ARM: dma-api: fix max_pfn off-by-one error in __dma_supported()
[linux/fpc-iii.git] / net / qrtr / qrtr.c
blob5a8e42ad15043c5b9d69bf8945a2761c4a05b5aa
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2015, Sony Mobile Communications Inc.
4 * Copyright (c) 2013, The Linux Foundation. All rights reserved.
5 */
6 #include <linux/module.h>
7 #include <linux/netlink.h>
8 #include <linux/qrtr.h>
9 #include <linux/termios.h> /* For TIOCINQ/OUTQ */
10 #include <linux/numa.h>
11 #include <linux/spinlock.h>
12 #include <linux/wait.h>
14 #include <net/sock.h>
16 #include "qrtr.h"
18 #define QRTR_PROTO_VER_1 1
19 #define QRTR_PROTO_VER_2 3
21 /* auto-bind range */
22 #define QRTR_MIN_EPH_SOCKET 0x4000
23 #define QRTR_MAX_EPH_SOCKET 0x7fff
25 /**
26 * struct qrtr_hdr_v1 - (I|R)PCrouter packet header version 1
27 * @version: protocol version
28 * @type: packet type; one of QRTR_TYPE_*
29 * @src_node_id: source node
30 * @src_port_id: source port
31 * @confirm_rx: boolean; whether a resume-tx packet should be send in reply
32 * @size: length of packet, excluding this header
33 * @dst_node_id: destination node
34 * @dst_port_id: destination port
36 struct qrtr_hdr_v1 {
37 __le32 version;
38 __le32 type;
39 __le32 src_node_id;
40 __le32 src_port_id;
41 __le32 confirm_rx;
42 __le32 size;
43 __le32 dst_node_id;
44 __le32 dst_port_id;
45 } __packed;
47 /**
48 * struct qrtr_hdr_v2 - (I|R)PCrouter packet header later versions
49 * @version: protocol version
50 * @type: packet type; one of QRTR_TYPE_*
51 * @flags: bitmask of QRTR_FLAGS_*
52 * @optlen: length of optional header data
53 * @size: length of packet, excluding this header and optlen
54 * @src_node_id: source node
55 * @src_port_id: source port
56 * @dst_node_id: destination node
57 * @dst_port_id: destination port
59 struct qrtr_hdr_v2 {
60 u8 version;
61 u8 type;
62 u8 flags;
63 u8 optlen;
64 __le32 size;
65 __le16 src_node_id;
66 __le16 src_port_id;
67 __le16 dst_node_id;
68 __le16 dst_port_id;
71 #define QRTR_FLAGS_CONFIRM_RX BIT(0)
73 struct qrtr_cb {
74 u32 src_node;
75 u32 src_port;
76 u32 dst_node;
77 u32 dst_port;
79 u8 type;
80 u8 confirm_rx;
83 #define QRTR_HDR_MAX_SIZE max_t(size_t, sizeof(struct qrtr_hdr_v1), \
84 sizeof(struct qrtr_hdr_v2))
86 struct qrtr_sock {
87 /* WARNING: sk must be the first member */
88 struct sock sk;
89 struct sockaddr_qrtr us;
90 struct sockaddr_qrtr peer;
93 static inline struct qrtr_sock *qrtr_sk(struct sock *sk)
95 BUILD_BUG_ON(offsetof(struct qrtr_sock, sk) != 0);
96 return container_of(sk, struct qrtr_sock, sk);
99 static unsigned int qrtr_local_nid = NUMA_NO_NODE;
101 /* for node ids */
102 static RADIX_TREE(qrtr_nodes, GFP_ATOMIC);
103 static DEFINE_SPINLOCK(qrtr_nodes_lock);
104 /* broadcast list */
105 static LIST_HEAD(qrtr_all_nodes);
106 /* lock for qrtr_all_nodes and node reference */
107 static DEFINE_MUTEX(qrtr_node_lock);
109 /* local port allocation management */
110 static DEFINE_IDR(qrtr_ports);
111 static DEFINE_MUTEX(qrtr_port_lock);
114 * struct qrtr_node - endpoint node
115 * @ep_lock: lock for endpoint management and callbacks
116 * @ep: endpoint
117 * @ref: reference count for node
118 * @nid: node id
119 * @qrtr_tx_flow: tree of qrtr_tx_flow, keyed by node << 32 | port
120 * @qrtr_tx_lock: lock for qrtr_tx_flow inserts
121 * @rx_queue: receive queue
122 * @item: list item for broadcast list
124 struct qrtr_node {
125 struct mutex ep_lock;
126 struct qrtr_endpoint *ep;
127 struct kref ref;
128 unsigned int nid;
130 struct radix_tree_root qrtr_tx_flow;
131 struct mutex qrtr_tx_lock; /* for qrtr_tx_flow */
133 struct sk_buff_head rx_queue;
134 struct list_head item;
138 * struct qrtr_tx_flow - tx flow control
139 * @resume_tx: waiters for a resume tx from the remote
140 * @pending: number of waiting senders
141 * @tx_failed: indicates that a message with confirm_rx flag was lost
143 struct qrtr_tx_flow {
144 struct wait_queue_head resume_tx;
145 int pending;
146 int tx_failed;
149 #define QRTR_TX_FLOW_HIGH 10
150 #define QRTR_TX_FLOW_LOW 5
152 static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb,
153 int type, struct sockaddr_qrtr *from,
154 struct sockaddr_qrtr *to);
155 static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb,
156 int type, struct sockaddr_qrtr *from,
157 struct sockaddr_qrtr *to);
158 static struct qrtr_sock *qrtr_port_lookup(int port);
159 static void qrtr_port_put(struct qrtr_sock *ipc);
161 /* Release node resources and free the node.
163 * Do not call directly, use qrtr_node_release. To be used with
164 * kref_put_mutex. As such, the node mutex is expected to be locked on call.
166 static void __qrtr_node_release(struct kref *kref)
168 struct qrtr_node *node = container_of(kref, struct qrtr_node, ref);
169 struct radix_tree_iter iter;
170 unsigned long flags;
171 void __rcu **slot;
173 spin_lock_irqsave(&qrtr_nodes_lock, flags);
174 if (node->nid != QRTR_EP_NID_AUTO)
175 radix_tree_delete(&qrtr_nodes, node->nid);
176 spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
178 list_del(&node->item);
179 mutex_unlock(&qrtr_node_lock);
181 skb_queue_purge(&node->rx_queue);
183 /* Free tx flow counters */
184 radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) {
185 radix_tree_iter_delete(&node->qrtr_tx_flow, &iter, slot);
186 kfree(*slot);
188 kfree(node);
191 /* Increment reference to node. */
192 static struct qrtr_node *qrtr_node_acquire(struct qrtr_node *node)
194 if (node)
195 kref_get(&node->ref);
196 return node;
199 /* Decrement reference to node and release as necessary. */
200 static void qrtr_node_release(struct qrtr_node *node)
202 if (!node)
203 return;
204 kref_put_mutex(&node->ref, __qrtr_node_release, &qrtr_node_lock);
208 * qrtr_tx_resume() - reset flow control counter
209 * @node: qrtr_node that the QRTR_TYPE_RESUME_TX packet arrived on
210 * @skb: resume_tx packet
212 static void qrtr_tx_resume(struct qrtr_node *node, struct sk_buff *skb)
214 struct qrtr_ctrl_pkt *pkt = (struct qrtr_ctrl_pkt *)skb->data;
215 u64 remote_node = le32_to_cpu(pkt->client.node);
216 u32 remote_port = le32_to_cpu(pkt->client.port);
217 struct qrtr_tx_flow *flow;
218 unsigned long key;
220 key = remote_node << 32 | remote_port;
222 rcu_read_lock();
223 flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
224 rcu_read_unlock();
225 if (flow) {
226 spin_lock(&flow->resume_tx.lock);
227 flow->pending = 0;
228 spin_unlock(&flow->resume_tx.lock);
229 wake_up_interruptible_all(&flow->resume_tx);
232 consume_skb(skb);
236 * qrtr_tx_wait() - flow control for outgoing packets
237 * @node: qrtr_node that the packet is to be send to
238 * @dest_node: node id of the destination
239 * @dest_port: port number of the destination
240 * @type: type of message
242 * The flow control scheme is based around the low and high "watermarks". When
243 * the low watermark is passed the confirm_rx flag is set on the outgoing
244 * message, which will trigger the remote to send a control message of the type
245 * QRTR_TYPE_RESUME_TX to reset the counter. If the high watermark is hit
246 * further transmision should be paused.
248 * Return: 1 if confirm_rx should be set, 0 otherwise or errno failure
250 static int qrtr_tx_wait(struct qrtr_node *node, int dest_node, int dest_port,
251 int type)
253 unsigned long key = (u64)dest_node << 32 | dest_port;
254 struct qrtr_tx_flow *flow;
255 int confirm_rx = 0;
256 int ret;
258 /* Never set confirm_rx on non-data packets */
259 if (type != QRTR_TYPE_DATA)
260 return 0;
262 mutex_lock(&node->qrtr_tx_lock);
263 flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
264 if (!flow) {
265 flow = kzalloc(sizeof(*flow), GFP_KERNEL);
266 if (flow) {
267 init_waitqueue_head(&flow->resume_tx);
268 radix_tree_insert(&node->qrtr_tx_flow, key, flow);
271 mutex_unlock(&node->qrtr_tx_lock);
273 /* Set confirm_rx if we where unable to find and allocate a flow */
274 if (!flow)
275 return 1;
277 spin_lock_irq(&flow->resume_tx.lock);
278 ret = wait_event_interruptible_locked_irq(flow->resume_tx,
279 flow->pending < QRTR_TX_FLOW_HIGH ||
280 flow->tx_failed ||
281 !node->ep);
282 if (ret < 0) {
283 confirm_rx = ret;
284 } else if (!node->ep) {
285 confirm_rx = -EPIPE;
286 } else if (flow->tx_failed) {
287 flow->tx_failed = 0;
288 confirm_rx = 1;
289 } else {
290 flow->pending++;
291 confirm_rx = flow->pending == QRTR_TX_FLOW_LOW;
293 spin_unlock_irq(&flow->resume_tx.lock);
295 return confirm_rx;
299 * qrtr_tx_flow_failed() - flag that tx of confirm_rx flagged messages failed
300 * @node: qrtr_node that the packet is to be send to
301 * @dest_node: node id of the destination
302 * @dest_port: port number of the destination
304 * Signal that the transmission of a message with confirm_rx flag failed. The
305 * flow's "pending" counter will keep incrementing towards QRTR_TX_FLOW_HIGH,
306 * at which point transmission would stall forever waiting for the resume TX
307 * message associated with the dropped confirm_rx message.
308 * Work around this by marking the flow as having a failed transmission and
309 * cause the next transmission attempt to be sent with the confirm_rx.
311 static void qrtr_tx_flow_failed(struct qrtr_node *node, int dest_node,
312 int dest_port)
314 unsigned long key = (u64)dest_node << 32 | dest_port;
315 struct qrtr_tx_flow *flow;
317 rcu_read_lock();
318 flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
319 rcu_read_unlock();
320 if (flow) {
321 spin_lock_irq(&flow->resume_tx.lock);
322 flow->tx_failed = 1;
323 spin_unlock_irq(&flow->resume_tx.lock);
327 /* Pass an outgoing packet socket buffer to the endpoint driver. */
328 static int qrtr_node_enqueue(struct qrtr_node *node, struct sk_buff *skb,
329 int type, struct sockaddr_qrtr *from,
330 struct sockaddr_qrtr *to)
332 struct qrtr_hdr_v1 *hdr;
333 size_t len = skb->len;
334 int rc = -ENODEV;
335 int confirm_rx;
337 confirm_rx = qrtr_tx_wait(node, to->sq_node, to->sq_port, type);
338 if (confirm_rx < 0) {
339 kfree_skb(skb);
340 return confirm_rx;
343 hdr = skb_push(skb, sizeof(*hdr));
344 hdr->version = cpu_to_le32(QRTR_PROTO_VER_1);
345 hdr->type = cpu_to_le32(type);
346 hdr->src_node_id = cpu_to_le32(from->sq_node);
347 hdr->src_port_id = cpu_to_le32(from->sq_port);
348 if (to->sq_port == QRTR_PORT_CTRL) {
349 hdr->dst_node_id = cpu_to_le32(node->nid);
350 hdr->dst_port_id = cpu_to_le32(QRTR_NODE_BCAST);
351 } else {
352 hdr->dst_node_id = cpu_to_le32(to->sq_node);
353 hdr->dst_port_id = cpu_to_le32(to->sq_port);
356 hdr->size = cpu_to_le32(len);
357 hdr->confirm_rx = !!confirm_rx;
359 skb_put_padto(skb, ALIGN(len, 4) + sizeof(*hdr));
361 mutex_lock(&node->ep_lock);
362 if (node->ep)
363 rc = node->ep->xmit(node->ep, skb);
364 else
365 kfree_skb(skb);
366 mutex_unlock(&node->ep_lock);
368 /* Need to ensure that a subsequent message carries the otherwise lost
369 * confirm_rx flag if we dropped this one */
370 if (rc && confirm_rx)
371 qrtr_tx_flow_failed(node, to->sq_node, to->sq_port);
373 return rc;
376 /* Lookup node by id.
378 * callers must release with qrtr_node_release()
380 static struct qrtr_node *qrtr_node_lookup(unsigned int nid)
382 struct qrtr_node *node;
383 unsigned long flags;
385 spin_lock_irqsave(&qrtr_nodes_lock, flags);
386 node = radix_tree_lookup(&qrtr_nodes, nid);
387 node = qrtr_node_acquire(node);
388 spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
390 return node;
393 /* Assign node id to node.
395 * This is mostly useful for automatic node id assignment, based on
396 * the source id in the incoming packet.
398 static void qrtr_node_assign(struct qrtr_node *node, unsigned int nid)
400 unsigned long flags;
402 if (node->nid != QRTR_EP_NID_AUTO || nid == QRTR_EP_NID_AUTO)
403 return;
405 spin_lock_irqsave(&qrtr_nodes_lock, flags);
406 radix_tree_insert(&qrtr_nodes, nid, node);
407 node->nid = nid;
408 spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
412 * qrtr_endpoint_post() - post incoming data
413 * @ep: endpoint handle
414 * @data: data pointer
415 * @len: size of data in bytes
417 * Return: 0 on success; negative error code on failure
419 int qrtr_endpoint_post(struct qrtr_endpoint *ep, const void *data, size_t len)
421 struct qrtr_node *node = ep->node;
422 const struct qrtr_hdr_v1 *v1;
423 const struct qrtr_hdr_v2 *v2;
424 struct qrtr_sock *ipc;
425 struct sk_buff *skb;
426 struct qrtr_cb *cb;
427 unsigned int size;
428 unsigned int ver;
429 size_t hdrlen;
431 if (len & 3)
432 return -EINVAL;
434 skb = netdev_alloc_skb(NULL, len);
435 if (!skb)
436 return -ENOMEM;
438 cb = (struct qrtr_cb *)skb->cb;
440 /* Version field in v1 is little endian, so this works for both cases */
441 ver = *(u8*)data;
443 switch (ver) {
444 case QRTR_PROTO_VER_1:
445 v1 = data;
446 hdrlen = sizeof(*v1);
448 cb->type = le32_to_cpu(v1->type);
449 cb->src_node = le32_to_cpu(v1->src_node_id);
450 cb->src_port = le32_to_cpu(v1->src_port_id);
451 cb->confirm_rx = !!v1->confirm_rx;
452 cb->dst_node = le32_to_cpu(v1->dst_node_id);
453 cb->dst_port = le32_to_cpu(v1->dst_port_id);
455 size = le32_to_cpu(v1->size);
456 break;
457 case QRTR_PROTO_VER_2:
458 v2 = data;
459 hdrlen = sizeof(*v2) + v2->optlen;
461 cb->type = v2->type;
462 cb->confirm_rx = !!(v2->flags & QRTR_FLAGS_CONFIRM_RX);
463 cb->src_node = le16_to_cpu(v2->src_node_id);
464 cb->src_port = le16_to_cpu(v2->src_port_id);
465 cb->dst_node = le16_to_cpu(v2->dst_node_id);
466 cb->dst_port = le16_to_cpu(v2->dst_port_id);
468 if (cb->src_port == (u16)QRTR_PORT_CTRL)
469 cb->src_port = QRTR_PORT_CTRL;
470 if (cb->dst_port == (u16)QRTR_PORT_CTRL)
471 cb->dst_port = QRTR_PORT_CTRL;
473 size = le32_to_cpu(v2->size);
474 break;
475 default:
476 pr_err("qrtr: Invalid version %d\n", ver);
477 goto err;
480 if (len != ALIGN(size, 4) + hdrlen)
481 goto err;
483 if (cb->dst_port != QRTR_PORT_CTRL && cb->type != QRTR_TYPE_DATA &&
484 cb->type != QRTR_TYPE_RESUME_TX)
485 goto err;
487 skb_put_data(skb, data + hdrlen, size);
489 qrtr_node_assign(node, cb->src_node);
491 if (cb->type == QRTR_TYPE_RESUME_TX) {
492 qrtr_tx_resume(node, skb);
493 } else {
494 ipc = qrtr_port_lookup(cb->dst_port);
495 if (!ipc)
496 goto err;
498 if (sock_queue_rcv_skb(&ipc->sk, skb))
499 goto err;
501 qrtr_port_put(ipc);
504 return 0;
506 err:
507 kfree_skb(skb);
508 return -EINVAL;
511 EXPORT_SYMBOL_GPL(qrtr_endpoint_post);
514 * qrtr_alloc_ctrl_packet() - allocate control packet skb
515 * @pkt: reference to qrtr_ctrl_pkt pointer
517 * Returns newly allocated sk_buff, or NULL on failure
519 * This function allocates a sk_buff large enough to carry a qrtr_ctrl_pkt and
520 * on success returns a reference to the control packet in @pkt.
522 static struct sk_buff *qrtr_alloc_ctrl_packet(struct qrtr_ctrl_pkt **pkt)
524 const int pkt_len = sizeof(struct qrtr_ctrl_pkt);
525 struct sk_buff *skb;
527 skb = alloc_skb(QRTR_HDR_MAX_SIZE + pkt_len, GFP_KERNEL);
528 if (!skb)
529 return NULL;
531 skb_reserve(skb, QRTR_HDR_MAX_SIZE);
532 *pkt = skb_put_zero(skb, pkt_len);
534 return skb;
538 * qrtr_endpoint_register() - register a new endpoint
539 * @ep: endpoint to register
540 * @nid: desired node id; may be QRTR_EP_NID_AUTO for auto-assignment
541 * Return: 0 on success; negative error code on failure
543 * The specified endpoint must have the xmit function pointer set on call.
545 int qrtr_endpoint_register(struct qrtr_endpoint *ep, unsigned int nid)
547 struct qrtr_node *node;
549 if (!ep || !ep->xmit)
550 return -EINVAL;
552 node = kzalloc(sizeof(*node), GFP_KERNEL);
553 if (!node)
554 return -ENOMEM;
556 kref_init(&node->ref);
557 mutex_init(&node->ep_lock);
558 skb_queue_head_init(&node->rx_queue);
559 node->nid = QRTR_EP_NID_AUTO;
560 node->ep = ep;
562 INIT_RADIX_TREE(&node->qrtr_tx_flow, GFP_KERNEL);
563 mutex_init(&node->qrtr_tx_lock);
565 qrtr_node_assign(node, nid);
567 mutex_lock(&qrtr_node_lock);
568 list_add(&node->item, &qrtr_all_nodes);
569 mutex_unlock(&qrtr_node_lock);
570 ep->node = node;
572 return 0;
574 EXPORT_SYMBOL_GPL(qrtr_endpoint_register);
577 * qrtr_endpoint_unregister - unregister endpoint
578 * @ep: endpoint to unregister
580 void qrtr_endpoint_unregister(struct qrtr_endpoint *ep)
582 struct qrtr_node *node = ep->node;
583 struct sockaddr_qrtr src = {AF_QIPCRTR, node->nid, QRTR_PORT_CTRL};
584 struct sockaddr_qrtr dst = {AF_QIPCRTR, qrtr_local_nid, QRTR_PORT_CTRL};
585 struct radix_tree_iter iter;
586 struct qrtr_ctrl_pkt *pkt;
587 struct qrtr_tx_flow *flow;
588 struct sk_buff *skb;
589 void __rcu **slot;
591 mutex_lock(&node->ep_lock);
592 node->ep = NULL;
593 mutex_unlock(&node->ep_lock);
595 /* Notify the local controller about the event */
596 skb = qrtr_alloc_ctrl_packet(&pkt);
597 if (skb) {
598 pkt->cmd = cpu_to_le32(QRTR_TYPE_BYE);
599 qrtr_local_enqueue(NULL, skb, QRTR_TYPE_BYE, &src, &dst);
602 /* Wake up any transmitters waiting for resume-tx from the node */
603 mutex_lock(&node->qrtr_tx_lock);
604 radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) {
605 flow = *slot;
606 wake_up_interruptible_all(&flow->resume_tx);
608 mutex_unlock(&node->qrtr_tx_lock);
610 qrtr_node_release(node);
611 ep->node = NULL;
613 EXPORT_SYMBOL_GPL(qrtr_endpoint_unregister);
615 /* Lookup socket by port.
617 * Callers must release with qrtr_port_put()
619 static struct qrtr_sock *qrtr_port_lookup(int port)
621 struct qrtr_sock *ipc;
623 if (port == QRTR_PORT_CTRL)
624 port = 0;
626 rcu_read_lock();
627 ipc = idr_find(&qrtr_ports, port);
628 if (ipc)
629 sock_hold(&ipc->sk);
630 rcu_read_unlock();
632 return ipc;
635 /* Release acquired socket. */
636 static void qrtr_port_put(struct qrtr_sock *ipc)
638 sock_put(&ipc->sk);
641 /* Remove port assignment. */
642 static void qrtr_port_remove(struct qrtr_sock *ipc)
644 struct qrtr_ctrl_pkt *pkt;
645 struct sk_buff *skb;
646 int port = ipc->us.sq_port;
647 struct sockaddr_qrtr to;
649 to.sq_family = AF_QIPCRTR;
650 to.sq_node = QRTR_NODE_BCAST;
651 to.sq_port = QRTR_PORT_CTRL;
653 skb = qrtr_alloc_ctrl_packet(&pkt);
654 if (skb) {
655 pkt->cmd = cpu_to_le32(QRTR_TYPE_DEL_CLIENT);
656 pkt->client.node = cpu_to_le32(ipc->us.sq_node);
657 pkt->client.port = cpu_to_le32(ipc->us.sq_port);
659 skb_set_owner_w(skb, &ipc->sk);
660 qrtr_bcast_enqueue(NULL, skb, QRTR_TYPE_DEL_CLIENT, &ipc->us,
661 &to);
664 if (port == QRTR_PORT_CTRL)
665 port = 0;
667 __sock_put(&ipc->sk);
669 mutex_lock(&qrtr_port_lock);
670 idr_remove(&qrtr_ports, port);
671 mutex_unlock(&qrtr_port_lock);
673 /* Ensure that if qrtr_port_lookup() did enter the RCU read section we
674 * wait for it to up increment the refcount */
675 synchronize_rcu();
678 /* Assign port number to socket.
680 * Specify port in the integer pointed to by port, and it will be adjusted
681 * on return as necesssary.
683 * Port may be:
684 * 0: Assign ephemeral port in [QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET]
685 * <QRTR_MIN_EPH_SOCKET: Specified; requires CAP_NET_ADMIN
686 * >QRTR_MIN_EPH_SOCKET: Specified; available to all
688 static int qrtr_port_assign(struct qrtr_sock *ipc, int *port)
690 int rc;
692 mutex_lock(&qrtr_port_lock);
693 if (!*port) {
694 rc = idr_alloc(&qrtr_ports, ipc,
695 QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET + 1,
696 GFP_ATOMIC);
697 if (rc >= 0)
698 *port = rc;
699 } else if (*port < QRTR_MIN_EPH_SOCKET && !capable(CAP_NET_ADMIN)) {
700 rc = -EACCES;
701 } else if (*port == QRTR_PORT_CTRL) {
702 rc = idr_alloc(&qrtr_ports, ipc, 0, 1, GFP_ATOMIC);
703 } else {
704 rc = idr_alloc(&qrtr_ports, ipc, *port, *port + 1, GFP_ATOMIC);
705 if (rc >= 0)
706 *port = rc;
708 mutex_unlock(&qrtr_port_lock);
710 if (rc == -ENOSPC)
711 return -EADDRINUSE;
712 else if (rc < 0)
713 return rc;
715 sock_hold(&ipc->sk);
717 return 0;
720 /* Reset all non-control ports */
721 static void qrtr_reset_ports(void)
723 struct qrtr_sock *ipc;
724 int id;
726 mutex_lock(&qrtr_port_lock);
727 idr_for_each_entry(&qrtr_ports, ipc, id) {
728 /* Don't reset control port */
729 if (id == 0)
730 continue;
732 sock_hold(&ipc->sk);
733 ipc->sk.sk_err = ENETRESET;
734 ipc->sk.sk_error_report(&ipc->sk);
735 sock_put(&ipc->sk);
737 mutex_unlock(&qrtr_port_lock);
740 /* Bind socket to address.
742 * Socket should be locked upon call.
744 static int __qrtr_bind(struct socket *sock,
745 const struct sockaddr_qrtr *addr, int zapped)
747 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
748 struct sock *sk = sock->sk;
749 int port;
750 int rc;
752 /* rebinding ok */
753 if (!zapped && addr->sq_port == ipc->us.sq_port)
754 return 0;
756 port = addr->sq_port;
757 rc = qrtr_port_assign(ipc, &port);
758 if (rc)
759 return rc;
761 /* unbind previous, if any */
762 if (!zapped)
763 qrtr_port_remove(ipc);
764 ipc->us.sq_port = port;
766 sock_reset_flag(sk, SOCK_ZAPPED);
768 /* Notify all open ports about the new controller */
769 if (port == QRTR_PORT_CTRL)
770 qrtr_reset_ports();
772 return 0;
775 /* Auto bind to an ephemeral port. */
776 static int qrtr_autobind(struct socket *sock)
778 struct sock *sk = sock->sk;
779 struct sockaddr_qrtr addr;
781 if (!sock_flag(sk, SOCK_ZAPPED))
782 return 0;
784 addr.sq_family = AF_QIPCRTR;
785 addr.sq_node = qrtr_local_nid;
786 addr.sq_port = 0;
788 return __qrtr_bind(sock, &addr, 1);
791 /* Bind socket to specified sockaddr. */
792 static int qrtr_bind(struct socket *sock, struct sockaddr *saddr, int len)
794 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr);
795 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
796 struct sock *sk = sock->sk;
797 int rc;
799 if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR)
800 return -EINVAL;
802 if (addr->sq_node != ipc->us.sq_node)
803 return -EINVAL;
805 lock_sock(sk);
806 rc = __qrtr_bind(sock, addr, sock_flag(sk, SOCK_ZAPPED));
807 release_sock(sk);
809 return rc;
812 /* Queue packet to local peer socket. */
813 static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb,
814 int type, struct sockaddr_qrtr *from,
815 struct sockaddr_qrtr *to)
817 struct qrtr_sock *ipc;
818 struct qrtr_cb *cb;
820 ipc = qrtr_port_lookup(to->sq_port);
821 if (!ipc || &ipc->sk == skb->sk) { /* do not send to self */
822 kfree_skb(skb);
823 return -ENODEV;
826 cb = (struct qrtr_cb *)skb->cb;
827 cb->src_node = from->sq_node;
828 cb->src_port = from->sq_port;
830 if (sock_queue_rcv_skb(&ipc->sk, skb)) {
831 qrtr_port_put(ipc);
832 kfree_skb(skb);
833 return -ENOSPC;
836 qrtr_port_put(ipc);
838 return 0;
841 /* Queue packet for broadcast. */
842 static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb,
843 int type, struct sockaddr_qrtr *from,
844 struct sockaddr_qrtr *to)
846 struct sk_buff *skbn;
848 mutex_lock(&qrtr_node_lock);
849 list_for_each_entry(node, &qrtr_all_nodes, item) {
850 skbn = skb_clone(skb, GFP_KERNEL);
851 if (!skbn)
852 break;
853 skb_set_owner_w(skbn, skb->sk);
854 qrtr_node_enqueue(node, skbn, type, from, to);
856 mutex_unlock(&qrtr_node_lock);
858 qrtr_local_enqueue(node, skb, type, from, to);
860 return 0;
863 static int qrtr_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
865 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name);
866 int (*enqueue_fn)(struct qrtr_node *, struct sk_buff *, int,
867 struct sockaddr_qrtr *, struct sockaddr_qrtr *);
868 __le32 qrtr_type = cpu_to_le32(QRTR_TYPE_DATA);
869 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
870 struct sock *sk = sock->sk;
871 struct qrtr_node *node;
872 struct sk_buff *skb;
873 size_t plen;
874 u32 type;
875 int rc;
877 if (msg->msg_flags & ~(MSG_DONTWAIT))
878 return -EINVAL;
880 if (len > 65535)
881 return -EMSGSIZE;
883 lock_sock(sk);
885 if (addr) {
886 if (msg->msg_namelen < sizeof(*addr)) {
887 release_sock(sk);
888 return -EINVAL;
891 if (addr->sq_family != AF_QIPCRTR) {
892 release_sock(sk);
893 return -EINVAL;
896 rc = qrtr_autobind(sock);
897 if (rc) {
898 release_sock(sk);
899 return rc;
901 } else if (sk->sk_state == TCP_ESTABLISHED) {
902 addr = &ipc->peer;
903 } else {
904 release_sock(sk);
905 return -ENOTCONN;
908 node = NULL;
909 if (addr->sq_node == QRTR_NODE_BCAST) {
910 enqueue_fn = qrtr_bcast_enqueue;
911 if (addr->sq_port != QRTR_PORT_CTRL) {
912 release_sock(sk);
913 return -ENOTCONN;
915 } else if (addr->sq_node == ipc->us.sq_node) {
916 enqueue_fn = qrtr_local_enqueue;
917 } else {
918 enqueue_fn = qrtr_node_enqueue;
919 node = qrtr_node_lookup(addr->sq_node);
920 if (!node) {
921 release_sock(sk);
922 return -ECONNRESET;
926 plen = (len + 3) & ~3;
927 skb = sock_alloc_send_skb(sk, plen + QRTR_HDR_MAX_SIZE,
928 msg->msg_flags & MSG_DONTWAIT, &rc);
929 if (!skb)
930 goto out_node;
932 skb_reserve(skb, QRTR_HDR_MAX_SIZE);
934 rc = memcpy_from_msg(skb_put(skb, len), msg, len);
935 if (rc) {
936 kfree_skb(skb);
937 goto out_node;
940 if (ipc->us.sq_port == QRTR_PORT_CTRL) {
941 if (len < 4) {
942 rc = -EINVAL;
943 kfree_skb(skb);
944 goto out_node;
947 /* control messages already require the type as 'command' */
948 skb_copy_bits(skb, 0, &qrtr_type, 4);
951 type = le32_to_cpu(qrtr_type);
952 rc = enqueue_fn(node, skb, type, &ipc->us, addr);
953 if (rc >= 0)
954 rc = len;
956 out_node:
957 qrtr_node_release(node);
958 release_sock(sk);
960 return rc;
963 static int qrtr_send_resume_tx(struct qrtr_cb *cb)
965 struct sockaddr_qrtr remote = { AF_QIPCRTR, cb->src_node, cb->src_port };
966 struct sockaddr_qrtr local = { AF_QIPCRTR, cb->dst_node, cb->dst_port };
967 struct qrtr_ctrl_pkt *pkt;
968 struct qrtr_node *node;
969 struct sk_buff *skb;
970 int ret;
972 node = qrtr_node_lookup(remote.sq_node);
973 if (!node)
974 return -EINVAL;
976 skb = qrtr_alloc_ctrl_packet(&pkt);
977 if (!skb)
978 return -ENOMEM;
980 pkt->cmd = cpu_to_le32(QRTR_TYPE_RESUME_TX);
981 pkt->client.node = cpu_to_le32(cb->dst_node);
982 pkt->client.port = cpu_to_le32(cb->dst_port);
984 ret = qrtr_node_enqueue(node, skb, QRTR_TYPE_RESUME_TX, &local, &remote);
986 qrtr_node_release(node);
988 return ret;
991 static int qrtr_recvmsg(struct socket *sock, struct msghdr *msg,
992 size_t size, int flags)
994 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name);
995 struct sock *sk = sock->sk;
996 struct sk_buff *skb;
997 struct qrtr_cb *cb;
998 int copied, rc;
1000 lock_sock(sk);
1002 if (sock_flag(sk, SOCK_ZAPPED)) {
1003 release_sock(sk);
1004 return -EADDRNOTAVAIL;
1007 skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT,
1008 flags & MSG_DONTWAIT, &rc);
1009 if (!skb) {
1010 release_sock(sk);
1011 return rc;
1013 cb = (struct qrtr_cb *)skb->cb;
1015 copied = skb->len;
1016 if (copied > size) {
1017 copied = size;
1018 msg->msg_flags |= MSG_TRUNC;
1021 rc = skb_copy_datagram_msg(skb, 0, msg, copied);
1022 if (rc < 0)
1023 goto out;
1024 rc = copied;
1026 if (addr) {
1027 addr->sq_family = AF_QIPCRTR;
1028 addr->sq_node = cb->src_node;
1029 addr->sq_port = cb->src_port;
1030 msg->msg_namelen = sizeof(*addr);
1033 out:
1034 if (cb->confirm_rx)
1035 qrtr_send_resume_tx(cb);
1037 skb_free_datagram(sk, skb);
1038 release_sock(sk);
1040 return rc;
1043 static int qrtr_connect(struct socket *sock, struct sockaddr *saddr,
1044 int len, int flags)
1046 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr);
1047 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
1048 struct sock *sk = sock->sk;
1049 int rc;
1051 if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR)
1052 return -EINVAL;
1054 lock_sock(sk);
1056 sk->sk_state = TCP_CLOSE;
1057 sock->state = SS_UNCONNECTED;
1059 rc = qrtr_autobind(sock);
1060 if (rc) {
1061 release_sock(sk);
1062 return rc;
1065 ipc->peer = *addr;
1066 sock->state = SS_CONNECTED;
1067 sk->sk_state = TCP_ESTABLISHED;
1069 release_sock(sk);
1071 return 0;
1074 static int qrtr_getname(struct socket *sock, struct sockaddr *saddr,
1075 int peer)
1077 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
1078 struct sockaddr_qrtr qaddr;
1079 struct sock *sk = sock->sk;
1081 lock_sock(sk);
1082 if (peer) {
1083 if (sk->sk_state != TCP_ESTABLISHED) {
1084 release_sock(sk);
1085 return -ENOTCONN;
1088 qaddr = ipc->peer;
1089 } else {
1090 qaddr = ipc->us;
1092 release_sock(sk);
1094 qaddr.sq_family = AF_QIPCRTR;
1096 memcpy(saddr, &qaddr, sizeof(qaddr));
1098 return sizeof(qaddr);
1101 static int qrtr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1103 void __user *argp = (void __user *)arg;
1104 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
1105 struct sock *sk = sock->sk;
1106 struct sockaddr_qrtr *sq;
1107 struct sk_buff *skb;
1108 struct ifreq ifr;
1109 long len = 0;
1110 int rc = 0;
1112 lock_sock(sk);
1114 switch (cmd) {
1115 case TIOCOUTQ:
1116 len = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
1117 if (len < 0)
1118 len = 0;
1119 rc = put_user(len, (int __user *)argp);
1120 break;
1121 case TIOCINQ:
1122 skb = skb_peek(&sk->sk_receive_queue);
1123 if (skb)
1124 len = skb->len;
1125 rc = put_user(len, (int __user *)argp);
1126 break;
1127 case SIOCGIFADDR:
1128 if (copy_from_user(&ifr, argp, sizeof(ifr))) {
1129 rc = -EFAULT;
1130 break;
1133 sq = (struct sockaddr_qrtr *)&ifr.ifr_addr;
1134 *sq = ipc->us;
1135 if (copy_to_user(argp, &ifr, sizeof(ifr))) {
1136 rc = -EFAULT;
1137 break;
1139 break;
1140 case SIOCADDRT:
1141 case SIOCDELRT:
1142 case SIOCSIFADDR:
1143 case SIOCGIFDSTADDR:
1144 case SIOCSIFDSTADDR:
1145 case SIOCGIFBRDADDR:
1146 case SIOCSIFBRDADDR:
1147 case SIOCGIFNETMASK:
1148 case SIOCSIFNETMASK:
1149 rc = -EINVAL;
1150 break;
1151 default:
1152 rc = -ENOIOCTLCMD;
1153 break;
1156 release_sock(sk);
1158 return rc;
1161 static int qrtr_release(struct socket *sock)
1163 struct sock *sk = sock->sk;
1164 struct qrtr_sock *ipc;
1166 if (!sk)
1167 return 0;
1169 lock_sock(sk);
1171 ipc = qrtr_sk(sk);
1172 sk->sk_shutdown = SHUTDOWN_MASK;
1173 if (!sock_flag(sk, SOCK_DEAD))
1174 sk->sk_state_change(sk);
1176 sock_set_flag(sk, SOCK_DEAD);
1177 sock->sk = NULL;
1179 if (!sock_flag(sk, SOCK_ZAPPED))
1180 qrtr_port_remove(ipc);
1182 skb_queue_purge(&sk->sk_receive_queue);
1184 release_sock(sk);
1185 sock_put(sk);
1187 return 0;
1190 static const struct proto_ops qrtr_proto_ops = {
1191 .owner = THIS_MODULE,
1192 .family = AF_QIPCRTR,
1193 .bind = qrtr_bind,
1194 .connect = qrtr_connect,
1195 .socketpair = sock_no_socketpair,
1196 .accept = sock_no_accept,
1197 .listen = sock_no_listen,
1198 .sendmsg = qrtr_sendmsg,
1199 .recvmsg = qrtr_recvmsg,
1200 .getname = qrtr_getname,
1201 .ioctl = qrtr_ioctl,
1202 .gettstamp = sock_gettstamp,
1203 .poll = datagram_poll,
1204 .shutdown = sock_no_shutdown,
1205 .setsockopt = sock_no_setsockopt,
1206 .getsockopt = sock_no_getsockopt,
1207 .release = qrtr_release,
1208 .mmap = sock_no_mmap,
1209 .sendpage = sock_no_sendpage,
1212 static struct proto qrtr_proto = {
1213 .name = "QIPCRTR",
1214 .owner = THIS_MODULE,
1215 .obj_size = sizeof(struct qrtr_sock),
1218 static int qrtr_create(struct net *net, struct socket *sock,
1219 int protocol, int kern)
1221 struct qrtr_sock *ipc;
1222 struct sock *sk;
1224 if (sock->type != SOCK_DGRAM)
1225 return -EPROTOTYPE;
1227 sk = sk_alloc(net, AF_QIPCRTR, GFP_KERNEL, &qrtr_proto, kern);
1228 if (!sk)
1229 return -ENOMEM;
1231 sock_set_flag(sk, SOCK_ZAPPED);
1233 sock_init_data(sock, sk);
1234 sock->ops = &qrtr_proto_ops;
1236 ipc = qrtr_sk(sk);
1237 ipc->us.sq_family = AF_QIPCRTR;
1238 ipc->us.sq_node = qrtr_local_nid;
1239 ipc->us.sq_port = 0;
1241 return 0;
1244 static const struct nla_policy qrtr_policy[IFA_MAX + 1] = {
1245 [IFA_LOCAL] = { .type = NLA_U32 },
1248 static int qrtr_addr_doit(struct sk_buff *skb, struct nlmsghdr *nlh,
1249 struct netlink_ext_ack *extack)
1251 struct nlattr *tb[IFA_MAX + 1];
1252 struct ifaddrmsg *ifm;
1253 int rc;
1255 if (!netlink_capable(skb, CAP_NET_ADMIN))
1256 return -EPERM;
1258 if (!netlink_capable(skb, CAP_SYS_ADMIN))
1259 return -EPERM;
1261 ASSERT_RTNL();
1263 rc = nlmsg_parse_deprecated(nlh, sizeof(*ifm), tb, IFA_MAX,
1264 qrtr_policy, extack);
1265 if (rc < 0)
1266 return rc;
1268 ifm = nlmsg_data(nlh);
1269 if (!tb[IFA_LOCAL])
1270 return -EINVAL;
1272 qrtr_local_nid = nla_get_u32(tb[IFA_LOCAL]);
1273 return 0;
1276 static const struct net_proto_family qrtr_family = {
1277 .owner = THIS_MODULE,
1278 .family = AF_QIPCRTR,
1279 .create = qrtr_create,
1282 static int __init qrtr_proto_init(void)
1284 int rc;
1286 rc = proto_register(&qrtr_proto, 1);
1287 if (rc)
1288 return rc;
1290 rc = sock_register(&qrtr_family);
1291 if (rc) {
1292 proto_unregister(&qrtr_proto);
1293 return rc;
1296 rc = rtnl_register_module(THIS_MODULE, PF_QIPCRTR, RTM_NEWADDR, qrtr_addr_doit, NULL, 0);
1297 if (rc) {
1298 sock_unregister(qrtr_family.family);
1299 proto_unregister(&qrtr_proto);
1302 return rc;
1304 postcore_initcall(qrtr_proto_init);
1306 static void __exit qrtr_proto_fini(void)
1308 rtnl_unregister(PF_QIPCRTR, RTM_NEWADDR);
1309 sock_unregister(qrtr_family.family);
1310 proto_unregister(&qrtr_proto);
1312 module_exit(qrtr_proto_fini);
1314 MODULE_DESCRIPTION("Qualcomm IPC-router driver");
1315 MODULE_LICENSE("GPL v2");
1316 MODULE_ALIAS_NETPROTO(PF_QIPCRTR);