4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Contains functions related to writing back dirty pages at the
10 * 10Apr2002 Andrew Morton
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
45 * Sleep at most 200ms at a time in balance_dirty_pages().
47 #define MAX_PAUSE max(HZ/5, 1)
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
53 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
56 * Estimate write bandwidth at 200ms intervals.
58 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
60 #define RATELIMIT_CALC_SHIFT 10
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
66 static long ratelimit_pages
= 32;
68 /* The following parameters are exported via /proc/sys/vm */
71 * Start background writeback (via writeback threads) at this percentage
73 int dirty_background_ratio
= 10;
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
79 unsigned long dirty_background_bytes
;
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
85 int vm_highmem_is_dirtyable
;
88 * The generator of dirty data starts writeback at this percentage
90 int vm_dirty_ratio
= 20;
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
96 unsigned long vm_dirty_bytes
;
99 * The interval between `kupdate'-style writebacks
101 unsigned int dirty_writeback_interval
= 5 * 100; /* centiseconds */
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval
);
106 * The longest time for which data is allowed to remain dirty
108 unsigned int dirty_expire_interval
= 30 * 100; /* centiseconds */
111 * Flag that makes the machine dump writes/reads and block dirtyings.
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
121 EXPORT_SYMBOL(laptop_mode
);
123 /* End of sysctl-exported parameters */
125 unsigned long global_dirty_limit
;
128 * Scale the writeback cache size proportional to the relative writeout speeds.
130 * We do this by keeping a floating proportion between BDIs, based on page
131 * writeback completions [end_page_writeback()]. Those devices that write out
132 * pages fastest will get the larger share, while the slower will get a smaller
135 * We use page writeout completions because we are interested in getting rid of
136 * dirty pages. Having them written out is the primary goal.
138 * We introduce a concept of time, a period over which we measure these events,
139 * because demand can/will vary over time. The length of this period itself is
140 * measured in page writeback completions.
143 static struct fprop_global writeout_completions
;
145 static void writeout_period(unsigned long t
);
146 /* Timer for aging of writeout_completions */
147 static struct timer_list writeout_period_timer
=
148 TIMER_DEFERRED_INITIALIZER(writeout_period
, 0, 0);
149 static unsigned long writeout_period_time
= 0;
152 * Length of period for aging writeout fractions of bdis. This is an
153 * arbitrarily chosen number. The longer the period, the slower fractions will
154 * reflect changes in current writeout rate.
156 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
159 * Work out the current dirty-memory clamping and background writeout
162 * The main aim here is to lower them aggressively if there is a lot of mapped
163 * memory around. To avoid stressing page reclaim with lots of unreclaimable
164 * pages. It is better to clamp down on writers than to start swapping, and
165 * performing lots of scanning.
167 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
169 * We don't permit the clamping level to fall below 5% - that is getting rather
172 * We make sure that the background writeout level is below the adjusted
177 * In a memory zone, there is a certain amount of pages we consider
178 * available for the page cache, which is essentially the number of
179 * free and reclaimable pages, minus some zone reserves to protect
180 * lowmem and the ability to uphold the zone's watermarks without
181 * requiring writeback.
183 * This number of dirtyable pages is the base value of which the
184 * user-configurable dirty ratio is the effictive number of pages that
185 * are allowed to be actually dirtied. Per individual zone, or
186 * globally by using the sum of dirtyable pages over all zones.
188 * Because the user is allowed to specify the dirty limit globally as
189 * absolute number of bytes, calculating the per-zone dirty limit can
190 * require translating the configured limit into a percentage of
191 * global dirtyable memory first.
195 * zone_dirtyable_memory - number of dirtyable pages in a zone
198 * Returns the zone's number of pages potentially available for dirty
199 * page cache. This is the base value for the per-zone dirty limits.
201 static unsigned long zone_dirtyable_memory(struct zone
*zone
)
203 unsigned long nr_pages
;
205 nr_pages
= zone_page_state(zone
, NR_FREE_PAGES
);
206 nr_pages
-= min(nr_pages
, zone
->dirty_balance_reserve
);
208 nr_pages
+= zone_page_state(zone
, NR_INACTIVE_FILE
);
209 nr_pages
+= zone_page_state(zone
, NR_ACTIVE_FILE
);
214 static unsigned long highmem_dirtyable_memory(unsigned long total
)
216 #ifdef CONFIG_HIGHMEM
220 for_each_node_state(node
, N_HIGH_MEMORY
) {
221 struct zone
*z
= &NODE_DATA(node
)->node_zones
[ZONE_HIGHMEM
];
223 x
+= zone_dirtyable_memory(z
);
226 * Unreclaimable memory (kernel memory or anonymous memory
227 * without swap) can bring down the dirtyable pages below
228 * the zone's dirty balance reserve and the above calculation
229 * will underflow. However we still want to add in nodes
230 * which are below threshold (negative values) to get a more
231 * accurate calculation but make sure that the total never
238 * Make sure that the number of highmem pages is never larger
239 * than the number of the total dirtyable memory. This can only
240 * occur in very strange VM situations but we want to make sure
241 * that this does not occur.
243 return min(x
, total
);
250 * global_dirtyable_memory - number of globally dirtyable pages
252 * Returns the global number of pages potentially available for dirty
253 * page cache. This is the base value for the global dirty limits.
255 static unsigned long global_dirtyable_memory(void)
259 x
= global_page_state(NR_FREE_PAGES
);
260 x
-= min(x
, dirty_balance_reserve
);
262 x
+= global_page_state(NR_INACTIVE_FILE
);
263 x
+= global_page_state(NR_ACTIVE_FILE
);
265 if (!vm_highmem_is_dirtyable
)
266 x
-= highmem_dirtyable_memory(x
);
268 return x
+ 1; /* Ensure that we never return 0 */
272 * global_dirty_limits - background-writeback and dirty-throttling thresholds
274 * Calculate the dirty thresholds based on sysctl parameters
275 * - vm.dirty_background_ratio or vm.dirty_background_bytes
276 * - vm.dirty_ratio or vm.dirty_bytes
277 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
280 void global_dirty_limits(unsigned long *pbackground
, unsigned long *pdirty
)
282 unsigned long background
;
284 unsigned long uninitialized_var(available_memory
);
285 struct task_struct
*tsk
;
287 if (!vm_dirty_bytes
|| !dirty_background_bytes
)
288 available_memory
= global_dirtyable_memory();
291 dirty
= DIV_ROUND_UP(vm_dirty_bytes
, PAGE_SIZE
);
293 dirty
= (vm_dirty_ratio
* available_memory
) / 100;
295 if (dirty_background_bytes
)
296 background
= DIV_ROUND_UP(dirty_background_bytes
, PAGE_SIZE
);
298 background
= (dirty_background_ratio
* available_memory
) / 100;
300 if (background
>= dirty
)
301 background
= dirty
/ 2;
303 if (tsk
->flags
& PF_LESS_THROTTLE
|| rt_task(tsk
)) {
304 background
+= background
/ 4;
307 *pbackground
= background
;
309 trace_global_dirty_state(background
, dirty
);
313 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
316 * Returns the maximum number of dirty pages allowed in a zone, based
317 * on the zone's dirtyable memory.
319 static unsigned long zone_dirty_limit(struct zone
*zone
)
321 unsigned long zone_memory
= zone_dirtyable_memory(zone
);
322 struct task_struct
*tsk
= current
;
326 dirty
= DIV_ROUND_UP(vm_dirty_bytes
, PAGE_SIZE
) *
327 zone_memory
/ global_dirtyable_memory();
329 dirty
= vm_dirty_ratio
* zone_memory
/ 100;
331 if (tsk
->flags
& PF_LESS_THROTTLE
|| rt_task(tsk
))
338 * zone_dirty_ok - tells whether a zone is within its dirty limits
339 * @zone: the zone to check
341 * Returns %true when the dirty pages in @zone are within the zone's
342 * dirty limit, %false if the limit is exceeded.
344 bool zone_dirty_ok(struct zone
*zone
)
346 unsigned long limit
= zone_dirty_limit(zone
);
348 return zone_page_state(zone
, NR_FILE_DIRTY
) +
349 zone_page_state(zone
, NR_UNSTABLE_NFS
) +
350 zone_page_state(zone
, NR_WRITEBACK
) <= limit
;
353 int dirty_background_ratio_handler(struct ctl_table
*table
, int write
,
354 void __user
*buffer
, size_t *lenp
,
359 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
360 if (ret
== 0 && write
)
361 dirty_background_bytes
= 0;
365 int dirty_background_bytes_handler(struct ctl_table
*table
, int write
,
366 void __user
*buffer
, size_t *lenp
,
371 ret
= proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
372 if (ret
== 0 && write
)
373 dirty_background_ratio
= 0;
377 int dirty_ratio_handler(struct ctl_table
*table
, int write
,
378 void __user
*buffer
, size_t *lenp
,
381 int old_ratio
= vm_dirty_ratio
;
384 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
385 if (ret
== 0 && write
&& vm_dirty_ratio
!= old_ratio
) {
386 writeback_set_ratelimit();
392 int dirty_bytes_handler(struct ctl_table
*table
, int write
,
393 void __user
*buffer
, size_t *lenp
,
396 unsigned long old_bytes
= vm_dirty_bytes
;
399 ret
= proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
400 if (ret
== 0 && write
&& vm_dirty_bytes
!= old_bytes
) {
401 writeback_set_ratelimit();
407 static unsigned long wp_next_time(unsigned long cur_time
)
409 cur_time
+= VM_COMPLETIONS_PERIOD_LEN
;
410 /* 0 has a special meaning... */
417 * Increment the BDI's writeout completion count and the global writeout
418 * completion count. Called from test_clear_page_writeback().
420 static inline void __bdi_writeout_inc(struct backing_dev_info
*bdi
)
422 __inc_bdi_stat(bdi
, BDI_WRITTEN
);
423 __fprop_inc_percpu_max(&writeout_completions
, &bdi
->completions
,
425 /* First event after period switching was turned off? */
426 if (!unlikely(writeout_period_time
)) {
428 * We can race with other __bdi_writeout_inc calls here but
429 * it does not cause any harm since the resulting time when
430 * timer will fire and what is in writeout_period_time will be
433 writeout_period_time
= wp_next_time(jiffies
);
434 mod_timer(&writeout_period_timer
, writeout_period_time
);
438 void bdi_writeout_inc(struct backing_dev_info
*bdi
)
442 local_irq_save(flags
);
443 __bdi_writeout_inc(bdi
);
444 local_irq_restore(flags
);
446 EXPORT_SYMBOL_GPL(bdi_writeout_inc
);
449 * Obtain an accurate fraction of the BDI's portion.
451 static void bdi_writeout_fraction(struct backing_dev_info
*bdi
,
452 long *numerator
, long *denominator
)
454 fprop_fraction_percpu(&writeout_completions
, &bdi
->completions
,
455 numerator
, denominator
);
459 * On idle system, we can be called long after we scheduled because we use
460 * deferred timers so count with missed periods.
462 static void writeout_period(unsigned long t
)
464 int miss_periods
= (jiffies
- writeout_period_time
) /
465 VM_COMPLETIONS_PERIOD_LEN
;
467 if (fprop_new_period(&writeout_completions
, miss_periods
+ 1)) {
468 writeout_period_time
= wp_next_time(writeout_period_time
+
469 miss_periods
* VM_COMPLETIONS_PERIOD_LEN
);
470 mod_timer(&writeout_period_timer
, writeout_period_time
);
473 * Aging has zeroed all fractions. Stop wasting CPU on period
476 writeout_period_time
= 0;
481 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
482 * registered backing devices, which, for obvious reasons, can not
485 static unsigned int bdi_min_ratio
;
487 int bdi_set_min_ratio(struct backing_dev_info
*bdi
, unsigned int min_ratio
)
491 spin_lock_bh(&bdi_lock
);
492 if (min_ratio
> bdi
->max_ratio
) {
495 min_ratio
-= bdi
->min_ratio
;
496 if (bdi_min_ratio
+ min_ratio
< 100) {
497 bdi_min_ratio
+= min_ratio
;
498 bdi
->min_ratio
+= min_ratio
;
503 spin_unlock_bh(&bdi_lock
);
508 int bdi_set_max_ratio(struct backing_dev_info
*bdi
, unsigned max_ratio
)
515 spin_lock_bh(&bdi_lock
);
516 if (bdi
->min_ratio
> max_ratio
) {
519 bdi
->max_ratio
= max_ratio
;
520 bdi
->max_prop_frac
= (FPROP_FRAC_BASE
* max_ratio
) / 100;
522 spin_unlock_bh(&bdi_lock
);
526 EXPORT_SYMBOL(bdi_set_max_ratio
);
528 static unsigned long dirty_freerun_ceiling(unsigned long thresh
,
529 unsigned long bg_thresh
)
531 return (thresh
+ bg_thresh
) / 2;
534 static unsigned long hard_dirty_limit(unsigned long thresh
)
536 return max(thresh
, global_dirty_limit
);
540 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
541 * @bdi: the backing_dev_info to query
542 * @dirty: global dirty limit in pages
544 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
545 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
547 * Note that balance_dirty_pages() will only seriously take it as a hard limit
548 * when sleeping max_pause per page is not enough to keep the dirty pages under
549 * control. For example, when the device is completely stalled due to some error
550 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
551 * In the other normal situations, it acts more gently by throttling the tasks
552 * more (rather than completely block them) when the bdi dirty pages go high.
554 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
555 * - starving fast devices
556 * - piling up dirty pages (that will take long time to sync) on slow devices
558 * The bdi's share of dirty limit will be adapting to its throughput and
559 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
561 unsigned long bdi_dirty_limit(struct backing_dev_info
*bdi
, unsigned long dirty
)
564 long numerator
, denominator
;
567 * Calculate this BDI's share of the dirty ratio.
569 bdi_writeout_fraction(bdi
, &numerator
, &denominator
);
571 bdi_dirty
= (dirty
* (100 - bdi_min_ratio
)) / 100;
572 bdi_dirty
*= numerator
;
573 do_div(bdi_dirty
, denominator
);
575 bdi_dirty
+= (dirty
* bdi
->min_ratio
) / 100;
576 if (bdi_dirty
> (dirty
* bdi
->max_ratio
) / 100)
577 bdi_dirty
= dirty
* bdi
->max_ratio
/ 100;
584 * f(dirty) := 1.0 + (----------------)
587 * it's a 3rd order polynomial that subjects to
589 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
590 * (2) f(setpoint) = 1.0 => the balance point
591 * (3) f(limit) = 0 => the hard limit
592 * (4) df/dx <= 0 => negative feedback control
593 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
594 * => fast response on large errors; small oscillation near setpoint
596 static long long pos_ratio_polynom(unsigned long setpoint
,
603 x
= div64_s64(((s64
)setpoint
- (s64
)dirty
) << RATELIMIT_CALC_SHIFT
,
604 limit
- setpoint
+ 1);
606 pos_ratio
= pos_ratio
* x
>> RATELIMIT_CALC_SHIFT
;
607 pos_ratio
= pos_ratio
* x
>> RATELIMIT_CALC_SHIFT
;
608 pos_ratio
+= 1 << RATELIMIT_CALC_SHIFT
;
610 return clamp(pos_ratio
, 0LL, 2LL << RATELIMIT_CALC_SHIFT
);
614 * Dirty position control.
616 * (o) global/bdi setpoints
618 * We want the dirty pages be balanced around the global/bdi setpoints.
619 * When the number of dirty pages is higher/lower than the setpoint, the
620 * dirty position control ratio (and hence task dirty ratelimit) will be
621 * decreased/increased to bring the dirty pages back to the setpoint.
623 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
625 * if (dirty < setpoint) scale up pos_ratio
626 * if (dirty > setpoint) scale down pos_ratio
628 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
629 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
631 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
633 * (o) global control line
637 * | |<===== global dirty control scope ======>|
645 * 1.0 ................................*
651 * 0 +------------.------------------.----------------------*------------->
652 * freerun^ setpoint^ limit^ dirty pages
654 * (o) bdi control line
662 * | * |<=========== span ============>|
663 * 1.0 .......................*
675 * 1/4 ...............................................* * * * * * * * * * * *
679 * 0 +----------------------.-------------------------------.------------->
680 * bdi_setpoint^ x_intercept^
682 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
683 * be smoothly throttled down to normal if it starts high in situations like
684 * - start writing to a slow SD card and a fast disk at the same time. The SD
685 * card's bdi_dirty may rush to many times higher than bdi_setpoint.
686 * - the bdi dirty thresh drops quickly due to change of JBOD workload
688 static unsigned long bdi_position_ratio(struct backing_dev_info
*bdi
,
689 unsigned long thresh
,
690 unsigned long bg_thresh
,
692 unsigned long bdi_thresh
,
693 unsigned long bdi_dirty
)
695 unsigned long write_bw
= bdi
->avg_write_bandwidth
;
696 unsigned long freerun
= dirty_freerun_ceiling(thresh
, bg_thresh
);
697 unsigned long limit
= hard_dirty_limit(thresh
);
698 unsigned long x_intercept
;
699 unsigned long setpoint
; /* dirty pages' target balance point */
700 unsigned long bdi_setpoint
;
702 long long pos_ratio
; /* for scaling up/down the rate limit */
705 if (unlikely(dirty
>= limit
))
711 * See comment for pos_ratio_polynom().
713 setpoint
= (freerun
+ limit
) / 2;
714 pos_ratio
= pos_ratio_polynom(setpoint
, dirty
, limit
);
717 * The strictlimit feature is a tool preventing mistrusted filesystems
718 * from growing a large number of dirty pages before throttling. For
719 * such filesystems balance_dirty_pages always checks bdi counters
720 * against bdi limits. Even if global "nr_dirty" is under "freerun".
721 * This is especially important for fuse which sets bdi->max_ratio to
722 * 1% by default. Without strictlimit feature, fuse writeback may
723 * consume arbitrary amount of RAM because it is accounted in
724 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
726 * Here, in bdi_position_ratio(), we calculate pos_ratio based on
727 * two values: bdi_dirty and bdi_thresh. Let's consider an example:
728 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
729 * limits are set by default to 10% and 20% (background and throttle).
730 * Then bdi_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
731 * bdi_dirty_limit(bdi, bg_thresh) is about ~4K pages. bdi_setpoint is
732 * about ~6K pages (as the average of background and throttle bdi
733 * limits). The 3rd order polynomial will provide positive feedback if
734 * bdi_dirty is under bdi_setpoint and vice versa.
736 * Note, that we cannot use global counters in these calculations
737 * because we want to throttle process writing to a strictlimit BDI
738 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
739 * in the example above).
741 if (unlikely(bdi
->capabilities
& BDI_CAP_STRICTLIMIT
)) {
742 long long bdi_pos_ratio
;
743 unsigned long bdi_bg_thresh
;
746 return min_t(long long, pos_ratio
* 2,
747 2 << RATELIMIT_CALC_SHIFT
);
749 if (bdi_dirty
>= bdi_thresh
)
752 bdi_bg_thresh
= div_u64((u64
)bdi_thresh
* bg_thresh
, thresh
);
753 bdi_setpoint
= dirty_freerun_ceiling(bdi_thresh
,
756 if (bdi_setpoint
== 0 || bdi_setpoint
== bdi_thresh
)
759 bdi_pos_ratio
= pos_ratio_polynom(bdi_setpoint
, bdi_dirty
,
763 * Typically, for strictlimit case, bdi_setpoint << setpoint
764 * and pos_ratio >> bdi_pos_ratio. In the other words global
765 * state ("dirty") is not limiting factor and we have to
766 * make decision based on bdi counters. But there is an
767 * important case when global pos_ratio should get precedence:
768 * global limits are exceeded (e.g. due to activities on other
769 * BDIs) while given strictlimit BDI is below limit.
771 * "pos_ratio * bdi_pos_ratio" would work for the case above,
772 * but it would look too non-natural for the case of all
773 * activity in the system coming from a single strictlimit BDI
774 * with bdi->max_ratio == 100%.
776 * Note that min() below somewhat changes the dynamics of the
777 * control system. Normally, pos_ratio value can be well over 3
778 * (when globally we are at freerun and bdi is well below bdi
779 * setpoint). Now the maximum pos_ratio in the same situation
780 * is 2. We might want to tweak this if we observe the control
781 * system is too slow to adapt.
783 return min(pos_ratio
, bdi_pos_ratio
);
787 * We have computed basic pos_ratio above based on global situation. If
788 * the bdi is over/under its share of dirty pages, we want to scale
789 * pos_ratio further down/up. That is done by the following mechanism.
795 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
797 * x_intercept - bdi_dirty
798 * := --------------------------
799 * x_intercept - bdi_setpoint
801 * The main bdi control line is a linear function that subjects to
803 * (1) f(bdi_setpoint) = 1.0
804 * (2) k = - 1 / (8 * write_bw) (in single bdi case)
805 * or equally: x_intercept = bdi_setpoint + 8 * write_bw
807 * For single bdi case, the dirty pages are observed to fluctuate
808 * regularly within range
809 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
810 * for various filesystems, where (2) can yield in a reasonable 12.5%
811 * fluctuation range for pos_ratio.
813 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
814 * own size, so move the slope over accordingly and choose a slope that
815 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
817 if (unlikely(bdi_thresh
> thresh
))
820 * It's very possible that bdi_thresh is close to 0 not because the
821 * device is slow, but that it has remained inactive for long time.
822 * Honour such devices a reasonable good (hopefully IO efficient)
823 * threshold, so that the occasional writes won't be blocked and active
824 * writes can rampup the threshold quickly.
826 bdi_thresh
= max(bdi_thresh
, (limit
- dirty
) / 8);
828 * scale global setpoint to bdi's:
829 * bdi_setpoint = setpoint * bdi_thresh / thresh
831 x
= div_u64((u64
)bdi_thresh
<< 16, thresh
+ 1);
832 bdi_setpoint
= setpoint
* (u64
)x
>> 16;
834 * Use span=(8*write_bw) in single bdi case as indicated by
835 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
837 * bdi_thresh thresh - bdi_thresh
838 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
841 span
= (thresh
- bdi_thresh
+ 8 * write_bw
) * (u64
)x
>> 16;
842 x_intercept
= bdi_setpoint
+ span
;
844 if (bdi_dirty
< x_intercept
- span
/ 4) {
845 pos_ratio
= div64_u64(pos_ratio
* (x_intercept
- bdi_dirty
),
846 x_intercept
- bdi_setpoint
+ 1);
851 * bdi reserve area, safeguard against dirty pool underrun and disk idle
852 * It may push the desired control point of global dirty pages higher
855 x_intercept
= bdi_thresh
/ 2;
856 if (bdi_dirty
< x_intercept
) {
857 if (bdi_dirty
> x_intercept
/ 8)
858 pos_ratio
= div_u64(pos_ratio
* x_intercept
, bdi_dirty
);
866 static void bdi_update_write_bandwidth(struct backing_dev_info
*bdi
,
867 unsigned long elapsed
,
868 unsigned long written
)
870 const unsigned long period
= roundup_pow_of_two(3 * HZ
);
871 unsigned long avg
= bdi
->avg_write_bandwidth
;
872 unsigned long old
= bdi
->write_bandwidth
;
876 * bw = written * HZ / elapsed
878 * bw * elapsed + write_bandwidth * (period - elapsed)
879 * write_bandwidth = ---------------------------------------------------
882 bw
= written
- bdi
->written_stamp
;
884 if (unlikely(elapsed
> period
)) {
889 bw
+= (u64
)bdi
->write_bandwidth
* (period
- elapsed
);
890 bw
>>= ilog2(period
);
893 * one more level of smoothing, for filtering out sudden spikes
895 if (avg
> old
&& old
>= (unsigned long)bw
)
896 avg
-= (avg
- old
) >> 3;
898 if (avg
< old
&& old
<= (unsigned long)bw
)
899 avg
+= (old
- avg
) >> 3;
902 bdi
->write_bandwidth
= bw
;
903 bdi
->avg_write_bandwidth
= avg
;
907 * The global dirtyable memory and dirty threshold could be suddenly knocked
908 * down by a large amount (eg. on the startup of KVM in a swapless system).
909 * This may throw the system into deep dirty exceeded state and throttle
910 * heavy/light dirtiers alike. To retain good responsiveness, maintain
911 * global_dirty_limit for tracking slowly down to the knocked down dirty
914 static void update_dirty_limit(unsigned long thresh
, unsigned long dirty
)
916 unsigned long limit
= global_dirty_limit
;
919 * Follow up in one step.
921 if (limit
< thresh
) {
927 * Follow down slowly. Use the higher one as the target, because thresh
928 * may drop below dirty. This is exactly the reason to introduce
929 * global_dirty_limit which is guaranteed to lie above the dirty pages.
931 thresh
= max(thresh
, dirty
);
932 if (limit
> thresh
) {
933 limit
-= (limit
- thresh
) >> 5;
938 global_dirty_limit
= limit
;
941 static void global_update_bandwidth(unsigned long thresh
,
945 static DEFINE_SPINLOCK(dirty_lock
);
946 static unsigned long update_time
;
949 * check locklessly first to optimize away locking for the most time
951 if (time_before(now
, update_time
+ BANDWIDTH_INTERVAL
))
954 spin_lock(&dirty_lock
);
955 if (time_after_eq(now
, update_time
+ BANDWIDTH_INTERVAL
)) {
956 update_dirty_limit(thresh
, dirty
);
959 spin_unlock(&dirty_lock
);
963 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
965 * Normal bdi tasks will be curbed at or below it in long term.
966 * Obviously it should be around (write_bw / N) when there are N dd tasks.
968 static void bdi_update_dirty_ratelimit(struct backing_dev_info
*bdi
,
969 unsigned long thresh
,
970 unsigned long bg_thresh
,
972 unsigned long bdi_thresh
,
973 unsigned long bdi_dirty
,
974 unsigned long dirtied
,
975 unsigned long elapsed
)
977 unsigned long freerun
= dirty_freerun_ceiling(thresh
, bg_thresh
);
978 unsigned long limit
= hard_dirty_limit(thresh
);
979 unsigned long setpoint
= (freerun
+ limit
) / 2;
980 unsigned long write_bw
= bdi
->avg_write_bandwidth
;
981 unsigned long dirty_ratelimit
= bdi
->dirty_ratelimit
;
982 unsigned long dirty_rate
;
983 unsigned long task_ratelimit
;
984 unsigned long balanced_dirty_ratelimit
;
985 unsigned long pos_ratio
;
990 * The dirty rate will match the writeout rate in long term, except
991 * when dirty pages are truncated by userspace or re-dirtied by FS.
993 dirty_rate
= (dirtied
- bdi
->dirtied_stamp
) * HZ
/ elapsed
;
995 pos_ratio
= bdi_position_ratio(bdi
, thresh
, bg_thresh
, dirty
,
996 bdi_thresh
, bdi_dirty
);
998 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1000 task_ratelimit
= (u64
)dirty_ratelimit
*
1001 pos_ratio
>> RATELIMIT_CALC_SHIFT
;
1002 task_ratelimit
++; /* it helps rampup dirty_ratelimit from tiny values */
1005 * A linear estimation of the "balanced" throttle rate. The theory is,
1006 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
1007 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1008 * formula will yield the balanced rate limit (write_bw / N).
1010 * Note that the expanded form is not a pure rate feedback:
1011 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1012 * but also takes pos_ratio into account:
1013 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1015 * (1) is not realistic because pos_ratio also takes part in balancing
1016 * the dirty rate. Consider the state
1017 * pos_ratio = 0.5 (3)
1018 * rate = 2 * (write_bw / N) (4)
1019 * If (1) is used, it will stuck in that state! Because each dd will
1021 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1023 * dirty_rate = N * task_ratelimit = write_bw (6)
1024 * put (6) into (1) we get
1025 * rate_(i+1) = rate_(i) (7)
1027 * So we end up using (2) to always keep
1028 * rate_(i+1) ~= (write_bw / N) (8)
1029 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1030 * pos_ratio is able to drive itself to 1.0, which is not only where
1031 * the dirty count meet the setpoint, but also where the slope of
1032 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1034 balanced_dirty_ratelimit
= div_u64((u64
)task_ratelimit
* write_bw
,
1037 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1039 if (unlikely(balanced_dirty_ratelimit
> write_bw
))
1040 balanced_dirty_ratelimit
= write_bw
;
1043 * We could safely do this and return immediately:
1045 * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
1047 * However to get a more stable dirty_ratelimit, the below elaborated
1048 * code makes use of task_ratelimit to filter out singular points and
1049 * limit the step size.
1051 * The below code essentially only uses the relative value of
1053 * task_ratelimit - dirty_ratelimit
1054 * = (pos_ratio - 1) * dirty_ratelimit
1056 * which reflects the direction and size of dirty position error.
1060 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1061 * task_ratelimit is on the same side of dirty_ratelimit, too.
1063 * - dirty_ratelimit > balanced_dirty_ratelimit
1064 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1065 * lowering dirty_ratelimit will help meet both the position and rate
1066 * control targets. Otherwise, don't update dirty_ratelimit if it will
1067 * only help meet the rate target. After all, what the users ultimately
1068 * feel and care are stable dirty rate and small position error.
1070 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1071 * and filter out the singular points of balanced_dirty_ratelimit. Which
1072 * keeps jumping around randomly and can even leap far away at times
1073 * due to the small 200ms estimation period of dirty_rate (we want to
1074 * keep that period small to reduce time lags).
1079 * For strictlimit case, calculations above were based on bdi counters
1080 * and limits (starting from pos_ratio = bdi_position_ratio() and up to
1081 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1082 * Hence, to calculate "step" properly, we have to use bdi_dirty as
1083 * "dirty" and bdi_setpoint as "setpoint".
1085 * We rampup dirty_ratelimit forcibly if bdi_dirty is low because
1086 * it's possible that bdi_thresh is close to zero due to inactivity
1087 * of backing device (see the implementation of bdi_dirty_limit()).
1089 if (unlikely(bdi
->capabilities
& BDI_CAP_STRICTLIMIT
)) {
1092 setpoint
= bdi_dirty
+ 1;
1094 setpoint
= (bdi_thresh
+
1095 bdi_dirty_limit(bdi
, bg_thresh
)) / 2;
1098 if (dirty
< setpoint
) {
1099 x
= min(bdi
->balanced_dirty_ratelimit
,
1100 min(balanced_dirty_ratelimit
, task_ratelimit
));
1101 if (dirty_ratelimit
< x
)
1102 step
= x
- dirty_ratelimit
;
1104 x
= max(bdi
->balanced_dirty_ratelimit
,
1105 max(balanced_dirty_ratelimit
, task_ratelimit
));
1106 if (dirty_ratelimit
> x
)
1107 step
= dirty_ratelimit
- x
;
1111 * Don't pursue 100% rate matching. It's impossible since the balanced
1112 * rate itself is constantly fluctuating. So decrease the track speed
1113 * when it gets close to the target. Helps eliminate pointless tremors.
1115 step
>>= dirty_ratelimit
/ (2 * step
+ 1);
1117 * Limit the tracking speed to avoid overshooting.
1119 step
= (step
+ 7) / 8;
1121 if (dirty_ratelimit
< balanced_dirty_ratelimit
)
1122 dirty_ratelimit
+= step
;
1124 dirty_ratelimit
-= step
;
1126 bdi
->dirty_ratelimit
= max(dirty_ratelimit
, 1UL);
1127 bdi
->balanced_dirty_ratelimit
= balanced_dirty_ratelimit
;
1129 trace_bdi_dirty_ratelimit(bdi
, dirty_rate
, task_ratelimit
);
1132 void __bdi_update_bandwidth(struct backing_dev_info
*bdi
,
1133 unsigned long thresh
,
1134 unsigned long bg_thresh
,
1135 unsigned long dirty
,
1136 unsigned long bdi_thresh
,
1137 unsigned long bdi_dirty
,
1138 unsigned long start_time
)
1140 unsigned long now
= jiffies
;
1141 unsigned long elapsed
= now
- bdi
->bw_time_stamp
;
1142 unsigned long dirtied
;
1143 unsigned long written
;
1146 * rate-limit, only update once every 200ms.
1148 if (elapsed
< BANDWIDTH_INTERVAL
)
1151 dirtied
= percpu_counter_read(&bdi
->bdi_stat
[BDI_DIRTIED
]);
1152 written
= percpu_counter_read(&bdi
->bdi_stat
[BDI_WRITTEN
]);
1155 * Skip quiet periods when disk bandwidth is under-utilized.
1156 * (at least 1s idle time between two flusher runs)
1158 if (elapsed
> HZ
&& time_before(bdi
->bw_time_stamp
, start_time
))
1162 global_update_bandwidth(thresh
, dirty
, now
);
1163 bdi_update_dirty_ratelimit(bdi
, thresh
, bg_thresh
, dirty
,
1164 bdi_thresh
, bdi_dirty
,
1167 bdi_update_write_bandwidth(bdi
, elapsed
, written
);
1170 bdi
->dirtied_stamp
= dirtied
;
1171 bdi
->written_stamp
= written
;
1172 bdi
->bw_time_stamp
= now
;
1175 static void bdi_update_bandwidth(struct backing_dev_info
*bdi
,
1176 unsigned long thresh
,
1177 unsigned long bg_thresh
,
1178 unsigned long dirty
,
1179 unsigned long bdi_thresh
,
1180 unsigned long bdi_dirty
,
1181 unsigned long start_time
)
1183 if (time_is_after_eq_jiffies(bdi
->bw_time_stamp
+ BANDWIDTH_INTERVAL
))
1185 spin_lock(&bdi
->wb
.list_lock
);
1186 __bdi_update_bandwidth(bdi
, thresh
, bg_thresh
, dirty
,
1187 bdi_thresh
, bdi_dirty
, start_time
);
1188 spin_unlock(&bdi
->wb
.list_lock
);
1192 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1193 * will look to see if it needs to start dirty throttling.
1195 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1196 * global_page_state() too often. So scale it near-sqrt to the safety margin
1197 * (the number of pages we may dirty without exceeding the dirty limits).
1199 static unsigned long dirty_poll_interval(unsigned long dirty
,
1200 unsigned long thresh
)
1203 return 1UL << (ilog2(thresh
- dirty
) >> 1);
1208 static unsigned long bdi_max_pause(struct backing_dev_info
*bdi
,
1209 unsigned long bdi_dirty
)
1211 unsigned long bw
= bdi
->avg_write_bandwidth
;
1215 * Limit pause time for small memory systems. If sleeping for too long
1216 * time, a small pool of dirty/writeback pages may go empty and disk go
1219 * 8 serves as the safety ratio.
1221 t
= bdi_dirty
/ (1 + bw
/ roundup_pow_of_two(1 + HZ
/ 8));
1224 return min_t(unsigned long, t
, MAX_PAUSE
);
1227 static long bdi_min_pause(struct backing_dev_info
*bdi
,
1229 unsigned long task_ratelimit
,
1230 unsigned long dirty_ratelimit
,
1231 int *nr_dirtied_pause
)
1233 long hi
= ilog2(bdi
->avg_write_bandwidth
);
1234 long lo
= ilog2(bdi
->dirty_ratelimit
);
1235 long t
; /* target pause */
1236 long pause
; /* estimated next pause */
1237 int pages
; /* target nr_dirtied_pause */
1239 /* target for 10ms pause on 1-dd case */
1240 t
= max(1, HZ
/ 100);
1243 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1246 * (N * 10ms) on 2^N concurrent tasks.
1249 t
+= (hi
- lo
) * (10 * HZ
) / 1024;
1252 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1253 * on the much more stable dirty_ratelimit. However the next pause time
1254 * will be computed based on task_ratelimit and the two rate limits may
1255 * depart considerably at some time. Especially if task_ratelimit goes
1256 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1257 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1258 * result task_ratelimit won't be executed faithfully, which could
1259 * eventually bring down dirty_ratelimit.
1261 * We apply two rules to fix it up:
1262 * 1) try to estimate the next pause time and if necessary, use a lower
1263 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1264 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1265 * 2) limit the target pause time to max_pause/2, so that the normal
1266 * small fluctuations of task_ratelimit won't trigger rule (1) and
1267 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1269 t
= min(t
, 1 + max_pause
/ 2);
1270 pages
= dirty_ratelimit
* t
/ roundup_pow_of_two(HZ
);
1273 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1274 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1275 * When the 16 consecutive reads are often interrupted by some dirty
1276 * throttling pause during the async writes, cfq will go into idles
1277 * (deadline is fine). So push nr_dirtied_pause as high as possible
1278 * until reaches DIRTY_POLL_THRESH=32 pages.
1280 if (pages
< DIRTY_POLL_THRESH
) {
1282 pages
= dirty_ratelimit
* t
/ roundup_pow_of_two(HZ
);
1283 if (pages
> DIRTY_POLL_THRESH
) {
1284 pages
= DIRTY_POLL_THRESH
;
1285 t
= HZ
* DIRTY_POLL_THRESH
/ dirty_ratelimit
;
1289 pause
= HZ
* pages
/ (task_ratelimit
+ 1);
1290 if (pause
> max_pause
) {
1292 pages
= task_ratelimit
* t
/ roundup_pow_of_two(HZ
);
1295 *nr_dirtied_pause
= pages
;
1297 * The minimal pause time will normally be half the target pause time.
1299 return pages
>= DIRTY_POLL_THRESH
? 1 + t
/ 2 : t
;
1302 static inline void bdi_dirty_limits(struct backing_dev_info
*bdi
,
1303 unsigned long dirty_thresh
,
1304 unsigned long background_thresh
,
1305 unsigned long *bdi_dirty
,
1306 unsigned long *bdi_thresh
,
1307 unsigned long *bdi_bg_thresh
)
1309 unsigned long bdi_reclaimable
;
1312 * bdi_thresh is not treated as some limiting factor as
1313 * dirty_thresh, due to reasons
1314 * - in JBOD setup, bdi_thresh can fluctuate a lot
1315 * - in a system with HDD and USB key, the USB key may somehow
1316 * go into state (bdi_dirty >> bdi_thresh) either because
1317 * bdi_dirty starts high, or because bdi_thresh drops low.
1318 * In this case we don't want to hard throttle the USB key
1319 * dirtiers for 100 seconds until bdi_dirty drops under
1320 * bdi_thresh. Instead the auxiliary bdi control line in
1321 * bdi_position_ratio() will let the dirtier task progress
1322 * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1324 *bdi_thresh
= bdi_dirty_limit(bdi
, dirty_thresh
);
1327 *bdi_bg_thresh
= div_u64((u64
)*bdi_thresh
*
1332 * In order to avoid the stacked BDI deadlock we need
1333 * to ensure we accurately count the 'dirty' pages when
1334 * the threshold is low.
1336 * Otherwise it would be possible to get thresh+n pages
1337 * reported dirty, even though there are thresh-m pages
1338 * actually dirty; with m+n sitting in the percpu
1341 if (*bdi_thresh
< 2 * bdi_stat_error(bdi
)) {
1342 bdi_reclaimable
= bdi_stat_sum(bdi
, BDI_RECLAIMABLE
);
1343 *bdi_dirty
= bdi_reclaimable
+
1344 bdi_stat_sum(bdi
, BDI_WRITEBACK
);
1346 bdi_reclaimable
= bdi_stat(bdi
, BDI_RECLAIMABLE
);
1347 *bdi_dirty
= bdi_reclaimable
+
1348 bdi_stat(bdi
, BDI_WRITEBACK
);
1353 * balance_dirty_pages() must be called by processes which are generating dirty
1354 * data. It looks at the number of dirty pages in the machine and will force
1355 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1356 * If we're over `background_thresh' then the writeback threads are woken to
1357 * perform some writeout.
1359 static void balance_dirty_pages(struct address_space
*mapping
,
1360 unsigned long pages_dirtied
)
1362 unsigned long nr_reclaimable
; /* = file_dirty + unstable_nfs */
1363 unsigned long nr_dirty
; /* = file_dirty + writeback + unstable_nfs */
1364 unsigned long background_thresh
;
1365 unsigned long dirty_thresh
;
1370 int nr_dirtied_pause
;
1371 bool dirty_exceeded
= false;
1372 unsigned long task_ratelimit
;
1373 unsigned long dirty_ratelimit
;
1374 unsigned long pos_ratio
;
1375 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
1376 bool strictlimit
= bdi
->capabilities
& BDI_CAP_STRICTLIMIT
;
1377 unsigned long start_time
= jiffies
;
1380 unsigned long now
= jiffies
;
1381 unsigned long uninitialized_var(bdi_thresh
);
1382 unsigned long thresh
;
1383 unsigned long uninitialized_var(bdi_dirty
);
1384 unsigned long dirty
;
1385 unsigned long bg_thresh
;
1388 * Unstable writes are a feature of certain networked
1389 * filesystems (i.e. NFS) in which data may have been
1390 * written to the server's write cache, but has not yet
1391 * been flushed to permanent storage.
1393 nr_reclaimable
= global_page_state(NR_FILE_DIRTY
) +
1394 global_page_state(NR_UNSTABLE_NFS
);
1395 nr_dirty
= nr_reclaimable
+ global_page_state(NR_WRITEBACK
);
1397 global_dirty_limits(&background_thresh
, &dirty_thresh
);
1399 if (unlikely(strictlimit
)) {
1400 bdi_dirty_limits(bdi
, dirty_thresh
, background_thresh
,
1401 &bdi_dirty
, &bdi_thresh
, &bg_thresh
);
1404 thresh
= bdi_thresh
;
1407 thresh
= dirty_thresh
;
1408 bg_thresh
= background_thresh
;
1412 * Throttle it only when the background writeback cannot
1413 * catch-up. This avoids (excessively) small writeouts
1414 * when the bdi limits are ramping up in case of !strictlimit.
1416 * In strictlimit case make decision based on the bdi counters
1417 * and limits. Small writeouts when the bdi limits are ramping
1418 * up are the price we consciously pay for strictlimit-ing.
1420 if (dirty
<= dirty_freerun_ceiling(thresh
, bg_thresh
)) {
1421 current
->dirty_paused_when
= now
;
1422 current
->nr_dirtied
= 0;
1423 current
->nr_dirtied_pause
=
1424 dirty_poll_interval(dirty
, thresh
);
1428 if (unlikely(!writeback_in_progress(bdi
)))
1429 bdi_start_background_writeback(bdi
);
1432 bdi_dirty_limits(bdi
, dirty_thresh
, background_thresh
,
1433 &bdi_dirty
, &bdi_thresh
, NULL
);
1435 dirty_exceeded
= (bdi_dirty
> bdi_thresh
) &&
1436 ((nr_dirty
> dirty_thresh
) || strictlimit
);
1437 if (dirty_exceeded
&& !bdi
->dirty_exceeded
)
1438 bdi
->dirty_exceeded
= 1;
1440 bdi_update_bandwidth(bdi
, dirty_thresh
, background_thresh
,
1441 nr_dirty
, bdi_thresh
, bdi_dirty
,
1444 dirty_ratelimit
= bdi
->dirty_ratelimit
;
1445 pos_ratio
= bdi_position_ratio(bdi
, dirty_thresh
,
1446 background_thresh
, nr_dirty
,
1447 bdi_thresh
, bdi_dirty
);
1448 task_ratelimit
= ((u64
)dirty_ratelimit
* pos_ratio
) >>
1449 RATELIMIT_CALC_SHIFT
;
1450 max_pause
= bdi_max_pause(bdi
, bdi_dirty
);
1451 min_pause
= bdi_min_pause(bdi
, max_pause
,
1452 task_ratelimit
, dirty_ratelimit
,
1455 if (unlikely(task_ratelimit
== 0)) {
1460 period
= HZ
* pages_dirtied
/ task_ratelimit
;
1462 if (current
->dirty_paused_when
)
1463 pause
-= now
- current
->dirty_paused_when
;
1465 * For less than 1s think time (ext3/4 may block the dirtier
1466 * for up to 800ms from time to time on 1-HDD; so does xfs,
1467 * however at much less frequency), try to compensate it in
1468 * future periods by updating the virtual time; otherwise just
1469 * do a reset, as it may be a light dirtier.
1471 if (pause
< min_pause
) {
1472 trace_balance_dirty_pages(bdi
,
1485 current
->dirty_paused_when
= now
;
1486 current
->nr_dirtied
= 0;
1487 } else if (period
) {
1488 current
->dirty_paused_when
+= period
;
1489 current
->nr_dirtied
= 0;
1490 } else if (current
->nr_dirtied_pause
<= pages_dirtied
)
1491 current
->nr_dirtied_pause
+= pages_dirtied
;
1494 if (unlikely(pause
> max_pause
)) {
1495 /* for occasional dropped task_ratelimit */
1496 now
+= min(pause
- max_pause
, max_pause
);
1501 trace_balance_dirty_pages(bdi
,
1513 __set_current_state(TASK_KILLABLE
);
1514 io_schedule_timeout(pause
);
1516 current
->dirty_paused_when
= now
+ pause
;
1517 current
->nr_dirtied
= 0;
1518 current
->nr_dirtied_pause
= nr_dirtied_pause
;
1521 * This is typically equal to (nr_dirty < dirty_thresh) and can
1522 * also keep "1000+ dd on a slow USB stick" under control.
1528 * In the case of an unresponding NFS server and the NFS dirty
1529 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1530 * to go through, so that tasks on them still remain responsive.
1532 * In theory 1 page is enough to keep the comsumer-producer
1533 * pipe going: the flusher cleans 1 page => the task dirties 1
1534 * more page. However bdi_dirty has accounting errors. So use
1535 * the larger and more IO friendly bdi_stat_error.
1537 if (bdi_dirty
<= bdi_stat_error(bdi
))
1540 if (fatal_signal_pending(current
))
1544 if (!dirty_exceeded
&& bdi
->dirty_exceeded
)
1545 bdi
->dirty_exceeded
= 0;
1547 if (writeback_in_progress(bdi
))
1551 * In laptop mode, we wait until hitting the higher threshold before
1552 * starting background writeout, and then write out all the way down
1553 * to the lower threshold. So slow writers cause minimal disk activity.
1555 * In normal mode, we start background writeout at the lower
1556 * background_thresh, to keep the amount of dirty memory low.
1561 if (nr_reclaimable
> background_thresh
)
1562 bdi_start_background_writeback(bdi
);
1565 void set_page_dirty_balance(struct page
*page
)
1567 if (set_page_dirty(page
)) {
1568 struct address_space
*mapping
= page_mapping(page
);
1571 balance_dirty_pages_ratelimited(mapping
);
1575 static DEFINE_PER_CPU(int, bdp_ratelimits
);
1578 * Normal tasks are throttled by
1580 * dirty tsk->nr_dirtied_pause pages;
1581 * take a snap in balance_dirty_pages();
1583 * However there is a worst case. If every task exit immediately when dirtied
1584 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1585 * called to throttle the page dirties. The solution is to save the not yet
1586 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1587 * randomly into the running tasks. This works well for the above worst case,
1588 * as the new task will pick up and accumulate the old task's leaked dirty
1589 * count and eventually get throttled.
1591 DEFINE_PER_CPU(int, dirty_throttle_leaks
) = 0;
1594 * balance_dirty_pages_ratelimited - balance dirty memory state
1595 * @mapping: address_space which was dirtied
1597 * Processes which are dirtying memory should call in here once for each page
1598 * which was newly dirtied. The function will periodically check the system's
1599 * dirty state and will initiate writeback if needed.
1601 * On really big machines, get_writeback_state is expensive, so try to avoid
1602 * calling it too often (ratelimiting). But once we're over the dirty memory
1603 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1604 * from overshooting the limit by (ratelimit_pages) each.
1606 void balance_dirty_pages_ratelimited(struct address_space
*mapping
)
1608 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
1612 if (!bdi_cap_account_dirty(bdi
))
1615 ratelimit
= current
->nr_dirtied_pause
;
1616 if (bdi
->dirty_exceeded
)
1617 ratelimit
= min(ratelimit
, 32 >> (PAGE_SHIFT
- 10));
1621 * This prevents one CPU to accumulate too many dirtied pages without
1622 * calling into balance_dirty_pages(), which can happen when there are
1623 * 1000+ tasks, all of them start dirtying pages at exactly the same
1624 * time, hence all honoured too large initial task->nr_dirtied_pause.
1626 p
= &__get_cpu_var(bdp_ratelimits
);
1627 if (unlikely(current
->nr_dirtied
>= ratelimit
))
1629 else if (unlikely(*p
>= ratelimit_pages
)) {
1634 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1635 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1636 * the dirty throttling and livelock other long-run dirtiers.
1638 p
= &__get_cpu_var(dirty_throttle_leaks
);
1639 if (*p
> 0 && current
->nr_dirtied
< ratelimit
) {
1640 unsigned long nr_pages_dirtied
;
1641 nr_pages_dirtied
= min(*p
, ratelimit
- current
->nr_dirtied
);
1642 *p
-= nr_pages_dirtied
;
1643 current
->nr_dirtied
+= nr_pages_dirtied
;
1647 if (unlikely(current
->nr_dirtied
>= ratelimit
))
1648 balance_dirty_pages(mapping
, current
->nr_dirtied
);
1650 EXPORT_SYMBOL(balance_dirty_pages_ratelimited
);
1652 void throttle_vm_writeout(gfp_t gfp_mask
)
1654 unsigned long background_thresh
;
1655 unsigned long dirty_thresh
;
1658 global_dirty_limits(&background_thresh
, &dirty_thresh
);
1659 dirty_thresh
= hard_dirty_limit(dirty_thresh
);
1662 * Boost the allowable dirty threshold a bit for page
1663 * allocators so they don't get DoS'ed by heavy writers
1665 dirty_thresh
+= dirty_thresh
/ 10; /* wheeee... */
1667 if (global_page_state(NR_UNSTABLE_NFS
) +
1668 global_page_state(NR_WRITEBACK
) <= dirty_thresh
)
1670 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1673 * The caller might hold locks which can prevent IO completion
1674 * or progress in the filesystem. So we cannot just sit here
1675 * waiting for IO to complete.
1677 if ((gfp_mask
& (__GFP_FS
|__GFP_IO
)) != (__GFP_FS
|__GFP_IO
))
1683 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1685 int dirty_writeback_centisecs_handler(ctl_table
*table
, int write
,
1686 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1688 proc_dointvec(table
, write
, buffer
, length
, ppos
);
1693 void laptop_mode_timer_fn(unsigned long data
)
1695 struct request_queue
*q
= (struct request_queue
*)data
;
1696 int nr_pages
= global_page_state(NR_FILE_DIRTY
) +
1697 global_page_state(NR_UNSTABLE_NFS
);
1700 * We want to write everything out, not just down to the dirty
1703 if (bdi_has_dirty_io(&q
->backing_dev_info
))
1704 bdi_start_writeback(&q
->backing_dev_info
, nr_pages
,
1705 WB_REASON_LAPTOP_TIMER
);
1709 * We've spun up the disk and we're in laptop mode: schedule writeback
1710 * of all dirty data a few seconds from now. If the flush is already scheduled
1711 * then push it back - the user is still using the disk.
1713 void laptop_io_completion(struct backing_dev_info
*info
)
1715 mod_timer(&info
->laptop_mode_wb_timer
, jiffies
+ laptop_mode
);
1719 * We're in laptop mode and we've just synced. The sync's writes will have
1720 * caused another writeback to be scheduled by laptop_io_completion.
1721 * Nothing needs to be written back anymore, so we unschedule the writeback.
1723 void laptop_sync_completion(void)
1725 struct backing_dev_info
*bdi
;
1729 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
)
1730 del_timer(&bdi
->laptop_mode_wb_timer
);
1737 * If ratelimit_pages is too high then we can get into dirty-data overload
1738 * if a large number of processes all perform writes at the same time.
1739 * If it is too low then SMP machines will call the (expensive)
1740 * get_writeback_state too often.
1742 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1743 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1747 void writeback_set_ratelimit(void)
1749 unsigned long background_thresh
;
1750 unsigned long dirty_thresh
;
1751 global_dirty_limits(&background_thresh
, &dirty_thresh
);
1752 global_dirty_limit
= dirty_thresh
;
1753 ratelimit_pages
= dirty_thresh
/ (num_online_cpus() * 32);
1754 if (ratelimit_pages
< 16)
1755 ratelimit_pages
= 16;
1759 ratelimit_handler(struct notifier_block
*self
, unsigned long action
,
1763 switch (action
& ~CPU_TASKS_FROZEN
) {
1766 writeback_set_ratelimit();
1773 static struct notifier_block ratelimit_nb
= {
1774 .notifier_call
= ratelimit_handler
,
1779 * Called early on to tune the page writeback dirty limits.
1781 * We used to scale dirty pages according to how total memory
1782 * related to pages that could be allocated for buffers (by
1783 * comparing nr_free_buffer_pages() to vm_total_pages.
1785 * However, that was when we used "dirty_ratio" to scale with
1786 * all memory, and we don't do that any more. "dirty_ratio"
1787 * is now applied to total non-HIGHPAGE memory (by subtracting
1788 * totalhigh_pages from vm_total_pages), and as such we can't
1789 * get into the old insane situation any more where we had
1790 * large amounts of dirty pages compared to a small amount of
1791 * non-HIGHMEM memory.
1793 * But we might still want to scale the dirty_ratio by how
1794 * much memory the box has..
1796 void __init
page_writeback_init(void)
1798 writeback_set_ratelimit();
1799 register_cpu_notifier(&ratelimit_nb
);
1801 fprop_global_init(&writeout_completions
);
1805 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1806 * @mapping: address space structure to write
1807 * @start: starting page index
1808 * @end: ending page index (inclusive)
1810 * This function scans the page range from @start to @end (inclusive) and tags
1811 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1812 * that write_cache_pages (or whoever calls this function) will then use
1813 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1814 * used to avoid livelocking of writeback by a process steadily creating new
1815 * dirty pages in the file (thus it is important for this function to be quick
1816 * so that it can tag pages faster than a dirtying process can create them).
1819 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1821 void tag_pages_for_writeback(struct address_space
*mapping
,
1822 pgoff_t start
, pgoff_t end
)
1824 #define WRITEBACK_TAG_BATCH 4096
1825 unsigned long tagged
;
1828 spin_lock_irq(&mapping
->tree_lock
);
1829 tagged
= radix_tree_range_tag_if_tagged(&mapping
->page_tree
,
1830 &start
, end
, WRITEBACK_TAG_BATCH
,
1831 PAGECACHE_TAG_DIRTY
, PAGECACHE_TAG_TOWRITE
);
1832 spin_unlock_irq(&mapping
->tree_lock
);
1833 WARN_ON_ONCE(tagged
> WRITEBACK_TAG_BATCH
);
1835 /* We check 'start' to handle wrapping when end == ~0UL */
1836 } while (tagged
>= WRITEBACK_TAG_BATCH
&& start
);
1838 EXPORT_SYMBOL(tag_pages_for_writeback
);
1841 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1842 * @mapping: address space structure to write
1843 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1844 * @writepage: function called for each page
1845 * @data: data passed to writepage function
1847 * If a page is already under I/O, write_cache_pages() skips it, even
1848 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1849 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1850 * and msync() need to guarantee that all the data which was dirty at the time
1851 * the call was made get new I/O started against them. If wbc->sync_mode is
1852 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1853 * existing IO to complete.
1855 * To avoid livelocks (when other process dirties new pages), we first tag
1856 * pages which should be written back with TOWRITE tag and only then start
1857 * writing them. For data-integrity sync we have to be careful so that we do
1858 * not miss some pages (e.g., because some other process has cleared TOWRITE
1859 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1860 * by the process clearing the DIRTY tag (and submitting the page for IO).
1862 int write_cache_pages(struct address_space
*mapping
,
1863 struct writeback_control
*wbc
, writepage_t writepage
,
1868 struct pagevec pvec
;
1870 pgoff_t
uninitialized_var(writeback_index
);
1872 pgoff_t end
; /* Inclusive */
1875 int range_whole
= 0;
1878 pagevec_init(&pvec
, 0);
1879 if (wbc
->range_cyclic
) {
1880 writeback_index
= mapping
->writeback_index
; /* prev offset */
1881 index
= writeback_index
;
1888 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
1889 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
1890 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
1892 cycled
= 1; /* ignore range_cyclic tests */
1894 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
1895 tag
= PAGECACHE_TAG_TOWRITE
;
1897 tag
= PAGECACHE_TAG_DIRTY
;
1899 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
1900 tag_pages_for_writeback(mapping
, index
, end
);
1902 while (!done
&& (index
<= end
)) {
1905 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
1906 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1910 for (i
= 0; i
< nr_pages
; i
++) {
1911 struct page
*page
= pvec
.pages
[i
];
1914 * At this point, the page may be truncated or
1915 * invalidated (changing page->mapping to NULL), or
1916 * even swizzled back from swapper_space to tmpfs file
1917 * mapping. However, page->index will not change
1918 * because we have a reference on the page.
1920 if (page
->index
> end
) {
1922 * can't be range_cyclic (1st pass) because
1923 * end == -1 in that case.
1929 done_index
= page
->index
;
1934 * Page truncated or invalidated. We can freely skip it
1935 * then, even for data integrity operations: the page
1936 * has disappeared concurrently, so there could be no
1937 * real expectation of this data interity operation
1938 * even if there is now a new, dirty page at the same
1939 * pagecache address.
1941 if (unlikely(page
->mapping
!= mapping
)) {
1947 if (!PageDirty(page
)) {
1948 /* someone wrote it for us */
1949 goto continue_unlock
;
1952 if (PageWriteback(page
)) {
1953 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
1954 wait_on_page_writeback(page
);
1956 goto continue_unlock
;
1959 BUG_ON(PageWriteback(page
));
1960 if (!clear_page_dirty_for_io(page
))
1961 goto continue_unlock
;
1963 trace_wbc_writepage(wbc
, mapping
->backing_dev_info
);
1964 ret
= (*writepage
)(page
, wbc
, data
);
1965 if (unlikely(ret
)) {
1966 if (ret
== AOP_WRITEPAGE_ACTIVATE
) {
1971 * done_index is set past this page,
1972 * so media errors will not choke
1973 * background writeout for the entire
1974 * file. This has consequences for
1975 * range_cyclic semantics (ie. it may
1976 * not be suitable for data integrity
1979 done_index
= page
->index
+ 1;
1986 * We stop writing back only if we are not doing
1987 * integrity sync. In case of integrity sync we have to
1988 * keep going until we have written all the pages
1989 * we tagged for writeback prior to entering this loop.
1991 if (--wbc
->nr_to_write
<= 0 &&
1992 wbc
->sync_mode
== WB_SYNC_NONE
) {
1997 pagevec_release(&pvec
);
2000 if (!cycled
&& !done
) {
2003 * We hit the last page and there is more work to be done: wrap
2004 * back to the start of the file
2008 end
= writeback_index
- 1;
2011 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
2012 mapping
->writeback_index
= done_index
;
2016 EXPORT_SYMBOL(write_cache_pages
);
2019 * Function used by generic_writepages to call the real writepage
2020 * function and set the mapping flags on error
2022 static int __writepage(struct page
*page
, struct writeback_control
*wbc
,
2025 struct address_space
*mapping
= data
;
2026 int ret
= mapping
->a_ops
->writepage(page
, wbc
);
2027 mapping_set_error(mapping
, ret
);
2032 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2033 * @mapping: address space structure to write
2034 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2036 * This is a library function, which implements the writepages()
2037 * address_space_operation.
2039 int generic_writepages(struct address_space
*mapping
,
2040 struct writeback_control
*wbc
)
2042 struct blk_plug plug
;
2045 /* deal with chardevs and other special file */
2046 if (!mapping
->a_ops
->writepage
)
2049 blk_start_plug(&plug
);
2050 ret
= write_cache_pages(mapping
, wbc
, __writepage
, mapping
);
2051 blk_finish_plug(&plug
);
2055 EXPORT_SYMBOL(generic_writepages
);
2057 int do_writepages(struct address_space
*mapping
, struct writeback_control
*wbc
)
2061 if (wbc
->nr_to_write
<= 0)
2063 if (mapping
->a_ops
->writepages
)
2064 ret
= mapping
->a_ops
->writepages(mapping
, wbc
);
2066 ret
= generic_writepages(mapping
, wbc
);
2071 * write_one_page - write out a single page and optionally wait on I/O
2072 * @page: the page to write
2073 * @wait: if true, wait on writeout
2075 * The page must be locked by the caller and will be unlocked upon return.
2077 * write_one_page() returns a negative error code if I/O failed.
2079 int write_one_page(struct page
*page
, int wait
)
2081 struct address_space
*mapping
= page
->mapping
;
2083 struct writeback_control wbc
= {
2084 .sync_mode
= WB_SYNC_ALL
,
2088 BUG_ON(!PageLocked(page
));
2091 wait_on_page_writeback(page
);
2093 if (clear_page_dirty_for_io(page
)) {
2094 page_cache_get(page
);
2095 ret
= mapping
->a_ops
->writepage(page
, &wbc
);
2096 if (ret
== 0 && wait
) {
2097 wait_on_page_writeback(page
);
2098 if (PageError(page
))
2101 page_cache_release(page
);
2107 EXPORT_SYMBOL(write_one_page
);
2110 * For address_spaces which do not use buffers nor write back.
2112 int __set_page_dirty_no_writeback(struct page
*page
)
2114 if (!PageDirty(page
))
2115 return !TestSetPageDirty(page
);
2120 * Helper function for set_page_dirty family.
2121 * NOTE: This relies on being atomic wrt interrupts.
2123 void account_page_dirtied(struct page
*page
, struct address_space
*mapping
)
2125 trace_writeback_dirty_page(page
, mapping
);
2127 if (mapping_cap_account_dirty(mapping
)) {
2128 __inc_zone_page_state(page
, NR_FILE_DIRTY
);
2129 __inc_zone_page_state(page
, NR_DIRTIED
);
2130 __inc_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
2131 __inc_bdi_stat(mapping
->backing_dev_info
, BDI_DIRTIED
);
2132 task_io_account_write(PAGE_CACHE_SIZE
);
2133 current
->nr_dirtied
++;
2134 this_cpu_inc(bdp_ratelimits
);
2137 EXPORT_SYMBOL(account_page_dirtied
);
2140 * Helper function for set_page_writeback family.
2142 * The caller must hold mem_cgroup_begin/end_update_page_stat() lock
2143 * while calling this function.
2144 * See test_set_page_writeback for example.
2146 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
2149 void account_page_writeback(struct page
*page
)
2151 mem_cgroup_inc_page_stat(page
, MEM_CGROUP_STAT_WRITEBACK
);
2152 inc_zone_page_state(page
, NR_WRITEBACK
);
2154 EXPORT_SYMBOL(account_page_writeback
);
2157 * For address_spaces which do not use buffers. Just tag the page as dirty in
2160 * This is also used when a single buffer is being dirtied: we want to set the
2161 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2162 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2164 * Most callers have locked the page, which pins the address_space in memory.
2165 * But zap_pte_range() does not lock the page, however in that case the
2166 * mapping is pinned by the vma's ->vm_file reference.
2168 * We take care to handle the case where the page was truncated from the
2169 * mapping by re-checking page_mapping() inside tree_lock.
2171 int __set_page_dirty_nobuffers(struct page
*page
)
2173 if (!TestSetPageDirty(page
)) {
2174 struct address_space
*mapping
= page_mapping(page
);
2175 struct address_space
*mapping2
;
2176 unsigned long flags
;
2181 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
2182 mapping2
= page_mapping(page
);
2183 if (mapping2
) { /* Race with truncate? */
2184 BUG_ON(mapping2
!= mapping
);
2185 WARN_ON_ONCE(!PagePrivate(page
) && !PageUptodate(page
));
2186 account_page_dirtied(page
, mapping
);
2187 radix_tree_tag_set(&mapping
->page_tree
,
2188 page_index(page
), PAGECACHE_TAG_DIRTY
);
2190 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
2191 if (mapping
->host
) {
2192 /* !PageAnon && !swapper_space */
2193 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
2199 EXPORT_SYMBOL(__set_page_dirty_nobuffers
);
2202 * Call this whenever redirtying a page, to de-account the dirty counters
2203 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2204 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2205 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2208 void account_page_redirty(struct page
*page
)
2210 struct address_space
*mapping
= page
->mapping
;
2211 if (mapping
&& mapping_cap_account_dirty(mapping
)) {
2212 current
->nr_dirtied
--;
2213 dec_zone_page_state(page
, NR_DIRTIED
);
2214 dec_bdi_stat(mapping
->backing_dev_info
, BDI_DIRTIED
);
2217 EXPORT_SYMBOL(account_page_redirty
);
2220 * When a writepage implementation decides that it doesn't want to write this
2221 * page for some reason, it should redirty the locked page via
2222 * redirty_page_for_writepage() and it should then unlock the page and return 0
2224 int redirty_page_for_writepage(struct writeback_control
*wbc
, struct page
*page
)
2226 wbc
->pages_skipped
++;
2227 account_page_redirty(page
);
2228 return __set_page_dirty_nobuffers(page
);
2230 EXPORT_SYMBOL(redirty_page_for_writepage
);
2235 * For pages with a mapping this should be done under the page lock
2236 * for the benefit of asynchronous memory errors who prefer a consistent
2237 * dirty state. This rule can be broken in some special cases,
2238 * but should be better not to.
2240 * If the mapping doesn't provide a set_page_dirty a_op, then
2241 * just fall through and assume that it wants buffer_heads.
2243 int set_page_dirty(struct page
*page
)
2245 struct address_space
*mapping
= page_mapping(page
);
2247 if (likely(mapping
)) {
2248 int (*spd
)(struct page
*) = mapping
->a_ops
->set_page_dirty
;
2250 * readahead/lru_deactivate_page could remain
2251 * PG_readahead/PG_reclaim due to race with end_page_writeback
2252 * About readahead, if the page is written, the flags would be
2253 * reset. So no problem.
2254 * About lru_deactivate_page, if the page is redirty, the flag
2255 * will be reset. So no problem. but if the page is used by readahead
2256 * it will confuse readahead and make it restart the size rampup
2257 * process. But it's a trivial problem.
2259 ClearPageReclaim(page
);
2262 spd
= __set_page_dirty_buffers
;
2264 return (*spd
)(page
);
2266 if (!PageDirty(page
)) {
2267 if (!TestSetPageDirty(page
))
2272 EXPORT_SYMBOL(set_page_dirty
);
2275 * set_page_dirty() is racy if the caller has no reference against
2276 * page->mapping->host, and if the page is unlocked. This is because another
2277 * CPU could truncate the page off the mapping and then free the mapping.
2279 * Usually, the page _is_ locked, or the caller is a user-space process which
2280 * holds a reference on the inode by having an open file.
2282 * In other cases, the page should be locked before running set_page_dirty().
2284 int set_page_dirty_lock(struct page
*page
)
2289 ret
= set_page_dirty(page
);
2293 EXPORT_SYMBOL(set_page_dirty_lock
);
2296 * Clear a page's dirty flag, while caring for dirty memory accounting.
2297 * Returns true if the page was previously dirty.
2299 * This is for preparing to put the page under writeout. We leave the page
2300 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2301 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2302 * implementation will run either set_page_writeback() or set_page_dirty(),
2303 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2306 * This incoherency between the page's dirty flag and radix-tree tag is
2307 * unfortunate, but it only exists while the page is locked.
2309 int clear_page_dirty_for_io(struct page
*page
)
2311 struct address_space
*mapping
= page_mapping(page
);
2313 BUG_ON(!PageLocked(page
));
2315 if (mapping
&& mapping_cap_account_dirty(mapping
)) {
2317 * Yes, Virginia, this is indeed insane.
2319 * We use this sequence to make sure that
2320 * (a) we account for dirty stats properly
2321 * (b) we tell the low-level filesystem to
2322 * mark the whole page dirty if it was
2323 * dirty in a pagetable. Only to then
2324 * (c) clean the page again and return 1 to
2325 * cause the writeback.
2327 * This way we avoid all nasty races with the
2328 * dirty bit in multiple places and clearing
2329 * them concurrently from different threads.
2331 * Note! Normally the "set_page_dirty(page)"
2332 * has no effect on the actual dirty bit - since
2333 * that will already usually be set. But we
2334 * need the side effects, and it can help us
2337 * We basically use the page "master dirty bit"
2338 * as a serialization point for all the different
2339 * threads doing their things.
2341 if (page_mkclean(page
))
2342 set_page_dirty(page
);
2344 * We carefully synchronise fault handlers against
2345 * installing a dirty pte and marking the page dirty
2346 * at this point. We do this by having them hold the
2347 * page lock at some point after installing their
2348 * pte, but before marking the page dirty.
2349 * Pages are always locked coming in here, so we get
2350 * the desired exclusion. See mm/memory.c:do_wp_page()
2351 * for more comments.
2353 if (TestClearPageDirty(page
)) {
2354 dec_zone_page_state(page
, NR_FILE_DIRTY
);
2355 dec_bdi_stat(mapping
->backing_dev_info
,
2361 return TestClearPageDirty(page
);
2363 EXPORT_SYMBOL(clear_page_dirty_for_io
);
2365 int test_clear_page_writeback(struct page
*page
)
2367 struct address_space
*mapping
= page_mapping(page
);
2370 unsigned long memcg_flags
;
2372 mem_cgroup_begin_update_page_stat(page
, &locked
, &memcg_flags
);
2374 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
2375 unsigned long flags
;
2377 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
2378 ret
= TestClearPageWriteback(page
);
2380 radix_tree_tag_clear(&mapping
->page_tree
,
2382 PAGECACHE_TAG_WRITEBACK
);
2383 if (bdi_cap_account_writeback(bdi
)) {
2384 __dec_bdi_stat(bdi
, BDI_WRITEBACK
);
2385 __bdi_writeout_inc(bdi
);
2388 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
2390 ret
= TestClearPageWriteback(page
);
2393 mem_cgroup_dec_page_stat(page
, MEM_CGROUP_STAT_WRITEBACK
);
2394 dec_zone_page_state(page
, NR_WRITEBACK
);
2395 inc_zone_page_state(page
, NR_WRITTEN
);
2397 mem_cgroup_end_update_page_stat(page
, &locked
, &memcg_flags
);
2401 int test_set_page_writeback(struct page
*page
)
2403 struct address_space
*mapping
= page_mapping(page
);
2406 unsigned long memcg_flags
;
2408 mem_cgroup_begin_update_page_stat(page
, &locked
, &memcg_flags
);
2410 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
2411 unsigned long flags
;
2413 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
2414 ret
= TestSetPageWriteback(page
);
2416 radix_tree_tag_set(&mapping
->page_tree
,
2418 PAGECACHE_TAG_WRITEBACK
);
2419 if (bdi_cap_account_writeback(bdi
))
2420 __inc_bdi_stat(bdi
, BDI_WRITEBACK
);
2422 if (!PageDirty(page
))
2423 radix_tree_tag_clear(&mapping
->page_tree
,
2425 PAGECACHE_TAG_DIRTY
);
2426 radix_tree_tag_clear(&mapping
->page_tree
,
2428 PAGECACHE_TAG_TOWRITE
);
2429 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
2431 ret
= TestSetPageWriteback(page
);
2434 account_page_writeback(page
);
2435 mem_cgroup_end_update_page_stat(page
, &locked
, &memcg_flags
);
2439 EXPORT_SYMBOL(test_set_page_writeback
);
2442 * Return true if any of the pages in the mapping are marked with the
2445 int mapping_tagged(struct address_space
*mapping
, int tag
)
2447 return radix_tree_tagged(&mapping
->page_tree
, tag
);
2449 EXPORT_SYMBOL(mapping_tagged
);
2452 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2453 * @page: The page to wait on.
2455 * This function determines if the given page is related to a backing device
2456 * that requires page contents to be held stable during writeback. If so, then
2457 * it will wait for any pending writeback to complete.
2459 void wait_for_stable_page(struct page
*page
)
2461 struct address_space
*mapping
= page_mapping(page
);
2462 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
2464 if (!bdi_cap_stable_pages_required(bdi
))
2467 wait_on_page_writeback(page
);
2469 EXPORT_SYMBOL_GPL(wait_for_stable_page
);