skb
, i
);
1480 shinfo
->frags
[k
] = shinfo
->frags
[i
];
1482 skb_frag_off_add(&shinfo
->frags
[k
], eat
);
1483 skb_frag_size_sub(&shinfo
->frags
[k
], eat
);
1489 shinfo
->nr_frags
= k
;
1491 skb
->data_len
-= len
;
1492 skb
->len
= skb
->data_len
;
1496 /* Remove acked data from a packet in the transmit queue. */
1497 int tcp_trim_head(struct sock
*sk
, struct sk_buff
*skb
, u32 len
)
1501 if (skb_unclone(skb
, GFP_ATOMIC
))
1504 delta_truesize
= __pskb_trim_head(skb
, len
);
1506 TCP_SKB_CB(skb
)->seq
+= len
;
1507 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1509 if (delta_truesize
) {
1510 skb
->truesize
-= delta_truesize
;
1511 sk_wmem_queued_add(sk
, -delta_truesize
);
1512 sk_mem_uncharge(sk
, delta_truesize
);
1513 sock_set_flag(sk
, SOCK_QUEUE_SHRUNK
);
1516 /* Any change of skb->len requires recalculation of tso factor. */
1517 if (tcp_skb_pcount(skb
) > 1)
1518 tcp_set_skb_tso_segs(skb
, tcp_skb_mss(skb
));
1523 /* Calculate MSS not accounting any TCP options. */
1524 static inline int __tcp_mtu_to_mss(struct sock
*sk
, int pmtu
)
1526 const struct tcp_sock
*tp
= tcp_sk(sk
);
1527 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1530 /* Calculate base mss without TCP options:
1531 It is MMS_S - sizeof(tcphdr) of rfc1122
1533 mss_now
= pmtu
- icsk
->icsk_af_ops
->net_header_len
- sizeof(struct tcphdr
);
1535 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1536 if (icsk
->icsk_af_ops
->net_frag_header_len
) {
1537 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1539 if (dst
&& dst_allfrag(dst
))
1540 mss_now
-= icsk
->icsk_af_ops
->net_frag_header_len
;
1543 /* Clamp it (mss_clamp does not include tcp options) */
1544 if (mss_now
> tp
->rx_opt
.mss_clamp
)
1545 mss_now
= tp
->rx_opt
.mss_clamp
;
1547 /* Now subtract optional transport overhead */
1548 mss_now
-= icsk
->icsk_ext_hdr_len
;
1550 /* Then reserve room for full set of TCP options and 8 bytes of data */
1551 mss_now
= max(mss_now
, sock_net(sk
)->ipv4
.sysctl_tcp_min_snd_mss
);
1555 /* Calculate MSS. Not accounting for SACKs here. */
1556 int tcp_mtu_to_mss(struct sock
*sk
, int pmtu
)
1558 /* Subtract TCP options size, not including SACKs */
1559 return __tcp_mtu_to_mss(sk
, pmtu
) -
1560 (tcp_sk(sk
)->tcp_header_len
- sizeof(struct tcphdr
));
1563 /* Inverse of above */
1564 int tcp_mss_to_mtu(struct sock
*sk
, int mss
)
1566 const struct tcp_sock
*tp
= tcp_sk(sk
);
1567 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1571 tp
->tcp_header_len
+
1572 icsk
->icsk_ext_hdr_len
+
1573 icsk
->icsk_af_ops
->net_header_len
;
1575 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1576 if (icsk
->icsk_af_ops
->net_frag_header_len
) {
1577 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1579 if (dst
&& dst_allfrag(dst
))
1580 mtu
+= icsk
->icsk_af_ops
->net_frag_header_len
;
1584 EXPORT_SYMBOL(tcp_mss_to_mtu
);
1586 /* MTU probing init per socket */
1587 void tcp_mtup_init(struct sock
*sk
)
1589 struct tcp_sock
*tp
= tcp_sk(sk
);
1590 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1591 struct net
*net
= sock_net(sk
);
1593 icsk
->icsk_mtup
.enabled
= net
->ipv4
.sysctl_tcp_mtu_probing
> 1;
1594 icsk
->icsk_mtup
.search_high
= tp
->rx_opt
.mss_clamp
+ sizeof(struct tcphdr
) +
1595 icsk
->icsk_af_ops
->net_header_len
;
1596 icsk
->icsk_mtup
.search_low
= tcp_mss_to_mtu(sk
, net
->ipv4
.sysctl_tcp_base_mss
);
1597 icsk
->icsk_mtup
.probe_size
= 0;
1598 if (icsk
->icsk_mtup
.enabled
)
1599 icsk
->icsk_mtup
.probe_timestamp
= tcp_jiffies32
;
1601 EXPORT_SYMBOL(tcp_mtup_init
);
1603 /* This function synchronize snd mss to current pmtu/exthdr set.
1605 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1606 for TCP options, but includes only bare TCP header.
1608 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1609 It is minimum of user_mss and mss received with SYN.
1610 It also does not include TCP options.
1612 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1614 tp->mss_cache is current effective sending mss, including
1615 all tcp options except for SACKs. It is evaluated,
1616 taking into account current pmtu, but never exceeds
1617 tp->rx_opt.mss_clamp.
1619 NOTE1. rfc1122 clearly states that advertised MSS
1620 DOES NOT include either tcp or ip options.
1622 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1623 are READ ONLY outside this function. --ANK (980731)
1625 unsigned int tcp_sync_mss(struct sock
*sk
, u32 pmtu
)
1627 struct tcp_sock
*tp
= tcp_sk(sk
);
1628 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1631 if (icsk
->icsk_mtup
.search_high
> pmtu
)
1632 icsk
->icsk_mtup
.search_high
= pmtu
;
1634 mss_now
= tcp_mtu_to_mss(sk
, pmtu
);
1635 mss_now
= tcp_bound_to_half_wnd(tp
, mss_now
);
1637 /* And store cached results */
1638 icsk
->icsk_pmtu_cookie
= pmtu
;
1639 if (icsk
->icsk_mtup
.enabled
)
1640 mss_now
= min(mss_now
, tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_low
));
1641 tp
->mss_cache
= mss_now
;
1645 EXPORT_SYMBOL(tcp_sync_mss
);
1647 /* Compute the current effective MSS, taking SACKs and IP options,
1648 * and even PMTU discovery events into account.
1650 unsigned int tcp_current_mss(struct sock
*sk
)
1652 const struct tcp_sock
*tp
= tcp_sk(sk
);
1653 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1655 unsigned int header_len
;
1656 struct tcp_out_options opts
;
1657 struct tcp_md5sig_key
*md5
;
1659 mss_now
= tp
->mss_cache
;
1662 u32 mtu
= dst_mtu(dst
);
1663 if (mtu
!= inet_csk(sk
)->icsk_pmtu_cookie
)
1664 mss_now
= tcp_sync_mss(sk
, mtu
);
1667 header_len
= tcp_established_options(sk
, NULL
, &opts
, &md5
) +
1668 sizeof(struct tcphdr
);
1669 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1670 * some common options. If this is an odd packet (because we have SACK
1671 * blocks etc) then our calculated header_len will be different, and
1672 * we have to adjust mss_now correspondingly */
1673 if (header_len
!= tp
->tcp_header_len
) {
1674 int delta
= (int) header_len
- tp
->tcp_header_len
;
1681 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1682 * As additional protections, we do not touch cwnd in retransmission phases,
1683 * and if application hit its sndbuf limit recently.
1685 static void tcp_cwnd_application_limited(struct sock
*sk
)
1687 struct tcp_sock
*tp
= tcp_sk(sk
);
1689 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
1690 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
1691 /* Limited by application or receiver window. */
1692 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
1693 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
1694 if (win_used
< tp
->snd_cwnd
) {
1695 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
1696 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
1698 tp
->snd_cwnd_used
= 0;
1700 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
1703 static void tcp_cwnd_validate(struct sock
*sk
, bool is_cwnd_limited
)
1705 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
1706 struct tcp_sock
*tp
= tcp_sk(sk
);
1708 /* Track the maximum number of outstanding packets in each
1709 * window, and remember whether we were cwnd-limited then.
1711 if (!before(tp
->snd_una
, tp
->max_packets_seq
) ||
1712 tp
->packets_out
> tp
->max_packets_out
) {
1713 tp
->max_packets_out
= tp
->packets_out
;
1714 tp
->max_packets_seq
= tp
->snd_nxt
;
1715 tp
->is_cwnd_limited
= is_cwnd_limited
;
1718 if (tcp_is_cwnd_limited(sk
)) {
1719 /* Network is feed fully. */
1720 tp
->snd_cwnd_used
= 0;
1721 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
1723 /* Network starves. */
1724 if (tp
->packets_out
> tp
->snd_cwnd_used
)
1725 tp
->snd_cwnd_used
= tp
->packets_out
;
1727 if (sock_net(sk
)->ipv4
.sysctl_tcp_slow_start_after_idle
&&
1728 (s32
)(tcp_jiffies32
- tp
->snd_cwnd_stamp
) >= inet_csk(sk
)->icsk_rto
&&
1729 !ca_ops
->cong_control
)
1730 tcp_cwnd_application_limited(sk
);
1732 /* The following conditions together indicate the starvation
1733 * is caused by insufficient sender buffer:
1734 * 1) just sent some data (see tcp_write_xmit)
1735 * 2) not cwnd limited (this else condition)
1736 * 3) no more data to send (tcp_write_queue_empty())
1737 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1739 if (tcp_write_queue_empty(sk
) && sk
->sk_socket
&&
1740 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
) &&
1741 (1 << sk
->sk_state
) & (TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
))
1742 tcp_chrono_start(sk
, TCP_CHRONO_SNDBUF_LIMITED
);
1746 /* Minshall's variant of the Nagle send check. */
1747 static bool tcp_minshall_check(const struct tcp_sock
*tp
)
1749 return after(tp
->snd_sml
, tp
->snd_una
) &&
1750 !after(tp
->snd_sml
, tp
->snd_nxt
);
1753 /* Update snd_sml if this skb is under mss
1754 * Note that a TSO packet might end with a sub-mss segment
1755 * The test is really :
1756 * if ((skb->len % mss) != 0)
1757 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1758 * But we can avoid doing the divide again given we already have
1759 * skb_pcount = skb->len / mss_now
1761 static void tcp_minshall_update(struct tcp_sock
*tp
, unsigned int mss_now
,
1762 const struct sk_buff
*skb
)
1764 if (skb
->len
< tcp_skb_pcount(skb
) * mss_now
)
1765 tp
->snd_sml
= TCP_SKB_CB(skb
)->end_seq
;
1768 /* Return false, if packet can be sent now without violation Nagle's rules:
1769 * 1. It is full sized. (provided by caller in %partial bool)
1770 * 2. Or it contains FIN. (already checked by caller)
1771 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1772 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1773 * With Minshall's modification: all sent small packets are ACKed.
1775 static bool tcp_nagle_check(bool partial
, const struct tcp_sock
*tp
,
1779 ((nonagle
& TCP_NAGLE_CORK
) ||
1780 (!nonagle
&& tp
->packets_out
&& tcp_minshall_check(tp
)));
1783 /* Return how many segs we'd like on a TSO packet,
1784 * to send one TSO packet per ms
1786 static u32
tcp_tso_autosize(const struct sock
*sk
, unsigned int mss_now
,
1791 bytes
= min_t(unsigned long,
1792 sk
->sk_pacing_rate
>> READ_ONCE(sk
->sk_pacing_shift
),
1793 sk
->sk_gso_max_size
- 1 - MAX_TCP_HEADER
);
1795 /* Goal is to send at least one packet per ms,
1796 * not one big TSO packet every 100 ms.
1797 * This preserves ACK clocking and is consistent
1798 * with tcp_tso_should_defer() heuristic.
1800 segs
= max_t(u32
, bytes
/ mss_now
, min_tso_segs
);
1805 /* Return the number of segments we want in the skb we are transmitting.
1806 * See if congestion control module wants to decide; otherwise, autosize.
1808 static u32
tcp_tso_segs(struct sock
*sk
, unsigned int mss_now
)
1810 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
1811 u32 min_tso
, tso_segs
;
1813 min_tso
= ca_ops
->min_tso_segs
?
1814 ca_ops
->min_tso_segs(sk
) :
1815 sock_net(sk
)->ipv4
.sysctl_tcp_min_tso_segs
;
1817 tso_segs
= tcp_tso_autosize(sk
, mss_now
, min_tso
);
1818 return min_t(u32
, tso_segs
, sk
->sk_gso_max_segs
);
1821 /* Returns the portion of skb which can be sent right away */
1822 static unsigned int tcp_mss_split_point(const struct sock
*sk
,
1823 const struct sk_buff
*skb
,
1824 unsigned int mss_now
,
1825 unsigned int max_segs
,
1828 const struct tcp_sock
*tp
= tcp_sk(sk
);
1829 u32 partial
, needed
, window
, max_len
;
1831 window
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
1832 max_len
= mss_now
* max_segs
;
1834 if (likely(max_len
<= window
&& skb
!= tcp_write_queue_tail(sk
)))
1837 needed
= min(skb
->len
, window
);
1839 if (max_len
<= needed
)
1842 partial
= needed
% mss_now
;
1843 /* If last segment is not a full MSS, check if Nagle rules allow us
1844 * to include this last segment in this skb.
1845 * Otherwise, we'll split the skb at last MSS boundary
1847 if (tcp_nagle_check(partial
!= 0, tp
, nonagle
))
1848 return needed
- partial
;
1853 /* Can at least one segment of SKB be sent right now, according to the
1854 * congestion window rules? If so, return how many segments are allowed.
1856 static inline unsigned int tcp_cwnd_test(const struct tcp_sock
*tp
,
1857 const struct sk_buff
*skb
)
1859 u32 in_flight
, cwnd
, halfcwnd
;
1861 /* Don't be strict about the congestion window for the final FIN. */
1862 if ((TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
) &&
1863 tcp_skb_pcount(skb
) == 1)
1866 in_flight
= tcp_packets_in_flight(tp
);
1867 cwnd
= tp
->snd_cwnd
;
1868 if (in_flight
>= cwnd
)
1871 /* For better scheduling, ensure we have at least
1872 * 2 GSO packets in flight.
1874 halfcwnd
= max(cwnd
>> 1, 1U);
1875 return min(halfcwnd
, cwnd
- in_flight
);
1878 /* Initialize TSO state of a skb.
1879 * This must be invoked the first time we consider transmitting
1880 * SKB onto the wire.
1882 static int tcp_init_tso_segs(struct sk_buff
*skb
, unsigned int mss_now
)
1884 int tso_segs
= tcp_skb_pcount(skb
);
1886 if (!tso_segs
|| (tso_segs
> 1 && tcp_skb_mss(skb
) != mss_now
)) {
1887 tcp_set_skb_tso_segs(skb
, mss_now
);
1888 tso_segs
= tcp_skb_pcount(skb
);
1894 /* Return true if the Nagle test allows this packet to be
1897 static inline bool tcp_nagle_test(const struct tcp_sock
*tp
, const struct sk_buff
*skb
,
1898 unsigned int cur_mss
, int nonagle
)
1900 /* Nagle rule does not apply to frames, which sit in the middle of the
1901 * write_queue (they have no chances to get new data).
1903 * This is implemented in the callers, where they modify the 'nonagle'
1904 * argument based upon the location of SKB in the send queue.
1906 if (nonagle
& TCP_NAGLE_PUSH
)
1909 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1910 if (tcp_urg_mode(tp
) || (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
))
1913 if (!tcp_nagle_check(skb
->len
< cur_mss
, tp
, nonagle
))
1919 /* Does at least the first segment of SKB fit into the send window? */
1920 static bool tcp_snd_wnd_test(const struct tcp_sock
*tp
,
1921 const struct sk_buff
*skb
,
1922 unsigned int cur_mss
)
1924 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1926 if (skb
->len
> cur_mss
)
1927 end_seq
= TCP_SKB_CB(skb
)->seq
+ cur_mss
;
1929 return !after(end_seq
, tcp_wnd_end(tp
));
1932 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1933 * which is put after SKB on the list. It is very much like
1934 * tcp_fragment() except that it may make several kinds of assumptions
1935 * in order to speed up the splitting operation. In particular, we
1936 * know that all the data is in scatter-gather pages, and that the
1937 * packet has never been sent out before (and thus is not cloned).
1939 static int tso_fragment(struct sock
*sk
, struct sk_buff
*skb
, unsigned int len
,
1940 unsigned int mss_now
, gfp_t gfp
)
1942 int nlen
= skb
->len
- len
;
1943 struct sk_buff
*buff
;
1946 /* All of a TSO frame must be composed of paged data. */
1947 if (skb
->len
!= skb
->data_len
)
1948 return tcp_fragment(sk
, TCP_FRAG_IN_WRITE_QUEUE
,
1949 skb
, len
, mss_now
, gfp
);
1951 buff
= sk_stream_alloc_skb(sk
, 0, gfp
, true);
1952 if (unlikely(!buff
))
1954 skb_copy_decrypted(buff
, skb
);
1956 sk_wmem_queued_add(sk
, buff
->truesize
);
1957 sk_mem_charge(sk
, buff
->truesize
);
1958 buff
->truesize
+= nlen
;
1959 skb
->truesize
-= nlen
;
1961 /* Correct the sequence numbers. */
1962 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
1963 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1964 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
1966 /* PSH and FIN should only be set in the second packet. */
1967 flags
= TCP_SKB_CB(skb
)->tcp_flags
;
1968 TCP_SKB_CB(skb
)->tcp_flags
= flags
& ~(TCPHDR_FIN
| TCPHDR_PSH
);
1969 TCP_SKB_CB(buff
)->tcp_flags
= flags
;
1971 /* This packet was never sent out yet, so no SACK bits. */
1972 TCP_SKB_CB(buff
)->sacked
= 0;
1974 tcp_skb_fragment_eor(skb
, buff
);
1976 buff
->ip_summed
= CHECKSUM_PARTIAL
;
1977 skb_split(skb
, buff
, len
);
1978 tcp_fragment_tstamp(skb
, buff
);
1980 /* Fix up tso_factor for both original and new SKB. */
1981 tcp_set_skb_tso_segs(skb
, mss_now
);
1982 tcp_set_skb_tso_segs(buff
, mss_now
);
1984 /* Link BUFF into the send queue. */
1985 __skb_header_release(buff
);
1986 tcp_insert_write_queue_after(skb
, buff
, sk
, TCP_FRAG_IN_WRITE_QUEUE
);
1991 /* Try to defer sending, if possible, in order to minimize the amount
1992 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1994 * This algorithm is from John Heffner.
1996 static bool tcp_tso_should_defer(struct sock
*sk
, struct sk_buff
*skb
,
1997 bool *is_cwnd_limited
,
1998 bool *is_rwnd_limited
,
2001 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2002 u32 send_win
, cong_win
, limit
, in_flight
;
2003 struct tcp_sock
*tp
= tcp_sk(sk
);
2004 struct sk_buff
*head
;
2008 if (icsk
->icsk_ca_state
>= TCP_CA_Recovery
)
2011 /* Avoid bursty behavior by allowing defer
2012 * only if the last write was recent (1 ms).
2013 * Note that tp->tcp_wstamp_ns can be in the future if we have
2014 * packets waiting in a qdisc or device for EDT delivery.
2016 delta
= tp
->tcp_clock_cache
- tp
->tcp_wstamp_ns
- NSEC_PER_MSEC
;
2020 in_flight
= tcp_packets_in_flight(tp
);
2022 BUG_ON(tcp_skb_pcount(skb
) <= 1);
2023 BUG_ON(tp
->snd_cwnd
<= in_flight
);
2025 send_win
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
2027 /* From in_flight test above, we know that cwnd > in_flight. */
2028 cong_win
= (tp
->snd_cwnd
- in_flight
) * tp
->mss_cache
;
2030 limit
= min(send_win
, cong_win
);
2032 /* If a full-sized TSO skb can be sent, do it. */
2033 if (limit
>= max_segs
* tp
->mss_cache
)
2036 /* Middle in queue won't get any more data, full sendable already? */
2037 if ((skb
!= tcp_write_queue_tail(sk
)) && (limit
>= skb
->len
))
2040 win_divisor
= READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_tso_win_divisor
);
2042 u32 chunk
= min(tp
->snd_wnd
, tp
->snd_cwnd
* tp
->mss_cache
);
2044 /* If at least some fraction of a window is available,
2047 chunk
/= win_divisor
;
2051 /* Different approach, try not to defer past a single
2052 * ACK. Receiver should ACK every other full sized
2053 * frame, so if we have space for more than 3 frames
2056 if (limit
> tcp_max_tso_deferred_mss(tp
) * tp
->mss_cache
)
2060 /* TODO : use tsorted_sent_queue ? */
2061 head
= tcp_rtx_queue_head(sk
);
2064 delta
= tp
->tcp_clock_cache
- head
->tstamp
;
2065 /* If next ACK is likely to come too late (half srtt), do not defer */
2066 if ((s64
)(delta
- (u64
)NSEC_PER_USEC
* (tp
->srtt_us
>> 4)) < 0)
2069 /* Ok, it looks like it is advisable to defer.
2070 * Three cases are tracked :
2071 * 1) We are cwnd-limited
2072 * 2) We are rwnd-limited
2073 * 3) We are application limited.
2075 if (cong_win
< send_win
) {
2076 if (cong_win
<= skb
->len
) {
2077 *is_cwnd_limited
= true;
2081 if (send_win
<= skb
->len
) {
2082 *is_rwnd_limited
= true;
2087 /* If this packet won't get more data, do not wait. */
2088 if ((TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
) ||
2089 TCP_SKB_CB(skb
)->eor
)
2098 static inline void tcp_mtu_check_reprobe(struct sock
*sk
)
2100 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2101 struct tcp_sock
*tp
= tcp_sk(sk
);
2102 struct net
*net
= sock_net(sk
);
2106 interval
= net
->ipv4
.sysctl_tcp_probe_interval
;
2107 delta
= tcp_jiffies32
- icsk
->icsk_mtup
.probe_timestamp
;
2108 if (unlikely(delta
>= interval
* HZ
)) {
2109 int mss
= tcp_current_mss(sk
);
2111 /* Update current search range */
2112 icsk
->icsk_mtup
.probe_size
= 0;
2113 icsk
->icsk_mtup
.search_high
= tp
->rx_opt
.mss_clamp
+
2114 sizeof(struct tcphdr
) +
2115 icsk
->icsk_af_ops
->net_header_len
;
2116 icsk
->icsk_mtup
.search_low
= tcp_mss_to_mtu(sk
, mss
);
2118 /* Update probe time stamp */
2119 icsk
->icsk_mtup
.probe_timestamp
= tcp_jiffies32
;
2123 static bool tcp_can_coalesce_send_queue_head(struct sock
*sk
, int len
)
2125 struct sk_buff
*skb
, *next
;
2127 skb
= tcp_send_head(sk
);
2128 tcp_for_write_queue_from_safe(skb
, next
, sk
) {
2129 if (len
<= skb
->len
)
2132 if (unlikely(TCP_SKB_CB(skb
)->eor
) || tcp_has_tx_tstamp(skb
))
2141 /* Create a new MTU probe if we are ready.
2142 * MTU probe is regularly attempting to increase the path MTU by
2143 * deliberately sending larger packets. This discovers routing
2144 * changes resulting in larger path MTUs.
2146 * Returns 0 if we should wait to probe (no cwnd available),
2147 * 1 if a probe was sent,
2150 static int tcp_mtu_probe(struct sock
*sk
)
2152 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2153 struct tcp_sock
*tp
= tcp_sk(sk
);
2154 struct sk_buff
*skb
, *nskb
, *next
;
2155 struct net
*net
= sock_net(sk
);
2162 /* Not currently probing/verifying,
2164 * have enough cwnd, and
2165 * not SACKing (the variable headers throw things off)
2167 if (likely(!icsk
->icsk_mtup
.enabled
||
2168 icsk
->icsk_mtup
.probe_size
||
2169 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
||
2170 tp
->snd_cwnd
< 11 ||
2171 tp
->rx_opt
.num_sacks
|| tp
->rx_opt
.dsack
))
2174 /* Use binary search for probe_size between tcp_mss_base,
2175 * and current mss_clamp. if (search_high - search_low)
2176 * smaller than a threshold, backoff from probing.
2178 mss_now
= tcp_current_mss(sk
);
2179 probe_size
= tcp_mtu_to_mss(sk
, (icsk
->icsk_mtup
.search_high
+
2180 icsk
->icsk_mtup
.search_low
) >> 1);
2181 size_needed
= probe_size
+ (tp
->reordering
+ 1) * tp
->mss_cache
;
2182 interval
= icsk
->icsk_mtup
.search_high
- icsk
->icsk_mtup
.search_low
;
2183 /* When misfortune happens, we are reprobing actively,
2184 * and then reprobe timer has expired. We stick with current
2185 * probing process by not resetting search range to its orignal.
2187 if (probe_size
> tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_high
) ||
2188 interval
< net
->ipv4
.sysctl_tcp_probe_threshold
) {
2189 /* Check whether enough time has elaplased for
2190 * another round of probing.
2192 tcp_mtu_check_reprobe(sk
);
2196 /* Have enough data in the send queue to probe? */
2197 if (tp
->write_seq
- tp
->snd_nxt
< size_needed
)
2200 if (tp
->snd_wnd
< size_needed
)
2202 if (after(tp
->snd_nxt
+ size_needed
, tcp_wnd_end(tp
)))
2205 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2206 if (tcp_packets_in_flight(tp
) + 2 > tp
->snd_cwnd
) {
2207 if (!tcp_packets_in_flight(tp
))
2213 if (!tcp_can_coalesce_send_queue_head(sk
, probe_size
))
2216 /* We're allowed to probe. Build it now. */
2217 nskb
= sk_stream_alloc_skb(sk
, probe_size
, GFP_ATOMIC
, false);
2220 sk_wmem_queued_add(sk
, nskb
->truesize
);
2221 sk_mem_charge(sk
, nskb
->truesize
);
2223 skb
= tcp_send_head(sk
);
2224 skb_copy_decrypted(nskb
, skb
);
2226 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(skb
)->seq
;
2227 TCP_SKB_CB(nskb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ probe_size
;
2228 TCP_SKB_CB(nskb
)->tcp_flags
= TCPHDR_ACK
;
2229 TCP_SKB_CB(nskb
)->sacked
= 0;
2231 nskb
->ip_summed
= CHECKSUM_PARTIAL
;
2233 tcp_insert_write_queue_before(nskb
, skb
, sk
);
2234 tcp_highest_sack_replace(sk
, skb
, nskb
);
2237 tcp_for_write_queue_from_safe(skb
, next
, sk
) {
2238 copy
= min_t(int, skb
->len
, probe_size
- len
);
2239 skb_copy_bits(skb
, 0, skb_put(nskb
, copy
), copy
);
2241 if (skb
->len
<= copy
) {
2242 /* We've eaten all the data from this skb.
2244 TCP_SKB_CB(nskb
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
;
2245 /* If this is the last SKB we copy and eor is set
2246 * we need to propagate it to the new skb.
2248 TCP_SKB_CB(nskb
)->eor
= TCP_SKB_CB(skb
)->eor
;
2249 tcp_skb_collapse_tstamp(nskb
, skb
);
2250 tcp_unlink_write_queue(skb
, sk
);
2251 sk_wmem_free_skb(sk
, skb
);
2253 TCP_SKB_CB(nskb
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
&
2254 ~(TCPHDR_FIN
|TCPHDR_PSH
);
2255 if (!skb_shinfo(skb
)->nr_frags
) {
2256 skb_pull(skb
, copy
);
2258 __pskb_trim_head(skb
, copy
);
2259 tcp_set_skb_tso_segs(skb
, mss_now
);
2261 TCP_SKB_CB(skb
)->seq
+= copy
;
2266 if (len
>= probe_size
)
2269 tcp_init_tso_segs(nskb
, nskb
->len
);
2271 /* We're ready to send. If this fails, the probe will
2272 * be resegmented into mss-sized pieces by tcp_write_xmit().
2274 if (!tcp_transmit_skb(sk
, nskb
, 1, GFP_ATOMIC
)) {
2275 /* Decrement cwnd here because we are sending
2276 * effectively two packets. */
2278 tcp_event_new_data_sent(sk
, nskb
);
2280 icsk
->icsk_mtup
.probe_size
= tcp_mss_to_mtu(sk
, nskb
->len
);
2281 tp
->mtu_probe
.probe_seq_start
= TCP_SKB_CB(nskb
)->seq
;
2282 tp
->mtu_probe
.probe_seq_end
= TCP_SKB_CB(nskb
)->end_seq
;
2290 static bool tcp_pacing_check(struct sock
*sk
)
2292 struct tcp_sock
*tp
= tcp_sk(sk
);
2294 if (!tcp_needs_internal_pacing(sk
))
2297 if (tp
->tcp_wstamp_ns
<= tp
->tcp_clock_cache
)
2300 if (!hrtimer_is_queued(&tp
->pacing_timer
)) {
2301 hrtimer_start(&tp
->pacing_timer
,
2302 ns_to_ktime(tp
->tcp_wstamp_ns
),
2303 HRTIMER_MODE_ABS_PINNED_SOFT
);
2309 /* TCP Small Queues :
2310 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2311 * (These limits are doubled for retransmits)
2313 * - better RTT estimation and ACK scheduling
2316 * Alas, some drivers / subsystems require a fair amount
2317 * of queued bytes to ensure line rate.
2318 * One example is wifi aggregation (802.11 AMPDU)
2320 static bool tcp_small_queue_check(struct sock
*sk
, const struct sk_buff
*skb
,
2321 unsigned int factor
)
2323 unsigned long limit
;
2325 limit
= max_t(unsigned long,
2327 sk
->sk_pacing_rate
>> READ_ONCE(sk
->sk_pacing_shift
));
2328 if (sk
->sk_pacing_status
== SK_PACING_NONE
)
2329 limit
= min_t(unsigned long, limit
,
2330 sock_net(sk
)->ipv4
.sysctl_tcp_limit_output_bytes
);
2333 if (static_branch_unlikely(&tcp_tx_delay_enabled
) &&
2334 tcp_sk(sk
)->tcp_tx_delay
) {
2335 u64 extra_bytes
= (u64
)sk
->sk_pacing_rate
* tcp_sk(sk
)->tcp_tx_delay
;
2337 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2338 * approximate our needs assuming an ~100% skb->truesize overhead.
2339 * USEC_PER_SEC is approximated by 2^20.
2340 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2342 extra_bytes
>>= (20 - 1);
2343 limit
+= extra_bytes
;
2345 if (refcount_read(&sk
->sk_wmem_alloc
) > limit
) {
2346 /* Always send skb if rtx queue is empty.
2347 * No need to wait for TX completion to call us back,
2348 * after softirq/tasklet schedule.
2349 * This helps when TX completions are delayed too much.
2351 if (tcp_rtx_queue_empty(sk
))
2354 set_bit(TSQ_THROTTLED
, &sk
->sk_tsq_flags
);
2355 /* It is possible TX completion already happened
2356 * before we set TSQ_THROTTLED, so we must
2357 * test again the condition.
2359 smp_mb__after_atomic();
2360 if (refcount_read(&sk
->sk_wmem_alloc
) > limit
)
2366 static void tcp_chrono_set(struct tcp_sock
*tp
, const enum tcp_chrono
new)
2368 const u32 now
= tcp_jiffies32
;
2369 enum tcp_chrono old
= tp
->chrono_type
;
2371 if (old
> TCP_CHRONO_UNSPEC
)
2372 tp
->chrono_stat
[old
- 1] += now
- tp
->chrono_start
;
2373 tp
->chrono_start
= now
;
2374 tp
->chrono_type
= new;
2377 void tcp_chrono_start(struct sock
*sk
, const enum tcp_chrono type
)
2379 struct tcp_sock
*tp
= tcp_sk(sk
);
2381 /* If there are multiple conditions worthy of tracking in a
2382 * chronograph then the highest priority enum takes precedence
2383 * over the other conditions. So that if something "more interesting"
2384 * starts happening, stop the previous chrono and start a new one.
2386 if (type
> tp
->chrono_type
)
2387 tcp_chrono_set(tp
, type
);
2390 void tcp_chrono_stop(struct sock
*sk
, const enum tcp_chrono type
)
2392 struct tcp_sock
*tp
= tcp_sk(sk
);
2395 /* There are multiple conditions worthy of tracking in a
2396 * chronograph, so that the highest priority enum takes
2397 * precedence over the other conditions (see tcp_chrono_start).
2398 * If a condition stops, we only stop chrono tracking if
2399 * it's the "most interesting" or current chrono we are
2400 * tracking and starts busy chrono if we have pending data.
2402 if (tcp_rtx_and_write_queues_empty(sk
))
2403 tcp_chrono_set(tp
, TCP_CHRONO_UNSPEC
);
2404 else if (type
== tp
->chrono_type
)
2405 tcp_chrono_set(tp
, TCP_CHRONO_BUSY
);
2408 /* This routine writes packets to the network. It advances the
2409 * send_head. This happens as incoming acks open up the remote
2412 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2413 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2414 * account rare use of URG, this is not a big flaw.
2416 * Send at most one packet when push_one > 0. Temporarily ignore
2417 * cwnd limit to force at most one packet out when push_one == 2.
2419 * Returns true, if no segments are in flight and we have queued segments,
2420 * but cannot send anything now because of SWS or another problem.
2422 static bool tcp_write_xmit(struct sock
*sk
, unsigned int mss_now
, int nonagle
,
2423 int push_one
, gfp_t gfp
)
2425 struct tcp_sock
*tp
= tcp_sk(sk
);
2426 struct sk_buff
*skb
;
2427 unsigned int tso_segs
, sent_pkts
;
2430 bool is_cwnd_limited
= false, is_rwnd_limited
= false;
2435 tcp_mstamp_refresh(tp
);
2437 /* Do MTU probing. */
2438 result
= tcp_mtu_probe(sk
);
2441 } else if (result
> 0) {
2446 max_segs
= tcp_tso_segs(sk
, mss_now
);
2447 while ((skb
= tcp_send_head(sk
))) {
2450 if (unlikely(tp
->repair
) && tp
->repair_queue
== TCP_SEND_QUEUE
) {
2451 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2452 skb
->skb_mstamp_ns
= tp
->tcp_wstamp_ns
= tp
->tcp_clock_cache
;
2453 list_move_tail(&skb
->tcp_tsorted_anchor
, &tp
->tsorted_sent_queue
);
2454 tcp_init_tso_segs(skb
, mss_now
);
2455 goto repair
; /* Skip network transmission */
2458 if (tcp_pacing_check(sk
))
2461 tso_segs
= tcp_init_tso_segs(skb
, mss_now
);
2464 cwnd_quota
= tcp_cwnd_test(tp
, skb
);
2467 /* Force out a loss probe pkt. */
2473 if (unlikely(!tcp_snd_wnd_test(tp
, skb
, mss_now
))) {
2474 is_rwnd_limited
= true;
2478 if (tso_segs
== 1) {
2479 if (unlikely(!tcp_nagle_test(tp
, skb
, mss_now
,
2480 (tcp_skb_is_last(sk
, skb
) ?
2481 nonagle
: TCP_NAGLE_PUSH
))))
2485 tcp_tso_should_defer(sk
, skb
, &is_cwnd_limited
,
2486 &is_rwnd_limited
, max_segs
))
2491 if (tso_segs
> 1 && !tcp_urg_mode(tp
))
2492 limit
= tcp_mss_split_point(sk
, skb
, mss_now
,
2498 if (skb
->len
> limit
&&
2499 unlikely(tso_fragment(sk
, skb
, limit
, mss_now
, gfp
)))
2502 if (tcp_small_queue_check(sk
, skb
, 0))
2505 /* Argh, we hit an empty skb(), presumably a thread
2506 * is sleeping in sendmsg()/sk_stream_wait_memory().
2507 * We do not want to send a pure-ack packet and have
2508 * a strange looking rtx queue with empty packet(s).
2510 if (TCP_SKB_CB(skb
)->end_seq
== TCP_SKB_CB(skb
)->seq
)
2513 if (unlikely(tcp_transmit_skb(sk
, skb
, 1, gfp
)))
2517 /* Advance the send_head. This one is sent out.
2518 * This call will increment packets_out.
2520 tcp_event_new_data_sent(sk
, skb
);
2522 tcp_minshall_update(tp
, mss_now
, skb
);
2523 sent_pkts
+= tcp_skb_pcount(skb
);
2529 if (is_rwnd_limited
)
2530 tcp_chrono_start(sk
, TCP_CHRONO_RWND_LIMITED
);
2532 tcp_chrono_stop(sk
, TCP_CHRONO_RWND_LIMITED
);
2534 if (likely(sent_pkts
)) {
2535 if (tcp_in_cwnd_reduction(sk
))
2536 tp
->prr_out
+= sent_pkts
;
2538 /* Send one loss probe per tail loss episode. */
2540 tcp_schedule_loss_probe(sk
, false);
2541 is_cwnd_limited
|= (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
);
2542 tcp_cwnd_validate(sk
, is_cwnd_limited
);
2545 return !tp
->packets_out
&& !tcp_write_queue_empty(sk
);
2548 bool tcp_schedule_loss_probe(struct sock
*sk
, bool advancing_rto
)
2550 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2551 struct tcp_sock
*tp
= tcp_sk(sk
);
2552 u32 timeout
, rto_delta_us
;
2555 /* Don't do any loss probe on a Fast Open connection before 3WHS
2558 if (rcu_access_pointer(tp
->fastopen_rsk
))
2561 early_retrans
= sock_net(sk
)->ipv4
.sysctl_tcp_early_retrans
;
2562 /* Schedule a loss probe in 2*RTT for SACK capable connections
2563 * not in loss recovery, that are either limited by cwnd or application.
2565 if ((early_retrans
!= 3 && early_retrans
!= 4) ||
2566 !tp
->packets_out
|| !tcp_is_sack(tp
) ||
2567 (icsk
->icsk_ca_state
!= TCP_CA_Open
&&
2568 icsk
->icsk_ca_state
!= TCP_CA_CWR
))
2571 /* Probe timeout is 2*rtt. Add minimum RTO to account
2572 * for delayed ack when there's one outstanding packet. If no RTT
2573 * sample is available then probe after TCP_TIMEOUT_INIT.
2576 timeout
= usecs_to_jiffies(tp
->srtt_us
>> 2);
2577 if (tp
->packets_out
== 1)
2578 timeout
+= TCP_RTO_MIN
;
2580 timeout
+= TCP_TIMEOUT_MIN
;
2582 timeout
= TCP_TIMEOUT_INIT
;
2585 /* If the RTO formula yields an earlier time, then use that time. */
2586 rto_delta_us
= advancing_rto
?
2587 jiffies_to_usecs(inet_csk(sk
)->icsk_rto
) :
2588 tcp_rto_delta_us(sk
); /* How far in future is RTO? */
2589 if (rto_delta_us
> 0)
2590 timeout
= min_t(u32
, timeout
, usecs_to_jiffies(rto_delta_us
));
2592 tcp_reset_xmit_timer(sk
, ICSK_TIME_LOSS_PROBE
, timeout
,
2597 /* Thanks to skb fast clones, we can detect if a prior transmit of
2598 * a packet is still in a qdisc or driver queue.
2599 * In this case, there is very little point doing a retransmit !
2601 static bool skb_still_in_host_queue(const struct sock
*sk
,
2602 const struct sk_buff
*skb
)
2604 if (unlikely(skb_fclone_busy(sk
, skb
))) {
2605 NET_INC_STATS(sock_net(sk
),
2606 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES
);
2612 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2613 * retransmit the last segment.
2615 void tcp_send_loss_probe(struct sock
*sk
)
2617 struct tcp_sock
*tp
= tcp_sk(sk
);
2618 struct sk_buff
*skb
;
2620 int mss
= tcp_current_mss(sk
);
2622 skb
= tcp_send_head(sk
);
2623 if (skb
&& tcp_snd_wnd_test(tp
, skb
, mss
)) {
2624 pcount
= tp
->packets_out
;
2625 tcp_write_xmit(sk
, mss
, TCP_NAGLE_OFF
, 2, GFP_ATOMIC
);
2626 if (tp
->packets_out
> pcount
)
2630 skb
= skb_rb_last(&sk
->tcp_rtx_queue
);
2631 if (unlikely(!skb
)) {
2632 WARN_ONCE(tp
->packets_out
,
2633 "invalid inflight: %u state %u cwnd %u mss %d\n",
2634 tp
->packets_out
, sk
->sk_state
, tp
->snd_cwnd
, mss
);
2635 inet_csk(sk
)->icsk_pending
= 0;
2639 /* At most one outstanding TLP retransmission. */
2640 if (tp
->tlp_high_seq
)
2643 if (skb_still_in_host_queue(sk
, skb
))
2646 pcount
= tcp_skb_pcount(skb
);
2647 if (WARN_ON(!pcount
))
2650 if ((pcount
> 1) && (skb
->len
> (pcount
- 1) * mss
)) {
2651 if (unlikely(tcp_fragment(sk
, TCP_FRAG_IN_RTX_QUEUE
, skb
,
2652 (pcount
- 1) * mss
, mss
,
2655 skb
= skb_rb_next(skb
);
2658 if (WARN_ON(!skb
|| !tcp_skb_pcount(skb
)))
2661 if (__tcp_retransmit_skb(sk
, skb
, 1))
2664 /* Record snd_nxt for loss detection. */
2665 tp
->tlp_high_seq
= tp
->snd_nxt
;
2668 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPLOSSPROBES
);
2669 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2670 inet_csk(sk
)->icsk_pending
= 0;
2675 /* Push out any pending frames which were held back due to
2676 * TCP_CORK or attempt at coalescing tiny packets.
2677 * The socket must be locked by the caller.
2679 void __tcp_push_pending_frames(struct sock
*sk
, unsigned int cur_mss
,
2682 /* If we are closed, the bytes will have to remain here.
2683 * In time closedown will finish, we empty the write queue and
2684 * all will be happy.
2686 if (unlikely(sk
->sk_state
== TCP_CLOSE
))
2689 if (tcp_write_xmit(sk
, cur_mss
, nonagle
, 0,
2690 sk_gfp_mask(sk
, GFP_ATOMIC
)))
2691 tcp_check_probe_timer(sk
);
2694 /* Send _single_ skb sitting at the send head. This function requires
2695 * true push pending frames to setup probe timer etc.
2697 void tcp_push_one(struct sock
*sk
, unsigned int mss_now
)
2699 struct sk_buff
*skb
= tcp_send_head(sk
);
2701 BUG_ON(!skb
|| skb
->len
< mss_now
);
2703 tcp_write_xmit(sk
, mss_now
, TCP_NAGLE_PUSH
, 1, sk
->sk_allocation
);
2706 /* This function returns the amount that we can raise the
2707 * usable window based on the following constraints
2709 * 1. The window can never be shrunk once it is offered (RFC 793)
2710 * 2. We limit memory per socket
2713 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2714 * RECV.NEXT + RCV.WIN fixed until:
2715 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2717 * i.e. don't raise the right edge of the window until you can raise
2718 * it at least MSS bytes.
2720 * Unfortunately, the recommended algorithm breaks header prediction,
2721 * since header prediction assumes th->window stays fixed.
2723 * Strictly speaking, keeping th->window fixed violates the receiver
2724 * side SWS prevention criteria. The problem is that under this rule
2725 * a stream of single byte packets will cause the right side of the
2726 * window to always advance by a single byte.
2728 * Of course, if the sender implements sender side SWS prevention
2729 * then this will not be a problem.
2731 * BSD seems to make the following compromise:
2733 * If the free space is less than the 1/4 of the maximum
2734 * space available and the free space is less than 1/2 mss,
2735 * then set the window to 0.
2736 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2737 * Otherwise, just prevent the window from shrinking
2738 * and from being larger than the largest representable value.
2740 * This prevents incremental opening of the window in the regime
2741 * where TCP is limited by the speed of the reader side taking
2742 * data out of the TCP receive queue. It does nothing about
2743 * those cases where the window is constrained on the sender side
2744 * because the pipeline is full.
2746 * BSD also seems to "accidentally" limit itself to windows that are a
2747 * multiple of MSS, at least until the free space gets quite small.
2748 * This would appear to be a side effect of the mbuf implementation.
2749 * Combining these two algorithms results in the observed behavior
2750 * of having a fixed window size at almost all times.
2752 * Below we obtain similar behavior by forcing the offered window to
2753 * a multiple of the mss when it is feasible to do so.
2755 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2756 * Regular options like TIMESTAMP are taken into account.
2758 u32
__tcp_select_window(struct sock
*sk
)
2760 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2761 struct tcp_sock
*tp
= tcp_sk(sk
);
2762 /* MSS for the peer's data. Previous versions used mss_clamp
2763 * here. I don't know if the value based on our guesses
2764 * of peer's MSS is better for the performance. It's more correct
2765 * but may be worse for the performance because of rcv_mss
2766 * fluctuations. --SAW 1998/11/1
2768 int mss
= icsk
->icsk_ack
.rcv_mss
;
2769 int free_space
= tcp_space(sk
);
2770 int allowed_space
= tcp_full_space(sk
);
2771 int full_space
= min_t(int, tp
->window_clamp
, allowed_space
);
2774 if (unlikely(mss
> full_space
)) {
2779 if (free_space
< (full_space
>> 1)) {
2780 icsk
->icsk_ack
.quick
= 0;
2782 if (tcp_under_memory_pressure(sk
))
2783 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
,
2786 /* free_space might become our new window, make sure we don't
2787 * increase it due to wscale.
2789 free_space
= round_down(free_space
, 1 << tp
->rx_opt
.rcv_wscale
);
2791 /* if free space is less than mss estimate, or is below 1/16th
2792 * of the maximum allowed, try to move to zero-window, else
2793 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2794 * new incoming data is dropped due to memory limits.
2795 * With large window, mss test triggers way too late in order
2796 * to announce zero window in time before rmem limit kicks in.
2798 if (free_space
< (allowed_space
>> 4) || free_space
< mss
)
2802 if (free_space
> tp
->rcv_ssthresh
)
2803 free_space
= tp
->rcv_ssthresh
;
2805 /* Don't do rounding if we are using window scaling, since the
2806 * scaled window will not line up with the MSS boundary anyway.
2808 if (tp
->rx_opt
.rcv_wscale
) {
2809 window
= free_space
;
2811 /* Advertise enough space so that it won't get scaled away.
2812 * Import case: prevent zero window announcement if
2813 * 1<<rcv_wscale > mss.
2815 window
= ALIGN(window
, (1 << tp
->rx_opt
.rcv_wscale
));
2817 window
= tp
->rcv_wnd
;
2818 /* Get the largest window that is a nice multiple of mss.
2819 * Window clamp already applied above.
2820 * If our current window offering is within 1 mss of the
2821 * free space we just keep it. This prevents the divide
2822 * and multiply from happening most of the time.
2823 * We also don't do any window rounding when the free space
2826 if (window
<= free_space
- mss
|| window
> free_space
)
2827 window
= rounddown(free_space
, mss
);
2828 else if (mss
== full_space
&&
2829 free_space
> window
+ (full_space
>> 1))
2830 window
= free_space
;
2836 void tcp_skb_collapse_tstamp(struct sk_buff
*skb
,
2837 const struct sk_buff
*next_skb
)
2839 if (unlikely(tcp_has_tx_tstamp(next_skb
))) {
2840 const struct skb_shared_info
*next_shinfo
=
2841 skb_shinfo(next_skb
);
2842 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
2844 shinfo
->tx_flags
|= next_shinfo
->tx_flags
& SKBTX_ANY_TSTAMP
;
2845 shinfo
->tskey
= next_shinfo
->tskey
;
2846 TCP_SKB_CB(skb
)->txstamp_ack
|=
2847 TCP_SKB_CB(next_skb
)->txstamp_ack
;
2851 /* Collapses two adjacent SKB's during retransmission. */
2852 static bool tcp_collapse_retrans(struct sock
*sk
, struct sk_buff
*skb
)
2854 struct tcp_sock
*tp
= tcp_sk(sk
);
2855 struct sk_buff
*next_skb
= skb_rb_next(skb
);
2858 next_skb_size
= next_skb
->len
;
2860 BUG_ON(tcp_skb_pcount(skb
) != 1 || tcp_skb_pcount(next_skb
) != 1);
2862 if (next_skb_size
) {
2863 if (next_skb_size
<= skb_availroom(skb
))
2864 skb_copy_bits(next_skb
, 0, skb_put(skb
, next_skb_size
),
2866 else if (!tcp_skb_shift(skb
, next_skb
, 1, next_skb_size
))
2869 tcp_highest_sack_replace(sk
, next_skb
, skb
);
2871 /* Update sequence range on original skb. */
2872 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(next_skb
)->end_seq
;
2874 /* Merge over control information. This moves PSH/FIN etc. over */
2875 TCP_SKB_CB(skb
)->tcp_flags
|= TCP_SKB_CB(next_skb
)->tcp_flags
;
2877 /* All done, get rid of second SKB and account for it so
2878 * packet counting does not break.
2880 TCP_SKB_CB(skb
)->sacked
|= TCP_SKB_CB(next_skb
)->sacked
& TCPCB_EVER_RETRANS
;
2881 TCP_SKB_CB(skb
)->eor
= TCP_SKB_CB(next_skb
)->eor
;
2883 /* changed transmit queue under us so clear hints */
2884 tcp_clear_retrans_hints_partial(tp
);
2885 if (next_skb
== tp
->retransmit_skb_hint
)
2886 tp
->retransmit_skb_hint
= skb
;
2888 tcp_adjust_pcount(sk
, next_skb
, tcp_skb_pcount(next_skb
));
2890 tcp_skb_collapse_tstamp(skb
, next_skb
);
2892 tcp_rtx_queue_unlink_and_free(next_skb
, sk
);
2896 /* Check if coalescing SKBs is legal. */
2897 static bool tcp_can_collapse(const struct sock
*sk
, const struct sk_buff
*skb
)
2899 if (tcp_skb_pcount(skb
) > 1)
2901 if (skb_cloned(skb
))
2903 /* Some heuristics for collapsing over SACK'd could be invented */
2904 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
2910 /* Collapse packets in the retransmit queue to make to create
2911 * less packets on the wire. This is only done on retransmission.
2913 static void tcp_retrans_try_collapse(struct sock
*sk
, struct sk_buff
*to
,
2916 struct tcp_sock
*tp
= tcp_sk(sk
);
2917 struct sk_buff
*skb
= to
, *tmp
;
2920 if (!sock_net(sk
)->ipv4
.sysctl_tcp_retrans_collapse
)
2922 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)
2925 skb_rbtree_walk_from_safe(skb
, tmp
) {
2926 if (!tcp_can_collapse(sk
, skb
))
2929 if (!tcp_skb_can_collapse(to
, skb
))
2942 if (after(TCP_SKB_CB(skb
)->end_seq
, tcp_wnd_end(tp
)))
2945 if (!tcp_collapse_retrans(sk
, to
))
2950 /* This retransmits one SKB. Policy decisions and retransmit queue
2951 * state updates are done by the caller. Returns non-zero if an
2952 * error occurred which prevented the send.
2954 int __tcp_retransmit_skb(struct sock
*sk
, struct sk_buff
*skb
, int segs
)
2956 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2957 struct tcp_sock
*tp
= tcp_sk(sk
);
2958 unsigned int cur_mss
;
2962 /* Inconclusive MTU probe */
2963 if (icsk
->icsk_mtup
.probe_size
)
2964 icsk
->icsk_mtup
.probe_size
= 0;
2966 /* Do not sent more than we queued. 1/4 is reserved for possible
2967 * copying overhead: fragmentation, tunneling, mangling etc.
2969 if (refcount_read(&sk
->sk_wmem_alloc
) >
2970 min_t(u32
, sk
->sk_wmem_queued
+ (sk
->sk_wmem_queued
>> 2),
2974 if (skb_still_in_host_queue(sk
, skb
))
2977 if (before(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
)) {
2978 if (unlikely(before(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))) {
2982 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
2986 if (inet_csk(sk
)->icsk_af_ops
->rebuild_header(sk
))
2987 return -EHOSTUNREACH
; /* Routing failure or similar. */
2989 cur_mss
= tcp_current_mss(sk
);
2991 /* If receiver has shrunk his window, and skb is out of
2992 * new window, do not retransmit it. The exception is the
2993 * case, when window is shrunk to zero. In this case
2994 * our retransmit serves as a zero window probe.
2996 if (!before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
)) &&
2997 TCP_SKB_CB(skb
)->seq
!= tp
->snd_una
)
3000 len
= cur_mss
* segs
;
3001 if (skb
->len
> len
) {
3002 if (tcp_fragment(sk
, TCP_FRAG_IN_RTX_QUEUE
, skb
, len
,
3003 cur_mss
, GFP_ATOMIC
))
3004 return -ENOMEM
; /* We'll try again later. */
3006 if (skb_unclone(skb
, GFP_ATOMIC
))
3009 diff
= tcp_skb_pcount(skb
);
3010 tcp_set_skb_tso_segs(skb
, cur_mss
);
3011 diff
-= tcp_skb_pcount(skb
);
3013 tcp_adjust_pcount(sk
, skb
, diff
);
3014 if (skb
->len
< cur_mss
)
3015 tcp_retrans_try_collapse(sk
, skb
, cur_mss
);
3018 /* RFC3168, section 6.1.1.1. ECN fallback */
3019 if ((TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN_ECN
) == TCPHDR_SYN_ECN
)
3020 tcp_ecn_clear_syn(sk
, skb
);
3022 /* Update global and local TCP statistics. */
3023 segs
= tcp_skb_pcount(skb
);
3024 TCP_ADD_STATS(sock_net(sk
), TCP_MIB_RETRANSSEGS
, segs
);
3025 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)
3026 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSYNRETRANS
);
3027 tp
->total_retrans
+= segs
;
3028 tp
->bytes_retrans
+= skb
->len
;
3030 /* make sure skb->data is aligned on arches that require it
3031 * and check if ack-trimming & collapsing extended the headroom
3032 * beyond what csum_start can cover.
3034 if (unlikely((NET_IP_ALIGN
&& ((unsigned long)skb
->data
& 3)) ||
3035 skb_headroom(skb
) >= 0xFFFF)) {
3036 struct sk_buff
*nskb
;
3038 tcp_skb_tsorted_save(skb
) {
3039 nskb
= __pskb_copy(skb
, MAX_TCP_HEADER
, GFP_ATOMIC
);
3040 err
= nskb
? tcp_transmit_skb(sk
, nskb
, 0, GFP_ATOMIC
) :
3042 } tcp_skb_tsorted_restore(skb
);
3045 tcp_update_skb_after_send(sk
, skb
, tp
->tcp_wstamp_ns
);
3046 tcp_rate_skb_sent(sk
, skb
);
3049 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
3052 /* To avoid taking spuriously low RTT samples based on a timestamp
3053 * for a transmit that never happened, always mark EVER_RETRANS
3055 TCP_SKB_CB(skb
)->sacked
|= TCPCB_EVER_RETRANS
;
3057 if (BPF_SOCK_OPS_TEST_FLAG(tp
, BPF_SOCK_OPS_RETRANS_CB_FLAG
))
3058 tcp_call_bpf_3arg(sk
, BPF_SOCK_OPS_RETRANS_CB
,
3059 TCP_SKB_CB(skb
)->seq
, segs
, err
);
3062 trace_tcp_retransmit_skb(sk
, skb
);
3063 } else if (err
!= -EBUSY
) {
3064 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPRETRANSFAIL
, segs
);
3069 int tcp_retransmit_skb(struct sock
*sk
, struct sk_buff
*skb
, int segs
)
3071 struct tcp_sock
*tp
= tcp_sk(sk
);
3072 int err
= __tcp_retransmit_skb(sk
, skb
, segs
);
3075 #if FASTRETRANS_DEBUG > 0
3076 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
3077 net_dbg_ratelimited("retrans_out leaked\n");
3080 TCP_SKB_CB(skb
)->sacked
|= TCPCB_RETRANS
;
3081 tp
->retrans_out
+= tcp_skb_pcount(skb
);
3084 /* Save stamp of the first (attempted) retransmit. */
3085 if (!tp
->retrans_stamp
)
3086 tp
->retrans_stamp
= tcp_skb_timestamp(skb
);
3088 if (tp
->undo_retrans
< 0)
3089 tp
->undo_retrans
= 0;
3090 tp
->undo_retrans
+= tcp_skb_pcount(skb
);
3094 /* This gets called after a retransmit timeout, and the initially
3095 * retransmitted data is acknowledged. It tries to continue
3096 * resending the rest of the retransmit queue, until either
3097 * we've sent it all or the congestion window limit is reached.
3099 void tcp_xmit_retransmit_queue(struct sock
*sk
)
3101 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3102 struct sk_buff
*skb
, *rtx_head
, *hole
= NULL
;
3103 struct tcp_sock
*tp
= tcp_sk(sk
);
3107 if (!tp
->packets_out
)
3110 rtx_head
= tcp_rtx_queue_head(sk
);
3111 skb
= tp
->retransmit_skb_hint
?: rtx_head
;
3112 max_segs
= tcp_tso_segs(sk
, tcp_current_mss(sk
));
3113 skb_rbtree_walk_from(skb
) {
3117 if (tcp_pacing_check(sk
))
3120 /* we could do better than to assign each time */
3122 tp
->retransmit_skb_hint
= skb
;
3124 segs
= tp
->snd_cwnd
- tcp_packets_in_flight(tp
);
3127 sacked
= TCP_SKB_CB(skb
)->sacked
;
3128 /* In case tcp_shift_skb_data() have aggregated large skbs,
3129 * we need to make sure not sending too bigs TSO packets
3131 segs
= min_t(int, segs
, max_segs
);
3133 if (tp
->retrans_out
>= tp
->lost_out
) {
3135 } else if (!(sacked
& TCPCB_LOST
)) {
3136 if (!hole
&& !(sacked
& (TCPCB_SACKED_RETRANS
|TCPCB_SACKED_ACKED
)))
3141 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
)
3142 mib_idx
= LINUX_MIB_TCPFASTRETRANS
;
3144 mib_idx
= LINUX_MIB_TCPSLOWSTARTRETRANS
;
3147 if (sacked
& (TCPCB_SACKED_ACKED
|TCPCB_SACKED_RETRANS
))
3150 if (tcp_small_queue_check(sk
, skb
, 1))
3153 if (tcp_retransmit_skb(sk
, skb
, segs
))
3156 NET_ADD_STATS(sock_net(sk
), mib_idx
, tcp_skb_pcount(skb
));
3158 if (tcp_in_cwnd_reduction(sk
))
3159 tp
->prr_out
+= tcp_skb_pcount(skb
);
3161 if (skb
== rtx_head
&&
3162 icsk
->icsk_pending
!= ICSK_TIME_REO_TIMEOUT
)
3163 tcp_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
3164 inet_csk(sk
)->icsk_rto
,
3170 /* We allow to exceed memory limits for FIN packets to expedite
3171 * connection tear down and (memory) recovery.
3172 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3173 * or even be forced to close flow without any FIN.
3174 * In general, we want to allow one skb per socket to avoid hangs
3175 * with edge trigger epoll()
3177 void sk_forced_mem_schedule(struct sock
*sk
, int size
)
3181 if (size
<= sk
->sk_forward_alloc
)
3183 amt
= sk_mem_pages(size
);
3184 sk
->sk_forward_alloc
+= amt
* SK_MEM_QUANTUM
;
3185 sk_memory_allocated_add(sk
, amt
);
3187 if (mem_cgroup_sockets_enabled
&& sk
->sk_memcg
)
3188 mem_cgroup_charge_skmem(sk
->sk_memcg
, amt
);
3191 /* Send a FIN. The caller locks the socket for us.
3192 * We should try to send a FIN packet really hard, but eventually give up.
3194 void tcp_send_fin(struct sock
*sk
)
3196 struct sk_buff
*skb
, *tskb
, *tail
= tcp_write_queue_tail(sk
);
3197 struct tcp_sock
*tp
= tcp_sk(sk
);
3199 /* Optimization, tack on the FIN if we have one skb in write queue and
3200 * this skb was not yet sent, or we are under memory pressure.
3201 * Note: in the latter case, FIN packet will be sent after a timeout,
3202 * as TCP stack thinks it has already been transmitted.
3205 if (!tskb
&& tcp_under_memory_pressure(sk
))
3206 tskb
= skb_rb_last(&sk
->tcp_rtx_queue
);
3209 TCP_SKB_CB(tskb
)->tcp_flags
|= TCPHDR_FIN
;
3210 TCP_SKB_CB(tskb
)->end_seq
++;
3213 /* This means tskb was already sent.
3214 * Pretend we included the FIN on previous transmit.
3215 * We need to set tp->snd_nxt to the value it would have
3216 * if FIN had been sent. This is because retransmit path
3217 * does not change tp->snd_nxt.
3219 WRITE_ONCE(tp
->snd_nxt
, tp
->snd_nxt
+ 1);
3223 skb
= alloc_skb_fclone(MAX_TCP_HEADER
, sk
->sk_allocation
);
3227 INIT_LIST_HEAD(&skb
->tcp_tsorted_anchor
);
3228 skb_reserve(skb
, MAX_TCP_HEADER
);
3229 sk_forced_mem_schedule(sk
, skb
->truesize
);
3230 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3231 tcp_init_nondata_skb(skb
, tp
->write_seq
,
3232 TCPHDR_ACK
| TCPHDR_FIN
);
3233 tcp_queue_skb(sk
, skb
);
3235 __tcp_push_pending_frames(sk
, tcp_current_mss(sk
), TCP_NAGLE_OFF
);
3238 /* We get here when a process closes a file descriptor (either due to
3239 * an explicit close() or as a byproduct of exit()'ing) and there
3240 * was unread data in the receive queue. This behavior is recommended
3241 * by RFC 2525, section 2.17. -DaveM
3243 void tcp_send_active_reset(struct sock
*sk
, gfp_t priority
)
3245 struct sk_buff
*skb
;
3247 TCP_INC_STATS(sock_net(sk
), TCP_MIB_OUTRSTS
);
3249 /* NOTE: No TCP options attached and we never retransmit this. */
3250 skb
= alloc_skb(MAX_TCP_HEADER
, priority
);
3252 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTFAILED
);
3256 /* Reserve space for headers and prepare control bits. */
3257 skb_reserve(skb
, MAX_TCP_HEADER
);
3258 tcp_init_nondata_skb(skb
, tcp_acceptable_seq(sk
),
3259 TCPHDR_ACK
| TCPHDR_RST
);
3260 tcp_mstamp_refresh(tcp_sk(sk
));
3262 if (tcp_transmit_skb(sk
, skb
, 0, priority
))
3263 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTFAILED
);
3265 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3266 * skb here is different to the troublesome skb, so use NULL
3268 trace_tcp_send_reset(sk
, NULL
);
3271 /* Send a crossed SYN-ACK during socket establishment.
3272 * WARNING: This routine must only be called when we have already sent
3273 * a SYN packet that crossed the incoming SYN that caused this routine
3274 * to get called. If this assumption fails then the initial rcv_wnd
3275 * and rcv_wscale values will not be correct.
3277 int tcp_send_synack(struct sock
*sk
)
3279 struct sk_buff
*skb
;
3281 skb
= tcp_rtx_queue_head(sk
);
3282 if (!skb
|| !(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)) {
3283 pr_err("%s: wrong queue state\n", __func__
);
3286 if (!(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_ACK
)) {
3287 if (skb_cloned(skb
)) {
3288 struct sk_buff
*nskb
;
3290 tcp_skb_tsorted_save(skb
) {
3291 nskb
= skb_copy(skb
, GFP_ATOMIC
);
3292 } tcp_skb_tsorted_restore(skb
);
3295 INIT_LIST_HEAD(&nskb
->tcp_tsorted_anchor
);
3296 tcp_highest_sack_replace(sk
, skb
, nskb
);
3297 tcp_rtx_queue_unlink_and_free(skb
, sk
);
3298 __skb_header_release(nskb
);
3299 tcp_rbtree_insert(&sk
->tcp_rtx_queue
, nskb
);
3300 sk_wmem_queued_add(sk
, nskb
->truesize
);
3301 sk_mem_charge(sk
, nskb
->truesize
);
3305 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_ACK
;
3306 tcp_ecn_send_synack(sk
, skb
);
3308 return tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
3312 * tcp_make_synack - Prepare a SYN-ACK.
3313 * sk: listener socket
3314 * dst: dst entry attached to the SYNACK
3315 * req: request_sock pointer
3317 * Allocate one skb and build a SYNACK packet.
3318 * @dst is consumed : Caller should not use it again.
3320 struct sk_buff
*tcp_make_synack(const struct sock
*sk
, struct dst_entry
*dst
,
3321 struct request_sock
*req
,
3322 struct tcp_fastopen_cookie
*foc
,
3323 enum tcp_synack_type synack_type
)
3325 struct inet_request_sock
*ireq
= inet_rsk(req
);
3326 const struct tcp_sock
*tp
= tcp_sk(sk
);
3327 struct tcp_md5sig_key
*md5
= NULL
;
3328 struct tcp_out_options opts
;
3329 struct sk_buff
*skb
;
3330 int tcp_header_size
;
3335 skb
= alloc_skb(MAX_TCP_HEADER
, GFP_ATOMIC
);
3336 if (unlikely(!skb
)) {
3340 /* Reserve space for headers. */
3341 skb_reserve(skb
, MAX_TCP_HEADER
);
3343 switch (synack_type
) {
3344 case TCP_SYNACK_NORMAL
:
3345 skb_set_owner_w(skb
, req_to_sk(req
));
3347 case TCP_SYNACK_COOKIE
:
3348 /* Under synflood, we do not attach skb to a socket,
3349 * to avoid false sharing.
3352 case TCP_SYNACK_FASTOPEN
:
3353 /* sk is a const pointer, because we want to express multiple
3354 * cpu might call us concurrently.
3355 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3357 skb_set_owner_w(skb
, (struct sock
*)sk
);
3360 skb_dst_set(skb
, dst
);
3362 mss
= tcp_mss_clamp(tp
, dst_metric_advmss(dst
));
3364 memset(&opts
, 0, sizeof(opts
));
3365 now
= tcp_clock_ns();
3366 #ifdef CONFIG_SYN_COOKIES
3367 if (unlikely(req
->cookie_ts
))
3368 skb
->skb_mstamp_ns
= cookie_init_timestamp(req
, now
);
3372 skb
->skb_mstamp_ns
= now
;
3373 if (!tcp_rsk(req
)->snt_synack
) /* Timestamp first SYNACK */
3374 tcp_rsk(req
)->snt_synack
= tcp_skb_timestamp_us(skb
);
3377 #ifdef CONFIG_TCP_MD5SIG
3379 md5
= tcp_rsk(req
)->af_specific
->req_md5_lookup(sk
, req_to_sk(req
));
3381 skb_set_hash(skb
, tcp_rsk(req
)->txhash
, PKT_HASH_TYPE_L4
);
3382 tcp_header_size
= tcp_synack_options(sk
, req
, mss
, skb
, &opts
, md5
,
3385 skb_push(skb
, tcp_header_size
);
3386 skb_reset_transport_header(skb
);
3388 th
= (struct tcphdr
*)skb
->data
;
3389 memset(th
, 0, sizeof(struct tcphdr
));
3392 tcp_ecn_make_synack(req
, th
);
3393 th
->source
= htons(ireq
->ir_num
);
3394 th
->dest
= ireq
->ir_rmt_port
;
3395 skb
->mark
= ireq
->ir_mark
;
3396 skb
->ip_summed
= CHECKSUM_PARTIAL
;
3397 th
->seq
= htonl(tcp_rsk(req
)->snt_isn
);
3398 /* XXX data is queued and acked as is. No buffer/window check */
3399 th
->ack_seq
= htonl(tcp_rsk(req
)->rcv_nxt
);
3401 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3402 th
->window
= htons(min(req
->rsk_rcv_wnd
, 65535U));
3403 tcp_options_write((__be32
*)(th
+ 1), NULL
, &opts
);
3404 th
->doff
= (tcp_header_size
>> 2);
3405 __TCP_INC_STATS(sock_net(sk
), TCP_MIB_OUTSEGS
);
3407 #ifdef CONFIG_TCP_MD5SIG
3408 /* Okay, we have all we need - do the md5 hash if needed */
3410 tcp_rsk(req
)->af_specific
->calc_md5_hash(opts
.hash_location
,
3411 md5
, req_to_sk(req
), skb
);
3415 skb
->skb_mstamp_ns
= now
;
3416 tcp_add_tx_delay(skb
, tp
);
3420 EXPORT_SYMBOL(tcp_make_synack
);
3422 static void tcp_ca_dst_init(struct sock
*sk
, const struct dst_entry
*dst
)
3424 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3425 const struct tcp_congestion_ops
*ca
;
3426 u32 ca_key
= dst_metric(dst
, RTAX_CC_ALGO
);
3428 if (ca_key
== TCP_CA_UNSPEC
)
3432 ca
= tcp_ca_find_key(ca_key
);
3433 if (likely(ca
&& bpf_try_module_get(ca
, ca
->owner
))) {
3434 bpf_module_put(icsk
->icsk_ca_ops
, icsk
->icsk_ca_ops
->owner
);
3435 icsk
->icsk_ca_dst_locked
= tcp_ca_dst_locked(dst
);
3436 icsk
->icsk_ca_ops
= ca
;
3441 /* Do all connect socket setups that can be done AF independent. */
3442 static void tcp_connect_init(struct sock
*sk
)
3444 const struct dst_entry
*dst
= __sk_dst_get(sk
);
3445 struct tcp_sock
*tp
= tcp_sk(sk
);
3449 /* We'll fix this up when we get a response from the other end.
3450 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3452 tp
->tcp_header_len
= sizeof(struct tcphdr
);
3453 if (sock_net(sk
)->ipv4
.sysctl_tcp_timestamps
)
3454 tp
->tcp_header_len
+= TCPOLEN_TSTAMP_ALIGNED
;
3456 #ifdef CONFIG_TCP_MD5SIG
3457 if (tp
->af_specific
->md5_lookup(sk
, sk
))
3458 tp
->tcp_header_len
+= TCPOLEN_MD5SIG_ALIGNED
;
3461 /* If user gave his TCP_MAXSEG, record it to clamp */
3462 if (tp
->rx_opt
.user_mss
)
3463 tp
->rx_opt
.mss_clamp
= tp
->rx_opt
.user_mss
;
3466 tcp_sync_mss(sk
, dst_mtu(dst
));
3468 tcp_ca_dst_init(sk
, dst
);
3470 if (!tp
->window_clamp
)
3471 tp
->window_clamp
= dst_metric(dst
, RTAX_WINDOW
);
3472 tp
->advmss
= tcp_mss_clamp(tp
, dst_metric_advmss(dst
));
3474 tcp_initialize_rcv_mss(sk
);
3476 /* limit the window selection if the user enforce a smaller rx buffer */
3477 if (sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
&&
3478 (tp
->window_clamp
> tcp_full_space(sk
) || tp
->window_clamp
== 0))
3479 tp
->window_clamp
= tcp_full_space(sk
);
3481 rcv_wnd
= tcp_rwnd_init_bpf(sk
);
3483 rcv_wnd
= dst_metric(dst
, RTAX_INITRWND
);
3485 tcp_select_initial_window(sk
, tcp_full_space(sk
),
3486 tp
->advmss
- (tp
->rx_opt
.ts_recent_stamp
? tp
->tcp_header_len
- sizeof(struct tcphdr
) : 0),
3489 sock_net(sk
)->ipv4
.sysctl_tcp_window_scaling
,
3493 tp
->rx_opt
.rcv_wscale
= rcv_wscale
;
3494 tp
->rcv_ssthresh
= tp
->rcv_wnd
;
3497 sock_reset_flag(sk
, SOCK_DONE
);
3500 tcp_write_queue_purge(sk
);
3501 tp
->snd_una
= tp
->write_seq
;
3502 tp
->snd_sml
= tp
->write_seq
;
3503 tp
->snd_up
= tp
->write_seq
;
3504 WRITE_ONCE(tp
->snd_nxt
, tp
->write_seq
);
3506 if (likely(!tp
->repair
))
3509 tp
->rcv_tstamp
= tcp_jiffies32
;
3510 tp
->rcv_wup
= tp
->rcv_nxt
;
3511 WRITE_ONCE(tp
->copied_seq
, tp
->rcv_nxt
);
3513 inet_csk(sk
)->icsk_rto
= tcp_timeout_init(sk
);
3514 inet_csk(sk
)->icsk_retransmits
= 0;
3515 tcp_clear_retrans(tp
);
3518 static void tcp_connect_queue_skb(struct sock
*sk
, struct sk_buff
*skb
)
3520 struct tcp_sock
*tp
= tcp_sk(sk
);
3521 struct tcp_skb_cb
*tcb
= TCP_SKB_CB(skb
);
3523 tcb
->end_seq
+= skb
->len
;
3524 __skb_header_release(skb
);
3525 sk_wmem_queued_add(sk
, skb
->truesize
);
3526 sk_mem_charge(sk
, skb
->truesize
);
3527 WRITE_ONCE(tp
->write_seq
, tcb
->end_seq
);
3528 tp
->packets_out
+= tcp_skb_pcount(skb
);
3531 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3532 * queue a data-only packet after the regular SYN, such that regular SYNs
3533 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3534 * only the SYN sequence, the data are retransmitted in the first ACK.
3535 * If cookie is not cached or other error occurs, falls back to send a
3536 * regular SYN with Fast Open cookie request option.
3538 static int tcp_send_syn_data(struct sock
*sk
, struct sk_buff
*syn
)
3540 struct tcp_sock
*tp
= tcp_sk(sk
);
3541 struct tcp_fastopen_request
*fo
= tp
->fastopen_req
;
3543 struct sk_buff
*syn_data
;
3545 tp
->rx_opt
.mss_clamp
= tp
->advmss
; /* If MSS is not cached */
3546 if (!tcp_fastopen_cookie_check(sk
, &tp
->rx_opt
.mss_clamp
, &fo
->cookie
))
3549 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3550 * user-MSS. Reserve maximum option space for middleboxes that add
3551 * private TCP options. The cost is reduced data space in SYN :(
3553 tp
->rx_opt
.mss_clamp
= tcp_mss_clamp(tp
, tp
->rx_opt
.mss_clamp
);
3555 space
= __tcp_mtu_to_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
) -
3556 MAX_TCP_OPTION_SPACE
;
3558 space
= min_t(size_t, space
, fo
->size
);
3560 /* limit to order-0 allocations */
3561 space
= min_t(size_t, space
, SKB_MAX_HEAD(MAX_TCP_HEADER
));
3563 syn_data
= sk_stream_alloc_skb(sk
, space
, sk
->sk_allocation
, false);
3566 syn_data
->ip_summed
= CHECKSUM_PARTIAL
;
3567 memcpy(syn_data
->cb
, syn
->cb
, sizeof(syn
->cb
));
3569 int copied
= copy_from_iter(skb_put(syn_data
, space
), space
,
3570 &fo
->data
->msg_iter
);
3571 if (unlikely(!copied
)) {
3572 tcp_skb_tsorted_anchor_cleanup(syn_data
);
3573 kfree_skb(syn_data
);
3576 if (copied
!= space
) {
3577 skb_trim(syn_data
, copied
);
3580 skb_zcopy_set(syn_data
, fo
->uarg
, NULL
);
3582 /* No more data pending in inet_wait_for_connect() */
3583 if (space
== fo
->size
)
3587 tcp_connect_queue_skb(sk
, syn_data
);
3589 tcp_chrono_start(sk
, TCP_CHRONO_BUSY
);
3591 err
= tcp_transmit_skb(sk
, syn_data
, 1, sk
->sk_allocation
);
3593 syn
->skb_mstamp_ns
= syn_data
->skb_mstamp_ns
;
3595 /* Now full SYN+DATA was cloned and sent (or not),
3596 * remove the SYN from the original skb (syn_data)
3597 * we keep in write queue in case of a retransmit, as we
3598 * also have the SYN packet (with no data) in the same queue.
3600 TCP_SKB_CB(syn_data
)->seq
++;
3601 TCP_SKB_CB(syn_data
)->tcp_flags
= TCPHDR_ACK
| TCPHDR_PSH
;
3603 tp
->syn_data
= (fo
->copied
> 0);
3604 tcp_rbtree_insert(&sk
->tcp_rtx_queue
, syn_data
);
3605 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPORIGDATASENT
);
3609 /* data was not sent, put it in write_queue */
3610 __skb_queue_tail(&sk
->sk_write_queue
, syn_data
);
3611 tp
->packets_out
-= tcp_skb_pcount(syn_data
);
3614 /* Send a regular SYN with Fast Open cookie request option */
3615 if (fo
->cookie
.len
> 0)
3617 err
= tcp_transmit_skb(sk
, syn
, 1, sk
->sk_allocation
);
3619 tp
->syn_fastopen
= 0;
3621 fo
->cookie
.len
= -1; /* Exclude Fast Open option for SYN retries */
3625 /* Build a SYN and send it off. */
3626 int tcp_connect(struct sock
*sk
)
3628 struct tcp_sock
*tp
= tcp_sk(sk
);
3629 struct sk_buff
*buff
;
3632 tcp_call_bpf(sk
, BPF_SOCK_OPS_TCP_CONNECT_CB
, 0, NULL
);
3634 if (inet_csk(sk
)->icsk_af_ops
->rebuild_header(sk
))
3635 return -EHOSTUNREACH
; /* Routing failure or similar. */
3637 tcp_connect_init(sk
);
3639 if (unlikely(tp
->repair
)) {
3640 tcp_finish_connect(sk
, NULL
);
3644 buff
= sk_stream_alloc_skb(sk
, 0, sk
->sk_allocation
, true);
3645 if (unlikely(!buff
))
3648 tcp_init_nondata_skb(buff
, tp
->write_seq
++, TCPHDR_SYN
);
3649 tcp_mstamp_refresh(tp
);
3650 tp
->retrans_stamp
= tcp_time_stamp(tp
);
3651 tcp_connect_queue_skb(sk
, buff
);
3652 tcp_ecn_send_syn(sk
, buff
);
3653 tcp_rbtree_insert(&sk
->tcp_rtx_queue
, buff
);
3655 /* Send off SYN; include data in Fast Open. */
3656 err
= tp
->fastopen_req
? tcp_send_syn_data(sk
, buff
) :
3657 tcp_transmit_skb(sk
, buff
, 1, sk
->sk_allocation
);
3658 if (err
== -ECONNREFUSED
)
3661 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3662 * in order to make this packet get counted in tcpOutSegs.
3664 WRITE_ONCE(tp
->snd_nxt
, tp
->write_seq
);
3665 tp
->pushed_seq
= tp
->write_seq
;
3666 buff
= tcp_send_head(sk
);
3667 if (unlikely(buff
)) {
3668 WRITE_ONCE(tp
->snd_nxt
, TCP_SKB_CB(buff
)->seq
);
3669 tp
->pushed_seq
= TCP_SKB_CB(buff
)->seq
;
3671 TCP_INC_STATS(sock_net(sk
), TCP_MIB_ACTIVEOPENS
);
3673 /* Timer for repeating the SYN until an answer. */
3674 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
3675 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
3678 EXPORT_SYMBOL(tcp_connect
);
3680 /* Send out a delayed ack, the caller does the policy checking
3681 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3684 void tcp_send_delayed_ack(struct sock
*sk
)
3686 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3687 int ato
= icsk
->icsk_ack
.ato
;
3688 unsigned long timeout
;
3690 if (ato
> TCP_DELACK_MIN
) {
3691 const struct tcp_sock
*tp
= tcp_sk(sk
);
3692 int max_ato
= HZ
/ 2;
3694 if (inet_csk_in_pingpong_mode(sk
) ||
3695 (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
))
3696 max_ato
= TCP_DELACK_MAX
;
3698 /* Slow path, intersegment interval is "high". */
3700 /* If some rtt estimate is known, use it to bound delayed ack.
3701 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3705 int rtt
= max_t(int, usecs_to_jiffies(tp
->srtt_us
>> 3),
3712 ato
= min(ato
, max_ato
);
3715 /* Stay within the limit we were given */
3716 timeout
= jiffies
+ ato
;
3718 /* Use new timeout only if there wasn't a older one earlier. */
3719 if (icsk
->icsk_ack
.pending
& ICSK_ACK_TIMER
) {
3720 /* If delack timer was blocked or is about to expire,
3723 if (icsk
->icsk_ack
.blocked
||
3724 time_before_eq(icsk
->icsk_ack
.timeout
, jiffies
+ (ato
>> 2))) {
3729 if (!time_before(timeout
, icsk
->icsk_ack
.timeout
))
3730 timeout
= icsk
->icsk_ack
.timeout
;
3732 icsk
->icsk_ack
.pending
|= ICSK_ACK_SCHED
| ICSK_ACK_TIMER
;
3733 icsk
->icsk_ack
.timeout
= timeout
;
3734 sk_reset_timer(sk
, &icsk
->icsk_delack_timer
, timeout
);
3737 /* This routine sends an ack and also updates the window. */
3738 void __tcp_send_ack(struct sock
*sk
, u32 rcv_nxt
)
3740 struct sk_buff
*buff
;
3742 /* If we have been reset, we may not send again. */
3743 if (sk
->sk_state
== TCP_CLOSE
)
3746 /* We are not putting this on the write queue, so
3747 * tcp_transmit_skb() will set the ownership to this
3750 buff
= alloc_skb(MAX_TCP_HEADER
,
3751 sk_gfp_mask(sk
, GFP_ATOMIC
| __GFP_NOWARN
));
3752 if (unlikely(!buff
)) {
3753 inet_csk_schedule_ack(sk
);
3754 inet_csk(sk
)->icsk_ack
.ato
= TCP_ATO_MIN
;
3755 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
3756 TCP_DELACK_MAX
, TCP_RTO_MAX
);
3760 /* Reserve space for headers and prepare control bits. */
3761 skb_reserve(buff
, MAX_TCP_HEADER
);
3762 tcp_init_nondata_skb(buff
, tcp_acceptable_seq(sk
), TCPHDR_ACK
);
3764 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3766 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3768 skb_set_tcp_pure_ack(buff
);
3770 /* Send it off, this clears delayed acks for us. */
3771 __tcp_transmit_skb(sk
, buff
, 0, (__force gfp_t
)0, rcv_nxt
);
3773 EXPORT_SYMBOL_GPL(__tcp_send_ack
);
3775 void tcp_send_ack(struct sock
*sk
)
3777 __tcp_send_ack(sk
, tcp_sk(sk
)->rcv_nxt
);
3780 /* This routine sends a packet with an out of date sequence
3781 * number. It assumes the other end will try to ack it.
3783 * Question: what should we make while urgent mode?
3784 * 4.4BSD forces sending single byte of data. We cannot send
3785 * out of window data, because we have SND.NXT==SND.MAX...
3787 * Current solution: to send TWO zero-length segments in urgent mode:
3788 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3789 * out-of-date with SND.UNA-1 to probe window.
3791 static int tcp_xmit_probe_skb(struct sock
*sk
, int urgent
, int mib
)
3793 struct tcp_sock
*tp
= tcp_sk(sk
);
3794 struct sk_buff
*skb
;
3796 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3797 skb
= alloc_skb(MAX_TCP_HEADER
,
3798 sk_gfp_mask(sk
, GFP_ATOMIC
| __GFP_NOWARN
));
3802 /* Reserve space for headers and set control bits. */
3803 skb_reserve(skb
, MAX_TCP_HEADER
);
3804 /* Use a previous sequence. This should cause the other
3805 * end to send an ack. Don't queue or clone SKB, just
3808 tcp_init_nondata_skb(skb
, tp
->snd_una
- !urgent
, TCPHDR_ACK
);
3809 NET_INC_STATS(sock_net(sk
), mib
);
3810 return tcp_transmit_skb(sk
, skb
, 0, (__force gfp_t
)0);
3813 /* Called from setsockopt( ... TCP_REPAIR ) */
3814 void tcp_send_window_probe(struct sock
*sk
)
3816 if (sk
->sk_state
== TCP_ESTABLISHED
) {
3817 tcp_sk(sk
)->snd_wl1
= tcp_sk(sk
)->rcv_nxt
- 1;
3818 tcp_mstamp_refresh(tcp_sk(sk
));
3819 tcp_xmit_probe_skb(sk
, 0, LINUX_MIB_TCPWINPROBE
);
3823 /* Initiate keepalive or window probe from timer. */
3824 int tcp_write_wakeup(struct sock
*sk
, int mib
)
3826 struct tcp_sock
*tp
= tcp_sk(sk
);
3827 struct sk_buff
*skb
;
3829 if (sk
->sk_state
== TCP_CLOSE
)
3832 skb
= tcp_send_head(sk
);
3833 if (skb
&& before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
))) {
3835 unsigned int mss
= tcp_current_mss(sk
);
3836 unsigned int seg_size
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
3838 if (before(tp
->pushed_seq
, TCP_SKB_CB(skb
)->end_seq
))
3839 tp
->pushed_seq
= TCP_SKB_CB(skb
)->end_seq
;
3841 /* We are probing the opening of a window
3842 * but the window size is != 0
3843 * must have been a result SWS avoidance ( sender )
3845 if (seg_size
< TCP_SKB_CB(skb
)->end_seq
- TCP_SKB_CB(skb
)->seq
||
3847 seg_size
= min(seg_size
, mss
);
3848 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
3849 if (tcp_fragment(sk
, TCP_FRAG_IN_WRITE_QUEUE
,
3850 skb
, seg_size
, mss
, GFP_ATOMIC
))
3852 } else if (!tcp_skb_pcount(skb
))
3853 tcp_set_skb_tso_segs(skb
, mss
);
3855 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
3856 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
3858 tcp_event_new_data_sent(sk
, skb
);
3861 if (between(tp
->snd_up
, tp
->snd_una
+ 1, tp
->snd_una
+ 0xFFFF))
3862 tcp_xmit_probe_skb(sk
, 1, mib
);
3863 return tcp_xmit_probe_skb(sk
, 0, mib
);
3867 /* A window probe timeout has occurred. If window is not closed send
3868 * a partial packet else a zero probe.
3870 void tcp_send_probe0(struct sock
*sk
)
3872 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3873 struct tcp_sock
*tp
= tcp_sk(sk
);
3874 struct net
*net
= sock_net(sk
);
3875 unsigned long timeout
;
3878 err
= tcp_write_wakeup(sk
, LINUX_MIB_TCPWINPROBE
);
3880 if (tp
->packets_out
|| tcp_write_queue_empty(sk
)) {
3881 /* Cancel probe timer, if it is not required. */
3882 icsk
->icsk_probes_out
= 0;
3883 icsk
->icsk_backoff
= 0;
3887 icsk
->icsk_probes_out
++;
3889 if (icsk
->icsk_backoff
< net
->ipv4
.sysctl_tcp_retries2
)
3890 icsk
->icsk_backoff
++;
3891 timeout
= tcp_probe0_when(sk
, TCP_RTO_MAX
);
3893 /* If packet was not sent due to local congestion,
3894 * Let senders fight for local resources conservatively.
3896 timeout
= TCP_RESOURCE_PROBE_INTERVAL
;
3898 tcp_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
, timeout
, TCP_RTO_MAX
, NULL
);
3901 int tcp_rtx_synack(const struct sock
*sk
, struct request_sock
*req
)
3903 const struct tcp_request_sock_ops
*af_ops
= tcp_rsk(req
)->af_specific
;
3907 tcp_rsk(req
)->txhash
= net_tx_rndhash();
3908 res
= af_ops
->send_synack(sk
, NULL
, &fl
, req
, NULL
, TCP_SYNACK_NORMAL
);
3910 __TCP_INC_STATS(sock_net(sk
), TCP_MIB_RETRANSSEGS
);
3911 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSYNRETRANS
);
3912 if (unlikely(tcp_passive_fastopen(sk
)))
3913 tcp_sk(sk
)->total_retrans
++;
3914 trace_tcp_retransmit_synack(sk
, req
);
3918 EXPORT_SYMBOL(tcp_rtx_synack
);