net: cdc_ncm: inform usbnet when rx buffers are reduced
[linux/fpc-iii.git] / lib / radix-tree.c
blob9599aa72d7a024795b300750e55147a60f58ed19
1 /*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
6 * Copyright (C) 2012 Konstantin Khlebnikov
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2, or (at
11 * your option) any later version.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/errno.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/export.h>
27 #include <linux/radix-tree.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/cpu.h>
32 #include <linux/string.h>
33 #include <linux/bitops.h>
34 #include <linux/rcupdate.h>
35 #include <linux/hardirq.h> /* in_interrupt() */
39 * The height_to_maxindex array needs to be one deeper than the maximum
40 * path as height 0 holds only 1 entry.
42 static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
45 * Radix tree node cache.
47 static struct kmem_cache *radix_tree_node_cachep;
50 * The radix tree is variable-height, so an insert operation not only has
51 * to build the branch to its corresponding item, it also has to build the
52 * branch to existing items if the size has to be increased (by
53 * radix_tree_extend).
55 * The worst case is a zero height tree with just a single item at index 0,
56 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
57 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
58 * Hence:
60 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
63 * Per-cpu pool of preloaded nodes
65 struct radix_tree_preload {
66 int nr;
67 struct radix_tree_node *nodes[RADIX_TREE_PRELOAD_SIZE];
69 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
71 static inline void *ptr_to_indirect(void *ptr)
73 return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR);
76 static inline void *indirect_to_ptr(void *ptr)
78 return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR);
81 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
83 return root->gfp_mask & __GFP_BITS_MASK;
86 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
87 int offset)
89 __set_bit(offset, node->tags[tag]);
92 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
93 int offset)
95 __clear_bit(offset, node->tags[tag]);
98 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
99 int offset)
101 return test_bit(offset, node->tags[tag]);
104 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
106 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
109 static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
111 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
114 static inline void root_tag_clear_all(struct radix_tree_root *root)
116 root->gfp_mask &= __GFP_BITS_MASK;
119 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
121 return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
125 * Returns 1 if any slot in the node has this tag set.
126 * Otherwise returns 0.
128 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
130 int idx;
131 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
132 if (node->tags[tag][idx])
133 return 1;
135 return 0;
139 * radix_tree_find_next_bit - find the next set bit in a memory region
141 * @addr: The address to base the search on
142 * @size: The bitmap size in bits
143 * @offset: The bitnumber to start searching at
145 * Unrollable variant of find_next_bit() for constant size arrays.
146 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
147 * Returns next bit offset, or size if nothing found.
149 static __always_inline unsigned long
150 radix_tree_find_next_bit(const unsigned long *addr,
151 unsigned long size, unsigned long offset)
153 if (!__builtin_constant_p(size))
154 return find_next_bit(addr, size, offset);
156 if (offset < size) {
157 unsigned long tmp;
159 addr += offset / BITS_PER_LONG;
160 tmp = *addr >> (offset % BITS_PER_LONG);
161 if (tmp)
162 return __ffs(tmp) + offset;
163 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
164 while (offset < size) {
165 tmp = *++addr;
166 if (tmp)
167 return __ffs(tmp) + offset;
168 offset += BITS_PER_LONG;
171 return size;
175 * This assumes that the caller has performed appropriate preallocation, and
176 * that the caller has pinned this thread of control to the current CPU.
178 static struct radix_tree_node *
179 radix_tree_node_alloc(struct radix_tree_root *root)
181 struct radix_tree_node *ret = NULL;
182 gfp_t gfp_mask = root_gfp_mask(root);
185 * Preload code isn't irq safe and it doesn't make sence to use
186 * preloading in the interrupt anyway as all the allocations have to
187 * be atomic. So just do normal allocation when in interrupt.
189 if (!(gfp_mask & __GFP_WAIT) && !in_interrupt()) {
190 struct radix_tree_preload *rtp;
193 * Provided the caller has preloaded here, we will always
194 * succeed in getting a node here (and never reach
195 * kmem_cache_alloc)
197 rtp = &__get_cpu_var(radix_tree_preloads);
198 if (rtp->nr) {
199 ret = rtp->nodes[rtp->nr - 1];
200 rtp->nodes[rtp->nr - 1] = NULL;
201 rtp->nr--;
204 if (ret == NULL)
205 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
207 BUG_ON(radix_tree_is_indirect_ptr(ret));
208 return ret;
211 static void radix_tree_node_rcu_free(struct rcu_head *head)
213 struct radix_tree_node *node =
214 container_of(head, struct radix_tree_node, rcu_head);
215 int i;
218 * must only free zeroed nodes into the slab. radix_tree_shrink
219 * can leave us with a non-NULL entry in the first slot, so clear
220 * that here to make sure.
222 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
223 tag_clear(node, i, 0);
225 node->slots[0] = NULL;
226 node->count = 0;
228 kmem_cache_free(radix_tree_node_cachep, node);
231 static inline void
232 radix_tree_node_free(struct radix_tree_node *node)
234 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
238 * Load up this CPU's radix_tree_node buffer with sufficient objects to
239 * ensure that the addition of a single element in the tree cannot fail. On
240 * success, return zero, with preemption disabled. On error, return -ENOMEM
241 * with preemption not disabled.
243 * To make use of this facility, the radix tree must be initialised without
244 * __GFP_WAIT being passed to INIT_RADIX_TREE().
246 static int __radix_tree_preload(gfp_t gfp_mask)
248 struct radix_tree_preload *rtp;
249 struct radix_tree_node *node;
250 int ret = -ENOMEM;
252 preempt_disable();
253 rtp = &__get_cpu_var(radix_tree_preloads);
254 while (rtp->nr < ARRAY_SIZE(rtp->nodes)) {
255 preempt_enable();
256 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
257 if (node == NULL)
258 goto out;
259 preempt_disable();
260 rtp = &__get_cpu_var(radix_tree_preloads);
261 if (rtp->nr < ARRAY_SIZE(rtp->nodes))
262 rtp->nodes[rtp->nr++] = node;
263 else
264 kmem_cache_free(radix_tree_node_cachep, node);
266 ret = 0;
267 out:
268 return ret;
272 * Load up this CPU's radix_tree_node buffer with sufficient objects to
273 * ensure that the addition of a single element in the tree cannot fail. On
274 * success, return zero, with preemption disabled. On error, return -ENOMEM
275 * with preemption not disabled.
277 * To make use of this facility, the radix tree must be initialised without
278 * __GFP_WAIT being passed to INIT_RADIX_TREE().
280 int radix_tree_preload(gfp_t gfp_mask)
282 /* Warn on non-sensical use... */
283 WARN_ON_ONCE(!(gfp_mask & __GFP_WAIT));
284 return __radix_tree_preload(gfp_mask);
286 EXPORT_SYMBOL(radix_tree_preload);
289 * The same as above function, except we don't guarantee preloading happens.
290 * We do it, if we decide it helps. On success, return zero with preemption
291 * disabled. On error, return -ENOMEM with preemption not disabled.
293 int radix_tree_maybe_preload(gfp_t gfp_mask)
295 if (gfp_mask & __GFP_WAIT)
296 return __radix_tree_preload(gfp_mask);
297 /* Preloading doesn't help anything with this gfp mask, skip it */
298 preempt_disable();
299 return 0;
301 EXPORT_SYMBOL(radix_tree_maybe_preload);
304 * Return the maximum key which can be store into a
305 * radix tree with height HEIGHT.
307 static inline unsigned long radix_tree_maxindex(unsigned int height)
309 return height_to_maxindex[height];
313 * Extend a radix tree so it can store key @index.
315 static int radix_tree_extend(struct radix_tree_root *root, unsigned long index)
317 struct radix_tree_node *node;
318 struct radix_tree_node *slot;
319 unsigned int height;
320 int tag;
322 /* Figure out what the height should be. */
323 height = root->height + 1;
324 while (index > radix_tree_maxindex(height))
325 height++;
327 if (root->rnode == NULL) {
328 root->height = height;
329 goto out;
332 do {
333 unsigned int newheight;
334 if (!(node = radix_tree_node_alloc(root)))
335 return -ENOMEM;
337 /* Propagate the aggregated tag info into the new root */
338 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
339 if (root_tag_get(root, tag))
340 tag_set(node, tag, 0);
343 /* Increase the height. */
344 newheight = root->height+1;
345 BUG_ON(newheight & ~RADIX_TREE_HEIGHT_MASK);
346 node->path = newheight;
347 node->count = 1;
348 node->parent = NULL;
349 slot = root->rnode;
350 if (newheight > 1) {
351 slot = indirect_to_ptr(slot);
352 slot->parent = node;
354 node->slots[0] = slot;
355 node = ptr_to_indirect(node);
356 rcu_assign_pointer(root->rnode, node);
357 root->height = newheight;
358 } while (height > root->height);
359 out:
360 return 0;
364 * __radix_tree_create - create a slot in a radix tree
365 * @root: radix tree root
366 * @index: index key
367 * @nodep: returns node
368 * @slotp: returns slot
370 * Create, if necessary, and return the node and slot for an item
371 * at position @index in the radix tree @root.
373 * Until there is more than one item in the tree, no nodes are
374 * allocated and @root->rnode is used as a direct slot instead of
375 * pointing to a node, in which case *@nodep will be NULL.
377 * Returns -ENOMEM, or 0 for success.
379 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
380 struct radix_tree_node **nodep, void ***slotp)
382 struct radix_tree_node *node = NULL, *slot;
383 unsigned int height, shift, offset;
384 int error;
386 /* Make sure the tree is high enough. */
387 if (index > radix_tree_maxindex(root->height)) {
388 error = radix_tree_extend(root, index);
389 if (error)
390 return error;
393 slot = indirect_to_ptr(root->rnode);
395 height = root->height;
396 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
398 offset = 0; /* uninitialised var warning */
399 while (height > 0) {
400 if (slot == NULL) {
401 /* Have to add a child node. */
402 if (!(slot = radix_tree_node_alloc(root)))
403 return -ENOMEM;
404 slot->path = height;
405 slot->parent = node;
406 if (node) {
407 rcu_assign_pointer(node->slots[offset], slot);
408 node->count++;
409 slot->path |= offset << RADIX_TREE_HEIGHT_SHIFT;
410 } else
411 rcu_assign_pointer(root->rnode, ptr_to_indirect(slot));
414 /* Go a level down */
415 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
416 node = slot;
417 slot = node->slots[offset];
418 shift -= RADIX_TREE_MAP_SHIFT;
419 height--;
422 if (nodep)
423 *nodep = node;
424 if (slotp)
425 *slotp = node ? node->slots + offset : (void **)&root->rnode;
426 return 0;
430 * radix_tree_insert - insert into a radix tree
431 * @root: radix tree root
432 * @index: index key
433 * @item: item to insert
435 * Insert an item into the radix tree at position @index.
437 int radix_tree_insert(struct radix_tree_root *root,
438 unsigned long index, void *item)
440 struct radix_tree_node *node;
441 void **slot;
442 int error;
444 BUG_ON(radix_tree_is_indirect_ptr(item));
446 error = __radix_tree_create(root, index, &node, &slot);
447 if (error)
448 return error;
449 if (*slot != NULL)
450 return -EEXIST;
451 rcu_assign_pointer(*slot, item);
453 if (node) {
454 node->count++;
455 BUG_ON(tag_get(node, 0, index & RADIX_TREE_MAP_MASK));
456 BUG_ON(tag_get(node, 1, index & RADIX_TREE_MAP_MASK));
457 } else {
458 BUG_ON(root_tag_get(root, 0));
459 BUG_ON(root_tag_get(root, 1));
462 return 0;
464 EXPORT_SYMBOL(radix_tree_insert);
467 * __radix_tree_lookup - lookup an item in a radix tree
468 * @root: radix tree root
469 * @index: index key
470 * @nodep: returns node
471 * @slotp: returns slot
473 * Lookup and return the item at position @index in the radix
474 * tree @root.
476 * Until there is more than one item in the tree, no nodes are
477 * allocated and @root->rnode is used as a direct slot instead of
478 * pointing to a node, in which case *@nodep will be NULL.
480 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
481 struct radix_tree_node **nodep, void ***slotp)
483 struct radix_tree_node *node, *parent;
484 unsigned int height, shift;
485 void **slot;
487 node = rcu_dereference_raw(root->rnode);
488 if (node == NULL)
489 return NULL;
491 if (!radix_tree_is_indirect_ptr(node)) {
492 if (index > 0)
493 return NULL;
495 if (nodep)
496 *nodep = NULL;
497 if (slotp)
498 *slotp = (void **)&root->rnode;
499 return node;
501 node = indirect_to_ptr(node);
503 height = node->path & RADIX_TREE_HEIGHT_MASK;
504 if (index > radix_tree_maxindex(height))
505 return NULL;
507 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
509 do {
510 parent = node;
511 slot = node->slots + ((index >> shift) & RADIX_TREE_MAP_MASK);
512 node = rcu_dereference_raw(*slot);
513 if (node == NULL)
514 return NULL;
516 shift -= RADIX_TREE_MAP_SHIFT;
517 height--;
518 } while (height > 0);
520 if (nodep)
521 *nodep = parent;
522 if (slotp)
523 *slotp = slot;
524 return node;
528 * radix_tree_lookup_slot - lookup a slot in a radix tree
529 * @root: radix tree root
530 * @index: index key
532 * Returns: the slot corresponding to the position @index in the
533 * radix tree @root. This is useful for update-if-exists operations.
535 * This function can be called under rcu_read_lock iff the slot is not
536 * modified by radix_tree_replace_slot, otherwise it must be called
537 * exclusive from other writers. Any dereference of the slot must be done
538 * using radix_tree_deref_slot.
540 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
542 void **slot;
544 if (!__radix_tree_lookup(root, index, NULL, &slot))
545 return NULL;
546 return slot;
548 EXPORT_SYMBOL(radix_tree_lookup_slot);
551 * radix_tree_lookup - perform lookup operation on a radix tree
552 * @root: radix tree root
553 * @index: index key
555 * Lookup the item at the position @index in the radix tree @root.
557 * This function can be called under rcu_read_lock, however the caller
558 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
559 * them safely). No RCU barriers are required to access or modify the
560 * returned item, however.
562 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
564 return __radix_tree_lookup(root, index, NULL, NULL);
566 EXPORT_SYMBOL(radix_tree_lookup);
569 * radix_tree_tag_set - set a tag on a radix tree node
570 * @root: radix tree root
571 * @index: index key
572 * @tag: tag index
574 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
575 * corresponding to @index in the radix tree. From
576 * the root all the way down to the leaf node.
578 * Returns the address of the tagged item. Setting a tag on a not-present
579 * item is a bug.
581 void *radix_tree_tag_set(struct radix_tree_root *root,
582 unsigned long index, unsigned int tag)
584 unsigned int height, shift;
585 struct radix_tree_node *slot;
587 height = root->height;
588 BUG_ON(index > radix_tree_maxindex(height));
590 slot = indirect_to_ptr(root->rnode);
591 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
593 while (height > 0) {
594 int offset;
596 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
597 if (!tag_get(slot, tag, offset))
598 tag_set(slot, tag, offset);
599 slot = slot->slots[offset];
600 BUG_ON(slot == NULL);
601 shift -= RADIX_TREE_MAP_SHIFT;
602 height--;
605 /* set the root's tag bit */
606 if (slot && !root_tag_get(root, tag))
607 root_tag_set(root, tag);
609 return slot;
611 EXPORT_SYMBOL(radix_tree_tag_set);
614 * radix_tree_tag_clear - clear a tag on a radix tree node
615 * @root: radix tree root
616 * @index: index key
617 * @tag: tag index
619 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
620 * corresponding to @index in the radix tree. If
621 * this causes the leaf node to have no tags set then clear the tag in the
622 * next-to-leaf node, etc.
624 * Returns the address of the tagged item on success, else NULL. ie:
625 * has the same return value and semantics as radix_tree_lookup().
627 void *radix_tree_tag_clear(struct radix_tree_root *root,
628 unsigned long index, unsigned int tag)
630 struct radix_tree_node *node = NULL;
631 struct radix_tree_node *slot = NULL;
632 unsigned int height, shift;
633 int uninitialized_var(offset);
635 height = root->height;
636 if (index > radix_tree_maxindex(height))
637 goto out;
639 shift = height * RADIX_TREE_MAP_SHIFT;
640 slot = indirect_to_ptr(root->rnode);
642 while (shift) {
643 if (slot == NULL)
644 goto out;
646 shift -= RADIX_TREE_MAP_SHIFT;
647 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
648 node = slot;
649 slot = slot->slots[offset];
652 if (slot == NULL)
653 goto out;
655 while (node) {
656 if (!tag_get(node, tag, offset))
657 goto out;
658 tag_clear(node, tag, offset);
659 if (any_tag_set(node, tag))
660 goto out;
662 index >>= RADIX_TREE_MAP_SHIFT;
663 offset = index & RADIX_TREE_MAP_MASK;
664 node = node->parent;
667 /* clear the root's tag bit */
668 if (root_tag_get(root, tag))
669 root_tag_clear(root, tag);
671 out:
672 return slot;
674 EXPORT_SYMBOL(radix_tree_tag_clear);
677 * radix_tree_tag_get - get a tag on a radix tree node
678 * @root: radix tree root
679 * @index: index key
680 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
682 * Return values:
684 * 0: tag not present or not set
685 * 1: tag set
687 * Note that the return value of this function may not be relied on, even if
688 * the RCU lock is held, unless tag modification and node deletion are excluded
689 * from concurrency.
691 int radix_tree_tag_get(struct radix_tree_root *root,
692 unsigned long index, unsigned int tag)
694 unsigned int height, shift;
695 struct radix_tree_node *node;
697 /* check the root's tag bit */
698 if (!root_tag_get(root, tag))
699 return 0;
701 node = rcu_dereference_raw(root->rnode);
702 if (node == NULL)
703 return 0;
705 if (!radix_tree_is_indirect_ptr(node))
706 return (index == 0);
707 node = indirect_to_ptr(node);
709 height = node->path & RADIX_TREE_HEIGHT_MASK;
710 if (index > radix_tree_maxindex(height))
711 return 0;
713 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
715 for ( ; ; ) {
716 int offset;
718 if (node == NULL)
719 return 0;
721 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
722 if (!tag_get(node, tag, offset))
723 return 0;
724 if (height == 1)
725 return 1;
726 node = rcu_dereference_raw(node->slots[offset]);
727 shift -= RADIX_TREE_MAP_SHIFT;
728 height--;
731 EXPORT_SYMBOL(radix_tree_tag_get);
734 * radix_tree_next_chunk - find next chunk of slots for iteration
736 * @root: radix tree root
737 * @iter: iterator state
738 * @flags: RADIX_TREE_ITER_* flags and tag index
739 * Returns: pointer to chunk first slot, or NULL if iteration is over
741 void **radix_tree_next_chunk(struct radix_tree_root *root,
742 struct radix_tree_iter *iter, unsigned flags)
744 unsigned shift, tag = flags & RADIX_TREE_ITER_TAG_MASK;
745 struct radix_tree_node *rnode, *node;
746 unsigned long index, offset, height;
748 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
749 return NULL;
752 * Catch next_index overflow after ~0UL. iter->index never overflows
753 * during iterating; it can be zero only at the beginning.
754 * And we cannot overflow iter->next_index in a single step,
755 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
757 * This condition also used by radix_tree_next_slot() to stop
758 * contiguous iterating, and forbid swithing to the next chunk.
760 index = iter->next_index;
761 if (!index && iter->index)
762 return NULL;
764 rnode = rcu_dereference_raw(root->rnode);
765 if (radix_tree_is_indirect_ptr(rnode)) {
766 rnode = indirect_to_ptr(rnode);
767 } else if (rnode && !index) {
768 /* Single-slot tree */
769 iter->index = 0;
770 iter->next_index = 1;
771 iter->tags = 1;
772 return (void **)&root->rnode;
773 } else
774 return NULL;
776 restart:
777 height = rnode->path & RADIX_TREE_HEIGHT_MASK;
778 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
779 offset = index >> shift;
781 /* Index outside of the tree */
782 if (offset >= RADIX_TREE_MAP_SIZE)
783 return NULL;
785 node = rnode;
786 while (1) {
787 if ((flags & RADIX_TREE_ITER_TAGGED) ?
788 !test_bit(offset, node->tags[tag]) :
789 !node->slots[offset]) {
790 /* Hole detected */
791 if (flags & RADIX_TREE_ITER_CONTIG)
792 return NULL;
794 if (flags & RADIX_TREE_ITER_TAGGED)
795 offset = radix_tree_find_next_bit(
796 node->tags[tag],
797 RADIX_TREE_MAP_SIZE,
798 offset + 1);
799 else
800 while (++offset < RADIX_TREE_MAP_SIZE) {
801 if (node->slots[offset])
802 break;
804 index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1);
805 index += offset << shift;
806 /* Overflow after ~0UL */
807 if (!index)
808 return NULL;
809 if (offset == RADIX_TREE_MAP_SIZE)
810 goto restart;
813 /* This is leaf-node */
814 if (!shift)
815 break;
817 node = rcu_dereference_raw(node->slots[offset]);
818 if (node == NULL)
819 goto restart;
820 shift -= RADIX_TREE_MAP_SHIFT;
821 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
824 /* Update the iterator state */
825 iter->index = index;
826 iter->next_index = (index | RADIX_TREE_MAP_MASK) + 1;
828 /* Construct iter->tags bit-mask from node->tags[tag] array */
829 if (flags & RADIX_TREE_ITER_TAGGED) {
830 unsigned tag_long, tag_bit;
832 tag_long = offset / BITS_PER_LONG;
833 tag_bit = offset % BITS_PER_LONG;
834 iter->tags = node->tags[tag][tag_long] >> tag_bit;
835 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
836 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
837 /* Pick tags from next element */
838 if (tag_bit)
839 iter->tags |= node->tags[tag][tag_long + 1] <<
840 (BITS_PER_LONG - tag_bit);
841 /* Clip chunk size, here only BITS_PER_LONG tags */
842 iter->next_index = index + BITS_PER_LONG;
846 return node->slots + offset;
848 EXPORT_SYMBOL(radix_tree_next_chunk);
851 * radix_tree_range_tag_if_tagged - for each item in given range set given
852 * tag if item has another tag set
853 * @root: radix tree root
854 * @first_indexp: pointer to a starting index of a range to scan
855 * @last_index: last index of a range to scan
856 * @nr_to_tag: maximum number items to tag
857 * @iftag: tag index to test
858 * @settag: tag index to set if tested tag is set
860 * This function scans range of radix tree from first_index to last_index
861 * (inclusive). For each item in the range if iftag is set, the function sets
862 * also settag. The function stops either after tagging nr_to_tag items or
863 * after reaching last_index.
865 * The tags must be set from the leaf level only and propagated back up the
866 * path to the root. We must do this so that we resolve the full path before
867 * setting any tags on intermediate nodes. If we set tags as we descend, then
868 * we can get to the leaf node and find that the index that has the iftag
869 * set is outside the range we are scanning. This reults in dangling tags and
870 * can lead to problems with later tag operations (e.g. livelocks on lookups).
872 * The function returns number of leaves where the tag was set and sets
873 * *first_indexp to the first unscanned index.
874 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
875 * be prepared to handle that.
877 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
878 unsigned long *first_indexp, unsigned long last_index,
879 unsigned long nr_to_tag,
880 unsigned int iftag, unsigned int settag)
882 unsigned int height = root->height;
883 struct radix_tree_node *node = NULL;
884 struct radix_tree_node *slot;
885 unsigned int shift;
886 unsigned long tagged = 0;
887 unsigned long index = *first_indexp;
889 last_index = min(last_index, radix_tree_maxindex(height));
890 if (index > last_index)
891 return 0;
892 if (!nr_to_tag)
893 return 0;
894 if (!root_tag_get(root, iftag)) {
895 *first_indexp = last_index + 1;
896 return 0;
898 if (height == 0) {
899 *first_indexp = last_index + 1;
900 root_tag_set(root, settag);
901 return 1;
904 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
905 slot = indirect_to_ptr(root->rnode);
907 for (;;) {
908 unsigned long upindex;
909 int offset;
911 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
912 if (!slot->slots[offset])
913 goto next;
914 if (!tag_get(slot, iftag, offset))
915 goto next;
916 if (shift) {
917 /* Go down one level */
918 shift -= RADIX_TREE_MAP_SHIFT;
919 node = slot;
920 slot = slot->slots[offset];
921 continue;
924 /* tag the leaf */
925 tagged++;
926 tag_set(slot, settag, offset);
928 /* walk back up the path tagging interior nodes */
929 upindex = index;
930 while (node) {
931 upindex >>= RADIX_TREE_MAP_SHIFT;
932 offset = upindex & RADIX_TREE_MAP_MASK;
934 /* stop if we find a node with the tag already set */
935 if (tag_get(node, settag, offset))
936 break;
937 tag_set(node, settag, offset);
938 node = node->parent;
942 * Small optimization: now clear that node pointer.
943 * Since all of this slot's ancestors now have the tag set
944 * from setting it above, we have no further need to walk
945 * back up the tree setting tags, until we update slot to
946 * point to another radix_tree_node.
948 node = NULL;
950 next:
951 /* Go to next item at level determined by 'shift' */
952 index = ((index >> shift) + 1) << shift;
953 /* Overflow can happen when last_index is ~0UL... */
954 if (index > last_index || !index)
955 break;
956 if (tagged >= nr_to_tag)
957 break;
958 while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) {
960 * We've fully scanned this node. Go up. Because
961 * last_index is guaranteed to be in the tree, what
962 * we do below cannot wander astray.
964 slot = slot->parent;
965 shift += RADIX_TREE_MAP_SHIFT;
969 * We need not to tag the root tag if there is no tag which is set with
970 * settag within the range from *first_indexp to last_index.
972 if (tagged > 0)
973 root_tag_set(root, settag);
974 *first_indexp = index;
976 return tagged;
978 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
981 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
982 * @root: radix tree root
983 * @results: where the results of the lookup are placed
984 * @first_index: start the lookup from this key
985 * @max_items: place up to this many items at *results
987 * Performs an index-ascending scan of the tree for present items. Places
988 * them at *@results and returns the number of items which were placed at
989 * *@results.
991 * The implementation is naive.
993 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
994 * rcu_read_lock. In this case, rather than the returned results being
995 * an atomic snapshot of the tree at a single point in time, the semantics
996 * of an RCU protected gang lookup are as though multiple radix_tree_lookups
997 * have been issued in individual locks, and results stored in 'results'.
999 unsigned int
1000 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1001 unsigned long first_index, unsigned int max_items)
1003 struct radix_tree_iter iter;
1004 void **slot;
1005 unsigned int ret = 0;
1007 if (unlikely(!max_items))
1008 return 0;
1010 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1011 results[ret] = indirect_to_ptr(rcu_dereference_raw(*slot));
1012 if (!results[ret])
1013 continue;
1014 if (++ret == max_items)
1015 break;
1018 return ret;
1020 EXPORT_SYMBOL(radix_tree_gang_lookup);
1023 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1024 * @root: radix tree root
1025 * @results: where the results of the lookup are placed
1026 * @indices: where their indices should be placed (but usually NULL)
1027 * @first_index: start the lookup from this key
1028 * @max_items: place up to this many items at *results
1030 * Performs an index-ascending scan of the tree for present items. Places
1031 * their slots at *@results and returns the number of items which were
1032 * placed at *@results.
1034 * The implementation is naive.
1036 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1037 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1038 * protection, radix_tree_deref_slot may fail requiring a retry.
1040 unsigned int
1041 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1042 void ***results, unsigned long *indices,
1043 unsigned long first_index, unsigned int max_items)
1045 struct radix_tree_iter iter;
1046 void **slot;
1047 unsigned int ret = 0;
1049 if (unlikely(!max_items))
1050 return 0;
1052 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1053 results[ret] = slot;
1054 if (indices)
1055 indices[ret] = iter.index;
1056 if (++ret == max_items)
1057 break;
1060 return ret;
1062 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1065 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1066 * based on a tag
1067 * @root: radix tree root
1068 * @results: where the results of the lookup are placed
1069 * @first_index: start the lookup from this key
1070 * @max_items: place up to this many items at *results
1071 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1073 * Performs an index-ascending scan of the tree for present items which
1074 * have the tag indexed by @tag set. Places the items at *@results and
1075 * returns the number of items which were placed at *@results.
1077 unsigned int
1078 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1079 unsigned long first_index, unsigned int max_items,
1080 unsigned int tag)
1082 struct radix_tree_iter iter;
1083 void **slot;
1084 unsigned int ret = 0;
1086 if (unlikely(!max_items))
1087 return 0;
1089 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1090 results[ret] = indirect_to_ptr(rcu_dereference_raw(*slot));
1091 if (!results[ret])
1092 continue;
1093 if (++ret == max_items)
1094 break;
1097 return ret;
1099 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1102 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1103 * radix tree based on a tag
1104 * @root: radix tree root
1105 * @results: where the results of the lookup are placed
1106 * @first_index: start the lookup from this key
1107 * @max_items: place up to this many items at *results
1108 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1110 * Performs an index-ascending scan of the tree for present items which
1111 * have the tag indexed by @tag set. Places the slots at *@results and
1112 * returns the number of slots which were placed at *@results.
1114 unsigned int
1115 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1116 unsigned long first_index, unsigned int max_items,
1117 unsigned int tag)
1119 struct radix_tree_iter iter;
1120 void **slot;
1121 unsigned int ret = 0;
1123 if (unlikely(!max_items))
1124 return 0;
1126 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1127 results[ret] = slot;
1128 if (++ret == max_items)
1129 break;
1132 return ret;
1134 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1136 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1137 #include <linux/sched.h> /* for cond_resched() */
1140 * This linear search is at present only useful to shmem_unuse_inode().
1142 static unsigned long __locate(struct radix_tree_node *slot, void *item,
1143 unsigned long index, unsigned long *found_index)
1145 unsigned int shift, height;
1146 unsigned long i;
1148 height = slot->path & RADIX_TREE_HEIGHT_MASK;
1149 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
1151 for ( ; height > 1; height--) {
1152 i = (index >> shift) & RADIX_TREE_MAP_MASK;
1153 for (;;) {
1154 if (slot->slots[i] != NULL)
1155 break;
1156 index &= ~((1UL << shift) - 1);
1157 index += 1UL << shift;
1158 if (index == 0)
1159 goto out; /* 32-bit wraparound */
1160 i++;
1161 if (i == RADIX_TREE_MAP_SIZE)
1162 goto out;
1165 shift -= RADIX_TREE_MAP_SHIFT;
1166 slot = rcu_dereference_raw(slot->slots[i]);
1167 if (slot == NULL)
1168 goto out;
1171 /* Bottom level: check items */
1172 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
1173 if (slot->slots[i] == item) {
1174 *found_index = index + i;
1175 index = 0;
1176 goto out;
1179 index += RADIX_TREE_MAP_SIZE;
1180 out:
1181 return index;
1185 * radix_tree_locate_item - search through radix tree for item
1186 * @root: radix tree root
1187 * @item: item to be found
1189 * Returns index where item was found, or -1 if not found.
1190 * Caller must hold no lock (since this time-consuming function needs
1191 * to be preemptible), and must check afterwards if item is still there.
1193 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1195 struct radix_tree_node *node;
1196 unsigned long max_index;
1197 unsigned long cur_index = 0;
1198 unsigned long found_index = -1;
1200 do {
1201 rcu_read_lock();
1202 node = rcu_dereference_raw(root->rnode);
1203 if (!radix_tree_is_indirect_ptr(node)) {
1204 rcu_read_unlock();
1205 if (node == item)
1206 found_index = 0;
1207 break;
1210 node = indirect_to_ptr(node);
1211 max_index = radix_tree_maxindex(node->path &
1212 RADIX_TREE_HEIGHT_MASK);
1213 if (cur_index > max_index) {
1214 rcu_read_unlock();
1215 break;
1218 cur_index = __locate(node, item, cur_index, &found_index);
1219 rcu_read_unlock();
1220 cond_resched();
1221 } while (cur_index != 0 && cur_index <= max_index);
1223 return found_index;
1225 #else
1226 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1228 return -1;
1230 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
1233 * radix_tree_shrink - shrink height of a radix tree to minimal
1234 * @root radix tree root
1236 static inline void radix_tree_shrink(struct radix_tree_root *root)
1238 /* try to shrink tree height */
1239 while (root->height > 0) {
1240 struct radix_tree_node *to_free = root->rnode;
1241 struct radix_tree_node *slot;
1243 BUG_ON(!radix_tree_is_indirect_ptr(to_free));
1244 to_free = indirect_to_ptr(to_free);
1247 * The candidate node has more than one child, or its child
1248 * is not at the leftmost slot, we cannot shrink.
1250 if (to_free->count != 1)
1251 break;
1252 if (!to_free->slots[0])
1253 break;
1256 * We don't need rcu_assign_pointer(), since we are simply
1257 * moving the node from one part of the tree to another: if it
1258 * was safe to dereference the old pointer to it
1259 * (to_free->slots[0]), it will be safe to dereference the new
1260 * one (root->rnode) as far as dependent read barriers go.
1262 slot = to_free->slots[0];
1263 if (root->height > 1) {
1264 slot->parent = NULL;
1265 slot = ptr_to_indirect(slot);
1267 root->rnode = slot;
1268 root->height--;
1271 * We have a dilemma here. The node's slot[0] must not be
1272 * NULLed in case there are concurrent lookups expecting to
1273 * find the item. However if this was a bottom-level node,
1274 * then it may be subject to the slot pointer being visible
1275 * to callers dereferencing it. If item corresponding to
1276 * slot[0] is subsequently deleted, these callers would expect
1277 * their slot to become empty sooner or later.
1279 * For example, lockless pagecache will look up a slot, deref
1280 * the page pointer, and if the page is 0 refcount it means it
1281 * was concurrently deleted from pagecache so try the deref
1282 * again. Fortunately there is already a requirement for logic
1283 * to retry the entire slot lookup -- the indirect pointer
1284 * problem (replacing direct root node with an indirect pointer
1285 * also results in a stale slot). So tag the slot as indirect
1286 * to force callers to retry.
1288 if (root->height == 0)
1289 *((unsigned long *)&to_free->slots[0]) |=
1290 RADIX_TREE_INDIRECT_PTR;
1292 radix_tree_node_free(to_free);
1297 * __radix_tree_delete_node - try to free node after clearing a slot
1298 * @root: radix tree root
1299 * @index: index key
1300 * @node: node containing @index
1302 * After clearing the slot at @index in @node from radix tree
1303 * rooted at @root, call this function to attempt freeing the
1304 * node and shrinking the tree.
1306 * Returns %true if @node was freed, %false otherwise.
1308 bool __radix_tree_delete_node(struct radix_tree_root *root,
1309 struct radix_tree_node *node)
1311 bool deleted = false;
1313 do {
1314 struct radix_tree_node *parent;
1316 if (node->count) {
1317 if (node == indirect_to_ptr(root->rnode)) {
1318 radix_tree_shrink(root);
1319 if (root->height == 0)
1320 deleted = true;
1322 return deleted;
1325 parent = node->parent;
1326 if (parent) {
1327 unsigned int offset;
1329 offset = node->path >> RADIX_TREE_HEIGHT_SHIFT;
1330 parent->slots[offset] = NULL;
1331 parent->count--;
1332 } else {
1333 root_tag_clear_all(root);
1334 root->height = 0;
1335 root->rnode = NULL;
1338 radix_tree_node_free(node);
1339 deleted = true;
1341 node = parent;
1342 } while (node);
1344 return deleted;
1348 * radix_tree_delete_item - delete an item from a radix tree
1349 * @root: radix tree root
1350 * @index: index key
1351 * @item: expected item
1353 * Remove @item at @index from the radix tree rooted at @root.
1355 * Returns the address of the deleted item, or NULL if it was not present
1356 * or the entry at the given @index was not @item.
1358 void *radix_tree_delete_item(struct radix_tree_root *root,
1359 unsigned long index, void *item)
1361 struct radix_tree_node *node;
1362 unsigned int offset;
1363 void **slot;
1364 void *entry;
1365 int tag;
1367 entry = __radix_tree_lookup(root, index, &node, &slot);
1368 if (!entry)
1369 return NULL;
1371 if (item && entry != item)
1372 return NULL;
1374 if (!node) {
1375 root_tag_clear_all(root);
1376 root->rnode = NULL;
1377 return entry;
1380 offset = index & RADIX_TREE_MAP_MASK;
1383 * Clear all tags associated with the item to be deleted.
1384 * This way of doing it would be inefficient, but seldom is any set.
1386 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
1387 if (tag_get(node, tag, offset))
1388 radix_tree_tag_clear(root, index, tag);
1391 node->slots[offset] = NULL;
1392 node->count--;
1394 __radix_tree_delete_node(root, node);
1396 return entry;
1398 EXPORT_SYMBOL(radix_tree_delete_item);
1401 * radix_tree_delete - delete an item from a radix tree
1402 * @root: radix tree root
1403 * @index: index key
1405 * Remove the item at @index from the radix tree rooted at @root.
1407 * Returns the address of the deleted item, or NULL if it was not present.
1409 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1411 return radix_tree_delete_item(root, index, NULL);
1413 EXPORT_SYMBOL(radix_tree_delete);
1416 * radix_tree_tagged - test whether any items in the tree are tagged
1417 * @root: radix tree root
1418 * @tag: tag to test
1420 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1422 return root_tag_get(root, tag);
1424 EXPORT_SYMBOL(radix_tree_tagged);
1426 static void
1427 radix_tree_node_ctor(void *arg)
1429 struct radix_tree_node *node = arg;
1431 memset(node, 0, sizeof(*node));
1432 INIT_LIST_HEAD(&node->private_list);
1435 static __init unsigned long __maxindex(unsigned int height)
1437 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1438 int shift = RADIX_TREE_INDEX_BITS - width;
1440 if (shift < 0)
1441 return ~0UL;
1442 if (shift >= BITS_PER_LONG)
1443 return 0UL;
1444 return ~0UL >> shift;
1447 static __init void radix_tree_init_maxindex(void)
1449 unsigned int i;
1451 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1452 height_to_maxindex[i] = __maxindex(i);
1455 static int radix_tree_callback(struct notifier_block *nfb,
1456 unsigned long action,
1457 void *hcpu)
1459 int cpu = (long)hcpu;
1460 struct radix_tree_preload *rtp;
1462 /* Free per-cpu pool of perloaded nodes */
1463 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1464 rtp = &per_cpu(radix_tree_preloads, cpu);
1465 while (rtp->nr) {
1466 kmem_cache_free(radix_tree_node_cachep,
1467 rtp->nodes[rtp->nr-1]);
1468 rtp->nodes[rtp->nr-1] = NULL;
1469 rtp->nr--;
1472 return NOTIFY_OK;
1475 void __init radix_tree_init(void)
1477 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1478 sizeof(struct radix_tree_node), 0,
1479 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1480 radix_tree_node_ctor);
1481 radix_tree_init_maxindex();
1482 hotcpu_notifier(radix_tree_callback, 0);