1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * The User Datagram Protocol (UDP).
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
13 * Hirokazu Takahashi, <taka@valinux.co.jp>
16 * Alan Cox : verify_area() calls
17 * Alan Cox : stopped close while in use off icmp
18 * messages. Not a fix but a botch that
19 * for udp at least is 'valid'.
20 * Alan Cox : Fixed icmp handling properly
21 * Alan Cox : Correct error for oversized datagrams
22 * Alan Cox : Tidied select() semantics.
23 * Alan Cox : udp_err() fixed properly, also now
24 * select and read wake correctly on errors
25 * Alan Cox : udp_send verify_area moved to avoid mem leak
26 * Alan Cox : UDP can count its memory
27 * Alan Cox : send to an unknown connection causes
28 * an ECONNREFUSED off the icmp, but
30 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
32 * bug no longer crashes it.
33 * Fred Van Kempen : Net2e support for sk->broadcast.
34 * Alan Cox : Uses skb_free_datagram
35 * Alan Cox : Added get/set sockopt support.
36 * Alan Cox : Broadcasting without option set returns EACCES.
37 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
38 * Alan Cox : Use ip_tos and ip_ttl
39 * Alan Cox : SNMP Mibs
40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
41 * Matt Dillon : UDP length checks.
42 * Alan Cox : Smarter af_inet used properly.
43 * Alan Cox : Use new kernel side addressing.
44 * Alan Cox : Incorrect return on truncated datagram receive.
45 * Arnt Gulbrandsen : New udp_send and stuff
46 * Alan Cox : Cache last socket
47 * Alan Cox : Route cache
48 * Jon Peatfield : Minor efficiency fix to sendto().
49 * Mike Shaver : RFC1122 checks.
50 * Alan Cox : Nonblocking error fix.
51 * Willy Konynenberg : Transparent proxying support.
52 * Mike McLagan : Routing by source
53 * David S. Miller : New socket lookup architecture.
54 * Last socket cache retained as it
55 * does have a high hit rate.
56 * Olaf Kirch : Don't linearise iovec on sendmsg.
57 * Andi Kleen : Some cleanups, cache destination entry
59 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
60 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
61 * return ENOTCONN for unconnected sockets (POSIX)
62 * Janos Farkas : don't deliver multi/broadcasts to a different
63 * bound-to-device socket
64 * Hirokazu Takahashi : HW checksumming for outgoing UDP
66 * Hirokazu Takahashi : sendfile() on UDP works now.
67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
70 * a single port at the same time.
71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72 * James Chapman : Add L2TP encapsulation type.
75 #define pr_fmt(fmt) "UDP: " fmt
77 #include <linux/uaccess.h>
78 #include <asm/ioctls.h>
79 #include <linux/memblock.h>
80 #include <linux/highmem.h>
81 #include <linux/swap.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <trace/events/skb.h>
110 #include <net/busy_poll.h>
111 #include "udp_impl.h"
112 #include <net/sock_reuseport.h>
113 #include <net/addrconf.h>
114 #include <net/udp_tunnel.h>
116 struct udp_table udp_table __read_mostly
;
117 EXPORT_SYMBOL(udp_table
);
119 long sysctl_udp_mem
[3] __read_mostly
;
120 EXPORT_SYMBOL(sysctl_udp_mem
);
122 atomic_long_t udp_memory_allocated
;
123 EXPORT_SYMBOL(udp_memory_allocated
);
125 #define MAX_UDP_PORTS 65536
126 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
128 static int udp_lib_lport_inuse(struct net
*net
, __u16 num
,
129 const struct udp_hslot
*hslot
,
130 unsigned long *bitmap
,
131 struct sock
*sk
, unsigned int log
)
134 kuid_t uid
= sock_i_uid(sk
);
136 sk_for_each(sk2
, &hslot
->head
) {
137 if (net_eq(sock_net(sk2
), net
) &&
139 (bitmap
|| udp_sk(sk2
)->udp_port_hash
== num
) &&
140 (!sk2
->sk_reuse
|| !sk
->sk_reuse
) &&
141 (!sk2
->sk_bound_dev_if
|| !sk
->sk_bound_dev_if
||
142 sk2
->sk_bound_dev_if
== sk
->sk_bound_dev_if
) &&
143 inet_rcv_saddr_equal(sk
, sk2
, true)) {
144 if (sk2
->sk_reuseport
&& sk
->sk_reuseport
&&
145 !rcu_access_pointer(sk
->sk_reuseport_cb
) &&
146 uid_eq(uid
, sock_i_uid(sk2
))) {
152 __set_bit(udp_sk(sk2
)->udp_port_hash
>> log
,
161 * Note: we still hold spinlock of primary hash chain, so no other writer
162 * can insert/delete a socket with local_port == num
164 static int udp_lib_lport_inuse2(struct net
*net
, __u16 num
,
165 struct udp_hslot
*hslot2
,
169 kuid_t uid
= sock_i_uid(sk
);
172 spin_lock(&hslot2
->lock
);
173 udp_portaddr_for_each_entry(sk2
, &hslot2
->head
) {
174 if (net_eq(sock_net(sk2
), net
) &&
176 (udp_sk(sk2
)->udp_port_hash
== num
) &&
177 (!sk2
->sk_reuse
|| !sk
->sk_reuse
) &&
178 (!sk2
->sk_bound_dev_if
|| !sk
->sk_bound_dev_if
||
179 sk2
->sk_bound_dev_if
== sk
->sk_bound_dev_if
) &&
180 inet_rcv_saddr_equal(sk
, sk2
, true)) {
181 if (sk2
->sk_reuseport
&& sk
->sk_reuseport
&&
182 !rcu_access_pointer(sk
->sk_reuseport_cb
) &&
183 uid_eq(uid
, sock_i_uid(sk2
))) {
191 spin_unlock(&hslot2
->lock
);
195 static int udp_reuseport_add_sock(struct sock
*sk
, struct udp_hslot
*hslot
)
197 struct net
*net
= sock_net(sk
);
198 kuid_t uid
= sock_i_uid(sk
);
201 sk_for_each(sk2
, &hslot
->head
) {
202 if (net_eq(sock_net(sk2
), net
) &&
204 sk2
->sk_family
== sk
->sk_family
&&
205 ipv6_only_sock(sk2
) == ipv6_only_sock(sk
) &&
206 (udp_sk(sk2
)->udp_port_hash
== udp_sk(sk
)->udp_port_hash
) &&
207 (sk2
->sk_bound_dev_if
== sk
->sk_bound_dev_if
) &&
208 sk2
->sk_reuseport
&& uid_eq(uid
, sock_i_uid(sk2
)) &&
209 inet_rcv_saddr_equal(sk
, sk2
, false)) {
210 return reuseport_add_sock(sk
, sk2
,
211 inet_rcv_saddr_any(sk
));
215 return reuseport_alloc(sk
, inet_rcv_saddr_any(sk
));
219 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
221 * @sk: socket struct in question
222 * @snum: port number to look up
223 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
226 int udp_lib_get_port(struct sock
*sk
, unsigned short snum
,
227 unsigned int hash2_nulladdr
)
229 struct udp_hslot
*hslot
, *hslot2
;
230 struct udp_table
*udptable
= sk
->sk_prot
->h
.udp_table
;
232 struct net
*net
= sock_net(sk
);
235 int low
, high
, remaining
;
237 unsigned short first
, last
;
238 DECLARE_BITMAP(bitmap
, PORTS_PER_CHAIN
);
240 inet_get_local_port_range(net
, &low
, &high
);
241 remaining
= (high
- low
) + 1;
243 rand
= prandom_u32();
244 first
= reciprocal_scale(rand
, remaining
) + low
;
246 * force rand to be an odd multiple of UDP_HTABLE_SIZE
248 rand
= (rand
| 1) * (udptable
->mask
+ 1);
249 last
= first
+ udptable
->mask
+ 1;
251 hslot
= udp_hashslot(udptable
, net
, first
);
252 bitmap_zero(bitmap
, PORTS_PER_CHAIN
);
253 spin_lock_bh(&hslot
->lock
);
254 udp_lib_lport_inuse(net
, snum
, hslot
, bitmap
, sk
,
259 * Iterate on all possible values of snum for this hash.
260 * Using steps of an odd multiple of UDP_HTABLE_SIZE
261 * give us randomization and full range coverage.
264 if (low
<= snum
&& snum
<= high
&&
265 !test_bit(snum
>> udptable
->log
, bitmap
) &&
266 !inet_is_local_reserved_port(net
, snum
))
269 } while (snum
!= first
);
270 spin_unlock_bh(&hslot
->lock
);
272 } while (++first
!= last
);
275 hslot
= udp_hashslot(udptable
, net
, snum
);
276 spin_lock_bh(&hslot
->lock
);
277 if (hslot
->count
> 10) {
279 unsigned int slot2
= udp_sk(sk
)->udp_portaddr_hash
^ snum
;
281 slot2
&= udptable
->mask
;
282 hash2_nulladdr
&= udptable
->mask
;
284 hslot2
= udp_hashslot2(udptable
, slot2
);
285 if (hslot
->count
< hslot2
->count
)
286 goto scan_primary_hash
;
288 exist
= udp_lib_lport_inuse2(net
, snum
, hslot2
, sk
);
289 if (!exist
&& (hash2_nulladdr
!= slot2
)) {
290 hslot2
= udp_hashslot2(udptable
, hash2_nulladdr
);
291 exist
= udp_lib_lport_inuse2(net
, snum
, hslot2
,
300 if (udp_lib_lport_inuse(net
, snum
, hslot
, NULL
, sk
, 0))
304 inet_sk(sk
)->inet_num
= snum
;
305 udp_sk(sk
)->udp_port_hash
= snum
;
306 udp_sk(sk
)->udp_portaddr_hash
^= snum
;
307 if (sk_unhashed(sk
)) {
308 if (sk
->sk_reuseport
&&
309 udp_reuseport_add_sock(sk
, hslot
)) {
310 inet_sk(sk
)->inet_num
= 0;
311 udp_sk(sk
)->udp_port_hash
= 0;
312 udp_sk(sk
)->udp_portaddr_hash
^= snum
;
316 sk_add_node_rcu(sk
, &hslot
->head
);
318 sock_prot_inuse_add(sock_net(sk
), sk
->sk_prot
, 1);
320 hslot2
= udp_hashslot2(udptable
, udp_sk(sk
)->udp_portaddr_hash
);
321 spin_lock(&hslot2
->lock
);
322 if (IS_ENABLED(CONFIG_IPV6
) && sk
->sk_reuseport
&&
323 sk
->sk_family
== AF_INET6
)
324 hlist_add_tail_rcu(&udp_sk(sk
)->udp_portaddr_node
,
327 hlist_add_head_rcu(&udp_sk(sk
)->udp_portaddr_node
,
330 spin_unlock(&hslot2
->lock
);
332 sock_set_flag(sk
, SOCK_RCU_FREE
);
335 spin_unlock_bh(&hslot
->lock
);
339 EXPORT_SYMBOL(udp_lib_get_port
);
341 int udp_v4_get_port(struct sock
*sk
, unsigned short snum
)
343 unsigned int hash2_nulladdr
=
344 ipv4_portaddr_hash(sock_net(sk
), htonl(INADDR_ANY
), snum
);
345 unsigned int hash2_partial
=
346 ipv4_portaddr_hash(sock_net(sk
), inet_sk(sk
)->inet_rcv_saddr
, 0);
348 /* precompute partial secondary hash */
349 udp_sk(sk
)->udp_portaddr_hash
= hash2_partial
;
350 return udp_lib_get_port(sk
, snum
, hash2_nulladdr
);
353 static int compute_score(struct sock
*sk
, struct net
*net
,
354 __be32 saddr
, __be16 sport
,
355 __be32 daddr
, unsigned short hnum
,
359 struct inet_sock
*inet
;
362 if (!net_eq(sock_net(sk
), net
) ||
363 udp_sk(sk
)->udp_port_hash
!= hnum
||
367 if (sk
->sk_rcv_saddr
!= daddr
)
370 score
= (sk
->sk_family
== PF_INET
) ? 2 : 1;
373 if (inet
->inet_daddr
) {
374 if (inet
->inet_daddr
!= saddr
)
379 if (inet
->inet_dport
) {
380 if (inet
->inet_dport
!= sport
)
385 dev_match
= udp_sk_bound_dev_eq(net
, sk
->sk_bound_dev_if
,
391 if (READ_ONCE(sk
->sk_incoming_cpu
) == raw_smp_processor_id())
396 static u32
udp_ehashfn(const struct net
*net
, const __be32 laddr
,
397 const __u16 lport
, const __be32 faddr
,
400 static u32 udp_ehash_secret __read_mostly
;
402 net_get_random_once(&udp_ehash_secret
, sizeof(udp_ehash_secret
));
404 return __inet_ehashfn(laddr
, lport
, faddr
, fport
,
405 udp_ehash_secret
+ net_hash_mix(net
));
408 /* called with rcu_read_lock() */
409 static struct sock
*udp4_lib_lookup2(struct net
*net
,
410 __be32 saddr
, __be16 sport
,
411 __be32 daddr
, unsigned int hnum
,
413 struct udp_hslot
*hslot2
,
416 struct sock
*sk
, *result
;
422 udp_portaddr_for_each_entry_rcu(sk
, &hslot2
->head
) {
423 score
= compute_score(sk
, net
, saddr
, sport
,
424 daddr
, hnum
, dif
, sdif
);
425 if (score
> badness
) {
426 if (sk
->sk_reuseport
&&
427 sk
->sk_state
!= TCP_ESTABLISHED
) {
428 hash
= udp_ehashfn(net
, daddr
, hnum
,
430 result
= reuseport_select_sock(sk
, hash
, skb
,
431 sizeof(struct udphdr
));
432 if (result
&& !reuseport_has_conns(sk
, false))
442 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
443 * harder than this. -DaveM
445 struct sock
*__udp4_lib_lookup(struct net
*net
, __be32 saddr
,
446 __be16 sport
, __be32 daddr
, __be16 dport
, int dif
,
447 int sdif
, struct udp_table
*udptable
, struct sk_buff
*skb
)
450 unsigned short hnum
= ntohs(dport
);
451 unsigned int hash2
, slot2
;
452 struct udp_hslot
*hslot2
;
454 hash2
= ipv4_portaddr_hash(net
, daddr
, hnum
);
455 slot2
= hash2
& udptable
->mask
;
456 hslot2
= &udptable
->hash2
[slot2
];
458 result
= udp4_lib_lookup2(net
, saddr
, sport
,
459 daddr
, hnum
, dif
, sdif
,
462 hash2
= ipv4_portaddr_hash(net
, htonl(INADDR_ANY
), hnum
);
463 slot2
= hash2
& udptable
->mask
;
464 hslot2
= &udptable
->hash2
[slot2
];
466 result
= udp4_lib_lookup2(net
, saddr
, sport
,
467 htonl(INADDR_ANY
), hnum
, dif
, sdif
,
474 EXPORT_SYMBOL_GPL(__udp4_lib_lookup
);
476 static inline struct sock
*__udp4_lib_lookup_skb(struct sk_buff
*skb
,
477 __be16 sport
, __be16 dport
,
478 struct udp_table
*udptable
)
480 const struct iphdr
*iph
= ip_hdr(skb
);
482 return __udp4_lib_lookup(dev_net(skb
->dev
), iph
->saddr
, sport
,
483 iph
->daddr
, dport
, inet_iif(skb
),
484 inet_sdif(skb
), udptable
, skb
);
487 struct sock
*udp4_lib_lookup_skb(struct sk_buff
*skb
,
488 __be16 sport
, __be16 dport
)
490 const struct iphdr
*iph
= ip_hdr(skb
);
492 return __udp4_lib_lookup(dev_net(skb
->dev
), iph
->saddr
, sport
,
493 iph
->daddr
, dport
, inet_iif(skb
),
494 inet_sdif(skb
), &udp_table
, NULL
);
496 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb
);
498 /* Must be called under rcu_read_lock().
499 * Does increment socket refcount.
501 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
502 struct sock
*udp4_lib_lookup(struct net
*net
, __be32 saddr
, __be16 sport
,
503 __be32 daddr
, __be16 dport
, int dif
)
507 sk
= __udp4_lib_lookup(net
, saddr
, sport
, daddr
, dport
,
508 dif
, 0, &udp_table
, NULL
);
509 if (sk
&& !refcount_inc_not_zero(&sk
->sk_refcnt
))
513 EXPORT_SYMBOL_GPL(udp4_lib_lookup
);
516 static inline bool __udp_is_mcast_sock(struct net
*net
, struct sock
*sk
,
517 __be16 loc_port
, __be32 loc_addr
,
518 __be16 rmt_port
, __be32 rmt_addr
,
519 int dif
, int sdif
, unsigned short hnum
)
521 struct inet_sock
*inet
= inet_sk(sk
);
523 if (!net_eq(sock_net(sk
), net
) ||
524 udp_sk(sk
)->udp_port_hash
!= hnum
||
525 (inet
->inet_daddr
&& inet
->inet_daddr
!= rmt_addr
) ||
526 (inet
->inet_dport
!= rmt_port
&& inet
->inet_dport
) ||
527 (inet
->inet_rcv_saddr
&& inet
->inet_rcv_saddr
!= loc_addr
) ||
528 ipv6_only_sock(sk
) ||
529 !udp_sk_bound_dev_eq(net
, sk
->sk_bound_dev_if
, dif
, sdif
))
531 if (!ip_mc_sf_allow(sk
, loc_addr
, rmt_addr
, dif
, sdif
))
536 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key
);
537 void udp_encap_enable(void)
539 static_branch_inc(&udp_encap_needed_key
);
541 EXPORT_SYMBOL(udp_encap_enable
);
543 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
544 * through error handlers in encapsulations looking for a match.
546 static int __udp4_lib_err_encap_no_sk(struct sk_buff
*skb
, u32 info
)
550 for (i
= 0; i
< MAX_IPTUN_ENCAP_OPS
; i
++) {
551 int (*handler
)(struct sk_buff
*skb
, u32 info
);
552 const struct ip_tunnel_encap_ops
*encap
;
554 encap
= rcu_dereference(iptun_encaps
[i
]);
557 handler
= encap
->err_handler
;
558 if (handler
&& !handler(skb
, info
))
565 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
566 * reversing source and destination port: this will match tunnels that force the
567 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
568 * lwtunnels might actually break this assumption by being configured with
569 * different destination ports on endpoints, in this case we won't be able to
570 * trace ICMP messages back to them.
572 * If this doesn't match any socket, probe tunnels with arbitrary destination
573 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
574 * we've sent packets to won't necessarily match the local destination port.
576 * Then ask the tunnel implementation to match the error against a valid
579 * Return an error if we can't find a match, the socket if we need further
580 * processing, zero otherwise.
582 static struct sock
*__udp4_lib_err_encap(struct net
*net
,
583 const struct iphdr
*iph
,
585 struct udp_table
*udptable
,
586 struct sk_buff
*skb
, u32 info
)
588 int network_offset
, transport_offset
;
591 network_offset
= skb_network_offset(skb
);
592 transport_offset
= skb_transport_offset(skb
);
594 /* Network header needs to point to the outer IPv4 header inside ICMP */
595 skb_reset_network_header(skb
);
597 /* Transport header needs to point to the UDP header */
598 skb_set_transport_header(skb
, iph
->ihl
<< 2);
600 sk
= __udp4_lib_lookup(net
, iph
->daddr
, uh
->source
,
601 iph
->saddr
, uh
->dest
, skb
->dev
->ifindex
, 0,
604 int (*lookup
)(struct sock
*sk
, struct sk_buff
*skb
);
605 struct udp_sock
*up
= udp_sk(sk
);
607 lookup
= READ_ONCE(up
->encap_err_lookup
);
608 if (!lookup
|| lookup(sk
, skb
))
613 sk
= ERR_PTR(__udp4_lib_err_encap_no_sk(skb
, info
));
615 skb_set_transport_header(skb
, transport_offset
);
616 skb_set_network_header(skb
, network_offset
);
622 * This routine is called by the ICMP module when it gets some
623 * sort of error condition. If err < 0 then the socket should
624 * be closed and the error returned to the user. If err > 0
625 * it's just the icmp type << 8 | icmp code.
626 * Header points to the ip header of the error packet. We move
627 * on past this. Then (as it used to claim before adjustment)
628 * header points to the first 8 bytes of the udp header. We need
629 * to find the appropriate port.
632 int __udp4_lib_err(struct sk_buff
*skb
, u32 info
, struct udp_table
*udptable
)
634 struct inet_sock
*inet
;
635 const struct iphdr
*iph
= (const struct iphdr
*)skb
->data
;
636 struct udphdr
*uh
= (struct udphdr
*)(skb
->data
+(iph
->ihl
<<2));
637 const int type
= icmp_hdr(skb
)->type
;
638 const int code
= icmp_hdr(skb
)->code
;
643 struct net
*net
= dev_net(skb
->dev
);
645 sk
= __udp4_lib_lookup(net
, iph
->daddr
, uh
->dest
,
646 iph
->saddr
, uh
->source
, skb
->dev
->ifindex
,
647 inet_sdif(skb
), udptable
, NULL
);
649 /* No socket for error: try tunnels before discarding */
650 sk
= ERR_PTR(-ENOENT
);
651 if (static_branch_unlikely(&udp_encap_needed_key
)) {
652 sk
= __udp4_lib_err_encap(net
, iph
, uh
, udptable
, skb
,
659 __ICMP_INC_STATS(net
, ICMP_MIB_INERRORS
);
672 case ICMP_TIME_EXCEEDED
:
675 case ICMP_SOURCE_QUENCH
:
677 case ICMP_PARAMETERPROB
:
681 case ICMP_DEST_UNREACH
:
682 if (code
== ICMP_FRAG_NEEDED
) { /* Path MTU discovery */
683 ipv4_sk_update_pmtu(skb
, sk
, info
);
684 if (inet
->pmtudisc
!= IP_PMTUDISC_DONT
) {
692 if (code
<= NR_ICMP_UNREACH
) {
693 harderr
= icmp_err_convert
[code
].fatal
;
694 err
= icmp_err_convert
[code
].errno
;
698 ipv4_sk_redirect(skb
, sk
);
703 * RFC1122: OK. Passes ICMP errors back to application, as per
707 /* ...not for tunnels though: we don't have a sending socket */
710 if (!inet
->recverr
) {
711 if (!harderr
|| sk
->sk_state
!= TCP_ESTABLISHED
)
714 ip_icmp_error(sk
, skb
, err
, uh
->dest
, info
, (u8
*)(uh
+1));
717 sk
->sk_error_report(sk
);
722 int udp_err(struct sk_buff
*skb
, u32 info
)
724 return __udp4_lib_err(skb
, info
, &udp_table
);
728 * Throw away all pending data and cancel the corking. Socket is locked.
730 void udp_flush_pending_frames(struct sock
*sk
)
732 struct udp_sock
*up
= udp_sk(sk
);
737 ip_flush_pending_frames(sk
);
740 EXPORT_SYMBOL(udp_flush_pending_frames
);
743 * udp4_hwcsum - handle outgoing HW checksumming
744 * @skb: sk_buff containing the filled-in UDP header
745 * (checksum field must be zeroed out)
746 * @src: source IP address
747 * @dst: destination IP address
749 void udp4_hwcsum(struct sk_buff
*skb
, __be32 src
, __be32 dst
)
751 struct udphdr
*uh
= udp_hdr(skb
);
752 int offset
= skb_transport_offset(skb
);
753 int len
= skb
->len
- offset
;
757 if (!skb_has_frag_list(skb
)) {
759 * Only one fragment on the socket.
761 skb
->csum_start
= skb_transport_header(skb
) - skb
->head
;
762 skb
->csum_offset
= offsetof(struct udphdr
, check
);
763 uh
->check
= ~csum_tcpudp_magic(src
, dst
, len
,
766 struct sk_buff
*frags
;
769 * HW-checksum won't work as there are two or more
770 * fragments on the socket so that all csums of sk_buffs
773 skb_walk_frags(skb
, frags
) {
774 csum
= csum_add(csum
, frags
->csum
);
778 csum
= skb_checksum(skb
, offset
, hlen
, csum
);
779 skb
->ip_summed
= CHECKSUM_NONE
;
781 uh
->check
= csum_tcpudp_magic(src
, dst
, len
, IPPROTO_UDP
, csum
);
783 uh
->check
= CSUM_MANGLED_0
;
786 EXPORT_SYMBOL_GPL(udp4_hwcsum
);
788 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
789 * for the simple case like when setting the checksum for a UDP tunnel.
791 void udp_set_csum(bool nocheck
, struct sk_buff
*skb
,
792 __be32 saddr
, __be32 daddr
, int len
)
794 struct udphdr
*uh
= udp_hdr(skb
);
798 } else if (skb_is_gso(skb
)) {
799 uh
->check
= ~udp_v4_check(len
, saddr
, daddr
, 0);
800 } else if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
802 uh
->check
= udp_v4_check(len
, saddr
, daddr
, lco_csum(skb
));
804 uh
->check
= CSUM_MANGLED_0
;
806 skb
->ip_summed
= CHECKSUM_PARTIAL
;
807 skb
->csum_start
= skb_transport_header(skb
) - skb
->head
;
808 skb
->csum_offset
= offsetof(struct udphdr
, check
);
809 uh
->check
= ~udp_v4_check(len
, saddr
, daddr
, 0);
812 EXPORT_SYMBOL(udp_set_csum
);
814 static int udp_send_skb(struct sk_buff
*skb
, struct flowi4
*fl4
,
815 struct inet_cork
*cork
)
817 struct sock
*sk
= skb
->sk
;
818 struct inet_sock
*inet
= inet_sk(sk
);
821 int is_udplite
= IS_UDPLITE(sk
);
822 int offset
= skb_transport_offset(skb
);
823 int len
= skb
->len
- offset
;
824 int datalen
= len
- sizeof(*uh
);
828 * Create a UDP header
831 uh
->source
= inet
->inet_sport
;
832 uh
->dest
= fl4
->fl4_dport
;
833 uh
->len
= htons(len
);
836 if (cork
->gso_size
) {
837 const int hlen
= skb_network_header_len(skb
) +
838 sizeof(struct udphdr
);
840 if (hlen
+ cork
->gso_size
> cork
->fragsize
) {
844 if (skb
->len
> cork
->gso_size
* UDP_MAX_SEGMENTS
) {
848 if (sk
->sk_no_check_tx
) {
852 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
|| is_udplite
||
853 dst_xfrm(skb_dst(skb
))) {
858 if (datalen
> cork
->gso_size
) {
859 skb_shinfo(skb
)->gso_size
= cork
->gso_size
;
860 skb_shinfo(skb
)->gso_type
= SKB_GSO_UDP_L4
;
861 skb_shinfo(skb
)->gso_segs
= DIV_ROUND_UP(datalen
,
867 if (is_udplite
) /* UDP-Lite */
868 csum
= udplite_csum(skb
);
870 else if (sk
->sk_no_check_tx
) { /* UDP csum off */
872 skb
->ip_summed
= CHECKSUM_NONE
;
875 } else if (skb
->ip_summed
== CHECKSUM_PARTIAL
) { /* UDP hardware csum */
878 udp4_hwcsum(skb
, fl4
->saddr
, fl4
->daddr
);
882 csum
= udp_csum(skb
);
884 /* add protocol-dependent pseudo-header */
885 uh
->check
= csum_tcpudp_magic(fl4
->saddr
, fl4
->daddr
, len
,
886 sk
->sk_protocol
, csum
);
888 uh
->check
= CSUM_MANGLED_0
;
891 err
= ip_send_skb(sock_net(sk
), skb
);
893 if (err
== -ENOBUFS
&& !inet
->recverr
) {
894 UDP_INC_STATS(sock_net(sk
),
895 UDP_MIB_SNDBUFERRORS
, is_udplite
);
899 UDP_INC_STATS(sock_net(sk
),
900 UDP_MIB_OUTDATAGRAMS
, is_udplite
);
905 * Push out all pending data as one UDP datagram. Socket is locked.
907 int udp_push_pending_frames(struct sock
*sk
)
909 struct udp_sock
*up
= udp_sk(sk
);
910 struct inet_sock
*inet
= inet_sk(sk
);
911 struct flowi4
*fl4
= &inet
->cork
.fl
.u
.ip4
;
915 skb
= ip_finish_skb(sk
, fl4
);
919 err
= udp_send_skb(skb
, fl4
, &inet
->cork
.base
);
926 EXPORT_SYMBOL(udp_push_pending_frames
);
928 static int __udp_cmsg_send(struct cmsghdr
*cmsg
, u16
*gso_size
)
930 switch (cmsg
->cmsg_type
) {
932 if (cmsg
->cmsg_len
!= CMSG_LEN(sizeof(__u16
)))
934 *gso_size
= *(__u16
*)CMSG_DATA(cmsg
);
941 int udp_cmsg_send(struct sock
*sk
, struct msghdr
*msg
, u16
*gso_size
)
943 struct cmsghdr
*cmsg
;
944 bool need_ip
= false;
947 for_each_cmsghdr(cmsg
, msg
) {
948 if (!CMSG_OK(msg
, cmsg
))
951 if (cmsg
->cmsg_level
!= SOL_UDP
) {
956 err
= __udp_cmsg_send(cmsg
, gso_size
);
963 EXPORT_SYMBOL_GPL(udp_cmsg_send
);
965 int udp_sendmsg(struct sock
*sk
, struct msghdr
*msg
, size_t len
)
967 struct inet_sock
*inet
= inet_sk(sk
);
968 struct udp_sock
*up
= udp_sk(sk
);
969 DECLARE_SOCKADDR(struct sockaddr_in
*, usin
, msg
->msg_name
);
970 struct flowi4 fl4_stack
;
973 struct ipcm_cookie ipc
;
974 struct rtable
*rt
= NULL
;
977 __be32 daddr
, faddr
, saddr
;
980 int err
, is_udplite
= IS_UDPLITE(sk
);
981 int corkreq
= up
->corkflag
|| msg
->msg_flags
&MSG_MORE
;
982 int (*getfrag
)(void *, char *, int, int, int, struct sk_buff
*);
984 struct ip_options_data opt_copy
;
993 if (msg
->msg_flags
& MSG_OOB
) /* Mirror BSD error message compatibility */
996 getfrag
= is_udplite
? udplite_getfrag
: ip_generic_getfrag
;
998 fl4
= &inet
->cork
.fl
.u
.ip4
;
1001 * There are pending frames.
1002 * The socket lock must be held while it's corked.
1005 if (likely(up
->pending
)) {
1006 if (unlikely(up
->pending
!= AF_INET
)) {
1010 goto do_append_data
;
1014 ulen
+= sizeof(struct udphdr
);
1017 * Get and verify the address.
1020 if (msg
->msg_namelen
< sizeof(*usin
))
1022 if (usin
->sin_family
!= AF_INET
) {
1023 if (usin
->sin_family
!= AF_UNSPEC
)
1024 return -EAFNOSUPPORT
;
1027 daddr
= usin
->sin_addr
.s_addr
;
1028 dport
= usin
->sin_port
;
1032 if (sk
->sk_state
!= TCP_ESTABLISHED
)
1033 return -EDESTADDRREQ
;
1034 daddr
= inet
->inet_daddr
;
1035 dport
= inet
->inet_dport
;
1036 /* Open fast path for connected socket.
1037 Route will not be used, if at least one option is set.
1042 ipcm_init_sk(&ipc
, inet
);
1043 ipc
.gso_size
= up
->gso_size
;
1045 if (msg
->msg_controllen
) {
1046 err
= udp_cmsg_send(sk
, msg
, &ipc
.gso_size
);
1048 err
= ip_cmsg_send(sk
, msg
, &ipc
,
1049 sk
->sk_family
== AF_INET6
);
1050 if (unlikely(err
< 0)) {
1059 struct ip_options_rcu
*inet_opt
;
1062 inet_opt
= rcu_dereference(inet
->inet_opt
);
1064 memcpy(&opt_copy
, inet_opt
,
1065 sizeof(*inet_opt
) + inet_opt
->opt
.optlen
);
1066 ipc
.opt
= &opt_copy
.opt
;
1071 if (cgroup_bpf_enabled
&& !connected
) {
1072 err
= BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk
,
1073 (struct sockaddr
*)usin
, &ipc
.addr
);
1077 if (usin
->sin_port
== 0) {
1078 /* BPF program set invalid port. Reject it. */
1082 daddr
= usin
->sin_addr
.s_addr
;
1083 dport
= usin
->sin_port
;
1088 ipc
.addr
= faddr
= daddr
;
1090 if (ipc
.opt
&& ipc
.opt
->opt
.srr
) {
1095 faddr
= ipc
.opt
->opt
.faddr
;
1098 tos
= get_rttos(&ipc
, inet
);
1099 if (sock_flag(sk
, SOCK_LOCALROUTE
) ||
1100 (msg
->msg_flags
& MSG_DONTROUTE
) ||
1101 (ipc
.opt
&& ipc
.opt
->opt
.is_strictroute
)) {
1106 if (ipv4_is_multicast(daddr
)) {
1107 if (!ipc
.oif
|| netif_index_is_l3_master(sock_net(sk
), ipc
.oif
))
1108 ipc
.oif
= inet
->mc_index
;
1110 saddr
= inet
->mc_addr
;
1112 } else if (!ipc
.oif
) {
1113 ipc
.oif
= inet
->uc_index
;
1114 } else if (ipv4_is_lbcast(daddr
) && inet
->uc_index
) {
1115 /* oif is set, packet is to local broadcast and
1116 * and uc_index is set. oif is most likely set
1117 * by sk_bound_dev_if. If uc_index != oif check if the
1118 * oif is an L3 master and uc_index is an L3 slave.
1119 * If so, we want to allow the send using the uc_index.
1121 if (ipc
.oif
!= inet
->uc_index
&&
1122 ipc
.oif
== l3mdev_master_ifindex_by_index(sock_net(sk
),
1124 ipc
.oif
= inet
->uc_index
;
1129 rt
= (struct rtable
*)sk_dst_check(sk
, 0);
1132 struct net
*net
= sock_net(sk
);
1133 __u8 flow_flags
= inet_sk_flowi_flags(sk
);
1137 flowi4_init_output(fl4
, ipc
.oif
, ipc
.sockc
.mark
, tos
,
1138 RT_SCOPE_UNIVERSE
, sk
->sk_protocol
,
1140 faddr
, saddr
, dport
, inet
->inet_sport
,
1143 security_sk_classify_flow(sk
, flowi4_to_flowi(fl4
));
1144 rt
= ip_route_output_flow(net
, fl4
, sk
);
1148 if (err
== -ENETUNREACH
)
1149 IP_INC_STATS(net
, IPSTATS_MIB_OUTNOROUTES
);
1154 if ((rt
->rt_flags
& RTCF_BROADCAST
) &&
1155 !sock_flag(sk
, SOCK_BROADCAST
))
1158 sk_dst_set(sk
, dst_clone(&rt
->dst
));
1161 if (msg
->msg_flags
&MSG_CONFIRM
)
1167 daddr
= ipc
.addr
= fl4
->daddr
;
1169 /* Lockless fast path for the non-corking case. */
1171 struct inet_cork cork
;
1173 skb
= ip_make_skb(sk
, fl4
, getfrag
, msg
, ulen
,
1174 sizeof(struct udphdr
), &ipc
, &rt
,
1175 &cork
, msg
->msg_flags
);
1177 if (!IS_ERR_OR_NULL(skb
))
1178 err
= udp_send_skb(skb
, fl4
, &cork
);
1183 if (unlikely(up
->pending
)) {
1184 /* The socket is already corked while preparing it. */
1185 /* ... which is an evident application bug. --ANK */
1188 net_dbg_ratelimited("socket already corked\n");
1193 * Now cork the socket to pend data.
1195 fl4
= &inet
->cork
.fl
.u
.ip4
;
1198 fl4
->fl4_dport
= dport
;
1199 fl4
->fl4_sport
= inet
->inet_sport
;
1200 up
->pending
= AF_INET
;
1204 err
= ip_append_data(sk
, fl4
, getfrag
, msg
, ulen
,
1205 sizeof(struct udphdr
), &ipc
, &rt
,
1206 corkreq
? msg
->msg_flags
|MSG_MORE
: msg
->msg_flags
);
1208 udp_flush_pending_frames(sk
);
1210 err
= udp_push_pending_frames(sk
);
1211 else if (unlikely(skb_queue_empty(&sk
->sk_write_queue
)))
1223 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1224 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1225 * we don't have a good statistic (IpOutDiscards but it can be too many
1226 * things). We could add another new stat but at least for now that
1227 * seems like overkill.
1229 if (err
== -ENOBUFS
|| test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
1230 UDP_INC_STATS(sock_net(sk
),
1231 UDP_MIB_SNDBUFERRORS
, is_udplite
);
1236 if (msg
->msg_flags
& MSG_PROBE
)
1237 dst_confirm_neigh(&rt
->dst
, &fl4
->daddr
);
1238 if (!(msg
->msg_flags
&MSG_PROBE
) || len
)
1239 goto back_from_confirm
;
1243 EXPORT_SYMBOL(udp_sendmsg
);
1245 int udp_sendpage(struct sock
*sk
, struct page
*page
, int offset
,
1246 size_t size
, int flags
)
1248 struct inet_sock
*inet
= inet_sk(sk
);
1249 struct udp_sock
*up
= udp_sk(sk
);
1252 if (flags
& MSG_SENDPAGE_NOTLAST
)
1256 struct msghdr msg
= { .msg_flags
= flags
|MSG_MORE
};
1258 /* Call udp_sendmsg to specify destination address which
1259 * sendpage interface can't pass.
1260 * This will succeed only when the socket is connected.
1262 ret
= udp_sendmsg(sk
, &msg
, 0);
1269 if (unlikely(!up
->pending
)) {
1272 net_dbg_ratelimited("cork failed\n");
1276 ret
= ip_append_page(sk
, &inet
->cork
.fl
.u
.ip4
,
1277 page
, offset
, size
, flags
);
1278 if (ret
== -EOPNOTSUPP
) {
1280 return sock_no_sendpage(sk
->sk_socket
, page
, offset
,
1284 udp_flush_pending_frames(sk
);
1289 if (!(up
->corkflag
|| (flags
&MSG_MORE
)))
1290 ret
= udp_push_pending_frames(sk
);
1298 #define UDP_SKB_IS_STATELESS 0x80000000
1300 /* all head states (dst, sk, nf conntrack) except skb extensions are
1301 * cleared by udp_rcv().
1303 * We need to preserve secpath, if present, to eventually process
1304 * IP_CMSG_PASSSEC at recvmsg() time.
1306 * Other extensions can be cleared.
1308 static bool udp_try_make_stateless(struct sk_buff
*skb
)
1310 if (!skb_has_extensions(skb
))
1313 if (!secpath_exists(skb
)) {
1321 static void udp_set_dev_scratch(struct sk_buff
*skb
)
1323 struct udp_dev_scratch
*scratch
= udp_skb_scratch(skb
);
1325 BUILD_BUG_ON(sizeof(struct udp_dev_scratch
) > sizeof(long));
1326 scratch
->_tsize_state
= skb
->truesize
;
1327 #if BITS_PER_LONG == 64
1328 scratch
->len
= skb
->len
;
1329 scratch
->csum_unnecessary
= !!skb_csum_unnecessary(skb
);
1330 scratch
->is_linear
= !skb_is_nonlinear(skb
);
1332 if (udp_try_make_stateless(skb
))
1333 scratch
->_tsize_state
|= UDP_SKB_IS_STATELESS
;
1336 static void udp_skb_csum_unnecessary_set(struct sk_buff
*skb
)
1338 /* We come here after udp_lib_checksum_complete() returned 0.
1339 * This means that __skb_checksum_complete() might have
1340 * set skb->csum_valid to 1.
1341 * On 64bit platforms, we can set csum_unnecessary
1342 * to true, but only if the skb is not shared.
1344 #if BITS_PER_LONG == 64
1345 if (!skb_shared(skb
))
1346 udp_skb_scratch(skb
)->csum_unnecessary
= true;
1350 static int udp_skb_truesize(struct sk_buff
*skb
)
1352 return udp_skb_scratch(skb
)->_tsize_state
& ~UDP_SKB_IS_STATELESS
;
1355 static bool udp_skb_has_head_state(struct sk_buff
*skb
)
1357 return !(udp_skb_scratch(skb
)->_tsize_state
& UDP_SKB_IS_STATELESS
);
1360 /* fully reclaim rmem/fwd memory allocated for skb */
1361 static void udp_rmem_release(struct sock
*sk
, int size
, int partial
,
1362 bool rx_queue_lock_held
)
1364 struct udp_sock
*up
= udp_sk(sk
);
1365 struct sk_buff_head
*sk_queue
;
1368 if (likely(partial
)) {
1369 up
->forward_deficit
+= size
;
1370 size
= up
->forward_deficit
;
1371 if (size
< (sk
->sk_rcvbuf
>> 2) &&
1372 !skb_queue_empty(&up
->reader_queue
))
1375 size
+= up
->forward_deficit
;
1377 up
->forward_deficit
= 0;
1379 /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1380 * if the called don't held it already
1382 sk_queue
= &sk
->sk_receive_queue
;
1383 if (!rx_queue_lock_held
)
1384 spin_lock(&sk_queue
->lock
);
1387 sk
->sk_forward_alloc
+= size
;
1388 amt
= (sk
->sk_forward_alloc
- partial
) & ~(SK_MEM_QUANTUM
- 1);
1389 sk
->sk_forward_alloc
-= amt
;
1392 __sk_mem_reduce_allocated(sk
, amt
>> SK_MEM_QUANTUM_SHIFT
);
1394 atomic_sub(size
, &sk
->sk_rmem_alloc
);
1396 /* this can save us from acquiring the rx queue lock on next receive */
1397 skb_queue_splice_tail_init(sk_queue
, &up
->reader_queue
);
1399 if (!rx_queue_lock_held
)
1400 spin_unlock(&sk_queue
->lock
);
1403 /* Note: called with reader_queue.lock held.
1404 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1405 * This avoids a cache line miss while receive_queue lock is held.
1406 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1408 void udp_skb_destructor(struct sock
*sk
, struct sk_buff
*skb
)
1410 prefetch(&skb
->data
);
1411 udp_rmem_release(sk
, udp_skb_truesize(skb
), 1, false);
1413 EXPORT_SYMBOL(udp_skb_destructor
);
1415 /* as above, but the caller held the rx queue lock, too */
1416 static void udp_skb_dtor_locked(struct sock
*sk
, struct sk_buff
*skb
)
1418 prefetch(&skb
->data
);
1419 udp_rmem_release(sk
, udp_skb_truesize(skb
), 1, true);
1422 /* Idea of busylocks is to let producers grab an extra spinlock
1423 * to relieve pressure on the receive_queue spinlock shared by consumer.
1424 * Under flood, this means that only one producer can be in line
1425 * trying to acquire the receive_queue spinlock.
1426 * These busylock can be allocated on a per cpu manner, instead of a
1427 * per socket one (that would consume a cache line per socket)
1429 static int udp_busylocks_log __read_mostly
;
1430 static spinlock_t
*udp_busylocks __read_mostly
;
1432 static spinlock_t
*busylock_acquire(void *ptr
)
1436 busy
= udp_busylocks
+ hash_ptr(ptr
, udp_busylocks_log
);
1441 static void busylock_release(spinlock_t
*busy
)
1447 int __udp_enqueue_schedule_skb(struct sock
*sk
, struct sk_buff
*skb
)
1449 struct sk_buff_head
*list
= &sk
->sk_receive_queue
;
1450 int rmem
, delta
, amt
, err
= -ENOMEM
;
1451 spinlock_t
*busy
= NULL
;
1454 /* try to avoid the costly atomic add/sub pair when the receive
1455 * queue is full; always allow at least a packet
1457 rmem
= atomic_read(&sk
->sk_rmem_alloc
);
1458 if (rmem
> sk
->sk_rcvbuf
)
1461 /* Under mem pressure, it might be helpful to help udp_recvmsg()
1462 * having linear skbs :
1463 * - Reduce memory overhead and thus increase receive queue capacity
1464 * - Less cache line misses at copyout() time
1465 * - Less work at consume_skb() (less alien page frag freeing)
1467 if (rmem
> (sk
->sk_rcvbuf
>> 1)) {
1470 busy
= busylock_acquire(sk
);
1472 size
= skb
->truesize
;
1473 udp_set_dev_scratch(skb
);
1475 /* we drop only if the receive buf is full and the receive
1476 * queue contains some other skb
1478 rmem
= atomic_add_return(size
, &sk
->sk_rmem_alloc
);
1479 if (rmem
> (size
+ (unsigned int)sk
->sk_rcvbuf
))
1482 spin_lock(&list
->lock
);
1483 if (size
>= sk
->sk_forward_alloc
) {
1484 amt
= sk_mem_pages(size
);
1485 delta
= amt
<< SK_MEM_QUANTUM_SHIFT
;
1486 if (!__sk_mem_raise_allocated(sk
, delta
, amt
, SK_MEM_RECV
)) {
1488 spin_unlock(&list
->lock
);
1492 sk
->sk_forward_alloc
+= delta
;
1495 sk
->sk_forward_alloc
-= size
;
1497 /* no need to setup a destructor, we will explicitly release the
1498 * forward allocated memory on dequeue
1500 sock_skb_set_dropcount(sk
, skb
);
1502 __skb_queue_tail(list
, skb
);
1503 spin_unlock(&list
->lock
);
1505 if (!sock_flag(sk
, SOCK_DEAD
))
1506 sk
->sk_data_ready(sk
);
1508 busylock_release(busy
);
1512 atomic_sub(skb
->truesize
, &sk
->sk_rmem_alloc
);
1515 atomic_inc(&sk
->sk_drops
);
1516 busylock_release(busy
);
1519 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb
);
1521 void udp_destruct_sock(struct sock
*sk
)
1523 /* reclaim completely the forward allocated memory */
1524 struct udp_sock
*up
= udp_sk(sk
);
1525 unsigned int total
= 0;
1526 struct sk_buff
*skb
;
1528 skb_queue_splice_tail_init(&sk
->sk_receive_queue
, &up
->reader_queue
);
1529 while ((skb
= __skb_dequeue(&up
->reader_queue
)) != NULL
) {
1530 total
+= skb
->truesize
;
1533 udp_rmem_release(sk
, total
, 0, true);
1535 inet_sock_destruct(sk
);
1537 EXPORT_SYMBOL_GPL(udp_destruct_sock
);
1539 int udp_init_sock(struct sock
*sk
)
1541 skb_queue_head_init(&udp_sk(sk
)->reader_queue
);
1542 sk
->sk_destruct
= udp_destruct_sock
;
1545 EXPORT_SYMBOL_GPL(udp_init_sock
);
1547 void skb_consume_udp(struct sock
*sk
, struct sk_buff
*skb
, int len
)
1549 if (unlikely(READ_ONCE(sk
->sk_peek_off
) >= 0)) {
1550 bool slow
= lock_sock_fast(sk
);
1552 sk_peek_offset_bwd(sk
, len
);
1553 unlock_sock_fast(sk
, slow
);
1556 if (!skb_unref(skb
))
1559 /* In the more common cases we cleared the head states previously,
1560 * see __udp_queue_rcv_skb().
1562 if (unlikely(udp_skb_has_head_state(skb
)))
1563 skb_release_head_state(skb
);
1564 __consume_stateless_skb(skb
);
1566 EXPORT_SYMBOL_GPL(skb_consume_udp
);
1568 static struct sk_buff
*__first_packet_length(struct sock
*sk
,
1569 struct sk_buff_head
*rcvq
,
1572 struct sk_buff
*skb
;
1574 while ((skb
= skb_peek(rcvq
)) != NULL
) {
1575 if (udp_lib_checksum_complete(skb
)) {
1576 __UDP_INC_STATS(sock_net(sk
), UDP_MIB_CSUMERRORS
,
1578 __UDP_INC_STATS(sock_net(sk
), UDP_MIB_INERRORS
,
1580 atomic_inc(&sk
->sk_drops
);
1581 __skb_unlink(skb
, rcvq
);
1582 *total
+= skb
->truesize
;
1585 udp_skb_csum_unnecessary_set(skb
);
1593 * first_packet_length - return length of first packet in receive queue
1596 * Drops all bad checksum frames, until a valid one is found.
1597 * Returns the length of found skb, or -1 if none is found.
1599 static int first_packet_length(struct sock
*sk
)
1601 struct sk_buff_head
*rcvq
= &udp_sk(sk
)->reader_queue
;
1602 struct sk_buff_head
*sk_queue
= &sk
->sk_receive_queue
;
1603 struct sk_buff
*skb
;
1607 spin_lock_bh(&rcvq
->lock
);
1608 skb
= __first_packet_length(sk
, rcvq
, &total
);
1609 if (!skb
&& !skb_queue_empty_lockless(sk_queue
)) {
1610 spin_lock(&sk_queue
->lock
);
1611 skb_queue_splice_tail_init(sk_queue
, rcvq
);
1612 spin_unlock(&sk_queue
->lock
);
1614 skb
= __first_packet_length(sk
, rcvq
, &total
);
1616 res
= skb
? skb
->len
: -1;
1618 udp_rmem_release(sk
, total
, 1, false);
1619 spin_unlock_bh(&rcvq
->lock
);
1624 * IOCTL requests applicable to the UDP protocol
1627 int udp_ioctl(struct sock
*sk
, int cmd
, unsigned long arg
)
1632 int amount
= sk_wmem_alloc_get(sk
);
1634 return put_user(amount
, (int __user
*)arg
);
1639 int amount
= max_t(int, 0, first_packet_length(sk
));
1641 return put_user(amount
, (int __user
*)arg
);
1645 return -ENOIOCTLCMD
;
1650 EXPORT_SYMBOL(udp_ioctl
);
1652 struct sk_buff
*__skb_recv_udp(struct sock
*sk
, unsigned int flags
,
1653 int noblock
, int *off
, int *err
)
1655 struct sk_buff_head
*sk_queue
= &sk
->sk_receive_queue
;
1656 struct sk_buff_head
*queue
;
1657 struct sk_buff
*last
;
1661 queue
= &udp_sk(sk
)->reader_queue
;
1662 flags
|= noblock
? MSG_DONTWAIT
: 0;
1663 timeo
= sock_rcvtimeo(sk
, flags
& MSG_DONTWAIT
);
1665 struct sk_buff
*skb
;
1667 error
= sock_error(sk
);
1673 spin_lock_bh(&queue
->lock
);
1674 skb
= __skb_try_recv_from_queue(sk
, queue
, flags
,
1678 spin_unlock_bh(&queue
->lock
);
1682 if (skb_queue_empty_lockless(sk_queue
)) {
1683 spin_unlock_bh(&queue
->lock
);
1687 /* refill the reader queue and walk it again
1688 * keep both queues locked to avoid re-acquiring
1689 * the sk_receive_queue lock if fwd memory scheduling
1692 spin_lock(&sk_queue
->lock
);
1693 skb_queue_splice_tail_init(sk_queue
, queue
);
1695 skb
= __skb_try_recv_from_queue(sk
, queue
, flags
,
1696 udp_skb_dtor_locked
,
1698 spin_unlock(&sk_queue
->lock
);
1699 spin_unlock_bh(&queue
->lock
);
1704 if (!sk_can_busy_loop(sk
))
1707 sk_busy_loop(sk
, flags
& MSG_DONTWAIT
);
1708 } while (!skb_queue_empty_lockless(sk_queue
));
1710 /* sk_queue is empty, reader_queue may contain peeked packets */
1712 !__skb_wait_for_more_packets(sk
, &sk
->sk_receive_queue
,
1714 (struct sk_buff
*)sk_queue
));
1719 EXPORT_SYMBOL(__skb_recv_udp
);
1722 * This should be easy, if there is something there we
1723 * return it, otherwise we block.
1726 int udp_recvmsg(struct sock
*sk
, struct msghdr
*msg
, size_t len
, int noblock
,
1727 int flags
, int *addr_len
)
1729 struct inet_sock
*inet
= inet_sk(sk
);
1730 DECLARE_SOCKADDR(struct sockaddr_in
*, sin
, msg
->msg_name
);
1731 struct sk_buff
*skb
;
1732 unsigned int ulen
, copied
;
1733 int off
, err
, peeking
= flags
& MSG_PEEK
;
1734 int is_udplite
= IS_UDPLITE(sk
);
1735 bool checksum_valid
= false;
1737 if (flags
& MSG_ERRQUEUE
)
1738 return ip_recv_error(sk
, msg
, len
, addr_len
);
1741 off
= sk_peek_offset(sk
, flags
);
1742 skb
= __skb_recv_udp(sk
, flags
, noblock
, &off
, &err
);
1746 ulen
= udp_skb_len(skb
);
1748 if (copied
> ulen
- off
)
1749 copied
= ulen
- off
;
1750 else if (copied
< ulen
)
1751 msg
->msg_flags
|= MSG_TRUNC
;
1754 * If checksum is needed at all, try to do it while copying the
1755 * data. If the data is truncated, or if we only want a partial
1756 * coverage checksum (UDP-Lite), do it before the copy.
1759 if (copied
< ulen
|| peeking
||
1760 (is_udplite
&& UDP_SKB_CB(skb
)->partial_cov
)) {
1761 checksum_valid
= udp_skb_csum_unnecessary(skb
) ||
1762 !__udp_lib_checksum_complete(skb
);
1763 if (!checksum_valid
)
1767 if (checksum_valid
|| udp_skb_csum_unnecessary(skb
)) {
1768 if (udp_skb_is_linear(skb
))
1769 err
= copy_linear_skb(skb
, copied
, off
, &msg
->msg_iter
);
1771 err
= skb_copy_datagram_msg(skb
, off
, msg
, copied
);
1773 err
= skb_copy_and_csum_datagram_msg(skb
, off
, msg
);
1779 if (unlikely(err
)) {
1781 atomic_inc(&sk
->sk_drops
);
1782 UDP_INC_STATS(sock_net(sk
),
1783 UDP_MIB_INERRORS
, is_udplite
);
1790 UDP_INC_STATS(sock_net(sk
),
1791 UDP_MIB_INDATAGRAMS
, is_udplite
);
1793 sock_recv_ts_and_drops(msg
, sk
, skb
);
1795 /* Copy the address. */
1797 sin
->sin_family
= AF_INET
;
1798 sin
->sin_port
= udp_hdr(skb
)->source
;
1799 sin
->sin_addr
.s_addr
= ip_hdr(skb
)->saddr
;
1800 memset(sin
->sin_zero
, 0, sizeof(sin
->sin_zero
));
1801 *addr_len
= sizeof(*sin
);
1803 if (cgroup_bpf_enabled
)
1804 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk
,
1805 (struct sockaddr
*)sin
);
1808 if (udp_sk(sk
)->gro_enabled
)
1809 udp_cmsg_recv(msg
, sk
, skb
);
1811 if (inet
->cmsg_flags
)
1812 ip_cmsg_recv_offset(msg
, sk
, skb
, sizeof(struct udphdr
), off
);
1815 if (flags
& MSG_TRUNC
)
1818 skb_consume_udp(sk
, skb
, peeking
? -err
: err
);
1822 if (!__sk_queue_drop_skb(sk
, &udp_sk(sk
)->reader_queue
, skb
, flags
,
1823 udp_skb_destructor
)) {
1824 UDP_INC_STATS(sock_net(sk
), UDP_MIB_CSUMERRORS
, is_udplite
);
1825 UDP_INC_STATS(sock_net(sk
), UDP_MIB_INERRORS
, is_udplite
);
1829 /* starting over for a new packet, but check if we need to yield */
1831 msg
->msg_flags
&= ~MSG_TRUNC
;
1835 int udp_pre_connect(struct sock
*sk
, struct sockaddr
*uaddr
, int addr_len
)
1837 /* This check is replicated from __ip4_datagram_connect() and
1838 * intended to prevent BPF program called below from accessing bytes
1839 * that are out of the bound specified by user in addr_len.
1841 if (addr_len
< sizeof(struct sockaddr_in
))
1844 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk
, uaddr
);
1846 EXPORT_SYMBOL(udp_pre_connect
);
1848 int __udp_disconnect(struct sock
*sk
, int flags
)
1850 struct inet_sock
*inet
= inet_sk(sk
);
1852 * 1003.1g - break association.
1855 sk
->sk_state
= TCP_CLOSE
;
1856 inet
->inet_daddr
= 0;
1857 inet
->inet_dport
= 0;
1858 sock_rps_reset_rxhash(sk
);
1859 sk
->sk_bound_dev_if
= 0;
1860 if (!(sk
->sk_userlocks
& SOCK_BINDADDR_LOCK
))
1861 inet_reset_saddr(sk
);
1863 if (!(sk
->sk_userlocks
& SOCK_BINDPORT_LOCK
)) {
1864 sk
->sk_prot
->unhash(sk
);
1865 inet
->inet_sport
= 0;
1870 EXPORT_SYMBOL(__udp_disconnect
);
1872 int udp_disconnect(struct sock
*sk
, int flags
)
1875 __udp_disconnect(sk
, flags
);
1879 EXPORT_SYMBOL(udp_disconnect
);
1881 void udp_lib_unhash(struct sock
*sk
)
1883 if (sk_hashed(sk
)) {
1884 struct udp_table
*udptable
= sk
->sk_prot
->h
.udp_table
;
1885 struct udp_hslot
*hslot
, *hslot2
;
1887 hslot
= udp_hashslot(udptable
, sock_net(sk
),
1888 udp_sk(sk
)->udp_port_hash
);
1889 hslot2
= udp_hashslot2(udptable
, udp_sk(sk
)->udp_portaddr_hash
);
1891 spin_lock_bh(&hslot
->lock
);
1892 if (rcu_access_pointer(sk
->sk_reuseport_cb
))
1893 reuseport_detach_sock(sk
);
1894 if (sk_del_node_init_rcu(sk
)) {
1896 inet_sk(sk
)->inet_num
= 0;
1897 sock_prot_inuse_add(sock_net(sk
), sk
->sk_prot
, -1);
1899 spin_lock(&hslot2
->lock
);
1900 hlist_del_init_rcu(&udp_sk(sk
)->udp_portaddr_node
);
1902 spin_unlock(&hslot2
->lock
);
1904 spin_unlock_bh(&hslot
->lock
);
1907 EXPORT_SYMBOL(udp_lib_unhash
);
1910 * inet_rcv_saddr was changed, we must rehash secondary hash
1912 void udp_lib_rehash(struct sock
*sk
, u16 newhash
)
1914 if (sk_hashed(sk
)) {
1915 struct udp_table
*udptable
= sk
->sk_prot
->h
.udp_table
;
1916 struct udp_hslot
*hslot
, *hslot2
, *nhslot2
;
1918 hslot2
= udp_hashslot2(udptable
, udp_sk(sk
)->udp_portaddr_hash
);
1919 nhslot2
= udp_hashslot2(udptable
, newhash
);
1920 udp_sk(sk
)->udp_portaddr_hash
= newhash
;
1922 if (hslot2
!= nhslot2
||
1923 rcu_access_pointer(sk
->sk_reuseport_cb
)) {
1924 hslot
= udp_hashslot(udptable
, sock_net(sk
),
1925 udp_sk(sk
)->udp_port_hash
);
1926 /* we must lock primary chain too */
1927 spin_lock_bh(&hslot
->lock
);
1928 if (rcu_access_pointer(sk
->sk_reuseport_cb
))
1929 reuseport_detach_sock(sk
);
1931 if (hslot2
!= nhslot2
) {
1932 spin_lock(&hslot2
->lock
);
1933 hlist_del_init_rcu(&udp_sk(sk
)->udp_portaddr_node
);
1935 spin_unlock(&hslot2
->lock
);
1937 spin_lock(&nhslot2
->lock
);
1938 hlist_add_head_rcu(&udp_sk(sk
)->udp_portaddr_node
,
1941 spin_unlock(&nhslot2
->lock
);
1944 spin_unlock_bh(&hslot
->lock
);
1948 EXPORT_SYMBOL(udp_lib_rehash
);
1950 void udp_v4_rehash(struct sock
*sk
)
1952 u16 new_hash
= ipv4_portaddr_hash(sock_net(sk
),
1953 inet_sk(sk
)->inet_rcv_saddr
,
1954 inet_sk(sk
)->inet_num
);
1955 udp_lib_rehash(sk
, new_hash
);
1958 static int __udp_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
1962 if (inet_sk(sk
)->inet_daddr
) {
1963 sock_rps_save_rxhash(sk
, skb
);
1964 sk_mark_napi_id(sk
, skb
);
1965 sk_incoming_cpu_update(sk
);
1967 sk_mark_napi_id_once(sk
, skb
);
1970 rc
= __udp_enqueue_schedule_skb(sk
, skb
);
1972 int is_udplite
= IS_UDPLITE(sk
);
1974 /* Note that an ENOMEM error is charged twice */
1976 UDP_INC_STATS(sock_net(sk
), UDP_MIB_RCVBUFERRORS
,
1978 UDP_INC_STATS(sock_net(sk
), UDP_MIB_INERRORS
, is_udplite
);
1980 trace_udp_fail_queue_rcv_skb(rc
, sk
);
1990 * >0: "udp encap" protocol resubmission
1992 * Note that in the success and error cases, the skb is assumed to
1993 * have either been requeued or freed.
1995 static int udp_queue_rcv_one_skb(struct sock
*sk
, struct sk_buff
*skb
)
1997 struct udp_sock
*up
= udp_sk(sk
);
1998 int is_udplite
= IS_UDPLITE(sk
);
2001 * Charge it to the socket, dropping if the queue is full.
2003 if (!xfrm4_policy_check(sk
, XFRM_POLICY_IN
, skb
))
2007 if (static_branch_unlikely(&udp_encap_needed_key
) && up
->encap_type
) {
2008 int (*encap_rcv
)(struct sock
*sk
, struct sk_buff
*skb
);
2011 * This is an encapsulation socket so pass the skb to
2012 * the socket's udp_encap_rcv() hook. Otherwise, just
2013 * fall through and pass this up the UDP socket.
2014 * up->encap_rcv() returns the following value:
2015 * =0 if skb was successfully passed to the encap
2016 * handler or was discarded by it.
2017 * >0 if skb should be passed on to UDP.
2018 * <0 if skb should be resubmitted as proto -N
2021 /* if we're overly short, let UDP handle it */
2022 encap_rcv
= READ_ONCE(up
->encap_rcv
);
2026 /* Verify checksum before giving to encap */
2027 if (udp_lib_checksum_complete(skb
))
2030 ret
= encap_rcv(sk
, skb
);
2032 __UDP_INC_STATS(sock_net(sk
),
2033 UDP_MIB_INDATAGRAMS
,
2039 /* FALLTHROUGH -- it's a UDP Packet */
2043 * UDP-Lite specific tests, ignored on UDP sockets
2045 if ((is_udplite
& UDPLITE_RECV_CC
) && UDP_SKB_CB(skb
)->partial_cov
) {
2048 * MIB statistics other than incrementing the error count are
2049 * disabled for the following two types of errors: these depend
2050 * on the application settings, not on the functioning of the
2051 * protocol stack as such.
2053 * RFC 3828 here recommends (sec 3.3): "There should also be a
2054 * way ... to ... at least let the receiving application block
2055 * delivery of packets with coverage values less than a value
2056 * provided by the application."
2058 if (up
->pcrlen
== 0) { /* full coverage was set */
2059 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2060 UDP_SKB_CB(skb
)->cscov
, skb
->len
);
2063 /* The next case involves violating the min. coverage requested
2064 * by the receiver. This is subtle: if receiver wants x and x is
2065 * greater than the buffersize/MTU then receiver will complain
2066 * that it wants x while sender emits packets of smaller size y.
2067 * Therefore the above ...()->partial_cov statement is essential.
2069 if (UDP_SKB_CB(skb
)->cscov
< up
->pcrlen
) {
2070 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2071 UDP_SKB_CB(skb
)->cscov
, up
->pcrlen
);
2076 prefetch(&sk
->sk_rmem_alloc
);
2077 if (rcu_access_pointer(sk
->sk_filter
) &&
2078 udp_lib_checksum_complete(skb
))
2081 if (sk_filter_trim_cap(sk
, skb
, sizeof(struct udphdr
)))
2084 udp_csum_pull_header(skb
);
2086 ipv4_pktinfo_prepare(sk
, skb
);
2087 return __udp_queue_rcv_skb(sk
, skb
);
2090 __UDP_INC_STATS(sock_net(sk
), UDP_MIB_CSUMERRORS
, is_udplite
);
2092 __UDP_INC_STATS(sock_net(sk
), UDP_MIB_INERRORS
, is_udplite
);
2093 atomic_inc(&sk
->sk_drops
);
2098 static int udp_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
2100 struct sk_buff
*next
, *segs
;
2103 if (likely(!udp_unexpected_gso(sk
, skb
)))
2104 return udp_queue_rcv_one_skb(sk
, skb
);
2106 BUILD_BUG_ON(sizeof(struct udp_skb_cb
) > SKB_SGO_CB_OFFSET
);
2107 __skb_push(skb
, -skb_mac_offset(skb
));
2108 segs
= udp_rcv_segment(sk
, skb
, true);
2109 skb_list_walk_safe(segs
, skb
, next
) {
2110 __skb_pull(skb
, skb_transport_offset(skb
));
2111 ret
= udp_queue_rcv_one_skb(sk
, skb
);
2113 ip_protocol_deliver_rcu(dev_net(skb
->dev
), skb
, -ret
);
2118 /* For TCP sockets, sk_rx_dst is protected by socket lock
2119 * For UDP, we use xchg() to guard against concurrent changes.
2121 bool udp_sk_rx_dst_set(struct sock
*sk
, struct dst_entry
*dst
)
2123 struct dst_entry
*old
;
2125 if (dst_hold_safe(dst
)) {
2126 old
= xchg(&sk
->sk_rx_dst
, dst
);
2132 EXPORT_SYMBOL(udp_sk_rx_dst_set
);
2135 * Multicasts and broadcasts go to each listener.
2137 * Note: called only from the BH handler context.
2139 static int __udp4_lib_mcast_deliver(struct net
*net
, struct sk_buff
*skb
,
2141 __be32 saddr
, __be32 daddr
,
2142 struct udp_table
*udptable
,
2145 struct sock
*sk
, *first
= NULL
;
2146 unsigned short hnum
= ntohs(uh
->dest
);
2147 struct udp_hslot
*hslot
= udp_hashslot(udptable
, net
, hnum
);
2148 unsigned int hash2
= 0, hash2_any
= 0, use_hash2
= (hslot
->count
> 10);
2149 unsigned int offset
= offsetof(typeof(*sk
), sk_node
);
2150 int dif
= skb
->dev
->ifindex
;
2151 int sdif
= inet_sdif(skb
);
2152 struct hlist_node
*node
;
2153 struct sk_buff
*nskb
;
2156 hash2_any
= ipv4_portaddr_hash(net
, htonl(INADDR_ANY
), hnum
) &
2158 hash2
= ipv4_portaddr_hash(net
, daddr
, hnum
) & udptable
->mask
;
2160 hslot
= &udptable
->hash2
[hash2
];
2161 offset
= offsetof(typeof(*sk
), __sk_common
.skc_portaddr_node
);
2164 sk_for_each_entry_offset_rcu(sk
, node
, &hslot
->head
, offset
) {
2165 if (!__udp_is_mcast_sock(net
, sk
, uh
->dest
, daddr
,
2166 uh
->source
, saddr
, dif
, sdif
, hnum
))
2173 nskb
= skb_clone(skb
, GFP_ATOMIC
);
2175 if (unlikely(!nskb
)) {
2176 atomic_inc(&sk
->sk_drops
);
2177 __UDP_INC_STATS(net
, UDP_MIB_RCVBUFERRORS
,
2179 __UDP_INC_STATS(net
, UDP_MIB_INERRORS
,
2183 if (udp_queue_rcv_skb(sk
, nskb
) > 0)
2187 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
2188 if (use_hash2
&& hash2
!= hash2_any
) {
2194 if (udp_queue_rcv_skb(first
, skb
) > 0)
2198 __UDP_INC_STATS(net
, UDP_MIB_IGNOREDMULTI
,
2199 proto
== IPPROTO_UDPLITE
);
2204 /* Initialize UDP checksum. If exited with zero value (success),
2205 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2206 * Otherwise, csum completion requires checksumming packet body,
2207 * including udp header and folding it to skb->csum.
2209 static inline int udp4_csum_init(struct sk_buff
*skb
, struct udphdr
*uh
,
2214 UDP_SKB_CB(skb
)->partial_cov
= 0;
2215 UDP_SKB_CB(skb
)->cscov
= skb
->len
;
2217 if (proto
== IPPROTO_UDPLITE
) {
2218 err
= udplite_checksum_init(skb
, uh
);
2222 if (UDP_SKB_CB(skb
)->partial_cov
) {
2223 skb
->csum
= inet_compute_pseudo(skb
, proto
);
2228 /* Note, we are only interested in != 0 or == 0, thus the
2231 err
= (__force
int)skb_checksum_init_zero_check(skb
, proto
, uh
->check
,
2232 inet_compute_pseudo
);
2236 if (skb
->ip_summed
== CHECKSUM_COMPLETE
&& !skb
->csum_valid
) {
2237 /* If SW calculated the value, we know it's bad */
2238 if (skb
->csum_complete_sw
)
2241 /* HW says the value is bad. Let's validate that.
2242 * skb->csum is no longer the full packet checksum,
2243 * so don't treat it as such.
2245 skb_checksum_complete_unset(skb
);
2251 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2252 * return code conversion for ip layer consumption
2254 static int udp_unicast_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
,
2259 if (inet_get_convert_csum(sk
) && uh
->check
&& !IS_UDPLITE(sk
))
2260 skb_checksum_try_convert(skb
, IPPROTO_UDP
, inet_compute_pseudo
);
2262 ret
= udp_queue_rcv_skb(sk
, skb
);
2264 /* a return value > 0 means to resubmit the input, but
2265 * it wants the return to be -protocol, or 0
2273 * All we need to do is get the socket, and then do a checksum.
2276 int __udp4_lib_rcv(struct sk_buff
*skb
, struct udp_table
*udptable
,
2281 unsigned short ulen
;
2282 struct rtable
*rt
= skb_rtable(skb
);
2283 __be32 saddr
, daddr
;
2284 struct net
*net
= dev_net(skb
->dev
);
2287 * Validate the packet.
2289 if (!pskb_may_pull(skb
, sizeof(struct udphdr
)))
2290 goto drop
; /* No space for header. */
2293 ulen
= ntohs(uh
->len
);
2294 saddr
= ip_hdr(skb
)->saddr
;
2295 daddr
= ip_hdr(skb
)->daddr
;
2297 if (ulen
> skb
->len
)
2300 if (proto
== IPPROTO_UDP
) {
2301 /* UDP validates ulen. */
2302 if (ulen
< sizeof(*uh
) || pskb_trim_rcsum(skb
, ulen
))
2307 if (udp4_csum_init(skb
, uh
, proto
))
2310 sk
= skb_steal_sock(skb
);
2312 struct dst_entry
*dst
= skb_dst(skb
);
2315 if (unlikely(sk
->sk_rx_dst
!= dst
))
2316 udp_sk_rx_dst_set(sk
, dst
);
2318 ret
= udp_unicast_rcv_skb(sk
, skb
, uh
);
2323 if (rt
->rt_flags
& (RTCF_BROADCAST
|RTCF_MULTICAST
))
2324 return __udp4_lib_mcast_deliver(net
, skb
, uh
,
2325 saddr
, daddr
, udptable
, proto
);
2327 sk
= __udp4_lib_lookup_skb(skb
, uh
->source
, uh
->dest
, udptable
);
2329 return udp_unicast_rcv_skb(sk
, skb
, uh
);
2331 if (!xfrm4_policy_check(NULL
, XFRM_POLICY_IN
, skb
))
2335 /* No socket. Drop packet silently, if checksum is wrong */
2336 if (udp_lib_checksum_complete(skb
))
2339 __UDP_INC_STATS(net
, UDP_MIB_NOPORTS
, proto
== IPPROTO_UDPLITE
);
2340 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_PORT_UNREACH
, 0);
2343 * Hmm. We got an UDP packet to a port to which we
2344 * don't wanna listen. Ignore it.
2350 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2351 proto
== IPPROTO_UDPLITE
? "Lite" : "",
2352 &saddr
, ntohs(uh
->source
),
2354 &daddr
, ntohs(uh
->dest
));
2359 * RFC1122: OK. Discards the bad packet silently (as far as
2360 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2362 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2363 proto
== IPPROTO_UDPLITE
? "Lite" : "",
2364 &saddr
, ntohs(uh
->source
), &daddr
, ntohs(uh
->dest
),
2366 __UDP_INC_STATS(net
, UDP_MIB_CSUMERRORS
, proto
== IPPROTO_UDPLITE
);
2368 __UDP_INC_STATS(net
, UDP_MIB_INERRORS
, proto
== IPPROTO_UDPLITE
);
2373 /* We can only early demux multicast if there is a single matching socket.
2374 * If more than one socket found returns NULL
2376 static struct sock
*__udp4_lib_mcast_demux_lookup(struct net
*net
,
2377 __be16 loc_port
, __be32 loc_addr
,
2378 __be16 rmt_port
, __be32 rmt_addr
,
2381 struct sock
*sk
, *result
;
2382 unsigned short hnum
= ntohs(loc_port
);
2383 unsigned int slot
= udp_hashfn(net
, hnum
, udp_table
.mask
);
2384 struct udp_hslot
*hslot
= &udp_table
.hash
[slot
];
2386 /* Do not bother scanning a too big list */
2387 if (hslot
->count
> 10)
2391 sk_for_each_rcu(sk
, &hslot
->head
) {
2392 if (__udp_is_mcast_sock(net
, sk
, loc_port
, loc_addr
,
2393 rmt_port
, rmt_addr
, dif
, sdif
, hnum
)) {
2403 /* For unicast we should only early demux connected sockets or we can
2404 * break forwarding setups. The chains here can be long so only check
2405 * if the first socket is an exact match and if not move on.
2407 static struct sock
*__udp4_lib_demux_lookup(struct net
*net
,
2408 __be16 loc_port
, __be32 loc_addr
,
2409 __be16 rmt_port
, __be32 rmt_addr
,
2412 unsigned short hnum
= ntohs(loc_port
);
2413 unsigned int hash2
= ipv4_portaddr_hash(net
, loc_addr
, hnum
);
2414 unsigned int slot2
= hash2
& udp_table
.mask
;
2415 struct udp_hslot
*hslot2
= &udp_table
.hash2
[slot2
];
2416 INET_ADDR_COOKIE(acookie
, rmt_addr
, loc_addr
);
2417 const __portpair ports
= INET_COMBINED_PORTS(rmt_port
, hnum
);
2420 udp_portaddr_for_each_entry_rcu(sk
, &hslot2
->head
) {
2421 if (INET_MATCH(sk
, net
, acookie
, rmt_addr
,
2422 loc_addr
, ports
, dif
, sdif
))
2424 /* Only check first socket in chain */
2430 int udp_v4_early_demux(struct sk_buff
*skb
)
2432 struct net
*net
= dev_net(skb
->dev
);
2433 struct in_device
*in_dev
= NULL
;
2434 const struct iphdr
*iph
;
2435 const struct udphdr
*uh
;
2436 struct sock
*sk
= NULL
;
2437 struct dst_entry
*dst
;
2438 int dif
= skb
->dev
->ifindex
;
2439 int sdif
= inet_sdif(skb
);
2442 /* validate the packet */
2443 if (!pskb_may_pull(skb
, skb_transport_offset(skb
) + sizeof(struct udphdr
)))
2449 if (skb
->pkt_type
== PACKET_MULTICAST
) {
2450 in_dev
= __in_dev_get_rcu(skb
->dev
);
2455 ours
= ip_check_mc_rcu(in_dev
, iph
->daddr
, iph
->saddr
,
2460 sk
= __udp4_lib_mcast_demux_lookup(net
, uh
->dest
, iph
->daddr
,
2461 uh
->source
, iph
->saddr
,
2463 } else if (skb
->pkt_type
== PACKET_HOST
) {
2464 sk
= __udp4_lib_demux_lookup(net
, uh
->dest
, iph
->daddr
,
2465 uh
->source
, iph
->saddr
, dif
, sdif
);
2468 if (!sk
|| !refcount_inc_not_zero(&sk
->sk_refcnt
))
2472 skb
->destructor
= sock_efree
;
2473 dst
= READ_ONCE(sk
->sk_rx_dst
);
2476 dst
= dst_check(dst
, 0);
2480 /* set noref for now.
2481 * any place which wants to hold dst has to call
2484 skb_dst_set_noref(skb
, dst
);
2486 /* for unconnected multicast sockets we need to validate
2487 * the source on each packet
2489 if (!inet_sk(sk
)->inet_daddr
&& in_dev
)
2490 return ip_mc_validate_source(skb
, iph
->daddr
,
2491 iph
->saddr
, iph
->tos
,
2492 skb
->dev
, in_dev
, &itag
);
2497 int udp_rcv(struct sk_buff
*skb
)
2499 return __udp4_lib_rcv(skb
, &udp_table
, IPPROTO_UDP
);
2502 void udp_destroy_sock(struct sock
*sk
)
2504 struct udp_sock
*up
= udp_sk(sk
);
2505 bool slow
= lock_sock_fast(sk
);
2506 udp_flush_pending_frames(sk
);
2507 unlock_sock_fast(sk
, slow
);
2508 if (static_branch_unlikely(&udp_encap_needed_key
)) {
2509 if (up
->encap_type
) {
2510 void (*encap_destroy
)(struct sock
*sk
);
2511 encap_destroy
= READ_ONCE(up
->encap_destroy
);
2515 if (up
->encap_enabled
)
2516 static_branch_dec(&udp_encap_needed_key
);
2521 * Socket option code for UDP
2523 int udp_lib_setsockopt(struct sock
*sk
, int level
, int optname
,
2524 char __user
*optval
, unsigned int optlen
,
2525 int (*push_pending_frames
)(struct sock
*))
2527 struct udp_sock
*up
= udp_sk(sk
);
2530 int is_udplite
= IS_UDPLITE(sk
);
2532 if (optlen
< sizeof(int))
2535 if (get_user(val
, (int __user
*)optval
))
2538 valbool
= val
? 1 : 0;
2547 push_pending_frames(sk
);
2556 case UDP_ENCAP_ESPINUDP
:
2557 case UDP_ENCAP_ESPINUDP_NON_IKE
:
2558 up
->encap_rcv
= xfrm4_udp_encap_rcv
;
2561 case UDP_ENCAP_L2TPINUDP
:
2562 up
->encap_type
= val
;
2564 udp_tunnel_encap_enable(sk
->sk_socket
);
2573 case UDP_NO_CHECK6_TX
:
2574 up
->no_check6_tx
= valbool
;
2577 case UDP_NO_CHECK6_RX
:
2578 up
->no_check6_rx
= valbool
;
2582 if (val
< 0 || val
> USHRT_MAX
)
2590 udp_tunnel_encap_enable(sk
->sk_socket
);
2591 up
->gro_enabled
= valbool
;
2596 * UDP-Lite's partial checksum coverage (RFC 3828).
2598 /* The sender sets actual checksum coverage length via this option.
2599 * The case coverage > packet length is handled by send module. */
2600 case UDPLITE_SEND_CSCOV
:
2601 if (!is_udplite
) /* Disable the option on UDP sockets */
2602 return -ENOPROTOOPT
;
2603 if (val
!= 0 && val
< 8) /* Illegal coverage: use default (8) */
2605 else if (val
> USHRT_MAX
)
2608 up
->pcflag
|= UDPLITE_SEND_CC
;
2611 /* The receiver specifies a minimum checksum coverage value. To make
2612 * sense, this should be set to at least 8 (as done below). If zero is
2613 * used, this again means full checksum coverage. */
2614 case UDPLITE_RECV_CSCOV
:
2615 if (!is_udplite
) /* Disable the option on UDP sockets */
2616 return -ENOPROTOOPT
;
2617 if (val
!= 0 && val
< 8) /* Avoid silly minimal values. */
2619 else if (val
> USHRT_MAX
)
2622 up
->pcflag
|= UDPLITE_RECV_CC
;
2632 EXPORT_SYMBOL(udp_lib_setsockopt
);
2634 int udp_setsockopt(struct sock
*sk
, int level
, int optname
,
2635 char __user
*optval
, unsigned int optlen
)
2637 if (level
== SOL_UDP
|| level
== SOL_UDPLITE
)
2638 return udp_lib_setsockopt(sk
, level
, optname
, optval
, optlen
,
2639 udp_push_pending_frames
);
2640 return ip_setsockopt(sk
, level
, optname
, optval
, optlen
);
2643 #ifdef CONFIG_COMPAT
2644 int compat_udp_setsockopt(struct sock
*sk
, int level
, int optname
,
2645 char __user
*optval
, unsigned int optlen
)
2647 if (level
== SOL_UDP
|| level
== SOL_UDPLITE
)
2648 return udp_lib_setsockopt(sk
, level
, optname
, optval
, optlen
,
2649 udp_push_pending_frames
);
2650 return compat_ip_setsockopt(sk
, level
, optname
, optval
, optlen
);
2654 int udp_lib_getsockopt(struct sock
*sk
, int level
, int optname
,
2655 char __user
*optval
, int __user
*optlen
)
2657 struct udp_sock
*up
= udp_sk(sk
);
2660 if (get_user(len
, optlen
))
2663 len
= min_t(unsigned int, len
, sizeof(int));
2674 val
= up
->encap_type
;
2677 case UDP_NO_CHECK6_TX
:
2678 val
= up
->no_check6_tx
;
2681 case UDP_NO_CHECK6_RX
:
2682 val
= up
->no_check6_rx
;
2689 /* The following two cannot be changed on UDP sockets, the return is
2690 * always 0 (which corresponds to the full checksum coverage of UDP). */
2691 case UDPLITE_SEND_CSCOV
:
2695 case UDPLITE_RECV_CSCOV
:
2700 return -ENOPROTOOPT
;
2703 if (put_user(len
, optlen
))
2705 if (copy_to_user(optval
, &val
, len
))
2709 EXPORT_SYMBOL(udp_lib_getsockopt
);
2711 int udp_getsockopt(struct sock
*sk
, int level
, int optname
,
2712 char __user
*optval
, int __user
*optlen
)
2714 if (level
== SOL_UDP
|| level
== SOL_UDPLITE
)
2715 return udp_lib_getsockopt(sk
, level
, optname
, optval
, optlen
);
2716 return ip_getsockopt(sk
, level
, optname
, optval
, optlen
);
2719 #ifdef CONFIG_COMPAT
2720 int compat_udp_getsockopt(struct sock
*sk
, int level
, int optname
,
2721 char __user
*optval
, int __user
*optlen
)
2723 if (level
== SOL_UDP
|| level
== SOL_UDPLITE
)
2724 return udp_lib_getsockopt(sk
, level
, optname
, optval
, optlen
);
2725 return compat_ip_getsockopt(sk
, level
, optname
, optval
, optlen
);
2729 * udp_poll - wait for a UDP event.
2730 * @file - file struct
2732 * @wait - poll table
2734 * This is same as datagram poll, except for the special case of
2735 * blocking sockets. If application is using a blocking fd
2736 * and a packet with checksum error is in the queue;
2737 * then it could get return from select indicating data available
2738 * but then block when reading it. Add special case code
2739 * to work around these arguably broken applications.
2741 __poll_t
udp_poll(struct file
*file
, struct socket
*sock
, poll_table
*wait
)
2743 __poll_t mask
= datagram_poll(file
, sock
, wait
);
2744 struct sock
*sk
= sock
->sk
;
2746 if (!skb_queue_empty_lockless(&udp_sk(sk
)->reader_queue
))
2747 mask
|= EPOLLIN
| EPOLLRDNORM
;
2749 /* Check for false positives due to checksum errors */
2750 if ((mask
& EPOLLRDNORM
) && !(file
->f_flags
& O_NONBLOCK
) &&
2751 !(sk
->sk_shutdown
& RCV_SHUTDOWN
) && first_packet_length(sk
) == -1)
2752 mask
&= ~(EPOLLIN
| EPOLLRDNORM
);
2757 EXPORT_SYMBOL(udp_poll
);
2759 int udp_abort(struct sock
*sk
, int err
)
2764 sk
->sk_error_report(sk
);
2765 __udp_disconnect(sk
, 0);
2771 EXPORT_SYMBOL_GPL(udp_abort
);
2773 struct proto udp_prot
= {
2775 .owner
= THIS_MODULE
,
2776 .close
= udp_lib_close
,
2777 .pre_connect
= udp_pre_connect
,
2778 .connect
= ip4_datagram_connect
,
2779 .disconnect
= udp_disconnect
,
2781 .init
= udp_init_sock
,
2782 .destroy
= udp_destroy_sock
,
2783 .setsockopt
= udp_setsockopt
,
2784 .getsockopt
= udp_getsockopt
,
2785 .sendmsg
= udp_sendmsg
,
2786 .recvmsg
= udp_recvmsg
,
2787 .sendpage
= udp_sendpage
,
2788 .release_cb
= ip4_datagram_release_cb
,
2789 .hash
= udp_lib_hash
,
2790 .unhash
= udp_lib_unhash
,
2791 .rehash
= udp_v4_rehash
,
2792 .get_port
= udp_v4_get_port
,
2793 .memory_allocated
= &udp_memory_allocated
,
2794 .sysctl_mem
= sysctl_udp_mem
,
2795 .sysctl_wmem_offset
= offsetof(struct net
, ipv4
.sysctl_udp_wmem_min
),
2796 .sysctl_rmem_offset
= offsetof(struct net
, ipv4
.sysctl_udp_rmem_min
),
2797 .obj_size
= sizeof(struct udp_sock
),
2798 .h
.udp_table
= &udp_table
,
2799 #ifdef CONFIG_COMPAT
2800 .compat_setsockopt
= compat_udp_setsockopt
,
2801 .compat_getsockopt
= compat_udp_getsockopt
,
2803 .diag_destroy
= udp_abort
,
2805 EXPORT_SYMBOL(udp_prot
);
2807 /* ------------------------------------------------------------------------ */
2808 #ifdef CONFIG_PROC_FS
2810 static struct sock
*udp_get_first(struct seq_file
*seq
, int start
)
2813 struct udp_seq_afinfo
*afinfo
= PDE_DATA(file_inode(seq
->file
));
2814 struct udp_iter_state
*state
= seq
->private;
2815 struct net
*net
= seq_file_net(seq
);
2817 for (state
->bucket
= start
; state
->bucket
<= afinfo
->udp_table
->mask
;
2819 struct udp_hslot
*hslot
= &afinfo
->udp_table
->hash
[state
->bucket
];
2821 if (hlist_empty(&hslot
->head
))
2824 spin_lock_bh(&hslot
->lock
);
2825 sk_for_each(sk
, &hslot
->head
) {
2826 if (!net_eq(sock_net(sk
), net
))
2828 if (sk
->sk_family
== afinfo
->family
)
2831 spin_unlock_bh(&hslot
->lock
);
2838 static struct sock
*udp_get_next(struct seq_file
*seq
, struct sock
*sk
)
2840 struct udp_seq_afinfo
*afinfo
= PDE_DATA(file_inode(seq
->file
));
2841 struct udp_iter_state
*state
= seq
->private;
2842 struct net
*net
= seq_file_net(seq
);
2846 } while (sk
&& (!net_eq(sock_net(sk
), net
) || sk
->sk_family
!= afinfo
->family
));
2849 if (state
->bucket
<= afinfo
->udp_table
->mask
)
2850 spin_unlock_bh(&afinfo
->udp_table
->hash
[state
->bucket
].lock
);
2851 return udp_get_first(seq
, state
->bucket
+ 1);
2856 static struct sock
*udp_get_idx(struct seq_file
*seq
, loff_t pos
)
2858 struct sock
*sk
= udp_get_first(seq
, 0);
2861 while (pos
&& (sk
= udp_get_next(seq
, sk
)) != NULL
)
2863 return pos
? NULL
: sk
;
2866 void *udp_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2868 struct udp_iter_state
*state
= seq
->private;
2869 state
->bucket
= MAX_UDP_PORTS
;
2871 return *pos
? udp_get_idx(seq
, *pos
-1) : SEQ_START_TOKEN
;
2873 EXPORT_SYMBOL(udp_seq_start
);
2875 void *udp_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2879 if (v
== SEQ_START_TOKEN
)
2880 sk
= udp_get_idx(seq
, 0);
2882 sk
= udp_get_next(seq
, v
);
2887 EXPORT_SYMBOL(udp_seq_next
);
2889 void udp_seq_stop(struct seq_file
*seq
, void *v
)
2891 struct udp_seq_afinfo
*afinfo
= PDE_DATA(file_inode(seq
->file
));
2892 struct udp_iter_state
*state
= seq
->private;
2894 if (state
->bucket
<= afinfo
->udp_table
->mask
)
2895 spin_unlock_bh(&afinfo
->udp_table
->hash
[state
->bucket
].lock
);
2897 EXPORT_SYMBOL(udp_seq_stop
);
2899 /* ------------------------------------------------------------------------ */
2900 static void udp4_format_sock(struct sock
*sp
, struct seq_file
*f
,
2903 struct inet_sock
*inet
= inet_sk(sp
);
2904 __be32 dest
= inet
->inet_daddr
;
2905 __be32 src
= inet
->inet_rcv_saddr
;
2906 __u16 destp
= ntohs(inet
->inet_dport
);
2907 __u16 srcp
= ntohs(inet
->inet_sport
);
2909 seq_printf(f
, "%5d: %08X:%04X %08X:%04X"
2910 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
2911 bucket
, src
, srcp
, dest
, destp
, sp
->sk_state
,
2912 sk_wmem_alloc_get(sp
),
2915 from_kuid_munged(seq_user_ns(f
), sock_i_uid(sp
)),
2917 refcount_read(&sp
->sk_refcnt
), sp
,
2918 atomic_read(&sp
->sk_drops
));
2921 int udp4_seq_show(struct seq_file
*seq
, void *v
)
2923 seq_setwidth(seq
, 127);
2924 if (v
== SEQ_START_TOKEN
)
2925 seq_puts(seq
, " sl local_address rem_address st tx_queue "
2926 "rx_queue tr tm->when retrnsmt uid timeout "
2927 "inode ref pointer drops");
2929 struct udp_iter_state
*state
= seq
->private;
2931 udp4_format_sock(v
, seq
, state
->bucket
);
2937 const struct seq_operations udp_seq_ops
= {
2938 .start
= udp_seq_start
,
2939 .next
= udp_seq_next
,
2940 .stop
= udp_seq_stop
,
2941 .show
= udp4_seq_show
,
2943 EXPORT_SYMBOL(udp_seq_ops
);
2945 static struct udp_seq_afinfo udp4_seq_afinfo
= {
2947 .udp_table
= &udp_table
,
2950 static int __net_init
udp4_proc_init_net(struct net
*net
)
2952 if (!proc_create_net_data("udp", 0444, net
->proc_net
, &udp_seq_ops
,
2953 sizeof(struct udp_iter_state
), &udp4_seq_afinfo
))
2958 static void __net_exit
udp4_proc_exit_net(struct net
*net
)
2960 remove_proc_entry("udp", net
->proc_net
);
2963 static struct pernet_operations udp4_net_ops
= {
2964 .init
= udp4_proc_init_net
,
2965 .exit
= udp4_proc_exit_net
,
2968 int __init
udp4_proc_init(void)
2970 return register_pernet_subsys(&udp4_net_ops
);
2973 void udp4_proc_exit(void)
2975 unregister_pernet_subsys(&udp4_net_ops
);
2977 #endif /* CONFIG_PROC_FS */
2979 static __initdata
unsigned long uhash_entries
;
2980 static int __init
set_uhash_entries(char *str
)
2987 ret
= kstrtoul(str
, 0, &uhash_entries
);
2991 if (uhash_entries
&& uhash_entries
< UDP_HTABLE_SIZE_MIN
)
2992 uhash_entries
= UDP_HTABLE_SIZE_MIN
;
2995 __setup("uhash_entries=", set_uhash_entries
);
2997 void __init
udp_table_init(struct udp_table
*table
, const char *name
)
3001 table
->hash
= alloc_large_system_hash(name
,
3002 2 * sizeof(struct udp_hslot
),
3004 21, /* one slot per 2 MB */
3008 UDP_HTABLE_SIZE_MIN
,
3011 table
->hash2
= table
->hash
+ (table
->mask
+ 1);
3012 for (i
= 0; i
<= table
->mask
; i
++) {
3013 INIT_HLIST_HEAD(&table
->hash
[i
].head
);
3014 table
->hash
[i
].count
= 0;
3015 spin_lock_init(&table
->hash
[i
].lock
);
3017 for (i
= 0; i
<= table
->mask
; i
++) {
3018 INIT_HLIST_HEAD(&table
->hash2
[i
].head
);
3019 table
->hash2
[i
].count
= 0;
3020 spin_lock_init(&table
->hash2
[i
].lock
);
3024 u32
udp_flow_hashrnd(void)
3026 static u32 hashrnd __read_mostly
;
3028 net_get_random_once(&hashrnd
, sizeof(hashrnd
));
3032 EXPORT_SYMBOL(udp_flow_hashrnd
);
3034 static void __udp_sysctl_init(struct net
*net
)
3036 net
->ipv4
.sysctl_udp_rmem_min
= SK_MEM_QUANTUM
;
3037 net
->ipv4
.sysctl_udp_wmem_min
= SK_MEM_QUANTUM
;
3039 #ifdef CONFIG_NET_L3_MASTER_DEV
3040 net
->ipv4
.sysctl_udp_l3mdev_accept
= 0;
3044 static int __net_init
udp_sysctl_init(struct net
*net
)
3046 __udp_sysctl_init(net
);
3050 static struct pernet_operations __net_initdata udp_sysctl_ops
= {
3051 .init
= udp_sysctl_init
,
3054 void __init
udp_init(void)
3056 unsigned long limit
;
3059 udp_table_init(&udp_table
, "UDP");
3060 limit
= nr_free_buffer_pages() / 8;
3061 limit
= max(limit
, 128UL);
3062 sysctl_udp_mem
[0] = limit
/ 4 * 3;
3063 sysctl_udp_mem
[1] = limit
;
3064 sysctl_udp_mem
[2] = sysctl_udp_mem
[0] * 2;
3066 __udp_sysctl_init(&init_net
);
3068 /* 16 spinlocks per cpu */
3069 udp_busylocks_log
= ilog2(nr_cpu_ids
) + 4;
3070 udp_busylocks
= kmalloc(sizeof(spinlock_t
) << udp_busylocks_log
,
3073 panic("UDP: failed to alloc udp_busylocks\n");
3074 for (i
= 0; i
< (1U << udp_busylocks_log
); i
++)
3075 spin_lock_init(udp_busylocks
+ i
);
3077 if (register_pernet_subsys(&udp_sysctl_ops
))
3078 panic("UDP: failed to init sysctl parameters.\n");