spi: pl022: handle EPROBE_DEFER for dma
[linux/fpc-iii.git] / drivers / block / brd.c
bloba5880f4ab40eb069bda60d6403b223d61ff1db80
1 /*
2 * Ram backed block device driver.
4 * Copyright (C) 2007 Nick Piggin
5 * Copyright (C) 2007 Novell Inc.
7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8 * of their respective owners.
9 */
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/major.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/highmem.h>
18 #include <linux/mutex.h>
19 #include <linux/radix-tree.h>
20 #include <linux/fs.h>
21 #include <linux/slab.h>
23 #include <asm/uaccess.h>
25 #define SECTOR_SHIFT 9
26 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
27 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
30 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
31 * the pages containing the block device's contents. A brd page's ->index is
32 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
33 * with, the kernel's pagecache or buffer cache (which sit above our block
34 * device).
36 struct brd_device {
37 int brd_number;
39 struct request_queue *brd_queue;
40 struct gendisk *brd_disk;
41 struct list_head brd_list;
44 * Backing store of pages and lock to protect it. This is the contents
45 * of the block device.
47 spinlock_t brd_lock;
48 struct radix_tree_root brd_pages;
52 * Look up and return a brd's page for a given sector.
54 static DEFINE_MUTEX(brd_mutex);
55 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
57 pgoff_t idx;
58 struct page *page;
61 * The page lifetime is protected by the fact that we have opened the
62 * device node -- brd pages will never be deleted under us, so we
63 * don't need any further locking or refcounting.
65 * This is strictly true for the radix-tree nodes as well (ie. we
66 * don't actually need the rcu_read_lock()), however that is not a
67 * documented feature of the radix-tree API so it is better to be
68 * safe here (we don't have total exclusion from radix tree updates
69 * here, only deletes).
71 rcu_read_lock();
72 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
73 page = radix_tree_lookup(&brd->brd_pages, idx);
74 rcu_read_unlock();
76 BUG_ON(page && page->index != idx);
78 return page;
82 * Look up and return a brd's page for a given sector.
83 * If one does not exist, allocate an empty page, and insert that. Then
84 * return it.
86 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
88 pgoff_t idx;
89 struct page *page;
90 gfp_t gfp_flags;
92 page = brd_lookup_page(brd, sector);
93 if (page)
94 return page;
97 * Must use NOIO because we don't want to recurse back into the
98 * block or filesystem layers from page reclaim.
100 * Cannot support DAX and highmem, because our ->direct_access
101 * routine for DAX must return memory that is always addressable.
102 * If DAX was reworked to use pfns and kmap throughout, this
103 * restriction might be able to be lifted.
105 gfp_flags = GFP_NOIO | __GFP_ZERO;
106 #ifndef CONFIG_BLK_DEV_RAM_DAX
107 gfp_flags |= __GFP_HIGHMEM;
108 #endif
109 page = alloc_page(gfp_flags);
110 if (!page)
111 return NULL;
113 if (radix_tree_preload(GFP_NOIO)) {
114 __free_page(page);
115 return NULL;
118 spin_lock(&brd->brd_lock);
119 idx = sector >> PAGE_SECTORS_SHIFT;
120 page->index = idx;
121 if (radix_tree_insert(&brd->brd_pages, idx, page)) {
122 __free_page(page);
123 page = radix_tree_lookup(&brd->brd_pages, idx);
124 BUG_ON(!page);
125 BUG_ON(page->index != idx);
127 spin_unlock(&brd->brd_lock);
129 radix_tree_preload_end();
131 return page;
134 static void brd_free_page(struct brd_device *brd, sector_t sector)
136 struct page *page;
137 pgoff_t idx;
139 spin_lock(&brd->brd_lock);
140 idx = sector >> PAGE_SECTORS_SHIFT;
141 page = radix_tree_delete(&brd->brd_pages, idx);
142 spin_unlock(&brd->brd_lock);
143 if (page)
144 __free_page(page);
147 static void brd_zero_page(struct brd_device *brd, sector_t sector)
149 struct page *page;
151 page = brd_lookup_page(brd, sector);
152 if (page)
153 clear_highpage(page);
157 * Free all backing store pages and radix tree. This must only be called when
158 * there are no other users of the device.
160 #define FREE_BATCH 16
161 static void brd_free_pages(struct brd_device *brd)
163 unsigned long pos = 0;
164 struct page *pages[FREE_BATCH];
165 int nr_pages;
167 do {
168 int i;
170 nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
171 (void **)pages, pos, FREE_BATCH);
173 for (i = 0; i < nr_pages; i++) {
174 void *ret;
176 BUG_ON(pages[i]->index < pos);
177 pos = pages[i]->index;
178 ret = radix_tree_delete(&brd->brd_pages, pos);
179 BUG_ON(!ret || ret != pages[i]);
180 __free_page(pages[i]);
183 pos++;
186 * This assumes radix_tree_gang_lookup always returns as
187 * many pages as possible. If the radix-tree code changes,
188 * so will this have to.
190 } while (nr_pages == FREE_BATCH);
194 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
196 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
198 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
199 size_t copy;
201 copy = min_t(size_t, n, PAGE_SIZE - offset);
202 if (!brd_insert_page(brd, sector))
203 return -ENOSPC;
204 if (copy < n) {
205 sector += copy >> SECTOR_SHIFT;
206 if (!brd_insert_page(brd, sector))
207 return -ENOSPC;
209 return 0;
212 static void discard_from_brd(struct brd_device *brd,
213 sector_t sector, size_t n)
215 while (n >= PAGE_SIZE) {
217 * Don't want to actually discard pages here because
218 * re-allocating the pages can result in writeback
219 * deadlocks under heavy load.
221 if (0)
222 brd_free_page(brd, sector);
223 else
224 brd_zero_page(brd, sector);
225 sector += PAGE_SIZE >> SECTOR_SHIFT;
226 n -= PAGE_SIZE;
231 * Copy n bytes from src to the brd starting at sector. Does not sleep.
233 static void copy_to_brd(struct brd_device *brd, const void *src,
234 sector_t sector, size_t n)
236 struct page *page;
237 void *dst;
238 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
239 size_t copy;
241 copy = min_t(size_t, n, PAGE_SIZE - offset);
242 page = brd_lookup_page(brd, sector);
243 BUG_ON(!page);
245 dst = kmap_atomic(page);
246 memcpy(dst + offset, src, copy);
247 kunmap_atomic(dst);
249 if (copy < n) {
250 src += copy;
251 sector += copy >> SECTOR_SHIFT;
252 copy = n - copy;
253 page = brd_lookup_page(brd, sector);
254 BUG_ON(!page);
256 dst = kmap_atomic(page);
257 memcpy(dst, src, copy);
258 kunmap_atomic(dst);
263 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
265 static void copy_from_brd(void *dst, struct brd_device *brd,
266 sector_t sector, size_t n)
268 struct page *page;
269 void *src;
270 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
271 size_t copy;
273 copy = min_t(size_t, n, PAGE_SIZE - offset);
274 page = brd_lookup_page(brd, sector);
275 if (page) {
276 src = kmap_atomic(page);
277 memcpy(dst, src + offset, copy);
278 kunmap_atomic(src);
279 } else
280 memset(dst, 0, copy);
282 if (copy < n) {
283 dst += copy;
284 sector += copy >> SECTOR_SHIFT;
285 copy = n - copy;
286 page = brd_lookup_page(brd, sector);
287 if (page) {
288 src = kmap_atomic(page);
289 memcpy(dst, src, copy);
290 kunmap_atomic(src);
291 } else
292 memset(dst, 0, copy);
297 * Process a single bvec of a bio.
299 static int brd_do_bvec(struct brd_device *brd, struct page *page,
300 unsigned int len, unsigned int off, int rw,
301 sector_t sector)
303 void *mem;
304 int err = 0;
306 if (rw != READ) {
307 err = copy_to_brd_setup(brd, sector, len);
308 if (err)
309 goto out;
312 mem = kmap_atomic(page);
313 if (rw == READ) {
314 copy_from_brd(mem + off, brd, sector, len);
315 flush_dcache_page(page);
316 } else {
317 flush_dcache_page(page);
318 copy_to_brd(brd, mem + off, sector, len);
320 kunmap_atomic(mem);
322 out:
323 return err;
326 static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio)
328 struct block_device *bdev = bio->bi_bdev;
329 struct brd_device *brd = bdev->bd_disk->private_data;
330 int rw;
331 struct bio_vec bvec;
332 sector_t sector;
333 struct bvec_iter iter;
335 sector = bio->bi_iter.bi_sector;
336 if (bio_end_sector(bio) > get_capacity(bdev->bd_disk))
337 goto io_error;
339 if (unlikely(bio->bi_rw & REQ_DISCARD)) {
340 if (sector & ((PAGE_SIZE >> SECTOR_SHIFT) - 1) ||
341 bio->bi_iter.bi_size & PAGE_MASK)
342 goto io_error;
343 discard_from_brd(brd, sector, bio->bi_iter.bi_size);
344 goto out;
347 rw = bio_rw(bio);
348 if (rw == READA)
349 rw = READ;
351 bio_for_each_segment(bvec, bio, iter) {
352 unsigned int len = bvec.bv_len;
353 int err;
355 err = brd_do_bvec(brd, bvec.bv_page, len,
356 bvec.bv_offset, rw, sector);
357 if (err)
358 goto io_error;
359 sector += len >> SECTOR_SHIFT;
362 out:
363 bio_endio(bio);
364 return BLK_QC_T_NONE;
365 io_error:
366 bio_io_error(bio);
367 return BLK_QC_T_NONE;
370 static int brd_rw_page(struct block_device *bdev, sector_t sector,
371 struct page *page, int rw)
373 struct brd_device *brd = bdev->bd_disk->private_data;
374 int err = brd_do_bvec(brd, page, PAGE_CACHE_SIZE, 0, rw, sector);
375 page_endio(page, rw & WRITE, err);
376 return err;
379 #ifdef CONFIG_BLK_DEV_RAM_DAX
380 static long brd_direct_access(struct block_device *bdev, sector_t sector,
381 void __pmem **kaddr, unsigned long *pfn)
383 struct brd_device *brd = bdev->bd_disk->private_data;
384 struct page *page;
386 if (!brd)
387 return -ENODEV;
388 page = brd_insert_page(brd, sector);
389 if (!page)
390 return -ENOSPC;
391 *kaddr = (void __pmem *)page_address(page);
392 *pfn = page_to_pfn(page);
394 return PAGE_SIZE;
396 #else
397 #define brd_direct_access NULL
398 #endif
400 static int brd_ioctl(struct block_device *bdev, fmode_t mode,
401 unsigned int cmd, unsigned long arg)
403 int error;
404 struct brd_device *brd = bdev->bd_disk->private_data;
406 if (cmd != BLKFLSBUF)
407 return -ENOTTY;
410 * ram device BLKFLSBUF has special semantics, we want to actually
411 * release and destroy the ramdisk data.
413 mutex_lock(&brd_mutex);
414 mutex_lock(&bdev->bd_mutex);
415 error = -EBUSY;
416 if (bdev->bd_openers <= 1) {
418 * Kill the cache first, so it isn't written back to the
419 * device.
421 * Another thread might instantiate more buffercache here,
422 * but there is not much we can do to close that race.
424 kill_bdev(bdev);
425 brd_free_pages(brd);
426 error = 0;
428 mutex_unlock(&bdev->bd_mutex);
429 mutex_unlock(&brd_mutex);
431 return error;
434 static const struct block_device_operations brd_fops = {
435 .owner = THIS_MODULE,
436 .rw_page = brd_rw_page,
437 .ioctl = brd_ioctl,
438 .direct_access = brd_direct_access,
442 * And now the modules code and kernel interface.
444 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
445 module_param(rd_nr, int, S_IRUGO);
446 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
448 int rd_size = CONFIG_BLK_DEV_RAM_SIZE;
449 module_param(rd_size, int, S_IRUGO);
450 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
452 static int max_part = 1;
453 module_param(max_part, int, S_IRUGO);
454 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
456 MODULE_LICENSE("GPL");
457 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
458 MODULE_ALIAS("rd");
460 #ifndef MODULE
461 /* Legacy boot options - nonmodular */
462 static int __init ramdisk_size(char *str)
464 rd_size = simple_strtol(str, NULL, 0);
465 return 1;
467 __setup("ramdisk_size=", ramdisk_size);
468 #endif
471 * The device scheme is derived from loop.c. Keep them in synch where possible
472 * (should share code eventually).
474 static LIST_HEAD(brd_devices);
475 static DEFINE_MUTEX(brd_devices_mutex);
477 static struct brd_device *brd_alloc(int i)
479 struct brd_device *brd;
480 struct gendisk *disk;
482 brd = kzalloc(sizeof(*brd), GFP_KERNEL);
483 if (!brd)
484 goto out;
485 brd->brd_number = i;
486 spin_lock_init(&brd->brd_lock);
487 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
489 brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
490 if (!brd->brd_queue)
491 goto out_free_dev;
493 blk_queue_make_request(brd->brd_queue, brd_make_request);
494 blk_queue_max_hw_sectors(brd->brd_queue, 1024);
495 blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY);
497 /* This is so fdisk will align partitions on 4k, because of
498 * direct_access API needing 4k alignment, returning a PFN
499 * (This is only a problem on very small devices <= 4M,
500 * otherwise fdisk will align on 1M. Regardless this call
501 * is harmless)
503 blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE);
505 brd->brd_queue->limits.discard_granularity = PAGE_SIZE;
506 blk_queue_max_discard_sectors(brd->brd_queue, UINT_MAX);
507 brd->brd_queue->limits.discard_zeroes_data = 1;
508 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, brd->brd_queue);
510 disk = brd->brd_disk = alloc_disk(max_part);
511 if (!disk)
512 goto out_free_queue;
513 disk->major = RAMDISK_MAJOR;
514 disk->first_minor = i * max_part;
515 disk->fops = &brd_fops;
516 disk->private_data = brd;
517 disk->queue = brd->brd_queue;
518 disk->flags = GENHD_FL_EXT_DEVT;
519 sprintf(disk->disk_name, "ram%d", i);
520 set_capacity(disk, rd_size * 2);
522 return brd;
524 out_free_queue:
525 blk_cleanup_queue(brd->brd_queue);
526 out_free_dev:
527 kfree(brd);
528 out:
529 return NULL;
532 static void brd_free(struct brd_device *brd)
534 put_disk(brd->brd_disk);
535 blk_cleanup_queue(brd->brd_queue);
536 brd_free_pages(brd);
537 kfree(brd);
540 static struct brd_device *brd_init_one(int i, bool *new)
542 struct brd_device *brd;
544 *new = false;
545 list_for_each_entry(brd, &brd_devices, brd_list) {
546 if (brd->brd_number == i)
547 goto out;
550 brd = brd_alloc(i);
551 if (brd) {
552 add_disk(brd->brd_disk);
553 list_add_tail(&brd->brd_list, &brd_devices);
555 *new = true;
556 out:
557 return brd;
560 static void brd_del_one(struct brd_device *brd)
562 list_del(&brd->brd_list);
563 del_gendisk(brd->brd_disk);
564 brd_free(brd);
567 static struct kobject *brd_probe(dev_t dev, int *part, void *data)
569 struct brd_device *brd;
570 struct kobject *kobj;
571 bool new;
573 mutex_lock(&brd_devices_mutex);
574 brd = brd_init_one(MINOR(dev) / max_part, &new);
575 kobj = brd ? get_disk(brd->brd_disk) : NULL;
576 mutex_unlock(&brd_devices_mutex);
578 if (new)
579 *part = 0;
581 return kobj;
584 static int __init brd_init(void)
586 struct brd_device *brd, *next;
587 int i;
590 * brd module now has a feature to instantiate underlying device
591 * structure on-demand, provided that there is an access dev node.
593 * (1) if rd_nr is specified, create that many upfront. else
594 * it defaults to CONFIG_BLK_DEV_RAM_COUNT
595 * (2) User can further extend brd devices by create dev node themselves
596 * and have kernel automatically instantiate actual device
597 * on-demand. Example:
598 * mknod /path/devnod_name b 1 X # 1 is the rd major
599 * fdisk -l /path/devnod_name
600 * If (X / max_part) was not already created it will be created
601 * dynamically.
604 if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
605 return -EIO;
607 if (unlikely(!max_part))
608 max_part = 1;
610 for (i = 0; i < rd_nr; i++) {
611 brd = brd_alloc(i);
612 if (!brd)
613 goto out_free;
614 list_add_tail(&brd->brd_list, &brd_devices);
617 /* point of no return */
619 list_for_each_entry(brd, &brd_devices, brd_list)
620 add_disk(brd->brd_disk);
622 blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS,
623 THIS_MODULE, brd_probe, NULL, NULL);
625 pr_info("brd: module loaded\n");
626 return 0;
628 out_free:
629 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
630 list_del(&brd->brd_list);
631 brd_free(brd);
633 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
635 pr_info("brd: module NOT loaded !!!\n");
636 return -ENOMEM;
639 static void __exit brd_exit(void)
641 struct brd_device *brd, *next;
643 list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
644 brd_del_one(brd);
646 blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS);
647 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
649 pr_info("brd: module unloaded\n");
652 module_init(brd_init);
653 module_exit(brd_exit);