ARM: dma-api: fix max_pfn off-by-one error in __dma_supported()
[linux/fpc-iii.git] / net / vmw_vsock / af_vsock.c
blob9c5b2a91baad60945cd06881c57d1b0c56810a58
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VMware vSockets Driver
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 */
8 /* Implementation notes:
10 * - There are two kinds of sockets: those created by user action (such as
11 * calling socket(2)) and those created by incoming connection request packets.
13 * - There are two "global" tables, one for bound sockets (sockets that have
14 * specified an address that they are responsible for) and one for connected
15 * sockets (sockets that have established a connection with another socket).
16 * These tables are "global" in that all sockets on the system are placed
17 * within them. - Note, though, that the bound table contains an extra entry
18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19 * that list. The bound table is used solely for lookup of sockets when packets
20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
22 * sockets out of the bound hash buckets will reduce the chance of collisions
23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
24 * socket type in the hash table lookups.
26 * - Sockets created by user action will either be "client" sockets that
27 * initiate a connection or "server" sockets that listen for connections; we do
28 * not support simultaneous connects (two "client" sockets connecting).
30 * - "Server" sockets are referred to as listener sockets throughout this
31 * implementation because they are in the TCP_LISTEN state. When a
32 * connection request is received (the second kind of socket mentioned above),
33 * we create a new socket and refer to it as a pending socket. These pending
34 * sockets are placed on the pending connection list of the listener socket.
35 * When future packets are received for the address the listener socket is
36 * bound to, we check if the source of the packet is from one that has an
37 * existing pending connection. If it does, we process the packet for the
38 * pending socket. When that socket reaches the connected state, it is removed
39 * from the listener socket's pending list and enqueued in the listener
40 * socket's accept queue. Callers of accept(2) will accept connected sockets
41 * from the listener socket's accept queue. If the socket cannot be accepted
42 * for some reason then it is marked rejected. Once the connection is
43 * accepted, it is owned by the user process and the responsibility for cleanup
44 * falls with that user process.
46 * - It is possible that these pending sockets will never reach the connected
47 * state; in fact, we may never receive another packet after the connection
48 * request. Because of this, we must schedule a cleanup function to run in the
49 * future, after some amount of time passes where a connection should have been
50 * established. This function ensures that the socket is off all lists so it
51 * cannot be retrieved, then drops all references to the socket so it is cleaned
52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
53 * function will also cleanup rejected sockets, those that reach the connected
54 * state but leave it before they have been accepted.
56 * - Lock ordering for pending or accept queue sockets is:
58 * lock_sock(listener);
59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
61 * Using explicit nested locking keeps lockdep happy since normally only one
62 * lock of a given class may be taken at a time.
64 * - Sockets created by user action will be cleaned up when the user process
65 * calls close(2), causing our release implementation to be called. Our release
66 * implementation will perform some cleanup then drop the last reference so our
67 * sk_destruct implementation is invoked. Our sk_destruct implementation will
68 * perform additional cleanup that's common for both types of sockets.
70 * - A socket's reference count is what ensures that the structure won't be
71 * freed. Each entry in a list (such as the "global" bound and connected tables
72 * and the listener socket's pending list and connected queue) ensures a
73 * reference. When we defer work until process context and pass a socket as our
74 * argument, we must ensure the reference count is increased to ensure the
75 * socket isn't freed before the function is run; the deferred function will
76 * then drop the reference.
78 * - sk->sk_state uses the TCP state constants because they are widely used by
79 * other address families and exposed to userspace tools like ss(8):
81 * TCP_CLOSE - unconnected
82 * TCP_SYN_SENT - connecting
83 * TCP_ESTABLISHED - connected
84 * TCP_CLOSING - disconnecting
85 * TCP_LISTEN - listening
88 #include <linux/types.h>
89 #include <linux/bitops.h>
90 #include <linux/cred.h>
91 #include <linux/init.h>
92 #include <linux/io.h>
93 #include <linux/kernel.h>
94 #include <linux/sched/signal.h>
95 #include <linux/kmod.h>
96 #include <linux/list.h>
97 #include <linux/miscdevice.h>
98 #include <linux/module.h>
99 #include <linux/mutex.h>
100 #include <linux/net.h>
101 #include <linux/poll.h>
102 #include <linux/random.h>
103 #include <linux/skbuff.h>
104 #include <linux/smp.h>
105 #include <linux/socket.h>
106 #include <linux/stddef.h>
107 #include <linux/unistd.h>
108 #include <linux/wait.h>
109 #include <linux/workqueue.h>
110 #include <net/sock.h>
111 #include <net/af_vsock.h>
113 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
114 static void vsock_sk_destruct(struct sock *sk);
115 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
117 /* Protocol family. */
118 static struct proto vsock_proto = {
119 .name = "AF_VSOCK",
120 .owner = THIS_MODULE,
121 .obj_size = sizeof(struct vsock_sock),
124 /* The default peer timeout indicates how long we will wait for a peer response
125 * to a control message.
127 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
129 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256)
130 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
131 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
133 /* Transport used for host->guest communication */
134 static const struct vsock_transport *transport_h2g;
135 /* Transport used for guest->host communication */
136 static const struct vsock_transport *transport_g2h;
137 /* Transport used for DGRAM communication */
138 static const struct vsock_transport *transport_dgram;
139 /* Transport used for local communication */
140 static const struct vsock_transport *transport_local;
141 static DEFINE_MUTEX(vsock_register_mutex);
143 /**** UTILS ****/
145 /* Each bound VSocket is stored in the bind hash table and each connected
146 * VSocket is stored in the connected hash table.
148 * Unbound sockets are all put on the same list attached to the end of the hash
149 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
150 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
151 * represents the list that addr hashes to).
153 * Specifically, we initialize the vsock_bind_table array to a size of
154 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
155 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
156 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
157 * mods with VSOCK_HASH_SIZE to ensure this.
159 #define MAX_PORT_RETRIES 24
161 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
162 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
163 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
165 /* XXX This can probably be implemented in a better way. */
166 #define VSOCK_CONN_HASH(src, dst) \
167 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
168 #define vsock_connected_sockets(src, dst) \
169 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
170 #define vsock_connected_sockets_vsk(vsk) \
171 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
173 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
174 EXPORT_SYMBOL_GPL(vsock_bind_table);
175 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
176 EXPORT_SYMBOL_GPL(vsock_connected_table);
177 DEFINE_SPINLOCK(vsock_table_lock);
178 EXPORT_SYMBOL_GPL(vsock_table_lock);
180 /* Autobind this socket to the local address if necessary. */
181 static int vsock_auto_bind(struct vsock_sock *vsk)
183 struct sock *sk = sk_vsock(vsk);
184 struct sockaddr_vm local_addr;
186 if (vsock_addr_bound(&vsk->local_addr))
187 return 0;
188 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
189 return __vsock_bind(sk, &local_addr);
192 static void vsock_init_tables(void)
194 int i;
196 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
197 INIT_LIST_HEAD(&vsock_bind_table[i]);
199 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
200 INIT_LIST_HEAD(&vsock_connected_table[i]);
203 static void __vsock_insert_bound(struct list_head *list,
204 struct vsock_sock *vsk)
206 sock_hold(&vsk->sk);
207 list_add(&vsk->bound_table, list);
210 static void __vsock_insert_connected(struct list_head *list,
211 struct vsock_sock *vsk)
213 sock_hold(&vsk->sk);
214 list_add(&vsk->connected_table, list);
217 static void __vsock_remove_bound(struct vsock_sock *vsk)
219 list_del_init(&vsk->bound_table);
220 sock_put(&vsk->sk);
223 static void __vsock_remove_connected(struct vsock_sock *vsk)
225 list_del_init(&vsk->connected_table);
226 sock_put(&vsk->sk);
229 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
231 struct vsock_sock *vsk;
233 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
234 if (vsock_addr_equals_addr(addr, &vsk->local_addr))
235 return sk_vsock(vsk);
237 if (addr->svm_port == vsk->local_addr.svm_port &&
238 (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
239 addr->svm_cid == VMADDR_CID_ANY))
240 return sk_vsock(vsk);
243 return NULL;
246 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
247 struct sockaddr_vm *dst)
249 struct vsock_sock *vsk;
251 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
252 connected_table) {
253 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
254 dst->svm_port == vsk->local_addr.svm_port) {
255 return sk_vsock(vsk);
259 return NULL;
262 static void vsock_insert_unbound(struct vsock_sock *vsk)
264 spin_lock_bh(&vsock_table_lock);
265 __vsock_insert_bound(vsock_unbound_sockets, vsk);
266 spin_unlock_bh(&vsock_table_lock);
269 void vsock_insert_connected(struct vsock_sock *vsk)
271 struct list_head *list = vsock_connected_sockets(
272 &vsk->remote_addr, &vsk->local_addr);
274 spin_lock_bh(&vsock_table_lock);
275 __vsock_insert_connected(list, vsk);
276 spin_unlock_bh(&vsock_table_lock);
278 EXPORT_SYMBOL_GPL(vsock_insert_connected);
280 void vsock_remove_bound(struct vsock_sock *vsk)
282 spin_lock_bh(&vsock_table_lock);
283 if (__vsock_in_bound_table(vsk))
284 __vsock_remove_bound(vsk);
285 spin_unlock_bh(&vsock_table_lock);
287 EXPORT_SYMBOL_GPL(vsock_remove_bound);
289 void vsock_remove_connected(struct vsock_sock *vsk)
291 spin_lock_bh(&vsock_table_lock);
292 if (__vsock_in_connected_table(vsk))
293 __vsock_remove_connected(vsk);
294 spin_unlock_bh(&vsock_table_lock);
296 EXPORT_SYMBOL_GPL(vsock_remove_connected);
298 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
300 struct sock *sk;
302 spin_lock_bh(&vsock_table_lock);
303 sk = __vsock_find_bound_socket(addr);
304 if (sk)
305 sock_hold(sk);
307 spin_unlock_bh(&vsock_table_lock);
309 return sk;
311 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
313 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
314 struct sockaddr_vm *dst)
316 struct sock *sk;
318 spin_lock_bh(&vsock_table_lock);
319 sk = __vsock_find_connected_socket(src, dst);
320 if (sk)
321 sock_hold(sk);
323 spin_unlock_bh(&vsock_table_lock);
325 return sk;
327 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
329 void vsock_remove_sock(struct vsock_sock *vsk)
331 vsock_remove_bound(vsk);
332 vsock_remove_connected(vsk);
334 EXPORT_SYMBOL_GPL(vsock_remove_sock);
336 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
338 int i;
340 spin_lock_bh(&vsock_table_lock);
342 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
343 struct vsock_sock *vsk;
344 list_for_each_entry(vsk, &vsock_connected_table[i],
345 connected_table)
346 fn(sk_vsock(vsk));
349 spin_unlock_bh(&vsock_table_lock);
351 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
353 void vsock_add_pending(struct sock *listener, struct sock *pending)
355 struct vsock_sock *vlistener;
356 struct vsock_sock *vpending;
358 vlistener = vsock_sk(listener);
359 vpending = vsock_sk(pending);
361 sock_hold(pending);
362 sock_hold(listener);
363 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
365 EXPORT_SYMBOL_GPL(vsock_add_pending);
367 void vsock_remove_pending(struct sock *listener, struct sock *pending)
369 struct vsock_sock *vpending = vsock_sk(pending);
371 list_del_init(&vpending->pending_links);
372 sock_put(listener);
373 sock_put(pending);
375 EXPORT_SYMBOL_GPL(vsock_remove_pending);
377 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
379 struct vsock_sock *vlistener;
380 struct vsock_sock *vconnected;
382 vlistener = vsock_sk(listener);
383 vconnected = vsock_sk(connected);
385 sock_hold(connected);
386 sock_hold(listener);
387 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
389 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
391 static bool vsock_use_local_transport(unsigned int remote_cid)
393 if (!transport_local)
394 return false;
396 if (remote_cid == VMADDR_CID_LOCAL)
397 return true;
399 if (transport_g2h) {
400 return remote_cid == transport_g2h->get_local_cid();
401 } else {
402 return remote_cid == VMADDR_CID_HOST;
406 static void vsock_deassign_transport(struct vsock_sock *vsk)
408 if (!vsk->transport)
409 return;
411 vsk->transport->destruct(vsk);
412 module_put(vsk->transport->module);
413 vsk->transport = NULL;
416 /* Assign a transport to a socket and call the .init transport callback.
418 * Note: for stream socket this must be called when vsk->remote_addr is set
419 * (e.g. during the connect() or when a connection request on a listener
420 * socket is received).
421 * The vsk->remote_addr is used to decide which transport to use:
422 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
423 * g2h is not loaded, will use local transport;
424 * - remote CID <= VMADDR_CID_HOST will use guest->host transport;
425 * - remote CID > VMADDR_CID_HOST will use host->guest transport;
427 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
429 const struct vsock_transport *new_transport;
430 struct sock *sk = sk_vsock(vsk);
431 unsigned int remote_cid = vsk->remote_addr.svm_cid;
432 int ret;
434 switch (sk->sk_type) {
435 case SOCK_DGRAM:
436 new_transport = transport_dgram;
437 break;
438 case SOCK_STREAM:
439 if (vsock_use_local_transport(remote_cid))
440 new_transport = transport_local;
441 else if (remote_cid <= VMADDR_CID_HOST)
442 new_transport = transport_g2h;
443 else
444 new_transport = transport_h2g;
445 break;
446 default:
447 return -ESOCKTNOSUPPORT;
450 if (vsk->transport) {
451 if (vsk->transport == new_transport)
452 return 0;
454 vsk->transport->release(vsk);
455 vsock_deassign_transport(vsk);
458 /* We increase the module refcnt to prevent the transport unloading
459 * while there are open sockets assigned to it.
461 if (!new_transport || !try_module_get(new_transport->module))
462 return -ENODEV;
464 ret = new_transport->init(vsk, psk);
465 if (ret) {
466 module_put(new_transport->module);
467 return ret;
470 vsk->transport = new_transport;
472 return 0;
474 EXPORT_SYMBOL_GPL(vsock_assign_transport);
476 bool vsock_find_cid(unsigned int cid)
478 if (transport_g2h && cid == transport_g2h->get_local_cid())
479 return true;
481 if (transport_h2g && cid == VMADDR_CID_HOST)
482 return true;
484 if (transport_local && cid == VMADDR_CID_LOCAL)
485 return true;
487 return false;
489 EXPORT_SYMBOL_GPL(vsock_find_cid);
491 static struct sock *vsock_dequeue_accept(struct sock *listener)
493 struct vsock_sock *vlistener;
494 struct vsock_sock *vconnected;
496 vlistener = vsock_sk(listener);
498 if (list_empty(&vlistener->accept_queue))
499 return NULL;
501 vconnected = list_entry(vlistener->accept_queue.next,
502 struct vsock_sock, accept_queue);
504 list_del_init(&vconnected->accept_queue);
505 sock_put(listener);
506 /* The caller will need a reference on the connected socket so we let
507 * it call sock_put().
510 return sk_vsock(vconnected);
513 static bool vsock_is_accept_queue_empty(struct sock *sk)
515 struct vsock_sock *vsk = vsock_sk(sk);
516 return list_empty(&vsk->accept_queue);
519 static bool vsock_is_pending(struct sock *sk)
521 struct vsock_sock *vsk = vsock_sk(sk);
522 return !list_empty(&vsk->pending_links);
525 static int vsock_send_shutdown(struct sock *sk, int mode)
527 struct vsock_sock *vsk = vsock_sk(sk);
529 if (!vsk->transport)
530 return -ENODEV;
532 return vsk->transport->shutdown(vsk, mode);
535 static void vsock_pending_work(struct work_struct *work)
537 struct sock *sk;
538 struct sock *listener;
539 struct vsock_sock *vsk;
540 bool cleanup;
542 vsk = container_of(work, struct vsock_sock, pending_work.work);
543 sk = sk_vsock(vsk);
544 listener = vsk->listener;
545 cleanup = true;
547 lock_sock(listener);
548 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
550 if (vsock_is_pending(sk)) {
551 vsock_remove_pending(listener, sk);
553 sk_acceptq_removed(listener);
554 } else if (!vsk->rejected) {
555 /* We are not on the pending list and accept() did not reject
556 * us, so we must have been accepted by our user process. We
557 * just need to drop our references to the sockets and be on
558 * our way.
560 cleanup = false;
561 goto out;
564 /* We need to remove ourself from the global connected sockets list so
565 * incoming packets can't find this socket, and to reduce the reference
566 * count.
568 vsock_remove_connected(vsk);
570 sk->sk_state = TCP_CLOSE;
572 out:
573 release_sock(sk);
574 release_sock(listener);
575 if (cleanup)
576 sock_put(sk);
578 sock_put(sk);
579 sock_put(listener);
582 /**** SOCKET OPERATIONS ****/
584 static int __vsock_bind_stream(struct vsock_sock *vsk,
585 struct sockaddr_vm *addr)
587 static u32 port;
588 struct sockaddr_vm new_addr;
590 if (!port)
591 port = LAST_RESERVED_PORT + 1 +
592 prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
594 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
596 if (addr->svm_port == VMADDR_PORT_ANY) {
597 bool found = false;
598 unsigned int i;
600 for (i = 0; i < MAX_PORT_RETRIES; i++) {
601 if (port <= LAST_RESERVED_PORT)
602 port = LAST_RESERVED_PORT + 1;
604 new_addr.svm_port = port++;
606 if (!__vsock_find_bound_socket(&new_addr)) {
607 found = true;
608 break;
612 if (!found)
613 return -EADDRNOTAVAIL;
614 } else {
615 /* If port is in reserved range, ensure caller
616 * has necessary privileges.
618 if (addr->svm_port <= LAST_RESERVED_PORT &&
619 !capable(CAP_NET_BIND_SERVICE)) {
620 return -EACCES;
623 if (__vsock_find_bound_socket(&new_addr))
624 return -EADDRINUSE;
627 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
629 /* Remove stream sockets from the unbound list and add them to the hash
630 * table for easy lookup by its address. The unbound list is simply an
631 * extra entry at the end of the hash table, a trick used by AF_UNIX.
633 __vsock_remove_bound(vsk);
634 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
636 return 0;
639 static int __vsock_bind_dgram(struct vsock_sock *vsk,
640 struct sockaddr_vm *addr)
642 return vsk->transport->dgram_bind(vsk, addr);
645 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
647 struct vsock_sock *vsk = vsock_sk(sk);
648 int retval;
650 /* First ensure this socket isn't already bound. */
651 if (vsock_addr_bound(&vsk->local_addr))
652 return -EINVAL;
654 /* Now bind to the provided address or select appropriate values if
655 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
656 * like AF_INET prevents binding to a non-local IP address (in most
657 * cases), we only allow binding to a local CID.
659 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
660 return -EADDRNOTAVAIL;
662 switch (sk->sk_socket->type) {
663 case SOCK_STREAM:
664 spin_lock_bh(&vsock_table_lock);
665 retval = __vsock_bind_stream(vsk, addr);
666 spin_unlock_bh(&vsock_table_lock);
667 break;
669 case SOCK_DGRAM:
670 retval = __vsock_bind_dgram(vsk, addr);
671 break;
673 default:
674 retval = -EINVAL;
675 break;
678 return retval;
681 static void vsock_connect_timeout(struct work_struct *work);
683 static struct sock *__vsock_create(struct net *net,
684 struct socket *sock,
685 struct sock *parent,
686 gfp_t priority,
687 unsigned short type,
688 int kern)
690 struct sock *sk;
691 struct vsock_sock *psk;
692 struct vsock_sock *vsk;
694 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
695 if (!sk)
696 return NULL;
698 sock_init_data(sock, sk);
700 /* sk->sk_type is normally set in sock_init_data, but only if sock is
701 * non-NULL. We make sure that our sockets always have a type by
702 * setting it here if needed.
704 if (!sock)
705 sk->sk_type = type;
707 vsk = vsock_sk(sk);
708 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
709 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
711 sk->sk_destruct = vsock_sk_destruct;
712 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
713 sock_reset_flag(sk, SOCK_DONE);
715 INIT_LIST_HEAD(&vsk->bound_table);
716 INIT_LIST_HEAD(&vsk->connected_table);
717 vsk->listener = NULL;
718 INIT_LIST_HEAD(&vsk->pending_links);
719 INIT_LIST_HEAD(&vsk->accept_queue);
720 vsk->rejected = false;
721 vsk->sent_request = false;
722 vsk->ignore_connecting_rst = false;
723 vsk->peer_shutdown = 0;
724 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
725 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
727 psk = parent ? vsock_sk(parent) : NULL;
728 if (parent) {
729 vsk->trusted = psk->trusted;
730 vsk->owner = get_cred(psk->owner);
731 vsk->connect_timeout = psk->connect_timeout;
732 vsk->buffer_size = psk->buffer_size;
733 vsk->buffer_min_size = psk->buffer_min_size;
734 vsk->buffer_max_size = psk->buffer_max_size;
735 } else {
736 vsk->trusted = capable(CAP_NET_ADMIN);
737 vsk->owner = get_current_cred();
738 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
739 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
740 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
741 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
744 return sk;
747 static void __vsock_release(struct sock *sk, int level)
749 if (sk) {
750 struct sock *pending;
751 struct vsock_sock *vsk;
753 vsk = vsock_sk(sk);
754 pending = NULL; /* Compiler warning. */
756 /* The release call is supposed to use lock_sock_nested()
757 * rather than lock_sock(), if a sock lock should be acquired.
759 if (vsk->transport)
760 vsk->transport->release(vsk);
761 else if (sk->sk_type == SOCK_STREAM)
762 vsock_remove_sock(vsk);
764 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
765 * version to avoid the warning "possible recursive locking
766 * detected". When "level" is 0, lock_sock_nested(sk, level)
767 * is the same as lock_sock(sk).
769 lock_sock_nested(sk, level);
770 sock_orphan(sk);
771 sk->sk_shutdown = SHUTDOWN_MASK;
773 skb_queue_purge(&sk->sk_receive_queue);
775 /* Clean up any sockets that never were accepted. */
776 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
777 __vsock_release(pending, SINGLE_DEPTH_NESTING);
778 sock_put(pending);
781 release_sock(sk);
782 sock_put(sk);
786 static void vsock_sk_destruct(struct sock *sk)
788 struct vsock_sock *vsk = vsock_sk(sk);
790 vsock_deassign_transport(vsk);
792 /* When clearing these addresses, there's no need to set the family and
793 * possibly register the address family with the kernel.
795 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
796 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
798 put_cred(vsk->owner);
801 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
803 int err;
805 err = sock_queue_rcv_skb(sk, skb);
806 if (err)
807 kfree_skb(skb);
809 return err;
812 struct sock *vsock_create_connected(struct sock *parent)
814 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
815 parent->sk_type, 0);
817 EXPORT_SYMBOL_GPL(vsock_create_connected);
819 s64 vsock_stream_has_data(struct vsock_sock *vsk)
821 return vsk->transport->stream_has_data(vsk);
823 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
825 s64 vsock_stream_has_space(struct vsock_sock *vsk)
827 return vsk->transport->stream_has_space(vsk);
829 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
831 static int vsock_release(struct socket *sock)
833 __vsock_release(sock->sk, 0);
834 sock->sk = NULL;
835 sock->state = SS_FREE;
837 return 0;
840 static int
841 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
843 int err;
844 struct sock *sk;
845 struct sockaddr_vm *vm_addr;
847 sk = sock->sk;
849 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
850 return -EINVAL;
852 lock_sock(sk);
853 err = __vsock_bind(sk, vm_addr);
854 release_sock(sk);
856 return err;
859 static int vsock_getname(struct socket *sock,
860 struct sockaddr *addr, int peer)
862 int err;
863 struct sock *sk;
864 struct vsock_sock *vsk;
865 struct sockaddr_vm *vm_addr;
867 sk = sock->sk;
868 vsk = vsock_sk(sk);
869 err = 0;
871 lock_sock(sk);
873 if (peer) {
874 if (sock->state != SS_CONNECTED) {
875 err = -ENOTCONN;
876 goto out;
878 vm_addr = &vsk->remote_addr;
879 } else {
880 vm_addr = &vsk->local_addr;
883 if (!vm_addr) {
884 err = -EINVAL;
885 goto out;
888 /* sys_getsockname() and sys_getpeername() pass us a
889 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
890 * that macro is defined in socket.c instead of .h, so we hardcode its
891 * value here.
893 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
894 memcpy(addr, vm_addr, sizeof(*vm_addr));
895 err = sizeof(*vm_addr);
897 out:
898 release_sock(sk);
899 return err;
902 static int vsock_shutdown(struct socket *sock, int mode)
904 int err;
905 struct sock *sk;
907 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
908 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
909 * here like the other address families do. Note also that the
910 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
911 * which is what we want.
913 mode++;
915 if ((mode & ~SHUTDOWN_MASK) || !mode)
916 return -EINVAL;
918 /* If this is a STREAM socket and it is not connected then bail out
919 * immediately. If it is a DGRAM socket then we must first kick the
920 * socket so that it wakes up from any sleeping calls, for example
921 * recv(), and then afterwards return the error.
924 sk = sock->sk;
925 if (sock->state == SS_UNCONNECTED) {
926 err = -ENOTCONN;
927 if (sk->sk_type == SOCK_STREAM)
928 return err;
929 } else {
930 sock->state = SS_DISCONNECTING;
931 err = 0;
934 /* Receive and send shutdowns are treated alike. */
935 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
936 if (mode) {
937 lock_sock(sk);
938 sk->sk_shutdown |= mode;
939 sk->sk_state_change(sk);
940 release_sock(sk);
942 if (sk->sk_type == SOCK_STREAM) {
943 sock_reset_flag(sk, SOCK_DONE);
944 vsock_send_shutdown(sk, mode);
948 return err;
951 static __poll_t vsock_poll(struct file *file, struct socket *sock,
952 poll_table *wait)
954 struct sock *sk;
955 __poll_t mask;
956 struct vsock_sock *vsk;
958 sk = sock->sk;
959 vsk = vsock_sk(sk);
961 poll_wait(file, sk_sleep(sk), wait);
962 mask = 0;
964 if (sk->sk_err)
965 /* Signify that there has been an error on this socket. */
966 mask |= EPOLLERR;
968 /* INET sockets treat local write shutdown and peer write shutdown as a
969 * case of EPOLLHUP set.
971 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
972 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
973 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
974 mask |= EPOLLHUP;
977 if (sk->sk_shutdown & RCV_SHUTDOWN ||
978 vsk->peer_shutdown & SEND_SHUTDOWN) {
979 mask |= EPOLLRDHUP;
982 if (sock->type == SOCK_DGRAM) {
983 /* For datagram sockets we can read if there is something in
984 * the queue and write as long as the socket isn't shutdown for
985 * sending.
987 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
988 (sk->sk_shutdown & RCV_SHUTDOWN)) {
989 mask |= EPOLLIN | EPOLLRDNORM;
992 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
993 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
995 } else if (sock->type == SOCK_STREAM) {
996 const struct vsock_transport *transport = vsk->transport;
997 lock_sock(sk);
999 /* Listening sockets that have connections in their accept
1000 * queue can be read.
1002 if (sk->sk_state == TCP_LISTEN
1003 && !vsock_is_accept_queue_empty(sk))
1004 mask |= EPOLLIN | EPOLLRDNORM;
1006 /* If there is something in the queue then we can read. */
1007 if (transport && transport->stream_is_active(vsk) &&
1008 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1009 bool data_ready_now = false;
1010 int ret = transport->notify_poll_in(
1011 vsk, 1, &data_ready_now);
1012 if (ret < 0) {
1013 mask |= EPOLLERR;
1014 } else {
1015 if (data_ready_now)
1016 mask |= EPOLLIN | EPOLLRDNORM;
1021 /* Sockets whose connections have been closed, reset, or
1022 * terminated should also be considered read, and we check the
1023 * shutdown flag for that.
1025 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1026 vsk->peer_shutdown & SEND_SHUTDOWN) {
1027 mask |= EPOLLIN | EPOLLRDNORM;
1030 /* Connected sockets that can produce data can be written. */
1031 if (sk->sk_state == TCP_ESTABLISHED) {
1032 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1033 bool space_avail_now = false;
1034 int ret = transport->notify_poll_out(
1035 vsk, 1, &space_avail_now);
1036 if (ret < 0) {
1037 mask |= EPOLLERR;
1038 } else {
1039 if (space_avail_now)
1040 /* Remove EPOLLWRBAND since INET
1041 * sockets are not setting it.
1043 mask |= EPOLLOUT | EPOLLWRNORM;
1049 /* Simulate INET socket poll behaviors, which sets
1050 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1051 * but local send is not shutdown.
1053 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1054 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1055 mask |= EPOLLOUT | EPOLLWRNORM;
1059 release_sock(sk);
1062 return mask;
1065 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1066 size_t len)
1068 int err;
1069 struct sock *sk;
1070 struct vsock_sock *vsk;
1071 struct sockaddr_vm *remote_addr;
1072 const struct vsock_transport *transport;
1074 if (msg->msg_flags & MSG_OOB)
1075 return -EOPNOTSUPP;
1077 /* For now, MSG_DONTWAIT is always assumed... */
1078 err = 0;
1079 sk = sock->sk;
1080 vsk = vsock_sk(sk);
1081 transport = vsk->transport;
1083 lock_sock(sk);
1085 err = vsock_auto_bind(vsk);
1086 if (err)
1087 goto out;
1090 /* If the provided message contains an address, use that. Otherwise
1091 * fall back on the socket's remote handle (if it has been connected).
1093 if (msg->msg_name &&
1094 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1095 &remote_addr) == 0) {
1096 /* Ensure this address is of the right type and is a valid
1097 * destination.
1100 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1101 remote_addr->svm_cid = transport->get_local_cid();
1103 if (!vsock_addr_bound(remote_addr)) {
1104 err = -EINVAL;
1105 goto out;
1107 } else if (sock->state == SS_CONNECTED) {
1108 remote_addr = &vsk->remote_addr;
1110 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1111 remote_addr->svm_cid = transport->get_local_cid();
1113 /* XXX Should connect() or this function ensure remote_addr is
1114 * bound?
1116 if (!vsock_addr_bound(&vsk->remote_addr)) {
1117 err = -EINVAL;
1118 goto out;
1120 } else {
1121 err = -EINVAL;
1122 goto out;
1125 if (!transport->dgram_allow(remote_addr->svm_cid,
1126 remote_addr->svm_port)) {
1127 err = -EINVAL;
1128 goto out;
1131 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1133 out:
1134 release_sock(sk);
1135 return err;
1138 static int vsock_dgram_connect(struct socket *sock,
1139 struct sockaddr *addr, int addr_len, int flags)
1141 int err;
1142 struct sock *sk;
1143 struct vsock_sock *vsk;
1144 struct sockaddr_vm *remote_addr;
1146 sk = sock->sk;
1147 vsk = vsock_sk(sk);
1149 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1150 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1151 lock_sock(sk);
1152 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1153 VMADDR_PORT_ANY);
1154 sock->state = SS_UNCONNECTED;
1155 release_sock(sk);
1156 return 0;
1157 } else if (err != 0)
1158 return -EINVAL;
1160 lock_sock(sk);
1162 err = vsock_auto_bind(vsk);
1163 if (err)
1164 goto out;
1166 if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1167 remote_addr->svm_port)) {
1168 err = -EINVAL;
1169 goto out;
1172 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1173 sock->state = SS_CONNECTED;
1175 out:
1176 release_sock(sk);
1177 return err;
1180 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1181 size_t len, int flags)
1183 struct vsock_sock *vsk = vsock_sk(sock->sk);
1185 return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1188 static const struct proto_ops vsock_dgram_ops = {
1189 .family = PF_VSOCK,
1190 .owner = THIS_MODULE,
1191 .release = vsock_release,
1192 .bind = vsock_bind,
1193 .connect = vsock_dgram_connect,
1194 .socketpair = sock_no_socketpair,
1195 .accept = sock_no_accept,
1196 .getname = vsock_getname,
1197 .poll = vsock_poll,
1198 .ioctl = sock_no_ioctl,
1199 .listen = sock_no_listen,
1200 .shutdown = vsock_shutdown,
1201 .setsockopt = sock_no_setsockopt,
1202 .getsockopt = sock_no_getsockopt,
1203 .sendmsg = vsock_dgram_sendmsg,
1204 .recvmsg = vsock_dgram_recvmsg,
1205 .mmap = sock_no_mmap,
1206 .sendpage = sock_no_sendpage,
1209 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1211 const struct vsock_transport *transport = vsk->transport;
1213 if (!transport->cancel_pkt)
1214 return -EOPNOTSUPP;
1216 return transport->cancel_pkt(vsk);
1219 static void vsock_connect_timeout(struct work_struct *work)
1221 struct sock *sk;
1222 struct vsock_sock *vsk;
1223 int cancel = 0;
1225 vsk = container_of(work, struct vsock_sock, connect_work.work);
1226 sk = sk_vsock(vsk);
1228 lock_sock(sk);
1229 if (sk->sk_state == TCP_SYN_SENT &&
1230 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1231 sk->sk_state = TCP_CLOSE;
1232 sk->sk_err = ETIMEDOUT;
1233 sk->sk_error_report(sk);
1234 cancel = 1;
1236 release_sock(sk);
1237 if (cancel)
1238 vsock_transport_cancel_pkt(vsk);
1240 sock_put(sk);
1243 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1244 int addr_len, int flags)
1246 int err;
1247 struct sock *sk;
1248 struct vsock_sock *vsk;
1249 const struct vsock_transport *transport;
1250 struct sockaddr_vm *remote_addr;
1251 long timeout;
1252 DEFINE_WAIT(wait);
1254 err = 0;
1255 sk = sock->sk;
1256 vsk = vsock_sk(sk);
1258 lock_sock(sk);
1260 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1261 switch (sock->state) {
1262 case SS_CONNECTED:
1263 err = -EISCONN;
1264 goto out;
1265 case SS_DISCONNECTING:
1266 err = -EINVAL;
1267 goto out;
1268 case SS_CONNECTING:
1269 /* This continues on so we can move sock into the SS_CONNECTED
1270 * state once the connection has completed (at which point err
1271 * will be set to zero also). Otherwise, we will either wait
1272 * for the connection or return -EALREADY should this be a
1273 * non-blocking call.
1275 err = -EALREADY;
1276 break;
1277 default:
1278 if ((sk->sk_state == TCP_LISTEN) ||
1279 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1280 err = -EINVAL;
1281 goto out;
1284 /* Set the remote address that we are connecting to. */
1285 memcpy(&vsk->remote_addr, remote_addr,
1286 sizeof(vsk->remote_addr));
1288 err = vsock_assign_transport(vsk, NULL);
1289 if (err)
1290 goto out;
1292 transport = vsk->transport;
1294 /* The hypervisor and well-known contexts do not have socket
1295 * endpoints.
1297 if (!transport ||
1298 !transport->stream_allow(remote_addr->svm_cid,
1299 remote_addr->svm_port)) {
1300 err = -ENETUNREACH;
1301 goto out;
1304 err = vsock_auto_bind(vsk);
1305 if (err)
1306 goto out;
1308 sk->sk_state = TCP_SYN_SENT;
1310 err = transport->connect(vsk);
1311 if (err < 0)
1312 goto out;
1314 /* Mark sock as connecting and set the error code to in
1315 * progress in case this is a non-blocking connect.
1317 sock->state = SS_CONNECTING;
1318 err = -EINPROGRESS;
1321 /* The receive path will handle all communication until we are able to
1322 * enter the connected state. Here we wait for the connection to be
1323 * completed or a notification of an error.
1325 timeout = vsk->connect_timeout;
1326 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1328 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1329 if (flags & O_NONBLOCK) {
1330 /* If we're not going to block, we schedule a timeout
1331 * function to generate a timeout on the connection
1332 * attempt, in case the peer doesn't respond in a
1333 * timely manner. We hold on to the socket until the
1334 * timeout fires.
1336 sock_hold(sk);
1337 schedule_delayed_work(&vsk->connect_work, timeout);
1339 /* Skip ahead to preserve error code set above. */
1340 goto out_wait;
1343 release_sock(sk);
1344 timeout = schedule_timeout(timeout);
1345 lock_sock(sk);
1347 if (signal_pending(current)) {
1348 err = sock_intr_errno(timeout);
1349 sk->sk_state = TCP_CLOSE;
1350 sock->state = SS_UNCONNECTED;
1351 vsock_transport_cancel_pkt(vsk);
1352 goto out_wait;
1353 } else if (timeout == 0) {
1354 err = -ETIMEDOUT;
1355 sk->sk_state = TCP_CLOSE;
1356 sock->state = SS_UNCONNECTED;
1357 vsock_transport_cancel_pkt(vsk);
1358 goto out_wait;
1361 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1364 if (sk->sk_err) {
1365 err = -sk->sk_err;
1366 sk->sk_state = TCP_CLOSE;
1367 sock->state = SS_UNCONNECTED;
1368 } else {
1369 err = 0;
1372 out_wait:
1373 finish_wait(sk_sleep(sk), &wait);
1374 out:
1375 release_sock(sk);
1376 return err;
1379 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1380 bool kern)
1382 struct sock *listener;
1383 int err;
1384 struct sock *connected;
1385 struct vsock_sock *vconnected;
1386 long timeout;
1387 DEFINE_WAIT(wait);
1389 err = 0;
1390 listener = sock->sk;
1392 lock_sock(listener);
1394 if (sock->type != SOCK_STREAM) {
1395 err = -EOPNOTSUPP;
1396 goto out;
1399 if (listener->sk_state != TCP_LISTEN) {
1400 err = -EINVAL;
1401 goto out;
1404 /* Wait for children sockets to appear; these are the new sockets
1405 * created upon connection establishment.
1407 timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1408 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1410 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1411 listener->sk_err == 0) {
1412 release_sock(listener);
1413 timeout = schedule_timeout(timeout);
1414 finish_wait(sk_sleep(listener), &wait);
1415 lock_sock(listener);
1417 if (signal_pending(current)) {
1418 err = sock_intr_errno(timeout);
1419 goto out;
1420 } else if (timeout == 0) {
1421 err = -EAGAIN;
1422 goto out;
1425 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1427 finish_wait(sk_sleep(listener), &wait);
1429 if (listener->sk_err)
1430 err = -listener->sk_err;
1432 if (connected) {
1433 sk_acceptq_removed(listener);
1435 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1436 vconnected = vsock_sk(connected);
1438 /* If the listener socket has received an error, then we should
1439 * reject this socket and return. Note that we simply mark the
1440 * socket rejected, drop our reference, and let the cleanup
1441 * function handle the cleanup; the fact that we found it in
1442 * the listener's accept queue guarantees that the cleanup
1443 * function hasn't run yet.
1445 if (err) {
1446 vconnected->rejected = true;
1447 } else {
1448 newsock->state = SS_CONNECTED;
1449 sock_graft(connected, newsock);
1452 release_sock(connected);
1453 sock_put(connected);
1456 out:
1457 release_sock(listener);
1458 return err;
1461 static int vsock_listen(struct socket *sock, int backlog)
1463 int err;
1464 struct sock *sk;
1465 struct vsock_sock *vsk;
1467 sk = sock->sk;
1469 lock_sock(sk);
1471 if (sock->type != SOCK_STREAM) {
1472 err = -EOPNOTSUPP;
1473 goto out;
1476 if (sock->state != SS_UNCONNECTED) {
1477 err = -EINVAL;
1478 goto out;
1481 vsk = vsock_sk(sk);
1483 if (!vsock_addr_bound(&vsk->local_addr)) {
1484 err = -EINVAL;
1485 goto out;
1488 sk->sk_max_ack_backlog = backlog;
1489 sk->sk_state = TCP_LISTEN;
1491 err = 0;
1493 out:
1494 release_sock(sk);
1495 return err;
1498 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1499 const struct vsock_transport *transport,
1500 u64 val)
1502 if (val > vsk->buffer_max_size)
1503 val = vsk->buffer_max_size;
1505 if (val < vsk->buffer_min_size)
1506 val = vsk->buffer_min_size;
1508 if (val != vsk->buffer_size &&
1509 transport && transport->notify_buffer_size)
1510 transport->notify_buffer_size(vsk, &val);
1512 vsk->buffer_size = val;
1515 static int vsock_stream_setsockopt(struct socket *sock,
1516 int level,
1517 int optname,
1518 char __user *optval,
1519 unsigned int optlen)
1521 int err;
1522 struct sock *sk;
1523 struct vsock_sock *vsk;
1524 const struct vsock_transport *transport;
1525 u64 val;
1527 if (level != AF_VSOCK)
1528 return -ENOPROTOOPT;
1530 #define COPY_IN(_v) \
1531 do { \
1532 if (optlen < sizeof(_v)) { \
1533 err = -EINVAL; \
1534 goto exit; \
1536 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \
1537 err = -EFAULT; \
1538 goto exit; \
1540 } while (0)
1542 err = 0;
1543 sk = sock->sk;
1544 vsk = vsock_sk(sk);
1545 transport = vsk->transport;
1547 lock_sock(sk);
1549 switch (optname) {
1550 case SO_VM_SOCKETS_BUFFER_SIZE:
1551 COPY_IN(val);
1552 vsock_update_buffer_size(vsk, transport, val);
1553 break;
1555 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1556 COPY_IN(val);
1557 vsk->buffer_max_size = val;
1558 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1559 break;
1561 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1562 COPY_IN(val);
1563 vsk->buffer_min_size = val;
1564 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1565 break;
1567 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1568 struct __kernel_old_timeval tv;
1569 COPY_IN(tv);
1570 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1571 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1572 vsk->connect_timeout = tv.tv_sec * HZ +
1573 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1574 if (vsk->connect_timeout == 0)
1575 vsk->connect_timeout =
1576 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1578 } else {
1579 err = -ERANGE;
1581 break;
1584 default:
1585 err = -ENOPROTOOPT;
1586 break;
1589 #undef COPY_IN
1591 exit:
1592 release_sock(sk);
1593 return err;
1596 static int vsock_stream_getsockopt(struct socket *sock,
1597 int level, int optname,
1598 char __user *optval,
1599 int __user *optlen)
1601 int err;
1602 int len;
1603 struct sock *sk;
1604 struct vsock_sock *vsk;
1605 u64 val;
1607 if (level != AF_VSOCK)
1608 return -ENOPROTOOPT;
1610 err = get_user(len, optlen);
1611 if (err != 0)
1612 return err;
1614 #define COPY_OUT(_v) \
1615 do { \
1616 if (len < sizeof(_v)) \
1617 return -EINVAL; \
1619 len = sizeof(_v); \
1620 if (copy_to_user(optval, &_v, len) != 0) \
1621 return -EFAULT; \
1623 } while (0)
1625 err = 0;
1626 sk = sock->sk;
1627 vsk = vsock_sk(sk);
1629 switch (optname) {
1630 case SO_VM_SOCKETS_BUFFER_SIZE:
1631 val = vsk->buffer_size;
1632 COPY_OUT(val);
1633 break;
1635 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1636 val = vsk->buffer_max_size;
1637 COPY_OUT(val);
1638 break;
1640 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1641 val = vsk->buffer_min_size;
1642 COPY_OUT(val);
1643 break;
1645 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1646 struct __kernel_old_timeval tv;
1647 tv.tv_sec = vsk->connect_timeout / HZ;
1648 tv.tv_usec =
1649 (vsk->connect_timeout -
1650 tv.tv_sec * HZ) * (1000000 / HZ);
1651 COPY_OUT(tv);
1652 break;
1654 default:
1655 return -ENOPROTOOPT;
1658 err = put_user(len, optlen);
1659 if (err != 0)
1660 return -EFAULT;
1662 #undef COPY_OUT
1664 return 0;
1667 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1668 size_t len)
1670 struct sock *sk;
1671 struct vsock_sock *vsk;
1672 const struct vsock_transport *transport;
1673 ssize_t total_written;
1674 long timeout;
1675 int err;
1676 struct vsock_transport_send_notify_data send_data;
1677 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1679 sk = sock->sk;
1680 vsk = vsock_sk(sk);
1681 transport = vsk->transport;
1682 total_written = 0;
1683 err = 0;
1685 if (msg->msg_flags & MSG_OOB)
1686 return -EOPNOTSUPP;
1688 lock_sock(sk);
1690 /* Callers should not provide a destination with stream sockets. */
1691 if (msg->msg_namelen) {
1692 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1693 goto out;
1696 /* Send data only if both sides are not shutdown in the direction. */
1697 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1698 vsk->peer_shutdown & RCV_SHUTDOWN) {
1699 err = -EPIPE;
1700 goto out;
1703 if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1704 !vsock_addr_bound(&vsk->local_addr)) {
1705 err = -ENOTCONN;
1706 goto out;
1709 if (!vsock_addr_bound(&vsk->remote_addr)) {
1710 err = -EDESTADDRREQ;
1711 goto out;
1714 /* Wait for room in the produce queue to enqueue our user's data. */
1715 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1717 err = transport->notify_send_init(vsk, &send_data);
1718 if (err < 0)
1719 goto out;
1721 while (total_written < len) {
1722 ssize_t written;
1724 add_wait_queue(sk_sleep(sk), &wait);
1725 while (vsock_stream_has_space(vsk) == 0 &&
1726 sk->sk_err == 0 &&
1727 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1728 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1730 /* Don't wait for non-blocking sockets. */
1731 if (timeout == 0) {
1732 err = -EAGAIN;
1733 remove_wait_queue(sk_sleep(sk), &wait);
1734 goto out_err;
1737 err = transport->notify_send_pre_block(vsk, &send_data);
1738 if (err < 0) {
1739 remove_wait_queue(sk_sleep(sk), &wait);
1740 goto out_err;
1743 release_sock(sk);
1744 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1745 lock_sock(sk);
1746 if (signal_pending(current)) {
1747 err = sock_intr_errno(timeout);
1748 remove_wait_queue(sk_sleep(sk), &wait);
1749 goto out_err;
1750 } else if (timeout == 0) {
1751 err = -EAGAIN;
1752 remove_wait_queue(sk_sleep(sk), &wait);
1753 goto out_err;
1756 remove_wait_queue(sk_sleep(sk), &wait);
1758 /* These checks occur both as part of and after the loop
1759 * conditional since we need to check before and after
1760 * sleeping.
1762 if (sk->sk_err) {
1763 err = -sk->sk_err;
1764 goto out_err;
1765 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1766 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1767 err = -EPIPE;
1768 goto out_err;
1771 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1772 if (err < 0)
1773 goto out_err;
1775 /* Note that enqueue will only write as many bytes as are free
1776 * in the produce queue, so we don't need to ensure len is
1777 * smaller than the queue size. It is the caller's
1778 * responsibility to check how many bytes we were able to send.
1781 written = transport->stream_enqueue(
1782 vsk, msg,
1783 len - total_written);
1784 if (written < 0) {
1785 err = -ENOMEM;
1786 goto out_err;
1789 total_written += written;
1791 err = transport->notify_send_post_enqueue(
1792 vsk, written, &send_data);
1793 if (err < 0)
1794 goto out_err;
1798 out_err:
1799 if (total_written > 0)
1800 err = total_written;
1801 out:
1802 release_sock(sk);
1803 return err;
1807 static int
1808 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1809 int flags)
1811 struct sock *sk;
1812 struct vsock_sock *vsk;
1813 const struct vsock_transport *transport;
1814 int err;
1815 size_t target;
1816 ssize_t copied;
1817 long timeout;
1818 struct vsock_transport_recv_notify_data recv_data;
1820 DEFINE_WAIT(wait);
1822 sk = sock->sk;
1823 vsk = vsock_sk(sk);
1824 transport = vsk->transport;
1825 err = 0;
1827 lock_sock(sk);
1829 if (!transport || sk->sk_state != TCP_ESTABLISHED) {
1830 /* Recvmsg is supposed to return 0 if a peer performs an
1831 * orderly shutdown. Differentiate between that case and when a
1832 * peer has not connected or a local shutdown occured with the
1833 * SOCK_DONE flag.
1835 if (sock_flag(sk, SOCK_DONE))
1836 err = 0;
1837 else
1838 err = -ENOTCONN;
1840 goto out;
1843 if (flags & MSG_OOB) {
1844 err = -EOPNOTSUPP;
1845 goto out;
1848 /* We don't check peer_shutdown flag here since peer may actually shut
1849 * down, but there can be data in the queue that a local socket can
1850 * receive.
1852 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1853 err = 0;
1854 goto out;
1857 /* It is valid on Linux to pass in a zero-length receive buffer. This
1858 * is not an error. We may as well bail out now.
1860 if (!len) {
1861 err = 0;
1862 goto out;
1865 /* We must not copy less than target bytes into the user's buffer
1866 * before returning successfully, so we wait for the consume queue to
1867 * have that much data to consume before dequeueing. Note that this
1868 * makes it impossible to handle cases where target is greater than the
1869 * queue size.
1871 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1872 if (target >= transport->stream_rcvhiwat(vsk)) {
1873 err = -ENOMEM;
1874 goto out;
1876 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1877 copied = 0;
1879 err = transport->notify_recv_init(vsk, target, &recv_data);
1880 if (err < 0)
1881 goto out;
1884 while (1) {
1885 s64 ready;
1887 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1888 ready = vsock_stream_has_data(vsk);
1890 if (ready == 0) {
1891 if (sk->sk_err != 0 ||
1892 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1893 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1894 finish_wait(sk_sleep(sk), &wait);
1895 break;
1897 /* Don't wait for non-blocking sockets. */
1898 if (timeout == 0) {
1899 err = -EAGAIN;
1900 finish_wait(sk_sleep(sk), &wait);
1901 break;
1904 err = transport->notify_recv_pre_block(
1905 vsk, target, &recv_data);
1906 if (err < 0) {
1907 finish_wait(sk_sleep(sk), &wait);
1908 break;
1910 release_sock(sk);
1911 timeout = schedule_timeout(timeout);
1912 lock_sock(sk);
1914 if (signal_pending(current)) {
1915 err = sock_intr_errno(timeout);
1916 finish_wait(sk_sleep(sk), &wait);
1917 break;
1918 } else if (timeout == 0) {
1919 err = -EAGAIN;
1920 finish_wait(sk_sleep(sk), &wait);
1921 break;
1923 } else {
1924 ssize_t read;
1926 finish_wait(sk_sleep(sk), &wait);
1928 if (ready < 0) {
1929 /* Invalid queue pair content. XXX This should
1930 * be changed to a connection reset in a later
1931 * change.
1934 err = -ENOMEM;
1935 goto out;
1938 err = transport->notify_recv_pre_dequeue(
1939 vsk, target, &recv_data);
1940 if (err < 0)
1941 break;
1943 read = transport->stream_dequeue(
1944 vsk, msg,
1945 len - copied, flags);
1946 if (read < 0) {
1947 err = -ENOMEM;
1948 break;
1951 copied += read;
1953 err = transport->notify_recv_post_dequeue(
1954 vsk, target, read,
1955 !(flags & MSG_PEEK), &recv_data);
1956 if (err < 0)
1957 goto out;
1959 if (read >= target || flags & MSG_PEEK)
1960 break;
1962 target -= read;
1966 if (sk->sk_err)
1967 err = -sk->sk_err;
1968 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1969 err = 0;
1971 if (copied > 0)
1972 err = copied;
1974 out:
1975 release_sock(sk);
1976 return err;
1979 static const struct proto_ops vsock_stream_ops = {
1980 .family = PF_VSOCK,
1981 .owner = THIS_MODULE,
1982 .release = vsock_release,
1983 .bind = vsock_bind,
1984 .connect = vsock_stream_connect,
1985 .socketpair = sock_no_socketpair,
1986 .accept = vsock_accept,
1987 .getname = vsock_getname,
1988 .poll = vsock_poll,
1989 .ioctl = sock_no_ioctl,
1990 .listen = vsock_listen,
1991 .shutdown = vsock_shutdown,
1992 .setsockopt = vsock_stream_setsockopt,
1993 .getsockopt = vsock_stream_getsockopt,
1994 .sendmsg = vsock_stream_sendmsg,
1995 .recvmsg = vsock_stream_recvmsg,
1996 .mmap = sock_no_mmap,
1997 .sendpage = sock_no_sendpage,
2000 static int vsock_create(struct net *net, struct socket *sock,
2001 int protocol, int kern)
2003 struct vsock_sock *vsk;
2004 struct sock *sk;
2005 int ret;
2007 if (!sock)
2008 return -EINVAL;
2010 if (protocol && protocol != PF_VSOCK)
2011 return -EPROTONOSUPPORT;
2013 switch (sock->type) {
2014 case SOCK_DGRAM:
2015 sock->ops = &vsock_dgram_ops;
2016 break;
2017 case SOCK_STREAM:
2018 sock->ops = &vsock_stream_ops;
2019 break;
2020 default:
2021 return -ESOCKTNOSUPPORT;
2024 sock->state = SS_UNCONNECTED;
2026 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2027 if (!sk)
2028 return -ENOMEM;
2030 vsk = vsock_sk(sk);
2032 if (sock->type == SOCK_DGRAM) {
2033 ret = vsock_assign_transport(vsk, NULL);
2034 if (ret < 0) {
2035 sock_put(sk);
2036 return ret;
2040 vsock_insert_unbound(vsk);
2042 return 0;
2045 static const struct net_proto_family vsock_family_ops = {
2046 .family = AF_VSOCK,
2047 .create = vsock_create,
2048 .owner = THIS_MODULE,
2051 static long vsock_dev_do_ioctl(struct file *filp,
2052 unsigned int cmd, void __user *ptr)
2054 u32 __user *p = ptr;
2055 u32 cid = VMADDR_CID_ANY;
2056 int retval = 0;
2058 switch (cmd) {
2059 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2060 /* To be compatible with the VMCI behavior, we prioritize the
2061 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2063 if (transport_g2h)
2064 cid = transport_g2h->get_local_cid();
2065 else if (transport_h2g)
2066 cid = transport_h2g->get_local_cid();
2068 if (put_user(cid, p) != 0)
2069 retval = -EFAULT;
2070 break;
2072 default:
2073 pr_err("Unknown ioctl %d\n", cmd);
2074 retval = -EINVAL;
2077 return retval;
2080 static long vsock_dev_ioctl(struct file *filp,
2081 unsigned int cmd, unsigned long arg)
2083 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2086 #ifdef CONFIG_COMPAT
2087 static long vsock_dev_compat_ioctl(struct file *filp,
2088 unsigned int cmd, unsigned long arg)
2090 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2092 #endif
2094 static const struct file_operations vsock_device_ops = {
2095 .owner = THIS_MODULE,
2096 .unlocked_ioctl = vsock_dev_ioctl,
2097 #ifdef CONFIG_COMPAT
2098 .compat_ioctl = vsock_dev_compat_ioctl,
2099 #endif
2100 .open = nonseekable_open,
2103 static struct miscdevice vsock_device = {
2104 .name = "vsock",
2105 .fops = &vsock_device_ops,
2108 static int __init vsock_init(void)
2110 int err = 0;
2112 vsock_init_tables();
2114 vsock_proto.owner = THIS_MODULE;
2115 vsock_device.minor = MISC_DYNAMIC_MINOR;
2116 err = misc_register(&vsock_device);
2117 if (err) {
2118 pr_err("Failed to register misc device\n");
2119 goto err_reset_transport;
2122 err = proto_register(&vsock_proto, 1); /* we want our slab */
2123 if (err) {
2124 pr_err("Cannot register vsock protocol\n");
2125 goto err_deregister_misc;
2128 err = sock_register(&vsock_family_ops);
2129 if (err) {
2130 pr_err("could not register af_vsock (%d) address family: %d\n",
2131 AF_VSOCK, err);
2132 goto err_unregister_proto;
2135 return 0;
2137 err_unregister_proto:
2138 proto_unregister(&vsock_proto);
2139 err_deregister_misc:
2140 misc_deregister(&vsock_device);
2141 err_reset_transport:
2142 return err;
2145 static void __exit vsock_exit(void)
2147 misc_deregister(&vsock_device);
2148 sock_unregister(AF_VSOCK);
2149 proto_unregister(&vsock_proto);
2152 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2154 return vsk->transport;
2156 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2158 int vsock_core_register(const struct vsock_transport *t, int features)
2160 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2161 int err = mutex_lock_interruptible(&vsock_register_mutex);
2163 if (err)
2164 return err;
2166 t_h2g = transport_h2g;
2167 t_g2h = transport_g2h;
2168 t_dgram = transport_dgram;
2169 t_local = transport_local;
2171 if (features & VSOCK_TRANSPORT_F_H2G) {
2172 if (t_h2g) {
2173 err = -EBUSY;
2174 goto err_busy;
2176 t_h2g = t;
2179 if (features & VSOCK_TRANSPORT_F_G2H) {
2180 if (t_g2h) {
2181 err = -EBUSY;
2182 goto err_busy;
2184 t_g2h = t;
2187 if (features & VSOCK_TRANSPORT_F_DGRAM) {
2188 if (t_dgram) {
2189 err = -EBUSY;
2190 goto err_busy;
2192 t_dgram = t;
2195 if (features & VSOCK_TRANSPORT_F_LOCAL) {
2196 if (t_local) {
2197 err = -EBUSY;
2198 goto err_busy;
2200 t_local = t;
2203 transport_h2g = t_h2g;
2204 transport_g2h = t_g2h;
2205 transport_dgram = t_dgram;
2206 transport_local = t_local;
2208 err_busy:
2209 mutex_unlock(&vsock_register_mutex);
2210 return err;
2212 EXPORT_SYMBOL_GPL(vsock_core_register);
2214 void vsock_core_unregister(const struct vsock_transport *t)
2216 mutex_lock(&vsock_register_mutex);
2218 if (transport_h2g == t)
2219 transport_h2g = NULL;
2221 if (transport_g2h == t)
2222 transport_g2h = NULL;
2224 if (transport_dgram == t)
2225 transport_dgram = NULL;
2227 if (transport_local == t)
2228 transport_local = NULL;
2230 mutex_unlock(&vsock_register_mutex);
2232 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2234 module_init(vsock_init);
2235 module_exit(vsock_exit);
2237 MODULE_AUTHOR("VMware, Inc.");
2238 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2239 MODULE_VERSION("1.0.2.0-k");
2240 MODULE_LICENSE("GPL v2");