ARM: dma-api: fix max_pfn off-by-one error in __dma_supported()
[linux/fpc-iii.git] / net / ipv4 / udp.c
blobdb76b96092991cb3f0057035e0e051141511acd5
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * The User Datagram Protocol (UDP).
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
13 * Hirokazu Takahashi, <taka@valinux.co.jp>
15 * Fixes:
16 * Alan Cox : verify_area() calls
17 * Alan Cox : stopped close while in use off icmp
18 * messages. Not a fix but a botch that
19 * for udp at least is 'valid'.
20 * Alan Cox : Fixed icmp handling properly
21 * Alan Cox : Correct error for oversized datagrams
22 * Alan Cox : Tidied select() semantics.
23 * Alan Cox : udp_err() fixed properly, also now
24 * select and read wake correctly on errors
25 * Alan Cox : udp_send verify_area moved to avoid mem leak
26 * Alan Cox : UDP can count its memory
27 * Alan Cox : send to an unknown connection causes
28 * an ECONNREFUSED off the icmp, but
29 * does NOT close.
30 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
32 * bug no longer crashes it.
33 * Fred Van Kempen : Net2e support for sk->broadcast.
34 * Alan Cox : Uses skb_free_datagram
35 * Alan Cox : Added get/set sockopt support.
36 * Alan Cox : Broadcasting without option set returns EACCES.
37 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
38 * Alan Cox : Use ip_tos and ip_ttl
39 * Alan Cox : SNMP Mibs
40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
41 * Matt Dillon : UDP length checks.
42 * Alan Cox : Smarter af_inet used properly.
43 * Alan Cox : Use new kernel side addressing.
44 * Alan Cox : Incorrect return on truncated datagram receive.
45 * Arnt Gulbrandsen : New udp_send and stuff
46 * Alan Cox : Cache last socket
47 * Alan Cox : Route cache
48 * Jon Peatfield : Minor efficiency fix to sendto().
49 * Mike Shaver : RFC1122 checks.
50 * Alan Cox : Nonblocking error fix.
51 * Willy Konynenberg : Transparent proxying support.
52 * Mike McLagan : Routing by source
53 * David S. Miller : New socket lookup architecture.
54 * Last socket cache retained as it
55 * does have a high hit rate.
56 * Olaf Kirch : Don't linearise iovec on sendmsg.
57 * Andi Kleen : Some cleanups, cache destination entry
58 * for connect.
59 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
60 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
61 * return ENOTCONN for unconnected sockets (POSIX)
62 * Janos Farkas : don't deliver multi/broadcasts to a different
63 * bound-to-device socket
64 * Hirokazu Takahashi : HW checksumming for outgoing UDP
65 * datagrams.
66 * Hirokazu Takahashi : sendfile() on UDP works now.
67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
70 * a single port at the same time.
71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72 * James Chapman : Add L2TP encapsulation type.
75 #define pr_fmt(fmt) "UDP: " fmt
77 #include <linux/uaccess.h>
78 #include <asm/ioctls.h>
79 #include <linux/memblock.h>
80 #include <linux/highmem.h>
81 #include <linux/swap.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <trace/events/skb.h>
110 #include <net/busy_poll.h>
111 #include "udp_impl.h"
112 #include <net/sock_reuseport.h>
113 #include <net/addrconf.h>
114 #include <net/udp_tunnel.h>
116 struct udp_table udp_table __read_mostly;
117 EXPORT_SYMBOL(udp_table);
119 long sysctl_udp_mem[3] __read_mostly;
120 EXPORT_SYMBOL(sysctl_udp_mem);
122 atomic_long_t udp_memory_allocated;
123 EXPORT_SYMBOL(udp_memory_allocated);
125 #define MAX_UDP_PORTS 65536
126 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
128 static int udp_lib_lport_inuse(struct net *net, __u16 num,
129 const struct udp_hslot *hslot,
130 unsigned long *bitmap,
131 struct sock *sk, unsigned int log)
133 struct sock *sk2;
134 kuid_t uid = sock_i_uid(sk);
136 sk_for_each(sk2, &hslot->head) {
137 if (net_eq(sock_net(sk2), net) &&
138 sk2 != sk &&
139 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
140 (!sk2->sk_reuse || !sk->sk_reuse) &&
141 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
142 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
143 inet_rcv_saddr_equal(sk, sk2, true)) {
144 if (sk2->sk_reuseport && sk->sk_reuseport &&
145 !rcu_access_pointer(sk->sk_reuseport_cb) &&
146 uid_eq(uid, sock_i_uid(sk2))) {
147 if (!bitmap)
148 return 0;
149 } else {
150 if (!bitmap)
151 return 1;
152 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
153 bitmap);
157 return 0;
161 * Note: we still hold spinlock of primary hash chain, so no other writer
162 * can insert/delete a socket with local_port == num
164 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
165 struct udp_hslot *hslot2,
166 struct sock *sk)
168 struct sock *sk2;
169 kuid_t uid = sock_i_uid(sk);
170 int res = 0;
172 spin_lock(&hslot2->lock);
173 udp_portaddr_for_each_entry(sk2, &hslot2->head) {
174 if (net_eq(sock_net(sk2), net) &&
175 sk2 != sk &&
176 (udp_sk(sk2)->udp_port_hash == num) &&
177 (!sk2->sk_reuse || !sk->sk_reuse) &&
178 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
179 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
180 inet_rcv_saddr_equal(sk, sk2, true)) {
181 if (sk2->sk_reuseport && sk->sk_reuseport &&
182 !rcu_access_pointer(sk->sk_reuseport_cb) &&
183 uid_eq(uid, sock_i_uid(sk2))) {
184 res = 0;
185 } else {
186 res = 1;
188 break;
191 spin_unlock(&hslot2->lock);
192 return res;
195 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
197 struct net *net = sock_net(sk);
198 kuid_t uid = sock_i_uid(sk);
199 struct sock *sk2;
201 sk_for_each(sk2, &hslot->head) {
202 if (net_eq(sock_net(sk2), net) &&
203 sk2 != sk &&
204 sk2->sk_family == sk->sk_family &&
205 ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
206 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
207 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
208 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
209 inet_rcv_saddr_equal(sk, sk2, false)) {
210 return reuseport_add_sock(sk, sk2,
211 inet_rcv_saddr_any(sk));
215 return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
219 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
221 * @sk: socket struct in question
222 * @snum: port number to look up
223 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
224 * with NULL address
226 int udp_lib_get_port(struct sock *sk, unsigned short snum,
227 unsigned int hash2_nulladdr)
229 struct udp_hslot *hslot, *hslot2;
230 struct udp_table *udptable = sk->sk_prot->h.udp_table;
231 int error = 1;
232 struct net *net = sock_net(sk);
234 if (!snum) {
235 int low, high, remaining;
236 unsigned int rand;
237 unsigned short first, last;
238 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
240 inet_get_local_port_range(net, &low, &high);
241 remaining = (high - low) + 1;
243 rand = prandom_u32();
244 first = reciprocal_scale(rand, remaining) + low;
246 * force rand to be an odd multiple of UDP_HTABLE_SIZE
248 rand = (rand | 1) * (udptable->mask + 1);
249 last = first + udptable->mask + 1;
250 do {
251 hslot = udp_hashslot(udptable, net, first);
252 bitmap_zero(bitmap, PORTS_PER_CHAIN);
253 spin_lock_bh(&hslot->lock);
254 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
255 udptable->log);
257 snum = first;
259 * Iterate on all possible values of snum for this hash.
260 * Using steps of an odd multiple of UDP_HTABLE_SIZE
261 * give us randomization and full range coverage.
263 do {
264 if (low <= snum && snum <= high &&
265 !test_bit(snum >> udptable->log, bitmap) &&
266 !inet_is_local_reserved_port(net, snum))
267 goto found;
268 snum += rand;
269 } while (snum != first);
270 spin_unlock_bh(&hslot->lock);
271 cond_resched();
272 } while (++first != last);
273 goto fail;
274 } else {
275 hslot = udp_hashslot(udptable, net, snum);
276 spin_lock_bh(&hslot->lock);
277 if (hslot->count > 10) {
278 int exist;
279 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
281 slot2 &= udptable->mask;
282 hash2_nulladdr &= udptable->mask;
284 hslot2 = udp_hashslot2(udptable, slot2);
285 if (hslot->count < hslot2->count)
286 goto scan_primary_hash;
288 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
289 if (!exist && (hash2_nulladdr != slot2)) {
290 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
291 exist = udp_lib_lport_inuse2(net, snum, hslot2,
292 sk);
294 if (exist)
295 goto fail_unlock;
296 else
297 goto found;
299 scan_primary_hash:
300 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
301 goto fail_unlock;
303 found:
304 inet_sk(sk)->inet_num = snum;
305 udp_sk(sk)->udp_port_hash = snum;
306 udp_sk(sk)->udp_portaddr_hash ^= snum;
307 if (sk_unhashed(sk)) {
308 if (sk->sk_reuseport &&
309 udp_reuseport_add_sock(sk, hslot)) {
310 inet_sk(sk)->inet_num = 0;
311 udp_sk(sk)->udp_port_hash = 0;
312 udp_sk(sk)->udp_portaddr_hash ^= snum;
313 goto fail_unlock;
316 sk_add_node_rcu(sk, &hslot->head);
317 hslot->count++;
318 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
320 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
321 spin_lock(&hslot2->lock);
322 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
323 sk->sk_family == AF_INET6)
324 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
325 &hslot2->head);
326 else
327 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
328 &hslot2->head);
329 hslot2->count++;
330 spin_unlock(&hslot2->lock);
332 sock_set_flag(sk, SOCK_RCU_FREE);
333 error = 0;
334 fail_unlock:
335 spin_unlock_bh(&hslot->lock);
336 fail:
337 return error;
339 EXPORT_SYMBOL(udp_lib_get_port);
341 int udp_v4_get_port(struct sock *sk, unsigned short snum)
343 unsigned int hash2_nulladdr =
344 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
345 unsigned int hash2_partial =
346 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
348 /* precompute partial secondary hash */
349 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
350 return udp_lib_get_port(sk, snum, hash2_nulladdr);
353 static int compute_score(struct sock *sk, struct net *net,
354 __be32 saddr, __be16 sport,
355 __be32 daddr, unsigned short hnum,
356 int dif, int sdif)
358 int score;
359 struct inet_sock *inet;
360 bool dev_match;
362 if (!net_eq(sock_net(sk), net) ||
363 udp_sk(sk)->udp_port_hash != hnum ||
364 ipv6_only_sock(sk))
365 return -1;
367 if (sk->sk_rcv_saddr != daddr)
368 return -1;
370 score = (sk->sk_family == PF_INET) ? 2 : 1;
372 inet = inet_sk(sk);
373 if (inet->inet_daddr) {
374 if (inet->inet_daddr != saddr)
375 return -1;
376 score += 4;
379 if (inet->inet_dport) {
380 if (inet->inet_dport != sport)
381 return -1;
382 score += 4;
385 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
386 dif, sdif);
387 if (!dev_match)
388 return -1;
389 score += 4;
391 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
392 score++;
393 return score;
396 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
397 const __u16 lport, const __be32 faddr,
398 const __be16 fport)
400 static u32 udp_ehash_secret __read_mostly;
402 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
404 return __inet_ehashfn(laddr, lport, faddr, fport,
405 udp_ehash_secret + net_hash_mix(net));
408 /* called with rcu_read_lock() */
409 static struct sock *udp4_lib_lookup2(struct net *net,
410 __be32 saddr, __be16 sport,
411 __be32 daddr, unsigned int hnum,
412 int dif, int sdif,
413 struct udp_hslot *hslot2,
414 struct sk_buff *skb)
416 struct sock *sk, *result;
417 int score, badness;
418 u32 hash = 0;
420 result = NULL;
421 badness = 0;
422 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
423 score = compute_score(sk, net, saddr, sport,
424 daddr, hnum, dif, sdif);
425 if (score > badness) {
426 if (sk->sk_reuseport &&
427 sk->sk_state != TCP_ESTABLISHED) {
428 hash = udp_ehashfn(net, daddr, hnum,
429 saddr, sport);
430 result = reuseport_select_sock(sk, hash, skb,
431 sizeof(struct udphdr));
432 if (result && !reuseport_has_conns(sk, false))
433 return result;
435 badness = score;
436 result = sk;
439 return result;
442 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
443 * harder than this. -DaveM
445 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
446 __be16 sport, __be32 daddr, __be16 dport, int dif,
447 int sdif, struct udp_table *udptable, struct sk_buff *skb)
449 struct sock *result;
450 unsigned short hnum = ntohs(dport);
451 unsigned int hash2, slot2;
452 struct udp_hslot *hslot2;
454 hash2 = ipv4_portaddr_hash(net, daddr, hnum);
455 slot2 = hash2 & udptable->mask;
456 hslot2 = &udptable->hash2[slot2];
458 result = udp4_lib_lookup2(net, saddr, sport,
459 daddr, hnum, dif, sdif,
460 hslot2, skb);
461 if (!result) {
462 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
463 slot2 = hash2 & udptable->mask;
464 hslot2 = &udptable->hash2[slot2];
466 result = udp4_lib_lookup2(net, saddr, sport,
467 htonl(INADDR_ANY), hnum, dif, sdif,
468 hslot2, skb);
470 if (IS_ERR(result))
471 return NULL;
472 return result;
474 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
476 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
477 __be16 sport, __be16 dport,
478 struct udp_table *udptable)
480 const struct iphdr *iph = ip_hdr(skb);
482 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
483 iph->daddr, dport, inet_iif(skb),
484 inet_sdif(skb), udptable, skb);
487 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
488 __be16 sport, __be16 dport)
490 const struct iphdr *iph = ip_hdr(skb);
492 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
493 iph->daddr, dport, inet_iif(skb),
494 inet_sdif(skb), &udp_table, NULL);
496 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
498 /* Must be called under rcu_read_lock().
499 * Does increment socket refcount.
501 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
502 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
503 __be32 daddr, __be16 dport, int dif)
505 struct sock *sk;
507 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
508 dif, 0, &udp_table, NULL);
509 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
510 sk = NULL;
511 return sk;
513 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
514 #endif
516 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
517 __be16 loc_port, __be32 loc_addr,
518 __be16 rmt_port, __be32 rmt_addr,
519 int dif, int sdif, unsigned short hnum)
521 struct inet_sock *inet = inet_sk(sk);
523 if (!net_eq(sock_net(sk), net) ||
524 udp_sk(sk)->udp_port_hash != hnum ||
525 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
526 (inet->inet_dport != rmt_port && inet->inet_dport) ||
527 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
528 ipv6_only_sock(sk) ||
529 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
530 return false;
531 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
532 return false;
533 return true;
536 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
537 void udp_encap_enable(void)
539 static_branch_inc(&udp_encap_needed_key);
541 EXPORT_SYMBOL(udp_encap_enable);
543 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
544 * through error handlers in encapsulations looking for a match.
546 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
548 int i;
550 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
551 int (*handler)(struct sk_buff *skb, u32 info);
552 const struct ip_tunnel_encap_ops *encap;
554 encap = rcu_dereference(iptun_encaps[i]);
555 if (!encap)
556 continue;
557 handler = encap->err_handler;
558 if (handler && !handler(skb, info))
559 return 0;
562 return -ENOENT;
565 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
566 * reversing source and destination port: this will match tunnels that force the
567 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
568 * lwtunnels might actually break this assumption by being configured with
569 * different destination ports on endpoints, in this case we won't be able to
570 * trace ICMP messages back to them.
572 * If this doesn't match any socket, probe tunnels with arbitrary destination
573 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
574 * we've sent packets to won't necessarily match the local destination port.
576 * Then ask the tunnel implementation to match the error against a valid
577 * association.
579 * Return an error if we can't find a match, the socket if we need further
580 * processing, zero otherwise.
582 static struct sock *__udp4_lib_err_encap(struct net *net,
583 const struct iphdr *iph,
584 struct udphdr *uh,
585 struct udp_table *udptable,
586 struct sk_buff *skb, u32 info)
588 int network_offset, transport_offset;
589 struct sock *sk;
591 network_offset = skb_network_offset(skb);
592 transport_offset = skb_transport_offset(skb);
594 /* Network header needs to point to the outer IPv4 header inside ICMP */
595 skb_reset_network_header(skb);
597 /* Transport header needs to point to the UDP header */
598 skb_set_transport_header(skb, iph->ihl << 2);
600 sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
601 iph->saddr, uh->dest, skb->dev->ifindex, 0,
602 udptable, NULL);
603 if (sk) {
604 int (*lookup)(struct sock *sk, struct sk_buff *skb);
605 struct udp_sock *up = udp_sk(sk);
607 lookup = READ_ONCE(up->encap_err_lookup);
608 if (!lookup || lookup(sk, skb))
609 sk = NULL;
612 if (!sk)
613 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
615 skb_set_transport_header(skb, transport_offset);
616 skb_set_network_header(skb, network_offset);
618 return sk;
622 * This routine is called by the ICMP module when it gets some
623 * sort of error condition. If err < 0 then the socket should
624 * be closed and the error returned to the user. If err > 0
625 * it's just the icmp type << 8 | icmp code.
626 * Header points to the ip header of the error packet. We move
627 * on past this. Then (as it used to claim before adjustment)
628 * header points to the first 8 bytes of the udp header. We need
629 * to find the appropriate port.
632 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
634 struct inet_sock *inet;
635 const struct iphdr *iph = (const struct iphdr *)skb->data;
636 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
637 const int type = icmp_hdr(skb)->type;
638 const int code = icmp_hdr(skb)->code;
639 bool tunnel = false;
640 struct sock *sk;
641 int harderr;
642 int err;
643 struct net *net = dev_net(skb->dev);
645 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
646 iph->saddr, uh->source, skb->dev->ifindex,
647 inet_sdif(skb), udptable, NULL);
648 if (!sk) {
649 /* No socket for error: try tunnels before discarding */
650 sk = ERR_PTR(-ENOENT);
651 if (static_branch_unlikely(&udp_encap_needed_key)) {
652 sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb,
653 info);
654 if (!sk)
655 return 0;
658 if (IS_ERR(sk)) {
659 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
660 return PTR_ERR(sk);
663 tunnel = true;
666 err = 0;
667 harderr = 0;
668 inet = inet_sk(sk);
670 switch (type) {
671 default:
672 case ICMP_TIME_EXCEEDED:
673 err = EHOSTUNREACH;
674 break;
675 case ICMP_SOURCE_QUENCH:
676 goto out;
677 case ICMP_PARAMETERPROB:
678 err = EPROTO;
679 harderr = 1;
680 break;
681 case ICMP_DEST_UNREACH:
682 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
683 ipv4_sk_update_pmtu(skb, sk, info);
684 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
685 err = EMSGSIZE;
686 harderr = 1;
687 break;
689 goto out;
691 err = EHOSTUNREACH;
692 if (code <= NR_ICMP_UNREACH) {
693 harderr = icmp_err_convert[code].fatal;
694 err = icmp_err_convert[code].errno;
696 break;
697 case ICMP_REDIRECT:
698 ipv4_sk_redirect(skb, sk);
699 goto out;
703 * RFC1122: OK. Passes ICMP errors back to application, as per
704 * 4.1.3.3.
706 if (tunnel) {
707 /* ...not for tunnels though: we don't have a sending socket */
708 goto out;
710 if (!inet->recverr) {
711 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
712 goto out;
713 } else
714 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
716 sk->sk_err = err;
717 sk->sk_error_report(sk);
718 out:
719 return 0;
722 int udp_err(struct sk_buff *skb, u32 info)
724 return __udp4_lib_err(skb, info, &udp_table);
728 * Throw away all pending data and cancel the corking. Socket is locked.
730 void udp_flush_pending_frames(struct sock *sk)
732 struct udp_sock *up = udp_sk(sk);
734 if (up->pending) {
735 up->len = 0;
736 up->pending = 0;
737 ip_flush_pending_frames(sk);
740 EXPORT_SYMBOL(udp_flush_pending_frames);
743 * udp4_hwcsum - handle outgoing HW checksumming
744 * @skb: sk_buff containing the filled-in UDP header
745 * (checksum field must be zeroed out)
746 * @src: source IP address
747 * @dst: destination IP address
749 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
751 struct udphdr *uh = udp_hdr(skb);
752 int offset = skb_transport_offset(skb);
753 int len = skb->len - offset;
754 int hlen = len;
755 __wsum csum = 0;
757 if (!skb_has_frag_list(skb)) {
759 * Only one fragment on the socket.
761 skb->csum_start = skb_transport_header(skb) - skb->head;
762 skb->csum_offset = offsetof(struct udphdr, check);
763 uh->check = ~csum_tcpudp_magic(src, dst, len,
764 IPPROTO_UDP, 0);
765 } else {
766 struct sk_buff *frags;
769 * HW-checksum won't work as there are two or more
770 * fragments on the socket so that all csums of sk_buffs
771 * should be together
773 skb_walk_frags(skb, frags) {
774 csum = csum_add(csum, frags->csum);
775 hlen -= frags->len;
778 csum = skb_checksum(skb, offset, hlen, csum);
779 skb->ip_summed = CHECKSUM_NONE;
781 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
782 if (uh->check == 0)
783 uh->check = CSUM_MANGLED_0;
786 EXPORT_SYMBOL_GPL(udp4_hwcsum);
788 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
789 * for the simple case like when setting the checksum for a UDP tunnel.
791 void udp_set_csum(bool nocheck, struct sk_buff *skb,
792 __be32 saddr, __be32 daddr, int len)
794 struct udphdr *uh = udp_hdr(skb);
796 if (nocheck) {
797 uh->check = 0;
798 } else if (skb_is_gso(skb)) {
799 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
800 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
801 uh->check = 0;
802 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
803 if (uh->check == 0)
804 uh->check = CSUM_MANGLED_0;
805 } else {
806 skb->ip_summed = CHECKSUM_PARTIAL;
807 skb->csum_start = skb_transport_header(skb) - skb->head;
808 skb->csum_offset = offsetof(struct udphdr, check);
809 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
812 EXPORT_SYMBOL(udp_set_csum);
814 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
815 struct inet_cork *cork)
817 struct sock *sk = skb->sk;
818 struct inet_sock *inet = inet_sk(sk);
819 struct udphdr *uh;
820 int err = 0;
821 int is_udplite = IS_UDPLITE(sk);
822 int offset = skb_transport_offset(skb);
823 int len = skb->len - offset;
824 int datalen = len - sizeof(*uh);
825 __wsum csum = 0;
828 * Create a UDP header
830 uh = udp_hdr(skb);
831 uh->source = inet->inet_sport;
832 uh->dest = fl4->fl4_dport;
833 uh->len = htons(len);
834 uh->check = 0;
836 if (cork->gso_size) {
837 const int hlen = skb_network_header_len(skb) +
838 sizeof(struct udphdr);
840 if (hlen + cork->gso_size > cork->fragsize) {
841 kfree_skb(skb);
842 return -EINVAL;
844 if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) {
845 kfree_skb(skb);
846 return -EINVAL;
848 if (sk->sk_no_check_tx) {
849 kfree_skb(skb);
850 return -EINVAL;
852 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
853 dst_xfrm(skb_dst(skb))) {
854 kfree_skb(skb);
855 return -EIO;
858 if (datalen > cork->gso_size) {
859 skb_shinfo(skb)->gso_size = cork->gso_size;
860 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
861 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
862 cork->gso_size);
864 goto csum_partial;
867 if (is_udplite) /* UDP-Lite */
868 csum = udplite_csum(skb);
870 else if (sk->sk_no_check_tx) { /* UDP csum off */
872 skb->ip_summed = CHECKSUM_NONE;
873 goto send;
875 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
876 csum_partial:
878 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
879 goto send;
881 } else
882 csum = udp_csum(skb);
884 /* add protocol-dependent pseudo-header */
885 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
886 sk->sk_protocol, csum);
887 if (uh->check == 0)
888 uh->check = CSUM_MANGLED_0;
890 send:
891 err = ip_send_skb(sock_net(sk), skb);
892 if (err) {
893 if (err == -ENOBUFS && !inet->recverr) {
894 UDP_INC_STATS(sock_net(sk),
895 UDP_MIB_SNDBUFERRORS, is_udplite);
896 err = 0;
898 } else
899 UDP_INC_STATS(sock_net(sk),
900 UDP_MIB_OUTDATAGRAMS, is_udplite);
901 return err;
905 * Push out all pending data as one UDP datagram. Socket is locked.
907 int udp_push_pending_frames(struct sock *sk)
909 struct udp_sock *up = udp_sk(sk);
910 struct inet_sock *inet = inet_sk(sk);
911 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
912 struct sk_buff *skb;
913 int err = 0;
915 skb = ip_finish_skb(sk, fl4);
916 if (!skb)
917 goto out;
919 err = udp_send_skb(skb, fl4, &inet->cork.base);
921 out:
922 up->len = 0;
923 up->pending = 0;
924 return err;
926 EXPORT_SYMBOL(udp_push_pending_frames);
928 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
930 switch (cmsg->cmsg_type) {
931 case UDP_SEGMENT:
932 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
933 return -EINVAL;
934 *gso_size = *(__u16 *)CMSG_DATA(cmsg);
935 return 0;
936 default:
937 return -EINVAL;
941 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
943 struct cmsghdr *cmsg;
944 bool need_ip = false;
945 int err;
947 for_each_cmsghdr(cmsg, msg) {
948 if (!CMSG_OK(msg, cmsg))
949 return -EINVAL;
951 if (cmsg->cmsg_level != SOL_UDP) {
952 need_ip = true;
953 continue;
956 err = __udp_cmsg_send(cmsg, gso_size);
957 if (err)
958 return err;
961 return need_ip;
963 EXPORT_SYMBOL_GPL(udp_cmsg_send);
965 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
967 struct inet_sock *inet = inet_sk(sk);
968 struct udp_sock *up = udp_sk(sk);
969 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
970 struct flowi4 fl4_stack;
971 struct flowi4 *fl4;
972 int ulen = len;
973 struct ipcm_cookie ipc;
974 struct rtable *rt = NULL;
975 int free = 0;
976 int connected = 0;
977 __be32 daddr, faddr, saddr;
978 __be16 dport;
979 u8 tos;
980 int err, is_udplite = IS_UDPLITE(sk);
981 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
982 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
983 struct sk_buff *skb;
984 struct ip_options_data opt_copy;
986 if (len > 0xFFFF)
987 return -EMSGSIZE;
990 * Check the flags.
993 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
994 return -EOPNOTSUPP;
996 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
998 fl4 = &inet->cork.fl.u.ip4;
999 if (up->pending) {
1001 * There are pending frames.
1002 * The socket lock must be held while it's corked.
1004 lock_sock(sk);
1005 if (likely(up->pending)) {
1006 if (unlikely(up->pending != AF_INET)) {
1007 release_sock(sk);
1008 return -EINVAL;
1010 goto do_append_data;
1012 release_sock(sk);
1014 ulen += sizeof(struct udphdr);
1017 * Get and verify the address.
1019 if (usin) {
1020 if (msg->msg_namelen < sizeof(*usin))
1021 return -EINVAL;
1022 if (usin->sin_family != AF_INET) {
1023 if (usin->sin_family != AF_UNSPEC)
1024 return -EAFNOSUPPORT;
1027 daddr = usin->sin_addr.s_addr;
1028 dport = usin->sin_port;
1029 if (dport == 0)
1030 return -EINVAL;
1031 } else {
1032 if (sk->sk_state != TCP_ESTABLISHED)
1033 return -EDESTADDRREQ;
1034 daddr = inet->inet_daddr;
1035 dport = inet->inet_dport;
1036 /* Open fast path for connected socket.
1037 Route will not be used, if at least one option is set.
1039 connected = 1;
1042 ipcm_init_sk(&ipc, inet);
1043 ipc.gso_size = up->gso_size;
1045 if (msg->msg_controllen) {
1046 err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1047 if (err > 0)
1048 err = ip_cmsg_send(sk, msg, &ipc,
1049 sk->sk_family == AF_INET6);
1050 if (unlikely(err < 0)) {
1051 kfree(ipc.opt);
1052 return err;
1054 if (ipc.opt)
1055 free = 1;
1056 connected = 0;
1058 if (!ipc.opt) {
1059 struct ip_options_rcu *inet_opt;
1061 rcu_read_lock();
1062 inet_opt = rcu_dereference(inet->inet_opt);
1063 if (inet_opt) {
1064 memcpy(&opt_copy, inet_opt,
1065 sizeof(*inet_opt) + inet_opt->opt.optlen);
1066 ipc.opt = &opt_copy.opt;
1068 rcu_read_unlock();
1071 if (cgroup_bpf_enabled && !connected) {
1072 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1073 (struct sockaddr *)usin, &ipc.addr);
1074 if (err)
1075 goto out_free;
1076 if (usin) {
1077 if (usin->sin_port == 0) {
1078 /* BPF program set invalid port. Reject it. */
1079 err = -EINVAL;
1080 goto out_free;
1082 daddr = usin->sin_addr.s_addr;
1083 dport = usin->sin_port;
1087 saddr = ipc.addr;
1088 ipc.addr = faddr = daddr;
1090 if (ipc.opt && ipc.opt->opt.srr) {
1091 if (!daddr) {
1092 err = -EINVAL;
1093 goto out_free;
1095 faddr = ipc.opt->opt.faddr;
1096 connected = 0;
1098 tos = get_rttos(&ipc, inet);
1099 if (sock_flag(sk, SOCK_LOCALROUTE) ||
1100 (msg->msg_flags & MSG_DONTROUTE) ||
1101 (ipc.opt && ipc.opt->opt.is_strictroute)) {
1102 tos |= RTO_ONLINK;
1103 connected = 0;
1106 if (ipv4_is_multicast(daddr)) {
1107 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1108 ipc.oif = inet->mc_index;
1109 if (!saddr)
1110 saddr = inet->mc_addr;
1111 connected = 0;
1112 } else if (!ipc.oif) {
1113 ipc.oif = inet->uc_index;
1114 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1115 /* oif is set, packet is to local broadcast and
1116 * and uc_index is set. oif is most likely set
1117 * by sk_bound_dev_if. If uc_index != oif check if the
1118 * oif is an L3 master and uc_index is an L3 slave.
1119 * If so, we want to allow the send using the uc_index.
1121 if (ipc.oif != inet->uc_index &&
1122 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1123 inet->uc_index)) {
1124 ipc.oif = inet->uc_index;
1128 if (connected)
1129 rt = (struct rtable *)sk_dst_check(sk, 0);
1131 if (!rt) {
1132 struct net *net = sock_net(sk);
1133 __u8 flow_flags = inet_sk_flowi_flags(sk);
1135 fl4 = &fl4_stack;
1137 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1138 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1139 flow_flags,
1140 faddr, saddr, dport, inet->inet_sport,
1141 sk->sk_uid);
1143 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1144 rt = ip_route_output_flow(net, fl4, sk);
1145 if (IS_ERR(rt)) {
1146 err = PTR_ERR(rt);
1147 rt = NULL;
1148 if (err == -ENETUNREACH)
1149 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1150 goto out;
1153 err = -EACCES;
1154 if ((rt->rt_flags & RTCF_BROADCAST) &&
1155 !sock_flag(sk, SOCK_BROADCAST))
1156 goto out;
1157 if (connected)
1158 sk_dst_set(sk, dst_clone(&rt->dst));
1161 if (msg->msg_flags&MSG_CONFIRM)
1162 goto do_confirm;
1163 back_from_confirm:
1165 saddr = fl4->saddr;
1166 if (!ipc.addr)
1167 daddr = ipc.addr = fl4->daddr;
1169 /* Lockless fast path for the non-corking case. */
1170 if (!corkreq) {
1171 struct inet_cork cork;
1173 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1174 sizeof(struct udphdr), &ipc, &rt,
1175 &cork, msg->msg_flags);
1176 err = PTR_ERR(skb);
1177 if (!IS_ERR_OR_NULL(skb))
1178 err = udp_send_skb(skb, fl4, &cork);
1179 goto out;
1182 lock_sock(sk);
1183 if (unlikely(up->pending)) {
1184 /* The socket is already corked while preparing it. */
1185 /* ... which is an evident application bug. --ANK */
1186 release_sock(sk);
1188 net_dbg_ratelimited("socket already corked\n");
1189 err = -EINVAL;
1190 goto out;
1193 * Now cork the socket to pend data.
1195 fl4 = &inet->cork.fl.u.ip4;
1196 fl4->daddr = daddr;
1197 fl4->saddr = saddr;
1198 fl4->fl4_dport = dport;
1199 fl4->fl4_sport = inet->inet_sport;
1200 up->pending = AF_INET;
1202 do_append_data:
1203 up->len += ulen;
1204 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1205 sizeof(struct udphdr), &ipc, &rt,
1206 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1207 if (err)
1208 udp_flush_pending_frames(sk);
1209 else if (!corkreq)
1210 err = udp_push_pending_frames(sk);
1211 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1212 up->pending = 0;
1213 release_sock(sk);
1215 out:
1216 ip_rt_put(rt);
1217 out_free:
1218 if (free)
1219 kfree(ipc.opt);
1220 if (!err)
1221 return len;
1223 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1224 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1225 * we don't have a good statistic (IpOutDiscards but it can be too many
1226 * things). We could add another new stat but at least for now that
1227 * seems like overkill.
1229 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1230 UDP_INC_STATS(sock_net(sk),
1231 UDP_MIB_SNDBUFERRORS, is_udplite);
1233 return err;
1235 do_confirm:
1236 if (msg->msg_flags & MSG_PROBE)
1237 dst_confirm_neigh(&rt->dst, &fl4->daddr);
1238 if (!(msg->msg_flags&MSG_PROBE) || len)
1239 goto back_from_confirm;
1240 err = 0;
1241 goto out;
1243 EXPORT_SYMBOL(udp_sendmsg);
1245 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1246 size_t size, int flags)
1248 struct inet_sock *inet = inet_sk(sk);
1249 struct udp_sock *up = udp_sk(sk);
1250 int ret;
1252 if (flags & MSG_SENDPAGE_NOTLAST)
1253 flags |= MSG_MORE;
1255 if (!up->pending) {
1256 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1258 /* Call udp_sendmsg to specify destination address which
1259 * sendpage interface can't pass.
1260 * This will succeed only when the socket is connected.
1262 ret = udp_sendmsg(sk, &msg, 0);
1263 if (ret < 0)
1264 return ret;
1267 lock_sock(sk);
1269 if (unlikely(!up->pending)) {
1270 release_sock(sk);
1272 net_dbg_ratelimited("cork failed\n");
1273 return -EINVAL;
1276 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1277 page, offset, size, flags);
1278 if (ret == -EOPNOTSUPP) {
1279 release_sock(sk);
1280 return sock_no_sendpage(sk->sk_socket, page, offset,
1281 size, flags);
1283 if (ret < 0) {
1284 udp_flush_pending_frames(sk);
1285 goto out;
1288 up->len += size;
1289 if (!(up->corkflag || (flags&MSG_MORE)))
1290 ret = udp_push_pending_frames(sk);
1291 if (!ret)
1292 ret = size;
1293 out:
1294 release_sock(sk);
1295 return ret;
1298 #define UDP_SKB_IS_STATELESS 0x80000000
1300 /* all head states (dst, sk, nf conntrack) except skb extensions are
1301 * cleared by udp_rcv().
1303 * We need to preserve secpath, if present, to eventually process
1304 * IP_CMSG_PASSSEC at recvmsg() time.
1306 * Other extensions can be cleared.
1308 static bool udp_try_make_stateless(struct sk_buff *skb)
1310 if (!skb_has_extensions(skb))
1311 return true;
1313 if (!secpath_exists(skb)) {
1314 skb_ext_reset(skb);
1315 return true;
1318 return false;
1321 static void udp_set_dev_scratch(struct sk_buff *skb)
1323 struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1325 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1326 scratch->_tsize_state = skb->truesize;
1327 #if BITS_PER_LONG == 64
1328 scratch->len = skb->len;
1329 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1330 scratch->is_linear = !skb_is_nonlinear(skb);
1331 #endif
1332 if (udp_try_make_stateless(skb))
1333 scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1336 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1338 /* We come here after udp_lib_checksum_complete() returned 0.
1339 * This means that __skb_checksum_complete() might have
1340 * set skb->csum_valid to 1.
1341 * On 64bit platforms, we can set csum_unnecessary
1342 * to true, but only if the skb is not shared.
1344 #if BITS_PER_LONG == 64
1345 if (!skb_shared(skb))
1346 udp_skb_scratch(skb)->csum_unnecessary = true;
1347 #endif
1350 static int udp_skb_truesize(struct sk_buff *skb)
1352 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1355 static bool udp_skb_has_head_state(struct sk_buff *skb)
1357 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1360 /* fully reclaim rmem/fwd memory allocated for skb */
1361 static void udp_rmem_release(struct sock *sk, int size, int partial,
1362 bool rx_queue_lock_held)
1364 struct udp_sock *up = udp_sk(sk);
1365 struct sk_buff_head *sk_queue;
1366 int amt;
1368 if (likely(partial)) {
1369 up->forward_deficit += size;
1370 size = up->forward_deficit;
1371 if (size < (sk->sk_rcvbuf >> 2) &&
1372 !skb_queue_empty(&up->reader_queue))
1373 return;
1374 } else {
1375 size += up->forward_deficit;
1377 up->forward_deficit = 0;
1379 /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1380 * if the called don't held it already
1382 sk_queue = &sk->sk_receive_queue;
1383 if (!rx_queue_lock_held)
1384 spin_lock(&sk_queue->lock);
1387 sk->sk_forward_alloc += size;
1388 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1389 sk->sk_forward_alloc -= amt;
1391 if (amt)
1392 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1394 atomic_sub(size, &sk->sk_rmem_alloc);
1396 /* this can save us from acquiring the rx queue lock on next receive */
1397 skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1399 if (!rx_queue_lock_held)
1400 spin_unlock(&sk_queue->lock);
1403 /* Note: called with reader_queue.lock held.
1404 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1405 * This avoids a cache line miss while receive_queue lock is held.
1406 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1408 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1410 prefetch(&skb->data);
1411 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1413 EXPORT_SYMBOL(udp_skb_destructor);
1415 /* as above, but the caller held the rx queue lock, too */
1416 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1418 prefetch(&skb->data);
1419 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1422 /* Idea of busylocks is to let producers grab an extra spinlock
1423 * to relieve pressure on the receive_queue spinlock shared by consumer.
1424 * Under flood, this means that only one producer can be in line
1425 * trying to acquire the receive_queue spinlock.
1426 * These busylock can be allocated on a per cpu manner, instead of a
1427 * per socket one (that would consume a cache line per socket)
1429 static int udp_busylocks_log __read_mostly;
1430 static spinlock_t *udp_busylocks __read_mostly;
1432 static spinlock_t *busylock_acquire(void *ptr)
1434 spinlock_t *busy;
1436 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1437 spin_lock(busy);
1438 return busy;
1441 static void busylock_release(spinlock_t *busy)
1443 if (busy)
1444 spin_unlock(busy);
1447 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1449 struct sk_buff_head *list = &sk->sk_receive_queue;
1450 int rmem, delta, amt, err = -ENOMEM;
1451 spinlock_t *busy = NULL;
1452 int size;
1454 /* try to avoid the costly atomic add/sub pair when the receive
1455 * queue is full; always allow at least a packet
1457 rmem = atomic_read(&sk->sk_rmem_alloc);
1458 if (rmem > sk->sk_rcvbuf)
1459 goto drop;
1461 /* Under mem pressure, it might be helpful to help udp_recvmsg()
1462 * having linear skbs :
1463 * - Reduce memory overhead and thus increase receive queue capacity
1464 * - Less cache line misses at copyout() time
1465 * - Less work at consume_skb() (less alien page frag freeing)
1467 if (rmem > (sk->sk_rcvbuf >> 1)) {
1468 skb_condense(skb);
1470 busy = busylock_acquire(sk);
1472 size = skb->truesize;
1473 udp_set_dev_scratch(skb);
1475 /* we drop only if the receive buf is full and the receive
1476 * queue contains some other skb
1478 rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1479 if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1480 goto uncharge_drop;
1482 spin_lock(&list->lock);
1483 if (size >= sk->sk_forward_alloc) {
1484 amt = sk_mem_pages(size);
1485 delta = amt << SK_MEM_QUANTUM_SHIFT;
1486 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1487 err = -ENOBUFS;
1488 spin_unlock(&list->lock);
1489 goto uncharge_drop;
1492 sk->sk_forward_alloc += delta;
1495 sk->sk_forward_alloc -= size;
1497 /* no need to setup a destructor, we will explicitly release the
1498 * forward allocated memory on dequeue
1500 sock_skb_set_dropcount(sk, skb);
1502 __skb_queue_tail(list, skb);
1503 spin_unlock(&list->lock);
1505 if (!sock_flag(sk, SOCK_DEAD))
1506 sk->sk_data_ready(sk);
1508 busylock_release(busy);
1509 return 0;
1511 uncharge_drop:
1512 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1514 drop:
1515 atomic_inc(&sk->sk_drops);
1516 busylock_release(busy);
1517 return err;
1519 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1521 void udp_destruct_sock(struct sock *sk)
1523 /* reclaim completely the forward allocated memory */
1524 struct udp_sock *up = udp_sk(sk);
1525 unsigned int total = 0;
1526 struct sk_buff *skb;
1528 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1529 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1530 total += skb->truesize;
1531 kfree_skb(skb);
1533 udp_rmem_release(sk, total, 0, true);
1535 inet_sock_destruct(sk);
1537 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1539 int udp_init_sock(struct sock *sk)
1541 skb_queue_head_init(&udp_sk(sk)->reader_queue);
1542 sk->sk_destruct = udp_destruct_sock;
1543 return 0;
1545 EXPORT_SYMBOL_GPL(udp_init_sock);
1547 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1549 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1550 bool slow = lock_sock_fast(sk);
1552 sk_peek_offset_bwd(sk, len);
1553 unlock_sock_fast(sk, slow);
1556 if (!skb_unref(skb))
1557 return;
1559 /* In the more common cases we cleared the head states previously,
1560 * see __udp_queue_rcv_skb().
1562 if (unlikely(udp_skb_has_head_state(skb)))
1563 skb_release_head_state(skb);
1564 __consume_stateless_skb(skb);
1566 EXPORT_SYMBOL_GPL(skb_consume_udp);
1568 static struct sk_buff *__first_packet_length(struct sock *sk,
1569 struct sk_buff_head *rcvq,
1570 int *total)
1572 struct sk_buff *skb;
1574 while ((skb = skb_peek(rcvq)) != NULL) {
1575 if (udp_lib_checksum_complete(skb)) {
1576 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1577 IS_UDPLITE(sk));
1578 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1579 IS_UDPLITE(sk));
1580 atomic_inc(&sk->sk_drops);
1581 __skb_unlink(skb, rcvq);
1582 *total += skb->truesize;
1583 kfree_skb(skb);
1584 } else {
1585 udp_skb_csum_unnecessary_set(skb);
1586 break;
1589 return skb;
1593 * first_packet_length - return length of first packet in receive queue
1594 * @sk: socket
1596 * Drops all bad checksum frames, until a valid one is found.
1597 * Returns the length of found skb, or -1 if none is found.
1599 static int first_packet_length(struct sock *sk)
1601 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1602 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1603 struct sk_buff *skb;
1604 int total = 0;
1605 int res;
1607 spin_lock_bh(&rcvq->lock);
1608 skb = __first_packet_length(sk, rcvq, &total);
1609 if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1610 spin_lock(&sk_queue->lock);
1611 skb_queue_splice_tail_init(sk_queue, rcvq);
1612 spin_unlock(&sk_queue->lock);
1614 skb = __first_packet_length(sk, rcvq, &total);
1616 res = skb ? skb->len : -1;
1617 if (total)
1618 udp_rmem_release(sk, total, 1, false);
1619 spin_unlock_bh(&rcvq->lock);
1620 return res;
1624 * IOCTL requests applicable to the UDP protocol
1627 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1629 switch (cmd) {
1630 case SIOCOUTQ:
1632 int amount = sk_wmem_alloc_get(sk);
1634 return put_user(amount, (int __user *)arg);
1637 case SIOCINQ:
1639 int amount = max_t(int, 0, first_packet_length(sk));
1641 return put_user(amount, (int __user *)arg);
1644 default:
1645 return -ENOIOCTLCMD;
1648 return 0;
1650 EXPORT_SYMBOL(udp_ioctl);
1652 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1653 int noblock, int *off, int *err)
1655 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1656 struct sk_buff_head *queue;
1657 struct sk_buff *last;
1658 long timeo;
1659 int error;
1661 queue = &udp_sk(sk)->reader_queue;
1662 flags |= noblock ? MSG_DONTWAIT : 0;
1663 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1664 do {
1665 struct sk_buff *skb;
1667 error = sock_error(sk);
1668 if (error)
1669 break;
1671 error = -EAGAIN;
1672 do {
1673 spin_lock_bh(&queue->lock);
1674 skb = __skb_try_recv_from_queue(sk, queue, flags,
1675 udp_skb_destructor,
1676 off, err, &last);
1677 if (skb) {
1678 spin_unlock_bh(&queue->lock);
1679 return skb;
1682 if (skb_queue_empty_lockless(sk_queue)) {
1683 spin_unlock_bh(&queue->lock);
1684 goto busy_check;
1687 /* refill the reader queue and walk it again
1688 * keep both queues locked to avoid re-acquiring
1689 * the sk_receive_queue lock if fwd memory scheduling
1690 * is needed.
1692 spin_lock(&sk_queue->lock);
1693 skb_queue_splice_tail_init(sk_queue, queue);
1695 skb = __skb_try_recv_from_queue(sk, queue, flags,
1696 udp_skb_dtor_locked,
1697 off, err, &last);
1698 spin_unlock(&sk_queue->lock);
1699 spin_unlock_bh(&queue->lock);
1700 if (skb)
1701 return skb;
1703 busy_check:
1704 if (!sk_can_busy_loop(sk))
1705 break;
1707 sk_busy_loop(sk, flags & MSG_DONTWAIT);
1708 } while (!skb_queue_empty_lockless(sk_queue));
1710 /* sk_queue is empty, reader_queue may contain peeked packets */
1711 } while (timeo &&
1712 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1713 &error, &timeo,
1714 (struct sk_buff *)sk_queue));
1716 *err = error;
1717 return NULL;
1719 EXPORT_SYMBOL(__skb_recv_udp);
1722 * This should be easy, if there is something there we
1723 * return it, otherwise we block.
1726 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1727 int flags, int *addr_len)
1729 struct inet_sock *inet = inet_sk(sk);
1730 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1731 struct sk_buff *skb;
1732 unsigned int ulen, copied;
1733 int off, err, peeking = flags & MSG_PEEK;
1734 int is_udplite = IS_UDPLITE(sk);
1735 bool checksum_valid = false;
1737 if (flags & MSG_ERRQUEUE)
1738 return ip_recv_error(sk, msg, len, addr_len);
1740 try_again:
1741 off = sk_peek_offset(sk, flags);
1742 skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1743 if (!skb)
1744 return err;
1746 ulen = udp_skb_len(skb);
1747 copied = len;
1748 if (copied > ulen - off)
1749 copied = ulen - off;
1750 else if (copied < ulen)
1751 msg->msg_flags |= MSG_TRUNC;
1754 * If checksum is needed at all, try to do it while copying the
1755 * data. If the data is truncated, or if we only want a partial
1756 * coverage checksum (UDP-Lite), do it before the copy.
1759 if (copied < ulen || peeking ||
1760 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1761 checksum_valid = udp_skb_csum_unnecessary(skb) ||
1762 !__udp_lib_checksum_complete(skb);
1763 if (!checksum_valid)
1764 goto csum_copy_err;
1767 if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1768 if (udp_skb_is_linear(skb))
1769 err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1770 else
1771 err = skb_copy_datagram_msg(skb, off, msg, copied);
1772 } else {
1773 err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1775 if (err == -EINVAL)
1776 goto csum_copy_err;
1779 if (unlikely(err)) {
1780 if (!peeking) {
1781 atomic_inc(&sk->sk_drops);
1782 UDP_INC_STATS(sock_net(sk),
1783 UDP_MIB_INERRORS, is_udplite);
1785 kfree_skb(skb);
1786 return err;
1789 if (!peeking)
1790 UDP_INC_STATS(sock_net(sk),
1791 UDP_MIB_INDATAGRAMS, is_udplite);
1793 sock_recv_ts_and_drops(msg, sk, skb);
1795 /* Copy the address. */
1796 if (sin) {
1797 sin->sin_family = AF_INET;
1798 sin->sin_port = udp_hdr(skb)->source;
1799 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1800 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1801 *addr_len = sizeof(*sin);
1803 if (cgroup_bpf_enabled)
1804 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1805 (struct sockaddr *)sin);
1808 if (udp_sk(sk)->gro_enabled)
1809 udp_cmsg_recv(msg, sk, skb);
1811 if (inet->cmsg_flags)
1812 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1814 err = copied;
1815 if (flags & MSG_TRUNC)
1816 err = ulen;
1818 skb_consume_udp(sk, skb, peeking ? -err : err);
1819 return err;
1821 csum_copy_err:
1822 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1823 udp_skb_destructor)) {
1824 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1825 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1827 kfree_skb(skb);
1829 /* starting over for a new packet, but check if we need to yield */
1830 cond_resched();
1831 msg->msg_flags &= ~MSG_TRUNC;
1832 goto try_again;
1835 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1837 /* This check is replicated from __ip4_datagram_connect() and
1838 * intended to prevent BPF program called below from accessing bytes
1839 * that are out of the bound specified by user in addr_len.
1841 if (addr_len < sizeof(struct sockaddr_in))
1842 return -EINVAL;
1844 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1846 EXPORT_SYMBOL(udp_pre_connect);
1848 int __udp_disconnect(struct sock *sk, int flags)
1850 struct inet_sock *inet = inet_sk(sk);
1852 * 1003.1g - break association.
1855 sk->sk_state = TCP_CLOSE;
1856 inet->inet_daddr = 0;
1857 inet->inet_dport = 0;
1858 sock_rps_reset_rxhash(sk);
1859 sk->sk_bound_dev_if = 0;
1860 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1861 inet_reset_saddr(sk);
1863 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1864 sk->sk_prot->unhash(sk);
1865 inet->inet_sport = 0;
1867 sk_dst_reset(sk);
1868 return 0;
1870 EXPORT_SYMBOL(__udp_disconnect);
1872 int udp_disconnect(struct sock *sk, int flags)
1874 lock_sock(sk);
1875 __udp_disconnect(sk, flags);
1876 release_sock(sk);
1877 return 0;
1879 EXPORT_SYMBOL(udp_disconnect);
1881 void udp_lib_unhash(struct sock *sk)
1883 if (sk_hashed(sk)) {
1884 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1885 struct udp_hslot *hslot, *hslot2;
1887 hslot = udp_hashslot(udptable, sock_net(sk),
1888 udp_sk(sk)->udp_port_hash);
1889 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1891 spin_lock_bh(&hslot->lock);
1892 if (rcu_access_pointer(sk->sk_reuseport_cb))
1893 reuseport_detach_sock(sk);
1894 if (sk_del_node_init_rcu(sk)) {
1895 hslot->count--;
1896 inet_sk(sk)->inet_num = 0;
1897 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1899 spin_lock(&hslot2->lock);
1900 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1901 hslot2->count--;
1902 spin_unlock(&hslot2->lock);
1904 spin_unlock_bh(&hslot->lock);
1907 EXPORT_SYMBOL(udp_lib_unhash);
1910 * inet_rcv_saddr was changed, we must rehash secondary hash
1912 void udp_lib_rehash(struct sock *sk, u16 newhash)
1914 if (sk_hashed(sk)) {
1915 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1916 struct udp_hslot *hslot, *hslot2, *nhslot2;
1918 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1919 nhslot2 = udp_hashslot2(udptable, newhash);
1920 udp_sk(sk)->udp_portaddr_hash = newhash;
1922 if (hslot2 != nhslot2 ||
1923 rcu_access_pointer(sk->sk_reuseport_cb)) {
1924 hslot = udp_hashslot(udptable, sock_net(sk),
1925 udp_sk(sk)->udp_port_hash);
1926 /* we must lock primary chain too */
1927 spin_lock_bh(&hslot->lock);
1928 if (rcu_access_pointer(sk->sk_reuseport_cb))
1929 reuseport_detach_sock(sk);
1931 if (hslot2 != nhslot2) {
1932 spin_lock(&hslot2->lock);
1933 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1934 hslot2->count--;
1935 spin_unlock(&hslot2->lock);
1937 spin_lock(&nhslot2->lock);
1938 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1939 &nhslot2->head);
1940 nhslot2->count++;
1941 spin_unlock(&nhslot2->lock);
1944 spin_unlock_bh(&hslot->lock);
1948 EXPORT_SYMBOL(udp_lib_rehash);
1950 void udp_v4_rehash(struct sock *sk)
1952 u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1953 inet_sk(sk)->inet_rcv_saddr,
1954 inet_sk(sk)->inet_num);
1955 udp_lib_rehash(sk, new_hash);
1958 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1960 int rc;
1962 if (inet_sk(sk)->inet_daddr) {
1963 sock_rps_save_rxhash(sk, skb);
1964 sk_mark_napi_id(sk, skb);
1965 sk_incoming_cpu_update(sk);
1966 } else {
1967 sk_mark_napi_id_once(sk, skb);
1970 rc = __udp_enqueue_schedule_skb(sk, skb);
1971 if (rc < 0) {
1972 int is_udplite = IS_UDPLITE(sk);
1974 /* Note that an ENOMEM error is charged twice */
1975 if (rc == -ENOMEM)
1976 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1977 is_udplite);
1978 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1979 kfree_skb(skb);
1980 trace_udp_fail_queue_rcv_skb(rc, sk);
1981 return -1;
1984 return 0;
1987 /* returns:
1988 * -1: error
1989 * 0: success
1990 * >0: "udp encap" protocol resubmission
1992 * Note that in the success and error cases, the skb is assumed to
1993 * have either been requeued or freed.
1995 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
1997 struct udp_sock *up = udp_sk(sk);
1998 int is_udplite = IS_UDPLITE(sk);
2001 * Charge it to the socket, dropping if the queue is full.
2003 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2004 goto drop;
2005 nf_reset_ct(skb);
2007 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2008 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2011 * This is an encapsulation socket so pass the skb to
2012 * the socket's udp_encap_rcv() hook. Otherwise, just
2013 * fall through and pass this up the UDP socket.
2014 * up->encap_rcv() returns the following value:
2015 * =0 if skb was successfully passed to the encap
2016 * handler or was discarded by it.
2017 * >0 if skb should be passed on to UDP.
2018 * <0 if skb should be resubmitted as proto -N
2021 /* if we're overly short, let UDP handle it */
2022 encap_rcv = READ_ONCE(up->encap_rcv);
2023 if (encap_rcv) {
2024 int ret;
2026 /* Verify checksum before giving to encap */
2027 if (udp_lib_checksum_complete(skb))
2028 goto csum_error;
2030 ret = encap_rcv(sk, skb);
2031 if (ret <= 0) {
2032 __UDP_INC_STATS(sock_net(sk),
2033 UDP_MIB_INDATAGRAMS,
2034 is_udplite);
2035 return -ret;
2039 /* FALLTHROUGH -- it's a UDP Packet */
2043 * UDP-Lite specific tests, ignored on UDP sockets
2045 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
2048 * MIB statistics other than incrementing the error count are
2049 * disabled for the following two types of errors: these depend
2050 * on the application settings, not on the functioning of the
2051 * protocol stack as such.
2053 * RFC 3828 here recommends (sec 3.3): "There should also be a
2054 * way ... to ... at least let the receiving application block
2055 * delivery of packets with coverage values less than a value
2056 * provided by the application."
2058 if (up->pcrlen == 0) { /* full coverage was set */
2059 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2060 UDP_SKB_CB(skb)->cscov, skb->len);
2061 goto drop;
2063 /* The next case involves violating the min. coverage requested
2064 * by the receiver. This is subtle: if receiver wants x and x is
2065 * greater than the buffersize/MTU then receiver will complain
2066 * that it wants x while sender emits packets of smaller size y.
2067 * Therefore the above ...()->partial_cov statement is essential.
2069 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
2070 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2071 UDP_SKB_CB(skb)->cscov, up->pcrlen);
2072 goto drop;
2076 prefetch(&sk->sk_rmem_alloc);
2077 if (rcu_access_pointer(sk->sk_filter) &&
2078 udp_lib_checksum_complete(skb))
2079 goto csum_error;
2081 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2082 goto drop;
2084 udp_csum_pull_header(skb);
2086 ipv4_pktinfo_prepare(sk, skb);
2087 return __udp_queue_rcv_skb(sk, skb);
2089 csum_error:
2090 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2091 drop:
2092 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2093 atomic_inc(&sk->sk_drops);
2094 kfree_skb(skb);
2095 return -1;
2098 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2100 struct sk_buff *next, *segs;
2101 int ret;
2103 if (likely(!udp_unexpected_gso(sk, skb)))
2104 return udp_queue_rcv_one_skb(sk, skb);
2106 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_SGO_CB_OFFSET);
2107 __skb_push(skb, -skb_mac_offset(skb));
2108 segs = udp_rcv_segment(sk, skb, true);
2109 skb_list_walk_safe(segs, skb, next) {
2110 __skb_pull(skb, skb_transport_offset(skb));
2111 ret = udp_queue_rcv_one_skb(sk, skb);
2112 if (ret > 0)
2113 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, -ret);
2115 return 0;
2118 /* For TCP sockets, sk_rx_dst is protected by socket lock
2119 * For UDP, we use xchg() to guard against concurrent changes.
2121 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2123 struct dst_entry *old;
2125 if (dst_hold_safe(dst)) {
2126 old = xchg(&sk->sk_rx_dst, dst);
2127 dst_release(old);
2128 return old != dst;
2130 return false;
2132 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2135 * Multicasts and broadcasts go to each listener.
2137 * Note: called only from the BH handler context.
2139 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2140 struct udphdr *uh,
2141 __be32 saddr, __be32 daddr,
2142 struct udp_table *udptable,
2143 int proto)
2145 struct sock *sk, *first = NULL;
2146 unsigned short hnum = ntohs(uh->dest);
2147 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2148 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2149 unsigned int offset = offsetof(typeof(*sk), sk_node);
2150 int dif = skb->dev->ifindex;
2151 int sdif = inet_sdif(skb);
2152 struct hlist_node *node;
2153 struct sk_buff *nskb;
2155 if (use_hash2) {
2156 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2157 udptable->mask;
2158 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2159 start_lookup:
2160 hslot = &udptable->hash2[hash2];
2161 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2164 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2165 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2166 uh->source, saddr, dif, sdif, hnum))
2167 continue;
2169 if (!first) {
2170 first = sk;
2171 continue;
2173 nskb = skb_clone(skb, GFP_ATOMIC);
2175 if (unlikely(!nskb)) {
2176 atomic_inc(&sk->sk_drops);
2177 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2178 IS_UDPLITE(sk));
2179 __UDP_INC_STATS(net, UDP_MIB_INERRORS,
2180 IS_UDPLITE(sk));
2181 continue;
2183 if (udp_queue_rcv_skb(sk, nskb) > 0)
2184 consume_skb(nskb);
2187 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
2188 if (use_hash2 && hash2 != hash2_any) {
2189 hash2 = hash2_any;
2190 goto start_lookup;
2193 if (first) {
2194 if (udp_queue_rcv_skb(first, skb) > 0)
2195 consume_skb(skb);
2196 } else {
2197 kfree_skb(skb);
2198 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2199 proto == IPPROTO_UDPLITE);
2201 return 0;
2204 /* Initialize UDP checksum. If exited with zero value (success),
2205 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2206 * Otherwise, csum completion requires checksumming packet body,
2207 * including udp header and folding it to skb->csum.
2209 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2210 int proto)
2212 int err;
2214 UDP_SKB_CB(skb)->partial_cov = 0;
2215 UDP_SKB_CB(skb)->cscov = skb->len;
2217 if (proto == IPPROTO_UDPLITE) {
2218 err = udplite_checksum_init(skb, uh);
2219 if (err)
2220 return err;
2222 if (UDP_SKB_CB(skb)->partial_cov) {
2223 skb->csum = inet_compute_pseudo(skb, proto);
2224 return 0;
2228 /* Note, we are only interested in != 0 or == 0, thus the
2229 * force to int.
2231 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2232 inet_compute_pseudo);
2233 if (err)
2234 return err;
2236 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2237 /* If SW calculated the value, we know it's bad */
2238 if (skb->csum_complete_sw)
2239 return 1;
2241 /* HW says the value is bad. Let's validate that.
2242 * skb->csum is no longer the full packet checksum,
2243 * so don't treat it as such.
2245 skb_checksum_complete_unset(skb);
2248 return 0;
2251 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2252 * return code conversion for ip layer consumption
2254 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2255 struct udphdr *uh)
2257 int ret;
2259 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2260 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2262 ret = udp_queue_rcv_skb(sk, skb);
2264 /* a return value > 0 means to resubmit the input, but
2265 * it wants the return to be -protocol, or 0
2267 if (ret > 0)
2268 return -ret;
2269 return 0;
2273 * All we need to do is get the socket, and then do a checksum.
2276 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2277 int proto)
2279 struct sock *sk;
2280 struct udphdr *uh;
2281 unsigned short ulen;
2282 struct rtable *rt = skb_rtable(skb);
2283 __be32 saddr, daddr;
2284 struct net *net = dev_net(skb->dev);
2287 * Validate the packet.
2289 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2290 goto drop; /* No space for header. */
2292 uh = udp_hdr(skb);
2293 ulen = ntohs(uh->len);
2294 saddr = ip_hdr(skb)->saddr;
2295 daddr = ip_hdr(skb)->daddr;
2297 if (ulen > skb->len)
2298 goto short_packet;
2300 if (proto == IPPROTO_UDP) {
2301 /* UDP validates ulen. */
2302 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2303 goto short_packet;
2304 uh = udp_hdr(skb);
2307 if (udp4_csum_init(skb, uh, proto))
2308 goto csum_error;
2310 sk = skb_steal_sock(skb);
2311 if (sk) {
2312 struct dst_entry *dst = skb_dst(skb);
2313 int ret;
2315 if (unlikely(sk->sk_rx_dst != dst))
2316 udp_sk_rx_dst_set(sk, dst);
2318 ret = udp_unicast_rcv_skb(sk, skb, uh);
2319 sock_put(sk);
2320 return ret;
2323 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2324 return __udp4_lib_mcast_deliver(net, skb, uh,
2325 saddr, daddr, udptable, proto);
2327 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2328 if (sk)
2329 return udp_unicast_rcv_skb(sk, skb, uh);
2331 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2332 goto drop;
2333 nf_reset_ct(skb);
2335 /* No socket. Drop packet silently, if checksum is wrong */
2336 if (udp_lib_checksum_complete(skb))
2337 goto csum_error;
2339 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2340 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2343 * Hmm. We got an UDP packet to a port to which we
2344 * don't wanna listen. Ignore it.
2346 kfree_skb(skb);
2347 return 0;
2349 short_packet:
2350 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2351 proto == IPPROTO_UDPLITE ? "Lite" : "",
2352 &saddr, ntohs(uh->source),
2353 ulen, skb->len,
2354 &daddr, ntohs(uh->dest));
2355 goto drop;
2357 csum_error:
2359 * RFC1122: OK. Discards the bad packet silently (as far as
2360 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2362 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2363 proto == IPPROTO_UDPLITE ? "Lite" : "",
2364 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2365 ulen);
2366 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2367 drop:
2368 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2369 kfree_skb(skb);
2370 return 0;
2373 /* We can only early demux multicast if there is a single matching socket.
2374 * If more than one socket found returns NULL
2376 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2377 __be16 loc_port, __be32 loc_addr,
2378 __be16 rmt_port, __be32 rmt_addr,
2379 int dif, int sdif)
2381 struct sock *sk, *result;
2382 unsigned short hnum = ntohs(loc_port);
2383 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2384 struct udp_hslot *hslot = &udp_table.hash[slot];
2386 /* Do not bother scanning a too big list */
2387 if (hslot->count > 10)
2388 return NULL;
2390 result = NULL;
2391 sk_for_each_rcu(sk, &hslot->head) {
2392 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2393 rmt_port, rmt_addr, dif, sdif, hnum)) {
2394 if (result)
2395 return NULL;
2396 result = sk;
2400 return result;
2403 /* For unicast we should only early demux connected sockets or we can
2404 * break forwarding setups. The chains here can be long so only check
2405 * if the first socket is an exact match and if not move on.
2407 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2408 __be16 loc_port, __be32 loc_addr,
2409 __be16 rmt_port, __be32 rmt_addr,
2410 int dif, int sdif)
2412 unsigned short hnum = ntohs(loc_port);
2413 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2414 unsigned int slot2 = hash2 & udp_table.mask;
2415 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2416 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2417 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2418 struct sock *sk;
2420 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2421 if (INET_MATCH(sk, net, acookie, rmt_addr,
2422 loc_addr, ports, dif, sdif))
2423 return sk;
2424 /* Only check first socket in chain */
2425 break;
2427 return NULL;
2430 int udp_v4_early_demux(struct sk_buff *skb)
2432 struct net *net = dev_net(skb->dev);
2433 struct in_device *in_dev = NULL;
2434 const struct iphdr *iph;
2435 const struct udphdr *uh;
2436 struct sock *sk = NULL;
2437 struct dst_entry *dst;
2438 int dif = skb->dev->ifindex;
2439 int sdif = inet_sdif(skb);
2440 int ours;
2442 /* validate the packet */
2443 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2444 return 0;
2446 iph = ip_hdr(skb);
2447 uh = udp_hdr(skb);
2449 if (skb->pkt_type == PACKET_MULTICAST) {
2450 in_dev = __in_dev_get_rcu(skb->dev);
2452 if (!in_dev)
2453 return 0;
2455 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2456 iph->protocol);
2457 if (!ours)
2458 return 0;
2460 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2461 uh->source, iph->saddr,
2462 dif, sdif);
2463 } else if (skb->pkt_type == PACKET_HOST) {
2464 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2465 uh->source, iph->saddr, dif, sdif);
2468 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2469 return 0;
2471 skb->sk = sk;
2472 skb->destructor = sock_efree;
2473 dst = READ_ONCE(sk->sk_rx_dst);
2475 if (dst)
2476 dst = dst_check(dst, 0);
2477 if (dst) {
2478 u32 itag = 0;
2480 /* set noref for now.
2481 * any place which wants to hold dst has to call
2482 * dst_hold_safe()
2484 skb_dst_set_noref(skb, dst);
2486 /* for unconnected multicast sockets we need to validate
2487 * the source on each packet
2489 if (!inet_sk(sk)->inet_daddr && in_dev)
2490 return ip_mc_validate_source(skb, iph->daddr,
2491 iph->saddr, iph->tos,
2492 skb->dev, in_dev, &itag);
2494 return 0;
2497 int udp_rcv(struct sk_buff *skb)
2499 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2502 void udp_destroy_sock(struct sock *sk)
2504 struct udp_sock *up = udp_sk(sk);
2505 bool slow = lock_sock_fast(sk);
2506 udp_flush_pending_frames(sk);
2507 unlock_sock_fast(sk, slow);
2508 if (static_branch_unlikely(&udp_encap_needed_key)) {
2509 if (up->encap_type) {
2510 void (*encap_destroy)(struct sock *sk);
2511 encap_destroy = READ_ONCE(up->encap_destroy);
2512 if (encap_destroy)
2513 encap_destroy(sk);
2515 if (up->encap_enabled)
2516 static_branch_dec(&udp_encap_needed_key);
2521 * Socket option code for UDP
2523 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2524 char __user *optval, unsigned int optlen,
2525 int (*push_pending_frames)(struct sock *))
2527 struct udp_sock *up = udp_sk(sk);
2528 int val, valbool;
2529 int err = 0;
2530 int is_udplite = IS_UDPLITE(sk);
2532 if (optlen < sizeof(int))
2533 return -EINVAL;
2535 if (get_user(val, (int __user *)optval))
2536 return -EFAULT;
2538 valbool = val ? 1 : 0;
2540 switch (optname) {
2541 case UDP_CORK:
2542 if (val != 0) {
2543 up->corkflag = 1;
2544 } else {
2545 up->corkflag = 0;
2546 lock_sock(sk);
2547 push_pending_frames(sk);
2548 release_sock(sk);
2550 break;
2552 case UDP_ENCAP:
2553 switch (val) {
2554 case 0:
2555 #ifdef CONFIG_XFRM
2556 case UDP_ENCAP_ESPINUDP:
2557 case UDP_ENCAP_ESPINUDP_NON_IKE:
2558 up->encap_rcv = xfrm4_udp_encap_rcv;
2559 #endif
2560 /* FALLTHROUGH */
2561 case UDP_ENCAP_L2TPINUDP:
2562 up->encap_type = val;
2563 lock_sock(sk);
2564 udp_tunnel_encap_enable(sk->sk_socket);
2565 release_sock(sk);
2566 break;
2567 default:
2568 err = -ENOPROTOOPT;
2569 break;
2571 break;
2573 case UDP_NO_CHECK6_TX:
2574 up->no_check6_tx = valbool;
2575 break;
2577 case UDP_NO_CHECK6_RX:
2578 up->no_check6_rx = valbool;
2579 break;
2581 case UDP_SEGMENT:
2582 if (val < 0 || val > USHRT_MAX)
2583 return -EINVAL;
2584 up->gso_size = val;
2585 break;
2587 case UDP_GRO:
2588 lock_sock(sk);
2589 if (valbool)
2590 udp_tunnel_encap_enable(sk->sk_socket);
2591 up->gro_enabled = valbool;
2592 release_sock(sk);
2593 break;
2596 * UDP-Lite's partial checksum coverage (RFC 3828).
2598 /* The sender sets actual checksum coverage length via this option.
2599 * The case coverage > packet length is handled by send module. */
2600 case UDPLITE_SEND_CSCOV:
2601 if (!is_udplite) /* Disable the option on UDP sockets */
2602 return -ENOPROTOOPT;
2603 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2604 val = 8;
2605 else if (val > USHRT_MAX)
2606 val = USHRT_MAX;
2607 up->pcslen = val;
2608 up->pcflag |= UDPLITE_SEND_CC;
2609 break;
2611 /* The receiver specifies a minimum checksum coverage value. To make
2612 * sense, this should be set to at least 8 (as done below). If zero is
2613 * used, this again means full checksum coverage. */
2614 case UDPLITE_RECV_CSCOV:
2615 if (!is_udplite) /* Disable the option on UDP sockets */
2616 return -ENOPROTOOPT;
2617 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2618 val = 8;
2619 else if (val > USHRT_MAX)
2620 val = USHRT_MAX;
2621 up->pcrlen = val;
2622 up->pcflag |= UDPLITE_RECV_CC;
2623 break;
2625 default:
2626 err = -ENOPROTOOPT;
2627 break;
2630 return err;
2632 EXPORT_SYMBOL(udp_lib_setsockopt);
2634 int udp_setsockopt(struct sock *sk, int level, int optname,
2635 char __user *optval, unsigned int optlen)
2637 if (level == SOL_UDP || level == SOL_UDPLITE)
2638 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2639 udp_push_pending_frames);
2640 return ip_setsockopt(sk, level, optname, optval, optlen);
2643 #ifdef CONFIG_COMPAT
2644 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2645 char __user *optval, unsigned int optlen)
2647 if (level == SOL_UDP || level == SOL_UDPLITE)
2648 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2649 udp_push_pending_frames);
2650 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2652 #endif
2654 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2655 char __user *optval, int __user *optlen)
2657 struct udp_sock *up = udp_sk(sk);
2658 int val, len;
2660 if (get_user(len, optlen))
2661 return -EFAULT;
2663 len = min_t(unsigned int, len, sizeof(int));
2665 if (len < 0)
2666 return -EINVAL;
2668 switch (optname) {
2669 case UDP_CORK:
2670 val = up->corkflag;
2671 break;
2673 case UDP_ENCAP:
2674 val = up->encap_type;
2675 break;
2677 case UDP_NO_CHECK6_TX:
2678 val = up->no_check6_tx;
2679 break;
2681 case UDP_NO_CHECK6_RX:
2682 val = up->no_check6_rx;
2683 break;
2685 case UDP_SEGMENT:
2686 val = up->gso_size;
2687 break;
2689 /* The following two cannot be changed on UDP sockets, the return is
2690 * always 0 (which corresponds to the full checksum coverage of UDP). */
2691 case UDPLITE_SEND_CSCOV:
2692 val = up->pcslen;
2693 break;
2695 case UDPLITE_RECV_CSCOV:
2696 val = up->pcrlen;
2697 break;
2699 default:
2700 return -ENOPROTOOPT;
2703 if (put_user(len, optlen))
2704 return -EFAULT;
2705 if (copy_to_user(optval, &val, len))
2706 return -EFAULT;
2707 return 0;
2709 EXPORT_SYMBOL(udp_lib_getsockopt);
2711 int udp_getsockopt(struct sock *sk, int level, int optname,
2712 char __user *optval, int __user *optlen)
2714 if (level == SOL_UDP || level == SOL_UDPLITE)
2715 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2716 return ip_getsockopt(sk, level, optname, optval, optlen);
2719 #ifdef CONFIG_COMPAT
2720 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2721 char __user *optval, int __user *optlen)
2723 if (level == SOL_UDP || level == SOL_UDPLITE)
2724 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2725 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2727 #endif
2729 * udp_poll - wait for a UDP event.
2730 * @file - file struct
2731 * @sock - socket
2732 * @wait - poll table
2734 * This is same as datagram poll, except for the special case of
2735 * blocking sockets. If application is using a blocking fd
2736 * and a packet with checksum error is in the queue;
2737 * then it could get return from select indicating data available
2738 * but then block when reading it. Add special case code
2739 * to work around these arguably broken applications.
2741 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2743 __poll_t mask = datagram_poll(file, sock, wait);
2744 struct sock *sk = sock->sk;
2746 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2747 mask |= EPOLLIN | EPOLLRDNORM;
2749 /* Check for false positives due to checksum errors */
2750 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2751 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2752 mask &= ~(EPOLLIN | EPOLLRDNORM);
2754 return mask;
2757 EXPORT_SYMBOL(udp_poll);
2759 int udp_abort(struct sock *sk, int err)
2761 lock_sock(sk);
2763 sk->sk_err = err;
2764 sk->sk_error_report(sk);
2765 __udp_disconnect(sk, 0);
2767 release_sock(sk);
2769 return 0;
2771 EXPORT_SYMBOL_GPL(udp_abort);
2773 struct proto udp_prot = {
2774 .name = "UDP",
2775 .owner = THIS_MODULE,
2776 .close = udp_lib_close,
2777 .pre_connect = udp_pre_connect,
2778 .connect = ip4_datagram_connect,
2779 .disconnect = udp_disconnect,
2780 .ioctl = udp_ioctl,
2781 .init = udp_init_sock,
2782 .destroy = udp_destroy_sock,
2783 .setsockopt = udp_setsockopt,
2784 .getsockopt = udp_getsockopt,
2785 .sendmsg = udp_sendmsg,
2786 .recvmsg = udp_recvmsg,
2787 .sendpage = udp_sendpage,
2788 .release_cb = ip4_datagram_release_cb,
2789 .hash = udp_lib_hash,
2790 .unhash = udp_lib_unhash,
2791 .rehash = udp_v4_rehash,
2792 .get_port = udp_v4_get_port,
2793 .memory_allocated = &udp_memory_allocated,
2794 .sysctl_mem = sysctl_udp_mem,
2795 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2796 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2797 .obj_size = sizeof(struct udp_sock),
2798 .h.udp_table = &udp_table,
2799 #ifdef CONFIG_COMPAT
2800 .compat_setsockopt = compat_udp_setsockopt,
2801 .compat_getsockopt = compat_udp_getsockopt,
2802 #endif
2803 .diag_destroy = udp_abort,
2805 EXPORT_SYMBOL(udp_prot);
2807 /* ------------------------------------------------------------------------ */
2808 #ifdef CONFIG_PROC_FS
2810 static struct sock *udp_get_first(struct seq_file *seq, int start)
2812 struct sock *sk;
2813 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2814 struct udp_iter_state *state = seq->private;
2815 struct net *net = seq_file_net(seq);
2817 for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2818 ++state->bucket) {
2819 struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2821 if (hlist_empty(&hslot->head))
2822 continue;
2824 spin_lock_bh(&hslot->lock);
2825 sk_for_each(sk, &hslot->head) {
2826 if (!net_eq(sock_net(sk), net))
2827 continue;
2828 if (sk->sk_family == afinfo->family)
2829 goto found;
2831 spin_unlock_bh(&hslot->lock);
2833 sk = NULL;
2834 found:
2835 return sk;
2838 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2840 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2841 struct udp_iter_state *state = seq->private;
2842 struct net *net = seq_file_net(seq);
2844 do {
2845 sk = sk_next(sk);
2846 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family));
2848 if (!sk) {
2849 if (state->bucket <= afinfo->udp_table->mask)
2850 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2851 return udp_get_first(seq, state->bucket + 1);
2853 return sk;
2856 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2858 struct sock *sk = udp_get_first(seq, 0);
2860 if (sk)
2861 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2862 --pos;
2863 return pos ? NULL : sk;
2866 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2868 struct udp_iter_state *state = seq->private;
2869 state->bucket = MAX_UDP_PORTS;
2871 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2873 EXPORT_SYMBOL(udp_seq_start);
2875 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2877 struct sock *sk;
2879 if (v == SEQ_START_TOKEN)
2880 sk = udp_get_idx(seq, 0);
2881 else
2882 sk = udp_get_next(seq, v);
2884 ++*pos;
2885 return sk;
2887 EXPORT_SYMBOL(udp_seq_next);
2889 void udp_seq_stop(struct seq_file *seq, void *v)
2891 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2892 struct udp_iter_state *state = seq->private;
2894 if (state->bucket <= afinfo->udp_table->mask)
2895 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2897 EXPORT_SYMBOL(udp_seq_stop);
2899 /* ------------------------------------------------------------------------ */
2900 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2901 int bucket)
2903 struct inet_sock *inet = inet_sk(sp);
2904 __be32 dest = inet->inet_daddr;
2905 __be32 src = inet->inet_rcv_saddr;
2906 __u16 destp = ntohs(inet->inet_dport);
2907 __u16 srcp = ntohs(inet->inet_sport);
2909 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2910 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
2911 bucket, src, srcp, dest, destp, sp->sk_state,
2912 sk_wmem_alloc_get(sp),
2913 udp_rqueue_get(sp),
2914 0, 0L, 0,
2915 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2916 0, sock_i_ino(sp),
2917 refcount_read(&sp->sk_refcnt), sp,
2918 atomic_read(&sp->sk_drops));
2921 int udp4_seq_show(struct seq_file *seq, void *v)
2923 seq_setwidth(seq, 127);
2924 if (v == SEQ_START_TOKEN)
2925 seq_puts(seq, " sl local_address rem_address st tx_queue "
2926 "rx_queue tr tm->when retrnsmt uid timeout "
2927 "inode ref pointer drops");
2928 else {
2929 struct udp_iter_state *state = seq->private;
2931 udp4_format_sock(v, seq, state->bucket);
2933 seq_pad(seq, '\n');
2934 return 0;
2937 const struct seq_operations udp_seq_ops = {
2938 .start = udp_seq_start,
2939 .next = udp_seq_next,
2940 .stop = udp_seq_stop,
2941 .show = udp4_seq_show,
2943 EXPORT_SYMBOL(udp_seq_ops);
2945 static struct udp_seq_afinfo udp4_seq_afinfo = {
2946 .family = AF_INET,
2947 .udp_table = &udp_table,
2950 static int __net_init udp4_proc_init_net(struct net *net)
2952 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
2953 sizeof(struct udp_iter_state), &udp4_seq_afinfo))
2954 return -ENOMEM;
2955 return 0;
2958 static void __net_exit udp4_proc_exit_net(struct net *net)
2960 remove_proc_entry("udp", net->proc_net);
2963 static struct pernet_operations udp4_net_ops = {
2964 .init = udp4_proc_init_net,
2965 .exit = udp4_proc_exit_net,
2968 int __init udp4_proc_init(void)
2970 return register_pernet_subsys(&udp4_net_ops);
2973 void udp4_proc_exit(void)
2975 unregister_pernet_subsys(&udp4_net_ops);
2977 #endif /* CONFIG_PROC_FS */
2979 static __initdata unsigned long uhash_entries;
2980 static int __init set_uhash_entries(char *str)
2982 ssize_t ret;
2984 if (!str)
2985 return 0;
2987 ret = kstrtoul(str, 0, &uhash_entries);
2988 if (ret)
2989 return 0;
2991 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2992 uhash_entries = UDP_HTABLE_SIZE_MIN;
2993 return 1;
2995 __setup("uhash_entries=", set_uhash_entries);
2997 void __init udp_table_init(struct udp_table *table, const char *name)
2999 unsigned int i;
3001 table->hash = alloc_large_system_hash(name,
3002 2 * sizeof(struct udp_hslot),
3003 uhash_entries,
3004 21, /* one slot per 2 MB */
3006 &table->log,
3007 &table->mask,
3008 UDP_HTABLE_SIZE_MIN,
3009 64 * 1024);
3011 table->hash2 = table->hash + (table->mask + 1);
3012 for (i = 0; i <= table->mask; i++) {
3013 INIT_HLIST_HEAD(&table->hash[i].head);
3014 table->hash[i].count = 0;
3015 spin_lock_init(&table->hash[i].lock);
3017 for (i = 0; i <= table->mask; i++) {
3018 INIT_HLIST_HEAD(&table->hash2[i].head);
3019 table->hash2[i].count = 0;
3020 spin_lock_init(&table->hash2[i].lock);
3024 u32 udp_flow_hashrnd(void)
3026 static u32 hashrnd __read_mostly;
3028 net_get_random_once(&hashrnd, sizeof(hashrnd));
3030 return hashrnd;
3032 EXPORT_SYMBOL(udp_flow_hashrnd);
3034 static void __udp_sysctl_init(struct net *net)
3036 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3037 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3039 #ifdef CONFIG_NET_L3_MASTER_DEV
3040 net->ipv4.sysctl_udp_l3mdev_accept = 0;
3041 #endif
3044 static int __net_init udp_sysctl_init(struct net *net)
3046 __udp_sysctl_init(net);
3047 return 0;
3050 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3051 .init = udp_sysctl_init,
3054 void __init udp_init(void)
3056 unsigned long limit;
3057 unsigned int i;
3059 udp_table_init(&udp_table, "UDP");
3060 limit = nr_free_buffer_pages() / 8;
3061 limit = max(limit, 128UL);
3062 sysctl_udp_mem[0] = limit / 4 * 3;
3063 sysctl_udp_mem[1] = limit;
3064 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3066 __udp_sysctl_init(&init_net);
3068 /* 16 spinlocks per cpu */
3069 udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3070 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3071 GFP_KERNEL);
3072 if (!udp_busylocks)
3073 panic("UDP: failed to alloc udp_busylocks\n");
3074 for (i = 0; i < (1U << udp_busylocks_log); i++)
3075 spin_lock_init(udp_busylocks + i);
3077 if (register_pernet_subsys(&udp_sysctl_ops))
3078 panic("UDP: failed to init sysctl parameters.\n");