spi: pl022: handle EPROBE_DEFER for dma
[linux/fpc-iii.git] / drivers / xen / xenbus / xenbus_client.c
blob056da6ee1a357ed22211e884d78b1186619a3343
1 /******************************************************************************
2 * Client-facing interface for the Xenbus driver. In other words, the
3 * interface between the Xenbus and the device-specific code, be it the
4 * frontend or the backend of that driver.
6 * Copyright (C) 2005 XenSource Ltd
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License version 2
10 * as published by the Free Software Foundation; or, when distributed
11 * separately from the Linux kernel or incorporated into other
12 * software packages, subject to the following license:
14 * Permission is hereby granted, free of charge, to any person obtaining a copy
15 * of this source file (the "Software"), to deal in the Software without
16 * restriction, including without limitation the rights to use, copy, modify,
17 * merge, publish, distribute, sublicense, and/or sell copies of the Software,
18 * and to permit persons to whom the Software is furnished to do so, subject to
19 * the following conditions:
21 * The above copyright notice and this permission notice shall be included in
22 * all copies or substantial portions of the Software.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
25 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
27 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
29 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
30 * IN THE SOFTWARE.
33 #include <linux/mm.h>
34 #include <linux/slab.h>
35 #include <linux/types.h>
36 #include <linux/spinlock.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <asm/xen/hypervisor.h>
40 #include <xen/page.h>
41 #include <xen/interface/xen.h>
42 #include <xen/interface/event_channel.h>
43 #include <xen/balloon.h>
44 #include <xen/events.h>
45 #include <xen/grant_table.h>
46 #include <xen/xenbus.h>
47 #include <xen/xen.h>
48 #include <xen/features.h>
50 #include "xenbus_probe.h"
52 #define XENBUS_PAGES(_grants) (DIV_ROUND_UP(_grants, XEN_PFN_PER_PAGE))
54 #define XENBUS_MAX_RING_PAGES (XENBUS_PAGES(XENBUS_MAX_RING_GRANTS))
56 struct xenbus_map_node {
57 struct list_head next;
58 union {
59 struct {
60 struct vm_struct *area;
61 } pv;
62 struct {
63 struct page *pages[XENBUS_MAX_RING_PAGES];
64 unsigned long addrs[XENBUS_MAX_RING_GRANTS];
65 void *addr;
66 } hvm;
68 grant_handle_t handles[XENBUS_MAX_RING_GRANTS];
69 unsigned int nr_handles;
72 static DEFINE_SPINLOCK(xenbus_valloc_lock);
73 static LIST_HEAD(xenbus_valloc_pages);
75 struct xenbus_ring_ops {
76 int (*map)(struct xenbus_device *dev,
77 grant_ref_t *gnt_refs, unsigned int nr_grefs,
78 void **vaddr);
79 int (*unmap)(struct xenbus_device *dev, void *vaddr);
82 static const struct xenbus_ring_ops *ring_ops __read_mostly;
84 const char *xenbus_strstate(enum xenbus_state state)
86 static const char *const name[] = {
87 [ XenbusStateUnknown ] = "Unknown",
88 [ XenbusStateInitialising ] = "Initialising",
89 [ XenbusStateInitWait ] = "InitWait",
90 [ XenbusStateInitialised ] = "Initialised",
91 [ XenbusStateConnected ] = "Connected",
92 [ XenbusStateClosing ] = "Closing",
93 [ XenbusStateClosed ] = "Closed",
94 [XenbusStateReconfiguring] = "Reconfiguring",
95 [XenbusStateReconfigured] = "Reconfigured",
97 return (state < ARRAY_SIZE(name)) ? name[state] : "INVALID";
99 EXPORT_SYMBOL_GPL(xenbus_strstate);
102 * xenbus_watch_path - register a watch
103 * @dev: xenbus device
104 * @path: path to watch
105 * @watch: watch to register
106 * @callback: callback to register
108 * Register a @watch on the given path, using the given xenbus_watch structure
109 * for storage, and the given @callback function as the callback. Return 0 on
110 * success, or -errno on error. On success, the given @path will be saved as
111 * @watch->node, and remains the caller's to free. On error, @watch->node will
112 * be NULL, the device will switch to %XenbusStateClosing, and the error will
113 * be saved in the store.
115 int xenbus_watch_path(struct xenbus_device *dev, const char *path,
116 struct xenbus_watch *watch,
117 void (*callback)(struct xenbus_watch *,
118 const char **, unsigned int))
120 int err;
122 watch->node = path;
123 watch->callback = callback;
125 err = register_xenbus_watch(watch);
127 if (err) {
128 watch->node = NULL;
129 watch->callback = NULL;
130 xenbus_dev_fatal(dev, err, "adding watch on %s", path);
133 return err;
135 EXPORT_SYMBOL_GPL(xenbus_watch_path);
139 * xenbus_watch_pathfmt - register a watch on a sprintf-formatted path
140 * @dev: xenbus device
141 * @watch: watch to register
142 * @callback: callback to register
143 * @pathfmt: format of path to watch
145 * Register a watch on the given @path, using the given xenbus_watch
146 * structure for storage, and the given @callback function as the callback.
147 * Return 0 on success, or -errno on error. On success, the watched path
148 * (@path/@path2) will be saved as @watch->node, and becomes the caller's to
149 * kfree(). On error, watch->node will be NULL, so the caller has nothing to
150 * free, the device will switch to %XenbusStateClosing, and the error will be
151 * saved in the store.
153 int xenbus_watch_pathfmt(struct xenbus_device *dev,
154 struct xenbus_watch *watch,
155 void (*callback)(struct xenbus_watch *,
156 const char **, unsigned int),
157 const char *pathfmt, ...)
159 int err;
160 va_list ap;
161 char *path;
163 va_start(ap, pathfmt);
164 path = kvasprintf(GFP_NOIO | __GFP_HIGH, pathfmt, ap);
165 va_end(ap);
167 if (!path) {
168 xenbus_dev_fatal(dev, -ENOMEM, "allocating path for watch");
169 return -ENOMEM;
171 err = xenbus_watch_path(dev, path, watch, callback);
173 if (err)
174 kfree(path);
175 return err;
177 EXPORT_SYMBOL_GPL(xenbus_watch_pathfmt);
179 static void xenbus_switch_fatal(struct xenbus_device *, int, int,
180 const char *, ...);
182 static int
183 __xenbus_switch_state(struct xenbus_device *dev,
184 enum xenbus_state state, int depth)
186 /* We check whether the state is currently set to the given value, and
187 if not, then the state is set. We don't want to unconditionally
188 write the given state, because we don't want to fire watches
189 unnecessarily. Furthermore, if the node has gone, we don't write
190 to it, as the device will be tearing down, and we don't want to
191 resurrect that directory.
193 Note that, because of this cached value of our state, this
194 function will not take a caller's Xenstore transaction
195 (something it was trying to in the past) because dev->state
196 would not get reset if the transaction was aborted.
199 struct xenbus_transaction xbt;
200 int current_state;
201 int err, abort;
203 if (state == dev->state)
204 return 0;
206 again:
207 abort = 1;
209 err = xenbus_transaction_start(&xbt);
210 if (err) {
211 xenbus_switch_fatal(dev, depth, err, "starting transaction");
212 return 0;
215 err = xenbus_scanf(xbt, dev->nodename, "state", "%d", &current_state);
216 if (err != 1)
217 goto abort;
219 err = xenbus_printf(xbt, dev->nodename, "state", "%d", state);
220 if (err) {
221 xenbus_switch_fatal(dev, depth, err, "writing new state");
222 goto abort;
225 abort = 0;
226 abort:
227 err = xenbus_transaction_end(xbt, abort);
228 if (err) {
229 if (err == -EAGAIN && !abort)
230 goto again;
231 xenbus_switch_fatal(dev, depth, err, "ending transaction");
232 } else
233 dev->state = state;
235 return 0;
239 * xenbus_switch_state
240 * @dev: xenbus device
241 * @state: new state
243 * Advertise in the store a change of the given driver to the given new_state.
244 * Return 0 on success, or -errno on error. On error, the device will switch
245 * to XenbusStateClosing, and the error will be saved in the store.
247 int xenbus_switch_state(struct xenbus_device *dev, enum xenbus_state state)
249 return __xenbus_switch_state(dev, state, 0);
252 EXPORT_SYMBOL_GPL(xenbus_switch_state);
254 int xenbus_frontend_closed(struct xenbus_device *dev)
256 xenbus_switch_state(dev, XenbusStateClosed);
257 complete(&dev->down);
258 return 0;
260 EXPORT_SYMBOL_GPL(xenbus_frontend_closed);
263 * Return the path to the error node for the given device, or NULL on failure.
264 * If the value returned is non-NULL, then it is the caller's to kfree.
266 static char *error_path(struct xenbus_device *dev)
268 return kasprintf(GFP_KERNEL, "error/%s", dev->nodename);
272 static void xenbus_va_dev_error(struct xenbus_device *dev, int err,
273 const char *fmt, va_list ap)
275 unsigned int len;
276 char *printf_buffer = NULL;
277 char *path_buffer = NULL;
279 #define PRINTF_BUFFER_SIZE 4096
280 printf_buffer = kmalloc(PRINTF_BUFFER_SIZE, GFP_KERNEL);
281 if (printf_buffer == NULL)
282 goto fail;
284 len = sprintf(printf_buffer, "%i ", -err);
285 vsnprintf(printf_buffer+len, PRINTF_BUFFER_SIZE-len, fmt, ap);
287 dev_err(&dev->dev, "%s\n", printf_buffer);
289 path_buffer = error_path(dev);
291 if (path_buffer == NULL) {
292 dev_err(&dev->dev, "failed to write error node for %s (%s)\n",
293 dev->nodename, printf_buffer);
294 goto fail;
297 if (xenbus_write(XBT_NIL, path_buffer, "error", printf_buffer) != 0) {
298 dev_err(&dev->dev, "failed to write error node for %s (%s)\n",
299 dev->nodename, printf_buffer);
300 goto fail;
303 fail:
304 kfree(printf_buffer);
305 kfree(path_buffer);
310 * xenbus_dev_error
311 * @dev: xenbus device
312 * @err: error to report
313 * @fmt: error message format
315 * Report the given negative errno into the store, along with the given
316 * formatted message.
318 void xenbus_dev_error(struct xenbus_device *dev, int err, const char *fmt, ...)
320 va_list ap;
322 va_start(ap, fmt);
323 xenbus_va_dev_error(dev, err, fmt, ap);
324 va_end(ap);
326 EXPORT_SYMBOL_GPL(xenbus_dev_error);
329 * xenbus_dev_fatal
330 * @dev: xenbus device
331 * @err: error to report
332 * @fmt: error message format
334 * Equivalent to xenbus_dev_error(dev, err, fmt, args), followed by
335 * xenbus_switch_state(dev, XenbusStateClosing) to schedule an orderly
336 * closedown of this driver and its peer.
339 void xenbus_dev_fatal(struct xenbus_device *dev, int err, const char *fmt, ...)
341 va_list ap;
343 va_start(ap, fmt);
344 xenbus_va_dev_error(dev, err, fmt, ap);
345 va_end(ap);
347 xenbus_switch_state(dev, XenbusStateClosing);
349 EXPORT_SYMBOL_GPL(xenbus_dev_fatal);
352 * Equivalent to xenbus_dev_fatal(dev, err, fmt, args), but helps
353 * avoiding recursion within xenbus_switch_state.
355 static void xenbus_switch_fatal(struct xenbus_device *dev, int depth, int err,
356 const char *fmt, ...)
358 va_list ap;
360 va_start(ap, fmt);
361 xenbus_va_dev_error(dev, err, fmt, ap);
362 va_end(ap);
364 if (!depth)
365 __xenbus_switch_state(dev, XenbusStateClosing, 1);
369 * xenbus_grant_ring
370 * @dev: xenbus device
371 * @vaddr: starting virtual address of the ring
372 * @nr_pages: number of pages to be granted
373 * @grefs: grant reference array to be filled in
375 * Grant access to the given @vaddr to the peer of the given device.
376 * Then fill in @grefs with grant references. Return 0 on success, or
377 * -errno on error. On error, the device will switch to
378 * XenbusStateClosing, and the error will be saved in the store.
380 int xenbus_grant_ring(struct xenbus_device *dev, void *vaddr,
381 unsigned int nr_pages, grant_ref_t *grefs)
383 int err;
384 int i, j;
386 for (i = 0; i < nr_pages; i++) {
387 err = gnttab_grant_foreign_access(dev->otherend_id,
388 virt_to_gfn(vaddr), 0);
389 if (err < 0) {
390 xenbus_dev_fatal(dev, err,
391 "granting access to ring page");
392 goto fail;
394 grefs[i] = err;
396 vaddr = vaddr + XEN_PAGE_SIZE;
399 return 0;
401 fail:
402 for (j = 0; j < i; j++)
403 gnttab_end_foreign_access_ref(grefs[j], 0);
404 return err;
406 EXPORT_SYMBOL_GPL(xenbus_grant_ring);
410 * Allocate an event channel for the given xenbus_device, assigning the newly
411 * created local port to *port. Return 0 on success, or -errno on error. On
412 * error, the device will switch to XenbusStateClosing, and the error will be
413 * saved in the store.
415 int xenbus_alloc_evtchn(struct xenbus_device *dev, int *port)
417 struct evtchn_alloc_unbound alloc_unbound;
418 int err;
420 alloc_unbound.dom = DOMID_SELF;
421 alloc_unbound.remote_dom = dev->otherend_id;
423 err = HYPERVISOR_event_channel_op(EVTCHNOP_alloc_unbound,
424 &alloc_unbound);
425 if (err)
426 xenbus_dev_fatal(dev, err, "allocating event channel");
427 else
428 *port = alloc_unbound.port;
430 return err;
432 EXPORT_SYMBOL_GPL(xenbus_alloc_evtchn);
436 * Free an existing event channel. Returns 0 on success or -errno on error.
438 int xenbus_free_evtchn(struct xenbus_device *dev, int port)
440 struct evtchn_close close;
441 int err;
443 close.port = port;
445 err = HYPERVISOR_event_channel_op(EVTCHNOP_close, &close);
446 if (err)
447 xenbus_dev_error(dev, err, "freeing event channel %d", port);
449 return err;
451 EXPORT_SYMBOL_GPL(xenbus_free_evtchn);
455 * xenbus_map_ring_valloc
456 * @dev: xenbus device
457 * @gnt_refs: grant reference array
458 * @nr_grefs: number of grant references
459 * @vaddr: pointer to address to be filled out by mapping
461 * Map @nr_grefs pages of memory into this domain from another
462 * domain's grant table. xenbus_map_ring_valloc allocates @nr_grefs
463 * pages of virtual address space, maps the pages to that address, and
464 * sets *vaddr to that address. Returns 0 on success, and GNTST_*
465 * (see xen/include/interface/grant_table.h) or -ENOMEM / -EINVAL on
466 * error. If an error is returned, device will switch to
467 * XenbusStateClosing and the error message will be saved in XenStore.
469 int xenbus_map_ring_valloc(struct xenbus_device *dev, grant_ref_t *gnt_refs,
470 unsigned int nr_grefs, void **vaddr)
472 return ring_ops->map(dev, gnt_refs, nr_grefs, vaddr);
474 EXPORT_SYMBOL_GPL(xenbus_map_ring_valloc);
476 /* N.B. sizeof(phys_addr_t) doesn't always equal to sizeof(unsigned
477 * long), e.g. 32-on-64. Caller is responsible for preparing the
478 * right array to feed into this function */
479 static int __xenbus_map_ring(struct xenbus_device *dev,
480 grant_ref_t *gnt_refs,
481 unsigned int nr_grefs,
482 grant_handle_t *handles,
483 phys_addr_t *addrs,
484 unsigned int flags,
485 bool *leaked)
487 struct gnttab_map_grant_ref map[XENBUS_MAX_RING_GRANTS];
488 struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
489 int i, j;
490 int err = GNTST_okay;
492 if (nr_grefs > XENBUS_MAX_RING_GRANTS)
493 return -EINVAL;
495 for (i = 0; i < nr_grefs; i++) {
496 memset(&map[i], 0, sizeof(map[i]));
497 gnttab_set_map_op(&map[i], addrs[i], flags, gnt_refs[i],
498 dev->otherend_id);
499 handles[i] = INVALID_GRANT_HANDLE;
502 gnttab_batch_map(map, i);
504 for (i = 0; i < nr_grefs; i++) {
505 if (map[i].status != GNTST_okay) {
506 err = map[i].status;
507 xenbus_dev_fatal(dev, map[i].status,
508 "mapping in shared page %d from domain %d",
509 gnt_refs[i], dev->otherend_id);
510 goto fail;
511 } else
512 handles[i] = map[i].handle;
515 return GNTST_okay;
517 fail:
518 for (i = j = 0; i < nr_grefs; i++) {
519 if (handles[i] != INVALID_GRANT_HANDLE) {
520 memset(&unmap[j], 0, sizeof(unmap[j]));
521 gnttab_set_unmap_op(&unmap[j], (phys_addr_t)addrs[i],
522 GNTMAP_host_map, handles[i]);
523 j++;
527 if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, j))
528 BUG();
530 *leaked = false;
531 for (i = 0; i < j; i++) {
532 if (unmap[i].status != GNTST_okay) {
533 *leaked = true;
534 break;
538 return err;
541 static int xenbus_map_ring_valloc_pv(struct xenbus_device *dev,
542 grant_ref_t *gnt_refs,
543 unsigned int nr_grefs,
544 void **vaddr)
546 struct xenbus_map_node *node;
547 struct vm_struct *area;
548 pte_t *ptes[XENBUS_MAX_RING_GRANTS];
549 phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS];
550 int err = GNTST_okay;
551 int i;
552 bool leaked;
554 *vaddr = NULL;
556 if (nr_grefs > XENBUS_MAX_RING_GRANTS)
557 return -EINVAL;
559 node = kzalloc(sizeof(*node), GFP_KERNEL);
560 if (!node)
561 return -ENOMEM;
563 area = alloc_vm_area(XEN_PAGE_SIZE * nr_grefs, ptes);
564 if (!area) {
565 kfree(node);
566 return -ENOMEM;
569 for (i = 0; i < nr_grefs; i++)
570 phys_addrs[i] = arbitrary_virt_to_machine(ptes[i]).maddr;
572 err = __xenbus_map_ring(dev, gnt_refs, nr_grefs, node->handles,
573 phys_addrs,
574 GNTMAP_host_map | GNTMAP_contains_pte,
575 &leaked);
576 if (err)
577 goto failed;
579 node->nr_handles = nr_grefs;
580 node->pv.area = area;
582 spin_lock(&xenbus_valloc_lock);
583 list_add(&node->next, &xenbus_valloc_pages);
584 spin_unlock(&xenbus_valloc_lock);
586 *vaddr = area->addr;
587 return 0;
589 failed:
590 if (!leaked)
591 free_vm_area(area);
592 else
593 pr_alert("leaking VM area %p size %u page(s)", area, nr_grefs);
595 kfree(node);
596 return err;
599 struct map_ring_valloc_hvm
601 unsigned int idx;
603 /* Why do we need two arrays? See comment of __xenbus_map_ring */
604 phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS];
605 unsigned long addrs[XENBUS_MAX_RING_GRANTS];
608 static void xenbus_map_ring_setup_grant_hvm(unsigned long gfn,
609 unsigned int goffset,
610 unsigned int len,
611 void *data)
613 struct map_ring_valloc_hvm *info = data;
614 unsigned long vaddr = (unsigned long)gfn_to_virt(gfn);
616 info->phys_addrs[info->idx] = vaddr;
617 info->addrs[info->idx] = vaddr;
619 info->idx++;
622 static int xenbus_map_ring_valloc_hvm(struct xenbus_device *dev,
623 grant_ref_t *gnt_ref,
624 unsigned int nr_grefs,
625 void **vaddr)
627 struct xenbus_map_node *node;
628 int err;
629 void *addr;
630 bool leaked = false;
631 struct map_ring_valloc_hvm info = {
632 .idx = 0,
634 unsigned int nr_pages = XENBUS_PAGES(nr_grefs);
636 if (nr_grefs > XENBUS_MAX_RING_GRANTS)
637 return -EINVAL;
639 *vaddr = NULL;
641 node = kzalloc(sizeof(*node), GFP_KERNEL);
642 if (!node)
643 return -ENOMEM;
645 err = alloc_xenballooned_pages(nr_pages, node->hvm.pages);
646 if (err)
647 goto out_err;
649 gnttab_foreach_grant(node->hvm.pages, nr_grefs,
650 xenbus_map_ring_setup_grant_hvm,
651 &info);
653 err = __xenbus_map_ring(dev, gnt_ref, nr_grefs, node->handles,
654 info.phys_addrs, GNTMAP_host_map, &leaked);
655 node->nr_handles = nr_grefs;
657 if (err)
658 goto out_free_ballooned_pages;
660 addr = vmap(node->hvm.pages, nr_pages, VM_MAP | VM_IOREMAP,
661 PAGE_KERNEL);
662 if (!addr) {
663 err = -ENOMEM;
664 goto out_xenbus_unmap_ring;
667 node->hvm.addr = addr;
669 spin_lock(&xenbus_valloc_lock);
670 list_add(&node->next, &xenbus_valloc_pages);
671 spin_unlock(&xenbus_valloc_lock);
673 *vaddr = addr;
674 return 0;
676 out_xenbus_unmap_ring:
677 if (!leaked)
678 xenbus_unmap_ring(dev, node->handles, nr_grefs, info.addrs);
679 else
680 pr_alert("leaking %p size %u page(s)",
681 addr, nr_pages);
682 out_free_ballooned_pages:
683 if (!leaked)
684 free_xenballooned_pages(nr_pages, node->hvm.pages);
685 out_err:
686 kfree(node);
687 return err;
692 * xenbus_map_ring
693 * @dev: xenbus device
694 * @gnt_refs: grant reference array
695 * @nr_grefs: number of grant reference
696 * @handles: pointer to grant handle to be filled
697 * @vaddrs: addresses to be mapped to
698 * @leaked: fail to clean up a failed map, caller should not free vaddr
700 * Map pages of memory into this domain from another domain's grant table.
701 * xenbus_map_ring does not allocate the virtual address space (you must do
702 * this yourself!). It only maps in the pages to the specified address.
703 * Returns 0 on success, and GNTST_* (see xen/include/interface/grant_table.h)
704 * or -ENOMEM / -EINVAL on error. If an error is returned, device will switch to
705 * XenbusStateClosing and the first error message will be saved in XenStore.
706 * Further more if we fail to map the ring, caller should check @leaked.
707 * If @leaked is not zero it means xenbus_map_ring fails to clean up, caller
708 * should not free the address space of @vaddr.
710 int xenbus_map_ring(struct xenbus_device *dev, grant_ref_t *gnt_refs,
711 unsigned int nr_grefs, grant_handle_t *handles,
712 unsigned long *vaddrs, bool *leaked)
714 phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS];
715 int i;
717 if (nr_grefs > XENBUS_MAX_RING_GRANTS)
718 return -EINVAL;
720 for (i = 0; i < nr_grefs; i++)
721 phys_addrs[i] = (unsigned long)vaddrs[i];
723 return __xenbus_map_ring(dev, gnt_refs, nr_grefs, handles,
724 phys_addrs, GNTMAP_host_map, leaked);
726 EXPORT_SYMBOL_GPL(xenbus_map_ring);
730 * xenbus_unmap_ring_vfree
731 * @dev: xenbus device
732 * @vaddr: addr to unmap
734 * Based on Rusty Russell's skeleton driver's unmap_page.
735 * Unmap a page of memory in this domain that was imported from another domain.
736 * Use xenbus_unmap_ring_vfree if you mapped in your memory with
737 * xenbus_map_ring_valloc (it will free the virtual address space).
738 * Returns 0 on success and returns GNTST_* on error
739 * (see xen/include/interface/grant_table.h).
741 int xenbus_unmap_ring_vfree(struct xenbus_device *dev, void *vaddr)
743 return ring_ops->unmap(dev, vaddr);
745 EXPORT_SYMBOL_GPL(xenbus_unmap_ring_vfree);
747 static int xenbus_unmap_ring_vfree_pv(struct xenbus_device *dev, void *vaddr)
749 struct xenbus_map_node *node;
750 struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
751 unsigned int level;
752 int i;
753 bool leaked = false;
754 int err;
756 spin_lock(&xenbus_valloc_lock);
757 list_for_each_entry(node, &xenbus_valloc_pages, next) {
758 if (node->pv.area->addr == vaddr) {
759 list_del(&node->next);
760 goto found;
763 node = NULL;
764 found:
765 spin_unlock(&xenbus_valloc_lock);
767 if (!node) {
768 xenbus_dev_error(dev, -ENOENT,
769 "can't find mapped virtual address %p", vaddr);
770 return GNTST_bad_virt_addr;
773 for (i = 0; i < node->nr_handles; i++) {
774 unsigned long addr;
776 memset(&unmap[i], 0, sizeof(unmap[i]));
777 addr = (unsigned long)vaddr + (XEN_PAGE_SIZE * i);
778 unmap[i].host_addr = arbitrary_virt_to_machine(
779 lookup_address(addr, &level)).maddr;
780 unmap[i].dev_bus_addr = 0;
781 unmap[i].handle = node->handles[i];
784 if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i))
785 BUG();
787 err = GNTST_okay;
788 leaked = false;
789 for (i = 0; i < node->nr_handles; i++) {
790 if (unmap[i].status != GNTST_okay) {
791 leaked = true;
792 xenbus_dev_error(dev, unmap[i].status,
793 "unmapping page at handle %d error %d",
794 node->handles[i], unmap[i].status);
795 err = unmap[i].status;
796 break;
800 if (!leaked)
801 free_vm_area(node->pv.area);
802 else
803 pr_alert("leaking VM area %p size %u page(s)",
804 node->pv.area, node->nr_handles);
806 kfree(node);
807 return err;
810 struct unmap_ring_vfree_hvm
812 unsigned int idx;
813 unsigned long addrs[XENBUS_MAX_RING_GRANTS];
816 static void xenbus_unmap_ring_setup_grant_hvm(unsigned long gfn,
817 unsigned int goffset,
818 unsigned int len,
819 void *data)
821 struct unmap_ring_vfree_hvm *info = data;
823 info->addrs[info->idx] = (unsigned long)gfn_to_virt(gfn);
825 info->idx++;
828 static int xenbus_unmap_ring_vfree_hvm(struct xenbus_device *dev, void *vaddr)
830 int rv;
831 struct xenbus_map_node *node;
832 void *addr;
833 struct unmap_ring_vfree_hvm info = {
834 .idx = 0,
836 unsigned int nr_pages;
838 spin_lock(&xenbus_valloc_lock);
839 list_for_each_entry(node, &xenbus_valloc_pages, next) {
840 addr = node->hvm.addr;
841 if (addr == vaddr) {
842 list_del(&node->next);
843 goto found;
846 node = addr = NULL;
847 found:
848 spin_unlock(&xenbus_valloc_lock);
850 if (!node) {
851 xenbus_dev_error(dev, -ENOENT,
852 "can't find mapped virtual address %p", vaddr);
853 return GNTST_bad_virt_addr;
856 nr_pages = XENBUS_PAGES(node->nr_handles);
858 gnttab_foreach_grant(node->hvm.pages, node->nr_handles,
859 xenbus_unmap_ring_setup_grant_hvm,
860 &info);
862 rv = xenbus_unmap_ring(dev, node->handles, node->nr_handles,
863 info.addrs);
864 if (!rv) {
865 vunmap(vaddr);
866 free_xenballooned_pages(nr_pages, node->hvm.pages);
868 else
869 WARN(1, "Leaking %p, size %u page(s)\n", vaddr, nr_pages);
871 kfree(node);
872 return rv;
876 * xenbus_unmap_ring
877 * @dev: xenbus device
878 * @handles: grant handle array
879 * @nr_handles: number of handles in the array
880 * @vaddrs: addresses to unmap
882 * Unmap memory in this domain that was imported from another domain.
883 * Returns 0 on success and returns GNTST_* on error
884 * (see xen/include/interface/grant_table.h).
886 int xenbus_unmap_ring(struct xenbus_device *dev,
887 grant_handle_t *handles, unsigned int nr_handles,
888 unsigned long *vaddrs)
890 struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
891 int i;
892 int err;
894 if (nr_handles > XENBUS_MAX_RING_GRANTS)
895 return -EINVAL;
897 for (i = 0; i < nr_handles; i++)
898 gnttab_set_unmap_op(&unmap[i], vaddrs[i],
899 GNTMAP_host_map, handles[i]);
901 if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i))
902 BUG();
904 err = GNTST_okay;
905 for (i = 0; i < nr_handles; i++) {
906 if (unmap[i].status != GNTST_okay) {
907 xenbus_dev_error(dev, unmap[i].status,
908 "unmapping page at handle %d error %d",
909 handles[i], unmap[i].status);
910 err = unmap[i].status;
911 break;
915 return err;
917 EXPORT_SYMBOL_GPL(xenbus_unmap_ring);
921 * xenbus_read_driver_state
922 * @path: path for driver
924 * Return the state of the driver rooted at the given store path, or
925 * XenbusStateUnknown if no state can be read.
927 enum xenbus_state xenbus_read_driver_state(const char *path)
929 enum xenbus_state result;
930 int err = xenbus_gather(XBT_NIL, path, "state", "%d", &result, NULL);
931 if (err)
932 result = XenbusStateUnknown;
934 return result;
936 EXPORT_SYMBOL_GPL(xenbus_read_driver_state);
938 static const struct xenbus_ring_ops ring_ops_pv = {
939 .map = xenbus_map_ring_valloc_pv,
940 .unmap = xenbus_unmap_ring_vfree_pv,
943 static const struct xenbus_ring_ops ring_ops_hvm = {
944 .map = xenbus_map_ring_valloc_hvm,
945 .unmap = xenbus_unmap_ring_vfree_hvm,
948 void __init xenbus_ring_ops_init(void)
950 if (!xen_feature(XENFEAT_auto_translated_physmap))
951 ring_ops = &ring_ops_pv;
952 else
953 ring_ops = &ring_ops_hvm;