ARM: dma-api: fix max_pfn off-by-one error in __dma_supported()
[linux/fpc-iii.git] / net / sunrpc / sched.c
blob9c79548c684746397cd063210457ad37f06a3a43
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/net/sunrpc/sched.c
5 * Scheduling for synchronous and asynchronous RPC requests.
7 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
9 * TCP NFS related read + write fixes
10 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
13 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/mempool.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 #include <linux/freezer.h>
23 #include <linux/sched/mm.h>
25 #include <linux/sunrpc/clnt.h>
26 #include <linux/sunrpc/metrics.h>
28 #include "sunrpc.h"
30 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
31 #define RPCDBG_FACILITY RPCDBG_SCHED
32 #endif
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/sunrpc.h>
38 * RPC slabs and memory pools
40 #define RPC_BUFFER_MAXSIZE (2048)
41 #define RPC_BUFFER_POOLSIZE (8)
42 #define RPC_TASK_POOLSIZE (8)
43 static struct kmem_cache *rpc_task_slabp __read_mostly;
44 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
45 static mempool_t *rpc_task_mempool __read_mostly;
46 static mempool_t *rpc_buffer_mempool __read_mostly;
48 static void rpc_async_schedule(struct work_struct *);
49 static void rpc_release_task(struct rpc_task *task);
50 static void __rpc_queue_timer_fn(struct work_struct *);
53 * RPC tasks sit here while waiting for conditions to improve.
55 static struct rpc_wait_queue delay_queue;
58 * rpciod-related stuff
60 struct workqueue_struct *rpciod_workqueue __read_mostly;
61 struct workqueue_struct *xprtiod_workqueue __read_mostly;
62 EXPORT_SYMBOL_GPL(xprtiod_workqueue);
64 unsigned long
65 rpc_task_timeout(const struct rpc_task *task)
67 unsigned long timeout = READ_ONCE(task->tk_timeout);
69 if (timeout != 0) {
70 unsigned long now = jiffies;
71 if (time_before(now, timeout))
72 return timeout - now;
74 return 0;
76 EXPORT_SYMBOL_GPL(rpc_task_timeout);
79 * Disable the timer for a given RPC task. Should be called with
80 * queue->lock and bh_disabled in order to avoid races within
81 * rpc_run_timer().
83 static void
84 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
86 if (list_empty(&task->u.tk_wait.timer_list))
87 return;
88 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
89 task->tk_timeout = 0;
90 list_del(&task->u.tk_wait.timer_list);
91 if (list_empty(&queue->timer_list.list))
92 cancel_delayed_work(&queue->timer_list.dwork);
95 static void
96 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
98 unsigned long now = jiffies;
99 queue->timer_list.expires = expires;
100 if (time_before_eq(expires, now))
101 expires = 0;
102 else
103 expires -= now;
104 mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
108 * Set up a timer for the current task.
110 static void
111 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
112 unsigned long timeout)
114 dprintk("RPC: %5u setting alarm for %u ms\n",
115 task->tk_pid, jiffies_to_msecs(timeout - jiffies));
117 task->tk_timeout = timeout;
118 if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
119 rpc_set_queue_timer(queue, timeout);
120 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
123 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
125 if (queue->priority != priority) {
126 queue->priority = priority;
127 queue->nr = 1U << priority;
131 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
133 rpc_set_waitqueue_priority(queue, queue->maxpriority);
137 * Add a request to a queue list
139 static void
140 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
142 struct rpc_task *t;
144 list_for_each_entry(t, q, u.tk_wait.list) {
145 if (t->tk_owner == task->tk_owner) {
146 list_add_tail(&task->u.tk_wait.links,
147 &t->u.tk_wait.links);
148 /* Cache the queue head in task->u.tk_wait.list */
149 task->u.tk_wait.list.next = q;
150 task->u.tk_wait.list.prev = NULL;
151 return;
154 INIT_LIST_HEAD(&task->u.tk_wait.links);
155 list_add_tail(&task->u.tk_wait.list, q);
159 * Remove request from a queue list
161 static void
162 __rpc_list_dequeue_task(struct rpc_task *task)
164 struct list_head *q;
165 struct rpc_task *t;
167 if (task->u.tk_wait.list.prev == NULL) {
168 list_del(&task->u.tk_wait.links);
169 return;
171 if (!list_empty(&task->u.tk_wait.links)) {
172 t = list_first_entry(&task->u.tk_wait.links,
173 struct rpc_task,
174 u.tk_wait.links);
175 /* Assume __rpc_list_enqueue_task() cached the queue head */
176 q = t->u.tk_wait.list.next;
177 list_add_tail(&t->u.tk_wait.list, q);
178 list_del(&task->u.tk_wait.links);
180 list_del(&task->u.tk_wait.list);
184 * Add new request to a priority queue.
186 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
187 struct rpc_task *task,
188 unsigned char queue_priority)
190 if (unlikely(queue_priority > queue->maxpriority))
191 queue_priority = queue->maxpriority;
192 __rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
196 * Add new request to wait queue.
198 * Swapper tasks always get inserted at the head of the queue.
199 * This should avoid many nasty memory deadlocks and hopefully
200 * improve overall performance.
201 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
203 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
204 struct rpc_task *task,
205 unsigned char queue_priority)
207 WARN_ON_ONCE(RPC_IS_QUEUED(task));
208 if (RPC_IS_QUEUED(task))
209 return;
211 INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
212 if (RPC_IS_PRIORITY(queue))
213 __rpc_add_wait_queue_priority(queue, task, queue_priority);
214 else if (RPC_IS_SWAPPER(task))
215 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
216 else
217 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
218 task->tk_waitqueue = queue;
219 queue->qlen++;
220 /* barrier matches the read in rpc_wake_up_task_queue_locked() */
221 smp_wmb();
222 rpc_set_queued(task);
224 dprintk("RPC: %5u added to queue %p \"%s\"\n",
225 task->tk_pid, queue, rpc_qname(queue));
229 * Remove request from a priority queue.
231 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
233 __rpc_list_dequeue_task(task);
237 * Remove request from queue.
238 * Note: must be called with spin lock held.
240 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
242 __rpc_disable_timer(queue, task);
243 if (RPC_IS_PRIORITY(queue))
244 __rpc_remove_wait_queue_priority(task);
245 else
246 list_del(&task->u.tk_wait.list);
247 queue->qlen--;
248 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
249 task->tk_pid, queue, rpc_qname(queue));
252 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
254 int i;
256 spin_lock_init(&queue->lock);
257 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
258 INIT_LIST_HEAD(&queue->tasks[i]);
259 queue->maxpriority = nr_queues - 1;
260 rpc_reset_waitqueue_priority(queue);
261 queue->qlen = 0;
262 queue->timer_list.expires = 0;
263 INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
264 INIT_LIST_HEAD(&queue->timer_list.list);
265 rpc_assign_waitqueue_name(queue, qname);
268 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
270 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
272 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
274 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
276 __rpc_init_priority_wait_queue(queue, qname, 1);
278 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
280 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
282 cancel_delayed_work_sync(&queue->timer_list.dwork);
284 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
286 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
288 freezable_schedule_unsafe();
289 if (signal_pending_state(mode, current))
290 return -ERESTARTSYS;
291 return 0;
294 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
295 static void rpc_task_set_debuginfo(struct rpc_task *task)
297 static atomic_t rpc_pid;
299 task->tk_pid = atomic_inc_return(&rpc_pid);
301 #else
302 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
305 #endif
307 static void rpc_set_active(struct rpc_task *task)
309 rpc_task_set_debuginfo(task);
310 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
311 trace_rpc_task_begin(task, NULL);
315 * Mark an RPC call as having completed by clearing the 'active' bit
316 * and then waking up all tasks that were sleeping.
318 static int rpc_complete_task(struct rpc_task *task)
320 void *m = &task->tk_runstate;
321 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
322 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
323 unsigned long flags;
324 int ret;
326 trace_rpc_task_complete(task, NULL);
328 spin_lock_irqsave(&wq->lock, flags);
329 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
330 ret = atomic_dec_and_test(&task->tk_count);
331 if (waitqueue_active(wq))
332 __wake_up_locked_key(wq, TASK_NORMAL, &k);
333 spin_unlock_irqrestore(&wq->lock, flags);
334 return ret;
338 * Allow callers to wait for completion of an RPC call
340 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
341 * to enforce taking of the wq->lock and hence avoid races with
342 * rpc_complete_task().
344 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
346 if (action == NULL)
347 action = rpc_wait_bit_killable;
348 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
349 action, TASK_KILLABLE);
351 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
354 * Make an RPC task runnable.
356 * Note: If the task is ASYNC, and is being made runnable after sitting on an
357 * rpc_wait_queue, this must be called with the queue spinlock held to protect
358 * the wait queue operation.
359 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
360 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
361 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
362 * the RPC_TASK_RUNNING flag.
364 static void rpc_make_runnable(struct workqueue_struct *wq,
365 struct rpc_task *task)
367 bool need_wakeup = !rpc_test_and_set_running(task);
369 rpc_clear_queued(task);
370 if (!need_wakeup)
371 return;
372 if (RPC_IS_ASYNC(task)) {
373 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
374 queue_work(wq, &task->u.tk_work);
375 } else
376 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
380 * Prepare for sleeping on a wait queue.
381 * By always appending tasks to the list we ensure FIFO behavior.
382 * NB: An RPC task will only receive interrupt-driven events as long
383 * as it's on a wait queue.
385 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
386 struct rpc_task *task,
387 unsigned char queue_priority)
389 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
390 task->tk_pid, rpc_qname(q), jiffies);
392 trace_rpc_task_sleep(task, q);
394 __rpc_add_wait_queue(q, task, queue_priority);
398 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
399 struct rpc_task *task, unsigned long timeout,
400 unsigned char queue_priority)
402 if (time_is_after_jiffies(timeout)) {
403 __rpc_sleep_on_priority(q, task, queue_priority);
404 __rpc_add_timer(q, task, timeout);
405 } else
406 task->tk_status = -ETIMEDOUT;
409 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
411 if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
412 task->tk_callback = action;
415 static bool rpc_sleep_check_activated(struct rpc_task *task)
417 /* We shouldn't ever put an inactive task to sleep */
418 if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
419 task->tk_status = -EIO;
420 rpc_put_task_async(task);
421 return false;
423 return true;
426 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
427 rpc_action action, unsigned long timeout)
429 if (!rpc_sleep_check_activated(task))
430 return;
432 rpc_set_tk_callback(task, action);
435 * Protect the queue operations.
437 spin_lock(&q->lock);
438 __rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
439 spin_unlock(&q->lock);
441 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
443 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
444 rpc_action action)
446 if (!rpc_sleep_check_activated(task))
447 return;
449 rpc_set_tk_callback(task, action);
451 WARN_ON_ONCE(task->tk_timeout != 0);
453 * Protect the queue operations.
455 spin_lock(&q->lock);
456 __rpc_sleep_on_priority(q, task, task->tk_priority);
457 spin_unlock(&q->lock);
459 EXPORT_SYMBOL_GPL(rpc_sleep_on);
461 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
462 struct rpc_task *task, unsigned long timeout, int priority)
464 if (!rpc_sleep_check_activated(task))
465 return;
467 priority -= RPC_PRIORITY_LOW;
469 * Protect the queue operations.
471 spin_lock(&q->lock);
472 __rpc_sleep_on_priority_timeout(q, task, timeout, priority);
473 spin_unlock(&q->lock);
475 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
477 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
478 int priority)
480 if (!rpc_sleep_check_activated(task))
481 return;
483 WARN_ON_ONCE(task->tk_timeout != 0);
484 priority -= RPC_PRIORITY_LOW;
486 * Protect the queue operations.
488 spin_lock(&q->lock);
489 __rpc_sleep_on_priority(q, task, priority);
490 spin_unlock(&q->lock);
492 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
495 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
496 * @wq: workqueue on which to run task
497 * @queue: wait queue
498 * @task: task to be woken up
500 * Caller must hold queue->lock, and have cleared the task queued flag.
502 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
503 struct rpc_wait_queue *queue,
504 struct rpc_task *task)
506 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
507 task->tk_pid, jiffies);
509 /* Has the task been executed yet? If not, we cannot wake it up! */
510 if (!RPC_IS_ACTIVATED(task)) {
511 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
512 return;
515 trace_rpc_task_wakeup(task, queue);
517 __rpc_remove_wait_queue(queue, task);
519 rpc_make_runnable(wq, task);
521 dprintk("RPC: __rpc_wake_up_task done\n");
525 * Wake up a queued task while the queue lock is being held
527 static struct rpc_task *
528 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
529 struct rpc_wait_queue *queue, struct rpc_task *task,
530 bool (*action)(struct rpc_task *, void *), void *data)
532 if (RPC_IS_QUEUED(task)) {
533 smp_rmb();
534 if (task->tk_waitqueue == queue) {
535 if (action == NULL || action(task, data)) {
536 __rpc_do_wake_up_task_on_wq(wq, queue, task);
537 return task;
541 return NULL;
545 * Wake up a queued task while the queue lock is being held
547 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
548 struct rpc_task *task)
550 rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
551 task, NULL, NULL);
555 * Wake up a task on a specific queue
557 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
559 if (!RPC_IS_QUEUED(task))
560 return;
561 spin_lock(&queue->lock);
562 rpc_wake_up_task_queue_locked(queue, task);
563 spin_unlock(&queue->lock);
565 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
567 static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
569 task->tk_status = *(int *)status;
570 return true;
573 static void
574 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
575 struct rpc_task *task, int status)
577 rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
578 task, rpc_task_action_set_status, &status);
582 * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
583 * @queue: pointer to rpc_wait_queue
584 * @task: pointer to rpc_task
585 * @status: integer error value
587 * If @task is queued on @queue, then it is woken up, and @task->tk_status is
588 * set to the value of @status.
590 void
591 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
592 struct rpc_task *task, int status)
594 if (!RPC_IS_QUEUED(task))
595 return;
596 spin_lock(&queue->lock);
597 rpc_wake_up_task_queue_set_status_locked(queue, task, status);
598 spin_unlock(&queue->lock);
602 * Wake up the next task on a priority queue.
604 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
606 struct list_head *q;
607 struct rpc_task *task;
610 * Service a batch of tasks from a single owner.
612 q = &queue->tasks[queue->priority];
613 if (!list_empty(q) && --queue->nr) {
614 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
615 goto out;
619 * Service the next queue.
621 do {
622 if (q == &queue->tasks[0])
623 q = &queue->tasks[queue->maxpriority];
624 else
625 q = q - 1;
626 if (!list_empty(q)) {
627 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
628 goto new_queue;
630 } while (q != &queue->tasks[queue->priority]);
632 rpc_reset_waitqueue_priority(queue);
633 return NULL;
635 new_queue:
636 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
637 out:
638 return task;
641 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
643 if (RPC_IS_PRIORITY(queue))
644 return __rpc_find_next_queued_priority(queue);
645 if (!list_empty(&queue->tasks[0]))
646 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
647 return NULL;
651 * Wake up the first task on the wait queue.
653 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
654 struct rpc_wait_queue *queue,
655 bool (*func)(struct rpc_task *, void *), void *data)
657 struct rpc_task *task = NULL;
659 dprintk("RPC: wake_up_first(%p \"%s\")\n",
660 queue, rpc_qname(queue));
661 spin_lock(&queue->lock);
662 task = __rpc_find_next_queued(queue);
663 if (task != NULL)
664 task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
665 task, func, data);
666 spin_unlock(&queue->lock);
668 return task;
672 * Wake up the first task on the wait queue.
674 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
675 bool (*func)(struct rpc_task *, void *), void *data)
677 return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
679 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
681 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
683 return true;
687 * Wake up the next task on the wait queue.
689 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
691 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
693 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
696 * rpc_wake_up - wake up all rpc_tasks
697 * @queue: rpc_wait_queue on which the tasks are sleeping
699 * Grabs queue->lock
701 void rpc_wake_up(struct rpc_wait_queue *queue)
703 struct list_head *head;
705 spin_lock(&queue->lock);
706 head = &queue->tasks[queue->maxpriority];
707 for (;;) {
708 while (!list_empty(head)) {
709 struct rpc_task *task;
710 task = list_first_entry(head,
711 struct rpc_task,
712 u.tk_wait.list);
713 rpc_wake_up_task_queue_locked(queue, task);
715 if (head == &queue->tasks[0])
716 break;
717 head--;
719 spin_unlock(&queue->lock);
721 EXPORT_SYMBOL_GPL(rpc_wake_up);
724 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
725 * @queue: rpc_wait_queue on which the tasks are sleeping
726 * @status: status value to set
728 * Grabs queue->lock
730 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
732 struct list_head *head;
734 spin_lock(&queue->lock);
735 head = &queue->tasks[queue->maxpriority];
736 for (;;) {
737 while (!list_empty(head)) {
738 struct rpc_task *task;
739 task = list_first_entry(head,
740 struct rpc_task,
741 u.tk_wait.list);
742 task->tk_status = status;
743 rpc_wake_up_task_queue_locked(queue, task);
745 if (head == &queue->tasks[0])
746 break;
747 head--;
749 spin_unlock(&queue->lock);
751 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
753 static void __rpc_queue_timer_fn(struct work_struct *work)
755 struct rpc_wait_queue *queue = container_of(work,
756 struct rpc_wait_queue,
757 timer_list.dwork.work);
758 struct rpc_task *task, *n;
759 unsigned long expires, now, timeo;
761 spin_lock(&queue->lock);
762 expires = now = jiffies;
763 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
764 timeo = task->tk_timeout;
765 if (time_after_eq(now, timeo)) {
766 dprintk("RPC: %5u timeout\n", task->tk_pid);
767 task->tk_status = -ETIMEDOUT;
768 rpc_wake_up_task_queue_locked(queue, task);
769 continue;
771 if (expires == now || time_after(expires, timeo))
772 expires = timeo;
774 if (!list_empty(&queue->timer_list.list))
775 rpc_set_queue_timer(queue, expires);
776 spin_unlock(&queue->lock);
779 static void __rpc_atrun(struct rpc_task *task)
781 if (task->tk_status == -ETIMEDOUT)
782 task->tk_status = 0;
786 * Run a task at a later time
788 void rpc_delay(struct rpc_task *task, unsigned long delay)
790 rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
792 EXPORT_SYMBOL_GPL(rpc_delay);
795 * Helper to call task->tk_ops->rpc_call_prepare
797 void rpc_prepare_task(struct rpc_task *task)
799 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
802 static void
803 rpc_init_task_statistics(struct rpc_task *task)
805 /* Initialize retry counters */
806 task->tk_garb_retry = 2;
807 task->tk_cred_retry = 2;
808 task->tk_rebind_retry = 2;
810 /* starting timestamp */
811 task->tk_start = ktime_get();
814 static void
815 rpc_reset_task_statistics(struct rpc_task *task)
817 task->tk_timeouts = 0;
818 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
819 rpc_init_task_statistics(task);
823 * Helper that calls task->tk_ops->rpc_call_done if it exists
825 void rpc_exit_task(struct rpc_task *task)
827 trace_rpc_task_end(task, task->tk_action);
828 task->tk_action = NULL;
829 if (task->tk_ops->rpc_count_stats)
830 task->tk_ops->rpc_count_stats(task, task->tk_calldata);
831 else if (task->tk_client)
832 rpc_count_iostats(task, task->tk_client->cl_metrics);
833 if (task->tk_ops->rpc_call_done != NULL) {
834 task->tk_ops->rpc_call_done(task, task->tk_calldata);
835 if (task->tk_action != NULL) {
836 /* Always release the RPC slot and buffer memory */
837 xprt_release(task);
838 rpc_reset_task_statistics(task);
843 void rpc_signal_task(struct rpc_task *task)
845 struct rpc_wait_queue *queue;
847 if (!RPC_IS_ACTIVATED(task))
848 return;
849 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
850 smp_mb__after_atomic();
851 queue = READ_ONCE(task->tk_waitqueue);
852 if (queue)
853 rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
856 void rpc_exit(struct rpc_task *task, int status)
858 task->tk_status = status;
859 task->tk_action = rpc_exit_task;
860 rpc_wake_up_queued_task(task->tk_waitqueue, task);
862 EXPORT_SYMBOL_GPL(rpc_exit);
864 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
866 if (ops->rpc_release != NULL)
867 ops->rpc_release(calldata);
871 * This is the RPC `scheduler' (or rather, the finite state machine).
873 static void __rpc_execute(struct rpc_task *task)
875 struct rpc_wait_queue *queue;
876 int task_is_async = RPC_IS_ASYNC(task);
877 int status = 0;
879 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
880 task->tk_pid, task->tk_flags);
882 WARN_ON_ONCE(RPC_IS_QUEUED(task));
883 if (RPC_IS_QUEUED(task))
884 return;
886 for (;;) {
887 void (*do_action)(struct rpc_task *);
890 * Perform the next FSM step or a pending callback.
892 * tk_action may be NULL if the task has been killed.
893 * In particular, note that rpc_killall_tasks may
894 * do this at any time, so beware when dereferencing.
896 do_action = task->tk_action;
897 if (task->tk_callback) {
898 do_action = task->tk_callback;
899 task->tk_callback = NULL;
901 if (!do_action)
902 break;
903 trace_rpc_task_run_action(task, do_action);
904 do_action(task);
907 * Lockless check for whether task is sleeping or not.
909 if (!RPC_IS_QUEUED(task))
910 continue;
913 * Signalled tasks should exit rather than sleep.
915 if (RPC_SIGNALLED(task)) {
916 task->tk_rpc_status = -ERESTARTSYS;
917 rpc_exit(task, -ERESTARTSYS);
921 * The queue->lock protects against races with
922 * rpc_make_runnable().
924 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
925 * rpc_task, rpc_make_runnable() can assign it to a
926 * different workqueue. We therefore cannot assume that the
927 * rpc_task pointer may still be dereferenced.
929 queue = task->tk_waitqueue;
930 spin_lock(&queue->lock);
931 if (!RPC_IS_QUEUED(task)) {
932 spin_unlock(&queue->lock);
933 continue;
935 rpc_clear_running(task);
936 spin_unlock(&queue->lock);
937 if (task_is_async)
938 return;
940 /* sync task: sleep here */
941 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
942 status = out_of_line_wait_on_bit(&task->tk_runstate,
943 RPC_TASK_QUEUED, rpc_wait_bit_killable,
944 TASK_KILLABLE);
945 if (status < 0) {
947 * When a sync task receives a signal, it exits with
948 * -ERESTARTSYS. In order to catch any callbacks that
949 * clean up after sleeping on some queue, we don't
950 * break the loop here, but go around once more.
952 dprintk("RPC: %5u got signal\n", task->tk_pid);
953 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
954 task->tk_rpc_status = -ERESTARTSYS;
955 rpc_exit(task, -ERESTARTSYS);
957 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
960 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
961 task->tk_status);
962 /* Release all resources associated with the task */
963 rpc_release_task(task);
967 * User-visible entry point to the scheduler.
969 * This may be called recursively if e.g. an async NFS task updates
970 * the attributes and finds that dirty pages must be flushed.
971 * NOTE: Upon exit of this function the task is guaranteed to be
972 * released. In particular note that tk_release() will have
973 * been called, so your task memory may have been freed.
975 void rpc_execute(struct rpc_task *task)
977 bool is_async = RPC_IS_ASYNC(task);
979 rpc_set_active(task);
980 rpc_make_runnable(rpciod_workqueue, task);
981 if (!is_async)
982 __rpc_execute(task);
985 static void rpc_async_schedule(struct work_struct *work)
987 unsigned int pflags = memalloc_nofs_save();
989 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
990 memalloc_nofs_restore(pflags);
994 * rpc_malloc - allocate RPC buffer resources
995 * @task: RPC task
997 * A single memory region is allocated, which is split between the
998 * RPC call and RPC reply that this task is being used for. When
999 * this RPC is retired, the memory is released by calling rpc_free.
1001 * To prevent rpciod from hanging, this allocator never sleeps,
1002 * returning -ENOMEM and suppressing warning if the request cannot
1003 * be serviced immediately. The caller can arrange to sleep in a
1004 * way that is safe for rpciod.
1006 * Most requests are 'small' (under 2KiB) and can be serviced from a
1007 * mempool, ensuring that NFS reads and writes can always proceed,
1008 * and that there is good locality of reference for these buffers.
1010 int rpc_malloc(struct rpc_task *task)
1012 struct rpc_rqst *rqst = task->tk_rqstp;
1013 size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1014 struct rpc_buffer *buf;
1015 gfp_t gfp = GFP_NOFS;
1017 if (RPC_IS_SWAPPER(task))
1018 gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
1020 size += sizeof(struct rpc_buffer);
1021 if (size <= RPC_BUFFER_MAXSIZE)
1022 buf = mempool_alloc(rpc_buffer_mempool, gfp);
1023 else
1024 buf = kmalloc(size, gfp);
1026 if (!buf)
1027 return -ENOMEM;
1029 buf->len = size;
1030 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
1031 task->tk_pid, size, buf);
1032 rqst->rq_buffer = buf->data;
1033 rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1034 return 0;
1036 EXPORT_SYMBOL_GPL(rpc_malloc);
1039 * rpc_free - free RPC buffer resources allocated via rpc_malloc
1040 * @task: RPC task
1043 void rpc_free(struct rpc_task *task)
1045 void *buffer = task->tk_rqstp->rq_buffer;
1046 size_t size;
1047 struct rpc_buffer *buf;
1049 buf = container_of(buffer, struct rpc_buffer, data);
1050 size = buf->len;
1052 dprintk("RPC: freeing buffer of size %zu at %p\n",
1053 size, buf);
1055 if (size <= RPC_BUFFER_MAXSIZE)
1056 mempool_free(buf, rpc_buffer_mempool);
1057 else
1058 kfree(buf);
1060 EXPORT_SYMBOL_GPL(rpc_free);
1063 * Creation and deletion of RPC task structures
1065 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1067 memset(task, 0, sizeof(*task));
1068 atomic_set(&task->tk_count, 1);
1069 task->tk_flags = task_setup_data->flags;
1070 task->tk_ops = task_setup_data->callback_ops;
1071 task->tk_calldata = task_setup_data->callback_data;
1072 INIT_LIST_HEAD(&task->tk_task);
1074 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1075 task->tk_owner = current->tgid;
1077 /* Initialize workqueue for async tasks */
1078 task->tk_workqueue = task_setup_data->workqueue;
1080 task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1081 xprt_get(task_setup_data->rpc_xprt));
1083 task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1085 if (task->tk_ops->rpc_call_prepare != NULL)
1086 task->tk_action = rpc_prepare_task;
1088 rpc_init_task_statistics(task);
1090 dprintk("RPC: new task initialized, procpid %u\n",
1091 task_pid_nr(current));
1094 static struct rpc_task *
1095 rpc_alloc_task(void)
1097 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1101 * Create a new task for the specified client.
1103 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1105 struct rpc_task *task = setup_data->task;
1106 unsigned short flags = 0;
1108 if (task == NULL) {
1109 task = rpc_alloc_task();
1110 flags = RPC_TASK_DYNAMIC;
1113 rpc_init_task(task, setup_data);
1114 task->tk_flags |= flags;
1115 dprintk("RPC: allocated task %p\n", task);
1116 return task;
1120 * rpc_free_task - release rpc task and perform cleanups
1122 * Note that we free up the rpc_task _after_ rpc_release_calldata()
1123 * in order to work around a workqueue dependency issue.
1125 * Tejun Heo states:
1126 * "Workqueue currently considers two work items to be the same if they're
1127 * on the same address and won't execute them concurrently - ie. it
1128 * makes a work item which is queued again while being executed wait
1129 * for the previous execution to complete.
1131 * If a work function frees the work item, and then waits for an event
1132 * which should be performed by another work item and *that* work item
1133 * recycles the freed work item, it can create a false dependency loop.
1134 * There really is no reliable way to detect this short of verifying
1135 * every memory free."
1138 static void rpc_free_task(struct rpc_task *task)
1140 unsigned short tk_flags = task->tk_flags;
1142 put_rpccred(task->tk_op_cred);
1143 rpc_release_calldata(task->tk_ops, task->tk_calldata);
1145 if (tk_flags & RPC_TASK_DYNAMIC) {
1146 dprintk("RPC: %5u freeing task\n", task->tk_pid);
1147 mempool_free(task, rpc_task_mempool);
1151 static void rpc_async_release(struct work_struct *work)
1153 unsigned int pflags = memalloc_nofs_save();
1155 rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1156 memalloc_nofs_restore(pflags);
1159 static void rpc_release_resources_task(struct rpc_task *task)
1161 xprt_release(task);
1162 if (task->tk_msg.rpc_cred) {
1163 put_cred(task->tk_msg.rpc_cred);
1164 task->tk_msg.rpc_cred = NULL;
1166 rpc_task_release_client(task);
1169 static void rpc_final_put_task(struct rpc_task *task,
1170 struct workqueue_struct *q)
1172 if (q != NULL) {
1173 INIT_WORK(&task->u.tk_work, rpc_async_release);
1174 queue_work(q, &task->u.tk_work);
1175 } else
1176 rpc_free_task(task);
1179 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1181 if (atomic_dec_and_test(&task->tk_count)) {
1182 rpc_release_resources_task(task);
1183 rpc_final_put_task(task, q);
1187 void rpc_put_task(struct rpc_task *task)
1189 rpc_do_put_task(task, NULL);
1191 EXPORT_SYMBOL_GPL(rpc_put_task);
1193 void rpc_put_task_async(struct rpc_task *task)
1195 rpc_do_put_task(task, task->tk_workqueue);
1197 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1199 static void rpc_release_task(struct rpc_task *task)
1201 dprintk("RPC: %5u release task\n", task->tk_pid);
1203 WARN_ON_ONCE(RPC_IS_QUEUED(task));
1205 rpc_release_resources_task(task);
1208 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1209 * so it should be safe to use task->tk_count as a test for whether
1210 * or not any other processes still hold references to our rpc_task.
1212 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1213 /* Wake up anyone who may be waiting for task completion */
1214 if (!rpc_complete_task(task))
1215 return;
1216 } else {
1217 if (!atomic_dec_and_test(&task->tk_count))
1218 return;
1220 rpc_final_put_task(task, task->tk_workqueue);
1223 int rpciod_up(void)
1225 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1228 void rpciod_down(void)
1230 module_put(THIS_MODULE);
1234 * Start up the rpciod workqueue.
1236 static int rpciod_start(void)
1238 struct workqueue_struct *wq;
1241 * Create the rpciod thread and wait for it to start.
1243 dprintk("RPC: creating workqueue rpciod\n");
1244 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1245 if (!wq)
1246 goto out_failed;
1247 rpciod_workqueue = wq;
1248 /* Note: highpri because network receive is latency sensitive */
1249 wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1250 if (!wq)
1251 goto free_rpciod;
1252 xprtiod_workqueue = wq;
1253 return 1;
1254 free_rpciod:
1255 wq = rpciod_workqueue;
1256 rpciod_workqueue = NULL;
1257 destroy_workqueue(wq);
1258 out_failed:
1259 return 0;
1262 static void rpciod_stop(void)
1264 struct workqueue_struct *wq = NULL;
1266 if (rpciod_workqueue == NULL)
1267 return;
1268 dprintk("RPC: destroying workqueue rpciod\n");
1270 wq = rpciod_workqueue;
1271 rpciod_workqueue = NULL;
1272 destroy_workqueue(wq);
1273 wq = xprtiod_workqueue;
1274 xprtiod_workqueue = NULL;
1275 destroy_workqueue(wq);
1278 void
1279 rpc_destroy_mempool(void)
1281 rpciod_stop();
1282 mempool_destroy(rpc_buffer_mempool);
1283 mempool_destroy(rpc_task_mempool);
1284 kmem_cache_destroy(rpc_task_slabp);
1285 kmem_cache_destroy(rpc_buffer_slabp);
1286 rpc_destroy_wait_queue(&delay_queue);
1290 rpc_init_mempool(void)
1293 * The following is not strictly a mempool initialisation,
1294 * but there is no harm in doing it here
1296 rpc_init_wait_queue(&delay_queue, "delayq");
1297 if (!rpciod_start())
1298 goto err_nomem;
1300 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1301 sizeof(struct rpc_task),
1302 0, SLAB_HWCACHE_ALIGN,
1303 NULL);
1304 if (!rpc_task_slabp)
1305 goto err_nomem;
1306 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1307 RPC_BUFFER_MAXSIZE,
1308 0, SLAB_HWCACHE_ALIGN,
1309 NULL);
1310 if (!rpc_buffer_slabp)
1311 goto err_nomem;
1312 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1313 rpc_task_slabp);
1314 if (!rpc_task_mempool)
1315 goto err_nomem;
1316 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1317 rpc_buffer_slabp);
1318 if (!rpc_buffer_mempool)
1319 goto err_nomem;
1320 return 0;
1321 err_nomem:
1322 rpc_destroy_mempool();
1323 return -ENOMEM;