ARM: dma-api: fix max_pfn off-by-one error in __dma_supported()
[linux/fpc-iii.git] / net / mac80211 / sta_info.c
blob0f5f406788852e2ee052fbeac52f236a081534a2
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2002-2005, Instant802 Networks, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2013-2014 Intel Mobile Communications GmbH
6 * Copyright (C) 2015 - 2017 Intel Deutschland GmbH
7 * Copyright (C) 2018-2019 Intel Corporation
8 */
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/etherdevice.h>
13 #include <linux/netdevice.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/skbuff.h>
17 #include <linux/if_arp.h>
18 #include <linux/timer.h>
19 #include <linux/rtnetlink.h>
21 #include <net/codel.h>
22 #include <net/mac80211.h>
23 #include "ieee80211_i.h"
24 #include "driver-ops.h"
25 #include "rate.h"
26 #include "sta_info.h"
27 #include "debugfs_sta.h"
28 #include "mesh.h"
29 #include "wme.h"
31 /**
32 * DOC: STA information lifetime rules
34 * STA info structures (&struct sta_info) are managed in a hash table
35 * for faster lookup and a list for iteration. They are managed using
36 * RCU, i.e. access to the list and hash table is protected by RCU.
38 * Upon allocating a STA info structure with sta_info_alloc(), the caller
39 * owns that structure. It must then insert it into the hash table using
40 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
41 * case (which acquires an rcu read section but must not be called from
42 * within one) will the pointer still be valid after the call. Note that
43 * the caller may not do much with the STA info before inserting it, in
44 * particular, it may not start any mesh peer link management or add
45 * encryption keys.
47 * When the insertion fails (sta_info_insert()) returns non-zero), the
48 * structure will have been freed by sta_info_insert()!
50 * Station entries are added by mac80211 when you establish a link with a
51 * peer. This means different things for the different type of interfaces
52 * we support. For a regular station this mean we add the AP sta when we
53 * receive an association response from the AP. For IBSS this occurs when
54 * get to know about a peer on the same IBSS. For WDS we add the sta for
55 * the peer immediately upon device open. When using AP mode we add stations
56 * for each respective station upon request from userspace through nl80211.
58 * In order to remove a STA info structure, various sta_info_destroy_*()
59 * calls are available.
61 * There is no concept of ownership on a STA entry, each structure is
62 * owned by the global hash table/list until it is removed. All users of
63 * the structure need to be RCU protected so that the structure won't be
64 * freed before they are done using it.
67 static const struct rhashtable_params sta_rht_params = {
68 .nelem_hint = 3, /* start small */
69 .automatic_shrinking = true,
70 .head_offset = offsetof(struct sta_info, hash_node),
71 .key_offset = offsetof(struct sta_info, addr),
72 .key_len = ETH_ALEN,
73 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE,
76 /* Caller must hold local->sta_mtx */
77 static int sta_info_hash_del(struct ieee80211_local *local,
78 struct sta_info *sta)
80 return rhltable_remove(&local->sta_hash, &sta->hash_node,
81 sta_rht_params);
84 static void __cleanup_single_sta(struct sta_info *sta)
86 int ac, i;
87 struct tid_ampdu_tx *tid_tx;
88 struct ieee80211_sub_if_data *sdata = sta->sdata;
89 struct ieee80211_local *local = sdata->local;
90 struct ps_data *ps;
92 if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
93 test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
94 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
95 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
96 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
97 ps = &sdata->bss->ps;
98 else if (ieee80211_vif_is_mesh(&sdata->vif))
99 ps = &sdata->u.mesh.ps;
100 else
101 return;
103 clear_sta_flag(sta, WLAN_STA_PS_STA);
104 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
105 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
107 atomic_dec(&ps->num_sta_ps);
110 if (sta->sta.txq[0]) {
111 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
112 struct txq_info *txqi;
114 if (!sta->sta.txq[i])
115 continue;
117 txqi = to_txq_info(sta->sta.txq[i]);
119 ieee80211_txq_purge(local, txqi);
123 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
124 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
125 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
126 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
129 if (ieee80211_vif_is_mesh(&sdata->vif))
130 mesh_sta_cleanup(sta);
132 cancel_work_sync(&sta->drv_deliver_wk);
135 * Destroy aggregation state here. It would be nice to wait for the
136 * driver to finish aggregation stop and then clean up, but for now
137 * drivers have to handle aggregation stop being requested, followed
138 * directly by station destruction.
140 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
141 kfree(sta->ampdu_mlme.tid_start_tx[i]);
142 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
143 if (!tid_tx)
144 continue;
145 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
146 kfree(tid_tx);
150 static void cleanup_single_sta(struct sta_info *sta)
152 struct ieee80211_sub_if_data *sdata = sta->sdata;
153 struct ieee80211_local *local = sdata->local;
155 __cleanup_single_sta(sta);
156 sta_info_free(local, sta);
159 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local,
160 const u8 *addr)
162 return rhltable_lookup(&local->sta_hash, addr, sta_rht_params);
165 /* protected by RCU */
166 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
167 const u8 *addr)
169 struct ieee80211_local *local = sdata->local;
170 struct rhlist_head *tmp;
171 struct sta_info *sta;
173 rcu_read_lock();
174 for_each_sta_info(local, addr, sta, tmp) {
175 if (sta->sdata == sdata) {
176 rcu_read_unlock();
177 /* this is safe as the caller must already hold
178 * another rcu read section or the mutex
180 return sta;
183 rcu_read_unlock();
184 return NULL;
188 * Get sta info either from the specified interface
189 * or from one of its vlans
191 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
192 const u8 *addr)
194 struct ieee80211_local *local = sdata->local;
195 struct rhlist_head *tmp;
196 struct sta_info *sta;
198 rcu_read_lock();
199 for_each_sta_info(local, addr, sta, tmp) {
200 if (sta->sdata == sdata ||
201 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
202 rcu_read_unlock();
203 /* this is safe as the caller must already hold
204 * another rcu read section or the mutex
206 return sta;
209 rcu_read_unlock();
210 return NULL;
213 struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local,
214 const u8 *sta_addr, const u8 *vif_addr)
216 struct rhlist_head *tmp;
217 struct sta_info *sta;
219 for_each_sta_info(local, sta_addr, sta, tmp) {
220 if (ether_addr_equal(vif_addr, sta->sdata->vif.addr))
221 return sta;
224 return NULL;
227 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
228 int idx)
230 struct ieee80211_local *local = sdata->local;
231 struct sta_info *sta;
232 int i = 0;
234 list_for_each_entry_rcu(sta, &local->sta_list, list) {
235 if (sdata != sta->sdata)
236 continue;
237 if (i < idx) {
238 ++i;
239 continue;
241 return sta;
244 return NULL;
248 * sta_info_free - free STA
250 * @local: pointer to the global information
251 * @sta: STA info to free
253 * This function must undo everything done by sta_info_alloc()
254 * that may happen before sta_info_insert(). It may only be
255 * called when sta_info_insert() has not been attempted (and
256 * if that fails, the station is freed anyway.)
258 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
260 if (sta->rate_ctrl)
261 rate_control_free_sta(sta);
263 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
265 if (sta->sta.txq[0])
266 kfree(to_txq_info(sta->sta.txq[0]));
267 kfree(rcu_dereference_raw(sta->sta.rates));
268 #ifdef CONFIG_MAC80211_MESH
269 kfree(sta->mesh);
270 #endif
271 free_percpu(sta->pcpu_rx_stats);
272 kfree(sta);
275 /* Caller must hold local->sta_mtx */
276 static int sta_info_hash_add(struct ieee80211_local *local,
277 struct sta_info *sta)
279 return rhltable_insert(&local->sta_hash, &sta->hash_node,
280 sta_rht_params);
283 static void sta_deliver_ps_frames(struct work_struct *wk)
285 struct sta_info *sta;
287 sta = container_of(wk, struct sta_info, drv_deliver_wk);
289 if (sta->dead)
290 return;
292 local_bh_disable();
293 if (!test_sta_flag(sta, WLAN_STA_PS_STA))
294 ieee80211_sta_ps_deliver_wakeup(sta);
295 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
296 ieee80211_sta_ps_deliver_poll_response(sta);
297 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
298 ieee80211_sta_ps_deliver_uapsd(sta);
299 local_bh_enable();
302 static int sta_prepare_rate_control(struct ieee80211_local *local,
303 struct sta_info *sta, gfp_t gfp)
305 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL))
306 return 0;
308 sta->rate_ctrl = local->rate_ctrl;
309 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
310 sta, gfp);
311 if (!sta->rate_ctrl_priv)
312 return -ENOMEM;
314 return 0;
317 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
318 const u8 *addr, gfp_t gfp)
320 struct ieee80211_local *local = sdata->local;
321 struct ieee80211_hw *hw = &local->hw;
322 struct sta_info *sta;
323 int i;
325 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);
326 if (!sta)
327 return NULL;
329 if (ieee80211_hw_check(hw, USES_RSS)) {
330 sta->pcpu_rx_stats =
331 alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp);
332 if (!sta->pcpu_rx_stats)
333 goto free;
336 spin_lock_init(&sta->lock);
337 spin_lock_init(&sta->ps_lock);
338 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
339 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
340 mutex_init(&sta->ampdu_mlme.mtx);
341 #ifdef CONFIG_MAC80211_MESH
342 if (ieee80211_vif_is_mesh(&sdata->vif)) {
343 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp);
344 if (!sta->mesh)
345 goto free;
346 sta->mesh->plink_sta = sta;
347 spin_lock_init(&sta->mesh->plink_lock);
348 if (ieee80211_vif_is_mesh(&sdata->vif) &&
349 !sdata->u.mesh.user_mpm)
350 timer_setup(&sta->mesh->plink_timer, mesh_plink_timer,
352 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
354 #endif
356 memcpy(sta->addr, addr, ETH_ALEN);
357 memcpy(sta->sta.addr, addr, ETH_ALEN);
358 sta->sta.max_rx_aggregation_subframes =
359 local->hw.max_rx_aggregation_subframes;
361 /* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only.
362 * The Tx path starts to use a key as soon as the key slot ptk_idx
363 * references to is not NULL. To not use the initial Rx-only key
364 * prematurely for Tx initialize ptk_idx to an impossible PTK keyid
365 * which always will refer to a NULL key.
367 BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX);
368 sta->ptk_idx = INVALID_PTK_KEYIDX;
370 sta->local = local;
371 sta->sdata = sdata;
372 sta->rx_stats.last_rx = jiffies;
374 u64_stats_init(&sta->rx_stats.syncp);
376 sta->sta_state = IEEE80211_STA_NONE;
378 /* Mark TID as unreserved */
379 sta->reserved_tid = IEEE80211_TID_UNRESERVED;
381 sta->last_connected = ktime_get_seconds();
382 ewma_signal_init(&sta->rx_stats_avg.signal);
383 ewma_avg_signal_init(&sta->status_stats.avg_ack_signal);
384 for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++)
385 ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]);
387 if (local->ops->wake_tx_queue) {
388 void *txq_data;
389 int size = sizeof(struct txq_info) +
390 ALIGN(hw->txq_data_size, sizeof(void *));
392 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp);
393 if (!txq_data)
394 goto free;
396 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
397 struct txq_info *txq = txq_data + i * size;
399 /* might not do anything for the bufferable MMPDU TXQ */
400 ieee80211_txq_init(sdata, sta, txq, i);
404 if (sta_prepare_rate_control(local, sta, gfp))
405 goto free_txq;
407 sta->airtime_weight = IEEE80211_DEFAULT_AIRTIME_WEIGHT;
409 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
410 skb_queue_head_init(&sta->ps_tx_buf[i]);
411 skb_queue_head_init(&sta->tx_filtered[i]);
412 sta->airtime[i].deficit = sta->airtime_weight;
413 atomic_set(&sta->airtime[i].aql_tx_pending, 0);
414 sta->airtime[i].aql_limit_low = local->aql_txq_limit_low[i];
415 sta->airtime[i].aql_limit_high = local->aql_txq_limit_high[i];
418 for (i = 0; i < IEEE80211_NUM_TIDS; i++)
419 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
421 for (i = 0; i < NUM_NL80211_BANDS; i++) {
422 u32 mandatory = 0;
423 int r;
425 if (!hw->wiphy->bands[i])
426 continue;
428 switch (i) {
429 case NL80211_BAND_2GHZ:
431 * We use both here, even if we cannot really know for
432 * sure the station will support both, but the only use
433 * for this is when we don't know anything yet and send
434 * management frames, and then we'll pick the lowest
435 * possible rate anyway.
436 * If we don't include _G here, we cannot find a rate
437 * in P2P, and thus trigger the WARN_ONCE() in rate.c
439 mandatory = IEEE80211_RATE_MANDATORY_B |
440 IEEE80211_RATE_MANDATORY_G;
441 break;
442 case NL80211_BAND_5GHZ:
443 mandatory = IEEE80211_RATE_MANDATORY_A;
444 break;
445 case NL80211_BAND_60GHZ:
446 WARN_ON(1);
447 mandatory = 0;
448 break;
451 for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) {
452 struct ieee80211_rate *rate;
454 rate = &hw->wiphy->bands[i]->bitrates[r];
456 if (!(rate->flags & mandatory))
457 continue;
458 sta->sta.supp_rates[i] |= BIT(r);
462 sta->sta.smps_mode = IEEE80211_SMPS_OFF;
463 if (sdata->vif.type == NL80211_IFTYPE_AP ||
464 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
465 struct ieee80211_supported_band *sband;
466 u8 smps;
468 sband = ieee80211_get_sband(sdata);
469 if (!sband)
470 goto free_txq;
472 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
473 IEEE80211_HT_CAP_SM_PS_SHIFT;
475 * Assume that hostapd advertises our caps in the beacon and
476 * this is the known_smps_mode for a station that just assciated
478 switch (smps) {
479 case WLAN_HT_SMPS_CONTROL_DISABLED:
480 sta->known_smps_mode = IEEE80211_SMPS_OFF;
481 break;
482 case WLAN_HT_SMPS_CONTROL_STATIC:
483 sta->known_smps_mode = IEEE80211_SMPS_STATIC;
484 break;
485 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
486 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
487 break;
488 default:
489 WARN_ON(1);
493 sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA;
495 sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD;
496 sta->cparams.target = MS2TIME(20);
497 sta->cparams.interval = MS2TIME(100);
498 sta->cparams.ecn = true;
500 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
502 return sta;
504 free_txq:
505 if (sta->sta.txq[0])
506 kfree(to_txq_info(sta->sta.txq[0]));
507 free:
508 free_percpu(sta->pcpu_rx_stats);
509 #ifdef CONFIG_MAC80211_MESH
510 kfree(sta->mesh);
511 #endif
512 kfree(sta);
513 return NULL;
516 static int sta_info_insert_check(struct sta_info *sta)
518 struct ieee80211_sub_if_data *sdata = sta->sdata;
521 * Can't be a WARN_ON because it can be triggered through a race:
522 * something inserts a STA (on one CPU) without holding the RTNL
523 * and another CPU turns off the net device.
525 if (unlikely(!ieee80211_sdata_running(sdata)))
526 return -ENETDOWN;
528 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
529 is_multicast_ether_addr(sta->sta.addr)))
530 return -EINVAL;
532 /* The RCU read lock is required by rhashtable due to
533 * asynchronous resize/rehash. We also require the mutex
534 * for correctness.
536 rcu_read_lock();
537 lockdep_assert_held(&sdata->local->sta_mtx);
538 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) &&
539 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) {
540 rcu_read_unlock();
541 return -ENOTUNIQ;
543 rcu_read_unlock();
545 return 0;
548 static int sta_info_insert_drv_state(struct ieee80211_local *local,
549 struct ieee80211_sub_if_data *sdata,
550 struct sta_info *sta)
552 enum ieee80211_sta_state state;
553 int err = 0;
555 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
556 err = drv_sta_state(local, sdata, sta, state, state + 1);
557 if (err)
558 break;
561 if (!err) {
563 * Drivers using legacy sta_add/sta_remove callbacks only
564 * get uploaded set to true after sta_add is called.
566 if (!local->ops->sta_add)
567 sta->uploaded = true;
568 return 0;
571 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
572 sdata_info(sdata,
573 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
574 sta->sta.addr, state + 1, err);
575 err = 0;
578 /* unwind on error */
579 for (; state > IEEE80211_STA_NOTEXIST; state--)
580 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
582 return err;
585 static void
586 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata)
588 struct ieee80211_local *local = sdata->local;
589 bool allow_p2p_go_ps = sdata->vif.p2p;
590 struct sta_info *sta;
592 rcu_read_lock();
593 list_for_each_entry_rcu(sta, &local->sta_list, list) {
594 if (sdata != sta->sdata ||
595 !test_sta_flag(sta, WLAN_STA_ASSOC))
596 continue;
597 if (!sta->sta.support_p2p_ps) {
598 allow_p2p_go_ps = false;
599 break;
602 rcu_read_unlock();
604 if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) {
605 sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps;
606 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS);
611 * should be called with sta_mtx locked
612 * this function replaces the mutex lock
613 * with a RCU lock
615 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
617 struct ieee80211_local *local = sta->local;
618 struct ieee80211_sub_if_data *sdata = sta->sdata;
619 struct station_info *sinfo = NULL;
620 int err = 0;
622 lockdep_assert_held(&local->sta_mtx);
624 /* check if STA exists already */
625 if (sta_info_get_bss(sdata, sta->sta.addr)) {
626 err = -EEXIST;
627 goto out_err;
630 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL);
631 if (!sinfo) {
632 err = -ENOMEM;
633 goto out_err;
636 local->num_sta++;
637 local->sta_generation++;
638 smp_mb();
640 /* simplify things and don't accept BA sessions yet */
641 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
643 /* make the station visible */
644 err = sta_info_hash_add(local, sta);
645 if (err)
646 goto out_drop_sta;
648 list_add_tail_rcu(&sta->list, &local->sta_list);
650 /* notify driver */
651 err = sta_info_insert_drv_state(local, sdata, sta);
652 if (err)
653 goto out_remove;
655 set_sta_flag(sta, WLAN_STA_INSERTED);
657 if (sta->sta_state >= IEEE80211_STA_ASSOC) {
658 ieee80211_recalc_min_chandef(sta->sdata);
659 if (!sta->sta.support_p2p_ps)
660 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
663 /* accept BA sessions now */
664 clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
666 ieee80211_sta_debugfs_add(sta);
667 rate_control_add_sta_debugfs(sta);
669 sinfo->generation = local->sta_generation;
670 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
671 kfree(sinfo);
673 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
675 /* move reference to rcu-protected */
676 rcu_read_lock();
677 mutex_unlock(&local->sta_mtx);
679 if (ieee80211_vif_is_mesh(&sdata->vif))
680 mesh_accept_plinks_update(sdata);
682 return 0;
683 out_remove:
684 sta_info_hash_del(local, sta);
685 list_del_rcu(&sta->list);
686 out_drop_sta:
687 local->num_sta--;
688 synchronize_net();
689 __cleanup_single_sta(sta);
690 out_err:
691 mutex_unlock(&local->sta_mtx);
692 kfree(sinfo);
693 rcu_read_lock();
694 return err;
697 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
699 struct ieee80211_local *local = sta->local;
700 int err;
702 might_sleep();
704 mutex_lock(&local->sta_mtx);
706 err = sta_info_insert_check(sta);
707 if (err) {
708 mutex_unlock(&local->sta_mtx);
709 rcu_read_lock();
710 goto out_free;
713 err = sta_info_insert_finish(sta);
714 if (err)
715 goto out_free;
717 return 0;
718 out_free:
719 sta_info_free(local, sta);
720 return err;
723 int sta_info_insert(struct sta_info *sta)
725 int err = sta_info_insert_rcu(sta);
727 rcu_read_unlock();
729 return err;
732 static inline void __bss_tim_set(u8 *tim, u16 id)
735 * This format has been mandated by the IEEE specifications,
736 * so this line may not be changed to use the __set_bit() format.
738 tim[id / 8] |= (1 << (id % 8));
741 static inline void __bss_tim_clear(u8 *tim, u16 id)
744 * This format has been mandated by the IEEE specifications,
745 * so this line may not be changed to use the __clear_bit() format.
747 tim[id / 8] &= ~(1 << (id % 8));
750 static inline bool __bss_tim_get(u8 *tim, u16 id)
753 * This format has been mandated by the IEEE specifications,
754 * so this line may not be changed to use the test_bit() format.
756 return tim[id / 8] & (1 << (id % 8));
759 static unsigned long ieee80211_tids_for_ac(int ac)
761 /* If we ever support TIDs > 7, this obviously needs to be adjusted */
762 switch (ac) {
763 case IEEE80211_AC_VO:
764 return BIT(6) | BIT(7);
765 case IEEE80211_AC_VI:
766 return BIT(4) | BIT(5);
767 case IEEE80211_AC_BE:
768 return BIT(0) | BIT(3);
769 case IEEE80211_AC_BK:
770 return BIT(1) | BIT(2);
771 default:
772 WARN_ON(1);
773 return 0;
777 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending)
779 struct ieee80211_local *local = sta->local;
780 struct ps_data *ps;
781 bool indicate_tim = false;
782 u8 ignore_for_tim = sta->sta.uapsd_queues;
783 int ac;
784 u16 id = sta->sta.aid;
786 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
787 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
788 if (WARN_ON_ONCE(!sta->sdata->bss))
789 return;
791 ps = &sta->sdata->bss->ps;
792 #ifdef CONFIG_MAC80211_MESH
793 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
794 ps = &sta->sdata->u.mesh.ps;
795 #endif
796 } else {
797 return;
800 /* No need to do anything if the driver does all */
801 if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim)
802 return;
804 if (sta->dead)
805 goto done;
808 * If all ACs are delivery-enabled then we should build
809 * the TIM bit for all ACs anyway; if only some are then
810 * we ignore those and build the TIM bit using only the
811 * non-enabled ones.
813 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
814 ignore_for_tim = 0;
816 if (ignore_pending)
817 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1;
819 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
820 unsigned long tids;
822 if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac])
823 continue;
825 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
826 !skb_queue_empty(&sta->ps_tx_buf[ac]);
827 if (indicate_tim)
828 break;
830 tids = ieee80211_tids_for_ac(ac);
832 indicate_tim |=
833 sta->driver_buffered_tids & tids;
834 indicate_tim |=
835 sta->txq_buffered_tids & tids;
838 done:
839 spin_lock_bh(&local->tim_lock);
841 if (indicate_tim == __bss_tim_get(ps->tim, id))
842 goto out_unlock;
844 if (indicate_tim)
845 __bss_tim_set(ps->tim, id);
846 else
847 __bss_tim_clear(ps->tim, id);
849 if (local->ops->set_tim && !WARN_ON(sta->dead)) {
850 local->tim_in_locked_section = true;
851 drv_set_tim(local, &sta->sta, indicate_tim);
852 local->tim_in_locked_section = false;
855 out_unlock:
856 spin_unlock_bh(&local->tim_lock);
859 void sta_info_recalc_tim(struct sta_info *sta)
861 __sta_info_recalc_tim(sta, false);
864 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
866 struct ieee80211_tx_info *info;
867 int timeout;
869 if (!skb)
870 return false;
872 info = IEEE80211_SKB_CB(skb);
874 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
875 timeout = (sta->listen_interval *
876 sta->sdata->vif.bss_conf.beacon_int *
877 32 / 15625) * HZ;
878 if (timeout < STA_TX_BUFFER_EXPIRE)
879 timeout = STA_TX_BUFFER_EXPIRE;
880 return time_after(jiffies, info->control.jiffies + timeout);
884 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
885 struct sta_info *sta, int ac)
887 unsigned long flags;
888 struct sk_buff *skb;
891 * First check for frames that should expire on the filtered
892 * queue. Frames here were rejected by the driver and are on
893 * a separate queue to avoid reordering with normal PS-buffered
894 * frames. They also aren't accounted for right now in the
895 * total_ps_buffered counter.
897 for (;;) {
898 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
899 skb = skb_peek(&sta->tx_filtered[ac]);
900 if (sta_info_buffer_expired(sta, skb))
901 skb = __skb_dequeue(&sta->tx_filtered[ac]);
902 else
903 skb = NULL;
904 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
907 * Frames are queued in order, so if this one
908 * hasn't expired yet we can stop testing. If
909 * we actually reached the end of the queue we
910 * also need to stop, of course.
912 if (!skb)
913 break;
914 ieee80211_free_txskb(&local->hw, skb);
918 * Now also check the normal PS-buffered queue, this will
919 * only find something if the filtered queue was emptied
920 * since the filtered frames are all before the normal PS
921 * buffered frames.
923 for (;;) {
924 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
925 skb = skb_peek(&sta->ps_tx_buf[ac]);
926 if (sta_info_buffer_expired(sta, skb))
927 skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
928 else
929 skb = NULL;
930 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
933 * frames are queued in order, so if this one
934 * hasn't expired yet (or we reached the end of
935 * the queue) we can stop testing
937 if (!skb)
938 break;
940 local->total_ps_buffered--;
941 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
942 sta->sta.addr);
943 ieee80211_free_txskb(&local->hw, skb);
947 * Finally, recalculate the TIM bit for this station -- it might
948 * now be clear because the station was too slow to retrieve its
949 * frames.
951 sta_info_recalc_tim(sta);
954 * Return whether there are any frames still buffered, this is
955 * used to check whether the cleanup timer still needs to run,
956 * if there are no frames we don't need to rearm the timer.
958 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
959 skb_queue_empty(&sta->tx_filtered[ac]));
962 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
963 struct sta_info *sta)
965 bool have_buffered = false;
966 int ac;
968 /* This is only necessary for stations on BSS/MBSS interfaces */
969 if (!sta->sdata->bss &&
970 !ieee80211_vif_is_mesh(&sta->sdata->vif))
971 return false;
973 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
974 have_buffered |=
975 sta_info_cleanup_expire_buffered_ac(local, sta, ac);
977 return have_buffered;
980 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
982 struct ieee80211_local *local;
983 struct ieee80211_sub_if_data *sdata;
984 int ret;
986 might_sleep();
988 if (!sta)
989 return -ENOENT;
991 local = sta->local;
992 sdata = sta->sdata;
994 lockdep_assert_held(&local->sta_mtx);
997 * Before removing the station from the driver and
998 * rate control, it might still start new aggregation
999 * sessions -- block that to make sure the tear-down
1000 * will be sufficient.
1002 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
1003 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
1006 * Before removing the station from the driver there might be pending
1007 * rx frames on RSS queues sent prior to the disassociation - wait for
1008 * all such frames to be processed.
1010 drv_sync_rx_queues(local, sta);
1012 ret = sta_info_hash_del(local, sta);
1013 if (WARN_ON(ret))
1014 return ret;
1017 * for TDLS peers, make sure to return to the base channel before
1018 * removal.
1020 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
1021 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
1022 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
1025 list_del_rcu(&sta->list);
1026 sta->removed = true;
1028 drv_sta_pre_rcu_remove(local, sta->sdata, sta);
1030 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1031 rcu_access_pointer(sdata->u.vlan.sta) == sta)
1032 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
1034 return 0;
1037 static void __sta_info_destroy_part2(struct sta_info *sta)
1039 struct ieee80211_local *local = sta->local;
1040 struct ieee80211_sub_if_data *sdata = sta->sdata;
1041 struct station_info *sinfo;
1042 int ret;
1045 * NOTE: This assumes at least synchronize_net() was done
1046 * after _part1 and before _part2!
1049 might_sleep();
1050 lockdep_assert_held(&local->sta_mtx);
1052 /* now keys can no longer be reached */
1053 ieee80211_free_sta_keys(local, sta);
1055 /* disable TIM bit - last chance to tell driver */
1056 __sta_info_recalc_tim(sta, true);
1058 sta->dead = true;
1060 local->num_sta--;
1061 local->sta_generation++;
1063 while (sta->sta_state > IEEE80211_STA_NONE) {
1064 ret = sta_info_move_state(sta, sta->sta_state - 1);
1065 if (ret) {
1066 WARN_ON_ONCE(1);
1067 break;
1071 if (sta->uploaded) {
1072 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
1073 IEEE80211_STA_NOTEXIST);
1074 WARN_ON_ONCE(ret != 0);
1077 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
1079 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
1080 if (sinfo)
1081 sta_set_sinfo(sta, sinfo, true);
1082 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
1083 kfree(sinfo);
1085 ieee80211_sta_debugfs_remove(sta);
1087 cleanup_single_sta(sta);
1090 int __must_check __sta_info_destroy(struct sta_info *sta)
1092 int err = __sta_info_destroy_part1(sta);
1094 if (err)
1095 return err;
1097 synchronize_net();
1099 __sta_info_destroy_part2(sta);
1101 return 0;
1104 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
1106 struct sta_info *sta;
1107 int ret;
1109 mutex_lock(&sdata->local->sta_mtx);
1110 sta = sta_info_get(sdata, addr);
1111 ret = __sta_info_destroy(sta);
1112 mutex_unlock(&sdata->local->sta_mtx);
1114 return ret;
1117 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
1118 const u8 *addr)
1120 struct sta_info *sta;
1121 int ret;
1123 mutex_lock(&sdata->local->sta_mtx);
1124 sta = sta_info_get_bss(sdata, addr);
1125 ret = __sta_info_destroy(sta);
1126 mutex_unlock(&sdata->local->sta_mtx);
1128 return ret;
1131 static void sta_info_cleanup(struct timer_list *t)
1133 struct ieee80211_local *local = from_timer(local, t, sta_cleanup);
1134 struct sta_info *sta;
1135 bool timer_needed = false;
1137 rcu_read_lock();
1138 list_for_each_entry_rcu(sta, &local->sta_list, list)
1139 if (sta_info_cleanup_expire_buffered(local, sta))
1140 timer_needed = true;
1141 rcu_read_unlock();
1143 if (local->quiescing)
1144 return;
1146 if (!timer_needed)
1147 return;
1149 mod_timer(&local->sta_cleanup,
1150 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
1153 int sta_info_init(struct ieee80211_local *local)
1155 int err;
1157 err = rhltable_init(&local->sta_hash, &sta_rht_params);
1158 if (err)
1159 return err;
1161 spin_lock_init(&local->tim_lock);
1162 mutex_init(&local->sta_mtx);
1163 INIT_LIST_HEAD(&local->sta_list);
1165 timer_setup(&local->sta_cleanup, sta_info_cleanup, 0);
1166 return 0;
1169 void sta_info_stop(struct ieee80211_local *local)
1171 del_timer_sync(&local->sta_cleanup);
1172 rhltable_destroy(&local->sta_hash);
1176 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
1178 struct ieee80211_local *local = sdata->local;
1179 struct sta_info *sta, *tmp;
1180 LIST_HEAD(free_list);
1181 int ret = 0;
1183 might_sleep();
1185 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
1186 WARN_ON(vlans && !sdata->bss);
1188 mutex_lock(&local->sta_mtx);
1189 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1190 if (sdata == sta->sdata ||
1191 (vlans && sdata->bss == sta->sdata->bss)) {
1192 if (!WARN_ON(__sta_info_destroy_part1(sta)))
1193 list_add(&sta->free_list, &free_list);
1194 ret++;
1198 if (!list_empty(&free_list)) {
1199 synchronize_net();
1200 list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1201 __sta_info_destroy_part2(sta);
1203 mutex_unlock(&local->sta_mtx);
1205 return ret;
1208 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1209 unsigned long exp_time)
1211 struct ieee80211_local *local = sdata->local;
1212 struct sta_info *sta, *tmp;
1214 mutex_lock(&local->sta_mtx);
1216 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1217 unsigned long last_active = ieee80211_sta_last_active(sta);
1219 if (sdata != sta->sdata)
1220 continue;
1222 if (time_is_before_jiffies(last_active + exp_time)) {
1223 sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1224 sta->sta.addr);
1226 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1227 test_sta_flag(sta, WLAN_STA_PS_STA))
1228 atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1230 WARN_ON(__sta_info_destroy(sta));
1234 mutex_unlock(&local->sta_mtx);
1237 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1238 const u8 *addr,
1239 const u8 *localaddr)
1241 struct ieee80211_local *local = hw_to_local(hw);
1242 struct rhlist_head *tmp;
1243 struct sta_info *sta;
1246 * Just return a random station if localaddr is NULL
1247 * ... first in list.
1249 for_each_sta_info(local, addr, sta, tmp) {
1250 if (localaddr &&
1251 !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1252 continue;
1253 if (!sta->uploaded)
1254 return NULL;
1255 return &sta->sta;
1258 return NULL;
1260 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1262 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1263 const u8 *addr)
1265 struct sta_info *sta;
1267 if (!vif)
1268 return NULL;
1270 sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1271 if (!sta)
1272 return NULL;
1274 if (!sta->uploaded)
1275 return NULL;
1277 return &sta->sta;
1279 EXPORT_SYMBOL(ieee80211_find_sta);
1281 /* powersave support code */
1282 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1284 struct ieee80211_sub_if_data *sdata = sta->sdata;
1285 struct ieee80211_local *local = sdata->local;
1286 struct sk_buff_head pending;
1287 int filtered = 0, buffered = 0, ac, i;
1288 unsigned long flags;
1289 struct ps_data *ps;
1291 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1292 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1293 u.ap);
1295 if (sdata->vif.type == NL80211_IFTYPE_AP)
1296 ps = &sdata->bss->ps;
1297 else if (ieee80211_vif_is_mesh(&sdata->vif))
1298 ps = &sdata->u.mesh.ps;
1299 else
1300 return;
1302 clear_sta_flag(sta, WLAN_STA_SP);
1304 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1305 sta->driver_buffered_tids = 0;
1306 sta->txq_buffered_tids = 0;
1308 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1309 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1311 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
1312 if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i]))
1313 continue;
1315 schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i]));
1318 skb_queue_head_init(&pending);
1320 /* sync with ieee80211_tx_h_unicast_ps_buf */
1321 spin_lock(&sta->ps_lock);
1322 /* Send all buffered frames to the station */
1323 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1324 int count = skb_queue_len(&pending), tmp;
1326 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1327 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1328 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1329 tmp = skb_queue_len(&pending);
1330 filtered += tmp - count;
1331 count = tmp;
1333 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1334 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1335 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1336 tmp = skb_queue_len(&pending);
1337 buffered += tmp - count;
1340 ieee80211_add_pending_skbs(local, &pending);
1342 /* now we're no longer in the deliver code */
1343 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1345 /* The station might have polled and then woken up before we responded,
1346 * so clear these flags now to avoid them sticking around.
1348 clear_sta_flag(sta, WLAN_STA_PSPOLL);
1349 clear_sta_flag(sta, WLAN_STA_UAPSD);
1350 spin_unlock(&sta->ps_lock);
1352 atomic_dec(&ps->num_sta_ps);
1354 /* This station just woke up and isn't aware of our SMPS state */
1355 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1356 !ieee80211_smps_is_restrictive(sta->known_smps_mode,
1357 sdata->smps_mode) &&
1358 sta->known_smps_mode != sdata->bss->req_smps &&
1359 sta_info_tx_streams(sta) != 1) {
1360 ht_dbg(sdata,
1361 "%pM just woke up and MIMO capable - update SMPS\n",
1362 sta->sta.addr);
1363 ieee80211_send_smps_action(sdata, sdata->bss->req_smps,
1364 sta->sta.addr,
1365 sdata->vif.bss_conf.bssid);
1368 local->total_ps_buffered -= buffered;
1370 sta_info_recalc_tim(sta);
1372 ps_dbg(sdata,
1373 "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n",
1374 sta->sta.addr, sta->sta.aid, filtered, buffered);
1376 ieee80211_check_fast_xmit(sta);
1379 static void ieee80211_send_null_response(struct sta_info *sta, int tid,
1380 enum ieee80211_frame_release_type reason,
1381 bool call_driver, bool more_data)
1383 struct ieee80211_sub_if_data *sdata = sta->sdata;
1384 struct ieee80211_local *local = sdata->local;
1385 struct ieee80211_qos_hdr *nullfunc;
1386 struct sk_buff *skb;
1387 int size = sizeof(*nullfunc);
1388 __le16 fc;
1389 bool qos = sta->sta.wme;
1390 struct ieee80211_tx_info *info;
1391 struct ieee80211_chanctx_conf *chanctx_conf;
1393 /* Don't send NDPs when STA is connected HE */
1394 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1395 !(sdata->u.mgd.flags & IEEE80211_STA_DISABLE_HE))
1396 return;
1398 if (qos) {
1399 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1400 IEEE80211_STYPE_QOS_NULLFUNC |
1401 IEEE80211_FCTL_FROMDS);
1402 } else {
1403 size -= 2;
1404 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1405 IEEE80211_STYPE_NULLFUNC |
1406 IEEE80211_FCTL_FROMDS);
1409 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1410 if (!skb)
1411 return;
1413 skb_reserve(skb, local->hw.extra_tx_headroom);
1415 nullfunc = skb_put(skb, size);
1416 nullfunc->frame_control = fc;
1417 nullfunc->duration_id = 0;
1418 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1419 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1420 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1421 nullfunc->seq_ctrl = 0;
1423 skb->priority = tid;
1424 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1425 if (qos) {
1426 nullfunc->qos_ctrl = cpu_to_le16(tid);
1428 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) {
1429 nullfunc->qos_ctrl |=
1430 cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1431 if (more_data)
1432 nullfunc->frame_control |=
1433 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1437 info = IEEE80211_SKB_CB(skb);
1440 * Tell TX path to send this frame even though the
1441 * STA may still remain is PS mode after this frame
1442 * exchange. Also set EOSP to indicate this packet
1443 * ends the poll/service period.
1445 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1446 IEEE80211_TX_STATUS_EOSP |
1447 IEEE80211_TX_CTL_REQ_TX_STATUS;
1449 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1451 if (call_driver)
1452 drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1453 reason, false);
1455 skb->dev = sdata->dev;
1457 rcu_read_lock();
1458 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1459 if (WARN_ON(!chanctx_conf)) {
1460 rcu_read_unlock();
1461 kfree_skb(skb);
1462 return;
1465 info->band = chanctx_conf->def.chan->band;
1466 ieee80211_xmit(sdata, sta, skb, 0);
1467 rcu_read_unlock();
1470 static int find_highest_prio_tid(unsigned long tids)
1472 /* lower 3 TIDs aren't ordered perfectly */
1473 if (tids & 0xF8)
1474 return fls(tids) - 1;
1475 /* TID 0 is BE just like TID 3 */
1476 if (tids & BIT(0))
1477 return 0;
1478 return fls(tids) - 1;
1481 /* Indicates if the MORE_DATA bit should be set in the last
1482 * frame obtained by ieee80211_sta_ps_get_frames.
1483 * Note that driver_release_tids is relevant only if
1484 * reason = IEEE80211_FRAME_RELEASE_PSPOLL
1486 static bool
1487 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs,
1488 enum ieee80211_frame_release_type reason,
1489 unsigned long driver_release_tids)
1491 int ac;
1493 /* If the driver has data on more than one TID then
1494 * certainly there's more data if we release just a
1495 * single frame now (from a single TID). This will
1496 * only happen for PS-Poll.
1498 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1499 hweight16(driver_release_tids) > 1)
1500 return true;
1502 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1503 if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1504 continue;
1506 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1507 !skb_queue_empty(&sta->ps_tx_buf[ac]))
1508 return true;
1511 return false;
1514 static void
1515 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs,
1516 enum ieee80211_frame_release_type reason,
1517 struct sk_buff_head *frames,
1518 unsigned long *driver_release_tids)
1520 struct ieee80211_sub_if_data *sdata = sta->sdata;
1521 struct ieee80211_local *local = sdata->local;
1522 int ac;
1524 /* Get response frame(s) and more data bit for the last one. */
1525 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1526 unsigned long tids;
1528 if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1529 continue;
1531 tids = ieee80211_tids_for_ac(ac);
1533 /* if we already have frames from software, then we can't also
1534 * release from hardware queues
1536 if (skb_queue_empty(frames)) {
1537 *driver_release_tids |=
1538 sta->driver_buffered_tids & tids;
1539 *driver_release_tids |= sta->txq_buffered_tids & tids;
1542 if (!*driver_release_tids) {
1543 struct sk_buff *skb;
1545 while (n_frames > 0) {
1546 skb = skb_dequeue(&sta->tx_filtered[ac]);
1547 if (!skb) {
1548 skb = skb_dequeue(
1549 &sta->ps_tx_buf[ac]);
1550 if (skb)
1551 local->total_ps_buffered--;
1553 if (!skb)
1554 break;
1555 n_frames--;
1556 __skb_queue_tail(frames, skb);
1560 /* If we have more frames buffered on this AC, then abort the
1561 * loop since we can't send more data from other ACs before
1562 * the buffered frames from this.
1564 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1565 !skb_queue_empty(&sta->ps_tx_buf[ac]))
1566 break;
1570 static void
1571 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1572 int n_frames, u8 ignored_acs,
1573 enum ieee80211_frame_release_type reason)
1575 struct ieee80211_sub_if_data *sdata = sta->sdata;
1576 struct ieee80211_local *local = sdata->local;
1577 unsigned long driver_release_tids = 0;
1578 struct sk_buff_head frames;
1579 bool more_data;
1581 /* Service or PS-Poll period starts */
1582 set_sta_flag(sta, WLAN_STA_SP);
1584 __skb_queue_head_init(&frames);
1586 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason,
1587 &frames, &driver_release_tids);
1589 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids);
1591 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL)
1592 driver_release_tids =
1593 BIT(find_highest_prio_tid(driver_release_tids));
1595 if (skb_queue_empty(&frames) && !driver_release_tids) {
1596 int tid, ac;
1599 * For PS-Poll, this can only happen due to a race condition
1600 * when we set the TIM bit and the station notices it, but
1601 * before it can poll for the frame we expire it.
1603 * For uAPSD, this is said in the standard (11.2.1.5 h):
1604 * At each unscheduled SP for a non-AP STA, the AP shall
1605 * attempt to transmit at least one MSDU or MMPDU, but no
1606 * more than the value specified in the Max SP Length field
1607 * in the QoS Capability element from delivery-enabled ACs,
1608 * that are destined for the non-AP STA.
1610 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1613 /* This will evaluate to 1, 3, 5 or 7. */
1614 for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++)
1615 if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac]))
1616 break;
1617 tid = 7 - 2 * ac;
1619 ieee80211_send_null_response(sta, tid, reason, true, false);
1620 } else if (!driver_release_tids) {
1621 struct sk_buff_head pending;
1622 struct sk_buff *skb;
1623 int num = 0;
1624 u16 tids = 0;
1625 bool need_null = false;
1627 skb_queue_head_init(&pending);
1629 while ((skb = __skb_dequeue(&frames))) {
1630 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1631 struct ieee80211_hdr *hdr = (void *) skb->data;
1632 u8 *qoshdr = NULL;
1634 num++;
1637 * Tell TX path to send this frame even though the
1638 * STA may still remain is PS mode after this frame
1639 * exchange.
1641 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1642 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1645 * Use MoreData flag to indicate whether there are
1646 * more buffered frames for this STA
1648 if (more_data || !skb_queue_empty(&frames))
1649 hdr->frame_control |=
1650 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1651 else
1652 hdr->frame_control &=
1653 cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1655 if (ieee80211_is_data_qos(hdr->frame_control) ||
1656 ieee80211_is_qos_nullfunc(hdr->frame_control))
1657 qoshdr = ieee80211_get_qos_ctl(hdr);
1659 tids |= BIT(skb->priority);
1661 __skb_queue_tail(&pending, skb);
1663 /* end service period after last frame or add one */
1664 if (!skb_queue_empty(&frames))
1665 continue;
1667 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1668 /* for PS-Poll, there's only one frame */
1669 info->flags |= IEEE80211_TX_STATUS_EOSP |
1670 IEEE80211_TX_CTL_REQ_TX_STATUS;
1671 break;
1674 /* For uAPSD, things are a bit more complicated. If the
1675 * last frame has a QoS header (i.e. is a QoS-data or
1676 * QoS-nulldata frame) then just set the EOSP bit there
1677 * and be done.
1678 * If the frame doesn't have a QoS header (which means
1679 * it should be a bufferable MMPDU) then we can't set
1680 * the EOSP bit in the QoS header; add a QoS-nulldata
1681 * frame to the list to send it after the MMPDU.
1683 * Note that this code is only in the mac80211-release
1684 * code path, we assume that the driver will not buffer
1685 * anything but QoS-data frames, or if it does, will
1686 * create the QoS-nulldata frame by itself if needed.
1688 * Cf. 802.11-2012 10.2.1.10 (c).
1690 if (qoshdr) {
1691 *qoshdr |= IEEE80211_QOS_CTL_EOSP;
1693 info->flags |= IEEE80211_TX_STATUS_EOSP |
1694 IEEE80211_TX_CTL_REQ_TX_STATUS;
1695 } else {
1696 /* The standard isn't completely clear on this
1697 * as it says the more-data bit should be set
1698 * if there are more BUs. The QoS-Null frame
1699 * we're about to send isn't buffered yet, we
1700 * only create it below, but let's pretend it
1701 * was buffered just in case some clients only
1702 * expect more-data=0 when eosp=1.
1704 hdr->frame_control |=
1705 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1706 need_null = true;
1707 num++;
1709 break;
1712 drv_allow_buffered_frames(local, sta, tids, num,
1713 reason, more_data);
1715 ieee80211_add_pending_skbs(local, &pending);
1717 if (need_null)
1718 ieee80211_send_null_response(
1719 sta, find_highest_prio_tid(tids),
1720 reason, false, false);
1722 sta_info_recalc_tim(sta);
1723 } else {
1724 int tid;
1727 * We need to release a frame that is buffered somewhere in the
1728 * driver ... it'll have to handle that.
1729 * Note that the driver also has to check the number of frames
1730 * on the TIDs we're releasing from - if there are more than
1731 * n_frames it has to set the more-data bit (if we didn't ask
1732 * it to set it anyway due to other buffered frames); if there
1733 * are fewer than n_frames it has to make sure to adjust that
1734 * to allow the service period to end properly.
1736 drv_release_buffered_frames(local, sta, driver_release_tids,
1737 n_frames, reason, more_data);
1740 * Note that we don't recalculate the TIM bit here as it would
1741 * most likely have no effect at all unless the driver told us
1742 * that the TID(s) became empty before returning here from the
1743 * release function.
1744 * Either way, however, when the driver tells us that the TID(s)
1745 * became empty or we find that a txq became empty, we'll do the
1746 * TIM recalculation.
1749 if (!sta->sta.txq[0])
1750 return;
1752 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1753 if (!sta->sta.txq[tid] ||
1754 !(driver_release_tids & BIT(tid)) ||
1755 txq_has_queue(sta->sta.txq[tid]))
1756 continue;
1758 sta_info_recalc_tim(sta);
1759 break;
1764 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1766 u8 ignore_for_response = sta->sta.uapsd_queues;
1769 * If all ACs are delivery-enabled then we should reply
1770 * from any of them, if only some are enabled we reply
1771 * only from the non-enabled ones.
1773 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1774 ignore_for_response = 0;
1776 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1777 IEEE80211_FRAME_RELEASE_PSPOLL);
1780 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1782 int n_frames = sta->sta.max_sp;
1783 u8 delivery_enabled = sta->sta.uapsd_queues;
1786 * If we ever grow support for TSPEC this might happen if
1787 * the TSPEC update from hostapd comes in between a trigger
1788 * frame setting WLAN_STA_UAPSD in the RX path and this
1789 * actually getting called.
1791 if (!delivery_enabled)
1792 return;
1794 switch (sta->sta.max_sp) {
1795 case 1:
1796 n_frames = 2;
1797 break;
1798 case 2:
1799 n_frames = 4;
1800 break;
1801 case 3:
1802 n_frames = 6;
1803 break;
1804 case 0:
1805 /* XXX: what is a good value? */
1806 n_frames = 128;
1807 break;
1810 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1811 IEEE80211_FRAME_RELEASE_UAPSD);
1814 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1815 struct ieee80211_sta *pubsta, bool block)
1817 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1819 trace_api_sta_block_awake(sta->local, pubsta, block);
1821 if (block) {
1822 set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1823 ieee80211_clear_fast_xmit(sta);
1824 return;
1827 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1828 return;
1830 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1831 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1832 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1833 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1834 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1835 test_sta_flag(sta, WLAN_STA_UAPSD)) {
1836 /* must be asleep in this case */
1837 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1838 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1839 } else {
1840 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1841 ieee80211_check_fast_xmit(sta);
1844 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1846 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1848 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1849 struct ieee80211_local *local = sta->local;
1851 trace_api_eosp(local, pubsta);
1853 clear_sta_flag(sta, WLAN_STA_SP);
1855 EXPORT_SYMBOL(ieee80211_sta_eosp);
1857 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid)
1859 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1860 enum ieee80211_frame_release_type reason;
1861 bool more_data;
1863 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid);
1865 reason = IEEE80211_FRAME_RELEASE_UAPSD;
1866 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues,
1867 reason, 0);
1869 ieee80211_send_null_response(sta, tid, reason, false, more_data);
1871 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc);
1873 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1874 u8 tid, bool buffered)
1876 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1878 if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1879 return;
1881 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1883 if (buffered)
1884 set_bit(tid, &sta->driver_buffered_tids);
1885 else
1886 clear_bit(tid, &sta->driver_buffered_tids);
1888 sta_info_recalc_tim(sta);
1890 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1892 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid,
1893 u32 tx_airtime, u32 rx_airtime)
1895 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1896 struct ieee80211_local *local = sta->sdata->local;
1897 u8 ac = ieee80211_ac_from_tid(tid);
1898 u32 airtime = 0;
1900 if (sta->local->airtime_flags & AIRTIME_USE_TX)
1901 airtime += tx_airtime;
1902 if (sta->local->airtime_flags & AIRTIME_USE_RX)
1903 airtime += rx_airtime;
1905 spin_lock_bh(&local->active_txq_lock[ac]);
1906 sta->airtime[ac].tx_airtime += tx_airtime;
1907 sta->airtime[ac].rx_airtime += rx_airtime;
1908 sta->airtime[ac].deficit -= airtime;
1909 spin_unlock_bh(&local->active_txq_lock[ac]);
1911 EXPORT_SYMBOL(ieee80211_sta_register_airtime);
1913 void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local,
1914 struct sta_info *sta, u8 ac,
1915 u16 tx_airtime, bool tx_completed)
1917 int tx_pending;
1919 if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL))
1920 return;
1922 if (!tx_completed) {
1923 if (sta)
1924 atomic_add(tx_airtime,
1925 &sta->airtime[ac].aql_tx_pending);
1927 atomic_add(tx_airtime, &local->aql_total_pending_airtime);
1928 return;
1931 if (sta) {
1932 tx_pending = atomic_sub_return(tx_airtime,
1933 &sta->airtime[ac].aql_tx_pending);
1934 if (WARN_ONCE(tx_pending < 0,
1935 "STA %pM AC %d txq pending airtime underflow: %u, %u",
1936 sta->addr, ac, tx_pending, tx_airtime))
1937 atomic_cmpxchg(&sta->airtime[ac].aql_tx_pending,
1938 tx_pending, 0);
1941 tx_pending = atomic_sub_return(tx_airtime,
1942 &local->aql_total_pending_airtime);
1943 if (WARN_ONCE(tx_pending < 0,
1944 "Device %s AC %d pending airtime underflow: %u, %u",
1945 wiphy_name(local->hw.wiphy), ac, tx_pending,
1946 tx_airtime))
1947 atomic_cmpxchg(&local->aql_total_pending_airtime,
1948 tx_pending, 0);
1951 int sta_info_move_state(struct sta_info *sta,
1952 enum ieee80211_sta_state new_state)
1954 might_sleep();
1956 if (sta->sta_state == new_state)
1957 return 0;
1959 /* check allowed transitions first */
1961 switch (new_state) {
1962 case IEEE80211_STA_NONE:
1963 if (sta->sta_state != IEEE80211_STA_AUTH)
1964 return -EINVAL;
1965 break;
1966 case IEEE80211_STA_AUTH:
1967 if (sta->sta_state != IEEE80211_STA_NONE &&
1968 sta->sta_state != IEEE80211_STA_ASSOC)
1969 return -EINVAL;
1970 break;
1971 case IEEE80211_STA_ASSOC:
1972 if (sta->sta_state != IEEE80211_STA_AUTH &&
1973 sta->sta_state != IEEE80211_STA_AUTHORIZED)
1974 return -EINVAL;
1975 break;
1976 case IEEE80211_STA_AUTHORIZED:
1977 if (sta->sta_state != IEEE80211_STA_ASSOC)
1978 return -EINVAL;
1979 break;
1980 default:
1981 WARN(1, "invalid state %d", new_state);
1982 return -EINVAL;
1985 sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
1986 sta->sta.addr, new_state);
1989 * notify the driver before the actual changes so it can
1990 * fail the transition
1992 if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
1993 int err = drv_sta_state(sta->local, sta->sdata, sta,
1994 sta->sta_state, new_state);
1995 if (err)
1996 return err;
1999 /* reflect the change in all state variables */
2001 switch (new_state) {
2002 case IEEE80211_STA_NONE:
2003 if (sta->sta_state == IEEE80211_STA_AUTH)
2004 clear_bit(WLAN_STA_AUTH, &sta->_flags);
2005 break;
2006 case IEEE80211_STA_AUTH:
2007 if (sta->sta_state == IEEE80211_STA_NONE) {
2008 set_bit(WLAN_STA_AUTH, &sta->_flags);
2009 } else if (sta->sta_state == IEEE80211_STA_ASSOC) {
2010 clear_bit(WLAN_STA_ASSOC, &sta->_flags);
2011 ieee80211_recalc_min_chandef(sta->sdata);
2012 if (!sta->sta.support_p2p_ps)
2013 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2015 break;
2016 case IEEE80211_STA_ASSOC:
2017 if (sta->sta_state == IEEE80211_STA_AUTH) {
2018 set_bit(WLAN_STA_ASSOC, &sta->_flags);
2019 sta->assoc_at = ktime_get_boottime_ns();
2020 ieee80211_recalc_min_chandef(sta->sdata);
2021 if (!sta->sta.support_p2p_ps)
2022 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2023 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
2024 ieee80211_vif_dec_num_mcast(sta->sdata);
2025 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2026 ieee80211_clear_fast_xmit(sta);
2027 ieee80211_clear_fast_rx(sta);
2029 break;
2030 case IEEE80211_STA_AUTHORIZED:
2031 if (sta->sta_state == IEEE80211_STA_ASSOC) {
2032 ieee80211_vif_inc_num_mcast(sta->sdata);
2033 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2034 ieee80211_check_fast_xmit(sta);
2035 ieee80211_check_fast_rx(sta);
2037 if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
2038 sta->sdata->vif.type == NL80211_IFTYPE_AP)
2039 cfg80211_send_layer2_update(sta->sdata->dev,
2040 sta->sta.addr);
2041 break;
2042 default:
2043 break;
2046 sta->sta_state = new_state;
2048 return 0;
2051 u8 sta_info_tx_streams(struct sta_info *sta)
2053 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap;
2054 u8 rx_streams;
2056 if (!sta->sta.ht_cap.ht_supported)
2057 return 1;
2059 if (sta->sta.vht_cap.vht_supported) {
2060 int i;
2061 u16 tx_mcs_map =
2062 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map);
2064 for (i = 7; i >= 0; i--)
2065 if ((tx_mcs_map & (0x3 << (i * 2))) !=
2066 IEEE80211_VHT_MCS_NOT_SUPPORTED)
2067 return i + 1;
2070 if (ht_cap->mcs.rx_mask[3])
2071 rx_streams = 4;
2072 else if (ht_cap->mcs.rx_mask[2])
2073 rx_streams = 3;
2074 else if (ht_cap->mcs.rx_mask[1])
2075 rx_streams = 2;
2076 else
2077 rx_streams = 1;
2079 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
2080 return rx_streams;
2082 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
2083 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
2086 static struct ieee80211_sta_rx_stats *
2087 sta_get_last_rx_stats(struct sta_info *sta)
2089 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
2090 struct ieee80211_local *local = sta->local;
2091 int cpu;
2093 if (!ieee80211_hw_check(&local->hw, USES_RSS))
2094 return stats;
2096 for_each_possible_cpu(cpu) {
2097 struct ieee80211_sta_rx_stats *cpustats;
2099 cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2101 if (time_after(cpustats->last_rx, stats->last_rx))
2102 stats = cpustats;
2105 return stats;
2108 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate,
2109 struct rate_info *rinfo)
2111 rinfo->bw = STA_STATS_GET(BW, rate);
2113 switch (STA_STATS_GET(TYPE, rate)) {
2114 case STA_STATS_RATE_TYPE_VHT:
2115 rinfo->flags = RATE_INFO_FLAGS_VHT_MCS;
2116 rinfo->mcs = STA_STATS_GET(VHT_MCS, rate);
2117 rinfo->nss = STA_STATS_GET(VHT_NSS, rate);
2118 if (STA_STATS_GET(SGI, rate))
2119 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2120 break;
2121 case STA_STATS_RATE_TYPE_HT:
2122 rinfo->flags = RATE_INFO_FLAGS_MCS;
2123 rinfo->mcs = STA_STATS_GET(HT_MCS, rate);
2124 if (STA_STATS_GET(SGI, rate))
2125 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2126 break;
2127 case STA_STATS_RATE_TYPE_LEGACY: {
2128 struct ieee80211_supported_band *sband;
2129 u16 brate;
2130 unsigned int shift;
2131 int band = STA_STATS_GET(LEGACY_BAND, rate);
2132 int rate_idx = STA_STATS_GET(LEGACY_IDX, rate);
2134 sband = local->hw.wiphy->bands[band];
2135 brate = sband->bitrates[rate_idx].bitrate;
2136 if (rinfo->bw == RATE_INFO_BW_5)
2137 shift = 2;
2138 else if (rinfo->bw == RATE_INFO_BW_10)
2139 shift = 1;
2140 else
2141 shift = 0;
2142 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift);
2143 break;
2145 case STA_STATS_RATE_TYPE_HE:
2146 rinfo->flags = RATE_INFO_FLAGS_HE_MCS;
2147 rinfo->mcs = STA_STATS_GET(HE_MCS, rate);
2148 rinfo->nss = STA_STATS_GET(HE_NSS, rate);
2149 rinfo->he_gi = STA_STATS_GET(HE_GI, rate);
2150 rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate);
2151 rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate);
2152 break;
2156 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo)
2158 u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate);
2160 if (rate == STA_STATS_RATE_INVALID)
2161 return -EINVAL;
2163 sta_stats_decode_rate(sta->local, rate, rinfo);
2164 return 0;
2167 static void sta_set_tidstats(struct sta_info *sta,
2168 struct cfg80211_tid_stats *tidstats,
2169 int tid)
2171 struct ieee80211_local *local = sta->local;
2173 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) {
2174 unsigned int start;
2176 do {
2177 start = u64_stats_fetch_begin(&sta->rx_stats.syncp);
2178 tidstats->rx_msdu = sta->rx_stats.msdu[tid];
2179 } while (u64_stats_fetch_retry(&sta->rx_stats.syncp, start));
2181 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU);
2184 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) {
2185 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU);
2186 tidstats->tx_msdu = sta->tx_stats.msdu[tid];
2189 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) &&
2190 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2191 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES);
2192 tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid];
2195 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) &&
2196 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2197 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED);
2198 tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid];
2201 if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) {
2202 spin_lock_bh(&local->fq.lock);
2203 rcu_read_lock();
2205 tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS);
2206 ieee80211_fill_txq_stats(&tidstats->txq_stats,
2207 to_txq_info(sta->sta.txq[tid]));
2209 rcu_read_unlock();
2210 spin_unlock_bh(&local->fq.lock);
2214 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats)
2216 unsigned int start;
2217 u64 value;
2219 do {
2220 start = u64_stats_fetch_begin(&rxstats->syncp);
2221 value = rxstats->bytes;
2222 } while (u64_stats_fetch_retry(&rxstats->syncp, start));
2224 return value;
2227 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo,
2228 bool tidstats)
2230 struct ieee80211_sub_if_data *sdata = sta->sdata;
2231 struct ieee80211_local *local = sdata->local;
2232 u32 thr = 0;
2233 int i, ac, cpu;
2234 struct ieee80211_sta_rx_stats *last_rxstats;
2236 last_rxstats = sta_get_last_rx_stats(sta);
2238 sinfo->generation = sdata->local->sta_generation;
2240 /* do before driver, so beacon filtering drivers have a
2241 * chance to e.g. just add the number of filtered beacons
2242 * (or just modify the value entirely, of course)
2244 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2245 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal;
2247 drv_sta_statistics(local, sdata, &sta->sta, sinfo);
2249 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) |
2250 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) |
2251 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) |
2252 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) |
2253 BIT_ULL(NL80211_STA_INFO_ASSOC_AT_BOOTTIME) |
2254 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC);
2256 if (sdata->vif.type == NL80211_IFTYPE_STATION) {
2257 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count;
2258 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS);
2261 sinfo->connected_time = ktime_get_seconds() - sta->last_connected;
2262 sinfo->assoc_at = sta->assoc_at;
2263 sinfo->inactive_time =
2264 jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta));
2266 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) |
2267 BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) {
2268 sinfo->tx_bytes = 0;
2269 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2270 sinfo->tx_bytes += sta->tx_stats.bytes[ac];
2271 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64);
2274 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) {
2275 sinfo->tx_packets = 0;
2276 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2277 sinfo->tx_packets += sta->tx_stats.packets[ac];
2278 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS);
2281 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) |
2282 BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) {
2283 sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats);
2285 if (sta->pcpu_rx_stats) {
2286 for_each_possible_cpu(cpu) {
2287 struct ieee80211_sta_rx_stats *cpurxs;
2289 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2290 sinfo->rx_bytes += sta_get_stats_bytes(cpurxs);
2294 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64);
2297 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) {
2298 sinfo->rx_packets = sta->rx_stats.packets;
2299 if (sta->pcpu_rx_stats) {
2300 for_each_possible_cpu(cpu) {
2301 struct ieee80211_sta_rx_stats *cpurxs;
2303 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2304 sinfo->rx_packets += cpurxs->packets;
2307 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS);
2310 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) {
2311 sinfo->tx_retries = sta->status_stats.retry_count;
2312 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES);
2315 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) {
2316 sinfo->tx_failed = sta->status_stats.retry_failed;
2317 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED);
2320 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) {
2321 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2322 sinfo->rx_duration += sta->airtime[ac].rx_airtime;
2323 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION);
2326 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) {
2327 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2328 sinfo->tx_duration += sta->airtime[ac].tx_airtime;
2329 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION);
2332 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) {
2333 sinfo->airtime_weight = sta->airtime_weight;
2334 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT);
2337 sinfo->rx_dropped_misc = sta->rx_stats.dropped;
2338 if (sta->pcpu_rx_stats) {
2339 for_each_possible_cpu(cpu) {
2340 struct ieee80211_sta_rx_stats *cpurxs;
2342 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2343 sinfo->rx_dropped_misc += cpurxs->dropped;
2347 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2348 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) {
2349 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) |
2350 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG);
2351 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif);
2354 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) ||
2355 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) {
2356 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) {
2357 sinfo->signal = (s8)last_rxstats->last_signal;
2358 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL);
2361 if (!sta->pcpu_rx_stats &&
2362 !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) {
2363 sinfo->signal_avg =
2364 -ewma_signal_read(&sta->rx_stats_avg.signal);
2365 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG);
2369 /* for the average - if pcpu_rx_stats isn't set - rxstats must point to
2370 * the sta->rx_stats struct, so the check here is fine with and without
2371 * pcpu statistics
2373 if (last_rxstats->chains &&
2374 !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) |
2375 BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) {
2376 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL);
2377 if (!sta->pcpu_rx_stats)
2378 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG);
2380 sinfo->chains = last_rxstats->chains;
2382 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
2383 sinfo->chain_signal[i] =
2384 last_rxstats->chain_signal_last[i];
2385 sinfo->chain_signal_avg[i] =
2386 -ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]);
2390 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) {
2391 sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate,
2392 &sinfo->txrate);
2393 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE);
2396 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) {
2397 if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0)
2398 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE);
2401 if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) {
2402 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
2403 sta_set_tidstats(sta, &sinfo->pertid[i], i);
2406 if (ieee80211_vif_is_mesh(&sdata->vif)) {
2407 #ifdef CONFIG_MAC80211_MESH
2408 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) |
2409 BIT_ULL(NL80211_STA_INFO_PLID) |
2410 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) |
2411 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) |
2412 BIT_ULL(NL80211_STA_INFO_PEER_PM) |
2413 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) |
2414 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE);
2416 sinfo->llid = sta->mesh->llid;
2417 sinfo->plid = sta->mesh->plid;
2418 sinfo->plink_state = sta->mesh->plink_state;
2419 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
2420 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET);
2421 sinfo->t_offset = sta->mesh->t_offset;
2423 sinfo->local_pm = sta->mesh->local_pm;
2424 sinfo->peer_pm = sta->mesh->peer_pm;
2425 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm;
2426 sinfo->connected_to_gate = sta->mesh->connected_to_gate;
2427 #endif
2430 sinfo->bss_param.flags = 0;
2431 if (sdata->vif.bss_conf.use_cts_prot)
2432 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
2433 if (sdata->vif.bss_conf.use_short_preamble)
2434 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
2435 if (sdata->vif.bss_conf.use_short_slot)
2436 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
2437 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
2438 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
2440 sinfo->sta_flags.set = 0;
2441 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
2442 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
2443 BIT(NL80211_STA_FLAG_WME) |
2444 BIT(NL80211_STA_FLAG_MFP) |
2445 BIT(NL80211_STA_FLAG_AUTHENTICATED) |
2446 BIT(NL80211_STA_FLAG_ASSOCIATED) |
2447 BIT(NL80211_STA_FLAG_TDLS_PEER);
2448 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
2449 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
2450 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
2451 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
2452 if (sta->sta.wme)
2453 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
2454 if (test_sta_flag(sta, WLAN_STA_MFP))
2455 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
2456 if (test_sta_flag(sta, WLAN_STA_AUTH))
2457 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
2458 if (test_sta_flag(sta, WLAN_STA_ASSOC))
2459 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
2460 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
2461 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
2463 thr = sta_get_expected_throughput(sta);
2465 if (thr != 0) {
2466 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT);
2467 sinfo->expected_throughput = thr;
2470 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) &&
2471 sta->status_stats.ack_signal_filled) {
2472 sinfo->ack_signal = sta->status_stats.last_ack_signal;
2473 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL);
2476 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) &&
2477 sta->status_stats.ack_signal_filled) {
2478 sinfo->avg_ack_signal =
2479 -(s8)ewma_avg_signal_read(
2480 &sta->status_stats.avg_ack_signal);
2481 sinfo->filled |=
2482 BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG);
2485 if (ieee80211_vif_is_mesh(&sdata->vif)) {
2486 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC);
2487 sinfo->airtime_link_metric =
2488 airtime_link_metric_get(local, sta);
2492 u32 sta_get_expected_throughput(struct sta_info *sta)
2494 struct ieee80211_sub_if_data *sdata = sta->sdata;
2495 struct ieee80211_local *local = sdata->local;
2496 struct rate_control_ref *ref = NULL;
2497 u32 thr = 0;
2499 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
2500 ref = local->rate_ctrl;
2502 /* check if the driver has a SW RC implementation */
2503 if (ref && ref->ops->get_expected_throughput)
2504 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
2505 else
2506 thr = drv_get_expected_throughput(local, sta);
2508 return thr;
2511 unsigned long ieee80211_sta_last_active(struct sta_info *sta)
2513 struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta);
2515 if (!sta->status_stats.last_ack ||
2516 time_after(stats->last_rx, sta->status_stats.last_ack))
2517 return stats->last_rx;
2518 return sta->status_stats.last_ack;
2521 static void sta_update_codel_params(struct sta_info *sta, u32 thr)
2523 if (!sta->sdata->local->ops->wake_tx_queue)
2524 return;
2526 if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) {
2527 sta->cparams.target = MS2TIME(50);
2528 sta->cparams.interval = MS2TIME(300);
2529 sta->cparams.ecn = false;
2530 } else {
2531 sta->cparams.target = MS2TIME(20);
2532 sta->cparams.interval = MS2TIME(100);
2533 sta->cparams.ecn = true;
2537 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta,
2538 u32 thr)
2540 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
2542 sta_update_codel_params(sta, thr);