2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
36 static struct vfsmount
*shm_mnt
;
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
73 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
83 * shmem_fallocate and shmem_writepage communicate via inode->i_private
84 * (with i_mutex making sure that it has only one user at a time):
85 * we would prefer not to enlarge the shmem inode just for that.
88 pgoff_t start
; /* start of range currently being fallocated */
89 pgoff_t next
; /* the next page offset to be fallocated */
90 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
91 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
94 /* Flag allocation requirements to shmem_getpage */
96 SGP_READ
, /* don't exceed i_size, don't allocate page */
97 SGP_CACHE
, /* don't exceed i_size, may allocate page */
98 SGP_DIRTY
, /* like SGP_CACHE, but set new page dirty */
99 SGP_WRITE
, /* may exceed i_size, may allocate !Uptodate page */
100 SGP_FALLOC
, /* like SGP_WRITE, but make existing page Uptodate */
104 static unsigned long shmem_default_max_blocks(void)
106 return totalram_pages
/ 2;
109 static unsigned long shmem_default_max_inodes(void)
111 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
115 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
116 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
117 struct shmem_inode_info
*info
, pgoff_t index
);
118 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
119 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
, int *fault_type
);
121 static inline int shmem_getpage(struct inode
*inode
, pgoff_t index
,
122 struct page
**pagep
, enum sgp_type sgp
, int *fault_type
)
124 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
125 mapping_gfp_mask(inode
->i_mapping
), fault_type
);
128 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
130 return sb
->s_fs_info
;
134 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
135 * for shared memory and for shared anonymous (/dev/zero) mappings
136 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
137 * consistent with the pre-accounting of private mappings ...
139 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
141 return (flags
& VM_NORESERVE
) ?
142 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
145 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
147 if (!(flags
& VM_NORESERVE
))
148 vm_unacct_memory(VM_ACCT(size
));
152 * ... whereas tmpfs objects are accounted incrementally as
153 * pages are allocated, in order to allow huge sparse files.
154 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
155 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
157 static inline int shmem_acct_block(unsigned long flags
)
159 return (flags
& VM_NORESERVE
) ?
160 security_vm_enough_memory_mm(current
->mm
, VM_ACCT(PAGE_CACHE_SIZE
)) : 0;
163 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
165 if (flags
& VM_NORESERVE
)
166 vm_unacct_memory(pages
* VM_ACCT(PAGE_CACHE_SIZE
));
169 static const struct super_operations shmem_ops
;
170 static const struct address_space_operations shmem_aops
;
171 static const struct file_operations shmem_file_operations
;
172 static const struct inode_operations shmem_inode_operations
;
173 static const struct inode_operations shmem_dir_inode_operations
;
174 static const struct inode_operations shmem_special_inode_operations
;
175 static const struct vm_operations_struct shmem_vm_ops
;
177 static struct backing_dev_info shmem_backing_dev_info __read_mostly
= {
178 .ra_pages
= 0, /* No readahead */
179 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
| BDI_CAP_SWAP_BACKED
,
182 static LIST_HEAD(shmem_swaplist
);
183 static DEFINE_MUTEX(shmem_swaplist_mutex
);
185 static int shmem_reserve_inode(struct super_block
*sb
)
187 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
188 if (sbinfo
->max_inodes
) {
189 spin_lock(&sbinfo
->stat_lock
);
190 if (!sbinfo
->free_inodes
) {
191 spin_unlock(&sbinfo
->stat_lock
);
194 sbinfo
->free_inodes
--;
195 spin_unlock(&sbinfo
->stat_lock
);
200 static void shmem_free_inode(struct super_block
*sb
)
202 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
203 if (sbinfo
->max_inodes
) {
204 spin_lock(&sbinfo
->stat_lock
);
205 sbinfo
->free_inodes
++;
206 spin_unlock(&sbinfo
->stat_lock
);
211 * shmem_recalc_inode - recalculate the block usage of an inode
212 * @inode: inode to recalc
214 * We have to calculate the free blocks since the mm can drop
215 * undirtied hole pages behind our back.
217 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
218 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
220 * It has to be called with the spinlock held.
222 static void shmem_recalc_inode(struct inode
*inode
)
224 struct shmem_inode_info
*info
= SHMEM_I(inode
);
227 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
229 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
230 if (sbinfo
->max_blocks
)
231 percpu_counter_add(&sbinfo
->used_blocks
, -freed
);
232 info
->alloced
-= freed
;
233 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
234 shmem_unacct_blocks(info
->flags
, freed
);
239 * Replace item expected in radix tree by a new item, while holding tree lock.
241 static int shmem_radix_tree_replace(struct address_space
*mapping
,
242 pgoff_t index
, void *expected
, void *replacement
)
247 VM_BUG_ON(!expected
);
248 VM_BUG_ON(!replacement
);
249 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
, index
);
252 item
= radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
);
253 if (item
!= expected
)
255 radix_tree_replace_slot(pslot
, replacement
);
260 * Sometimes, before we decide whether to proceed or to fail, we must check
261 * that an entry was not already brought back from swap by a racing thread.
263 * Checking page is not enough: by the time a SwapCache page is locked, it
264 * might be reused, and again be SwapCache, using the same swap as before.
266 static bool shmem_confirm_swap(struct address_space
*mapping
,
267 pgoff_t index
, swp_entry_t swap
)
272 item
= radix_tree_lookup(&mapping
->page_tree
, index
);
274 return item
== swp_to_radix_entry(swap
);
278 * Like add_to_page_cache_locked, but error if expected item has gone.
280 static int shmem_add_to_page_cache(struct page
*page
,
281 struct address_space
*mapping
,
282 pgoff_t index
, gfp_t gfp
, void *expected
)
286 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
287 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
289 page_cache_get(page
);
290 page
->mapping
= mapping
;
293 spin_lock_irq(&mapping
->tree_lock
);
295 error
= radix_tree_insert(&mapping
->page_tree
, index
, page
);
297 error
= shmem_radix_tree_replace(mapping
, index
, expected
,
301 __inc_zone_page_state(page
, NR_FILE_PAGES
);
302 __inc_zone_page_state(page
, NR_SHMEM
);
303 spin_unlock_irq(&mapping
->tree_lock
);
305 page
->mapping
= NULL
;
306 spin_unlock_irq(&mapping
->tree_lock
);
307 page_cache_release(page
);
313 * Like delete_from_page_cache, but substitutes swap for page.
315 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
317 struct address_space
*mapping
= page
->mapping
;
320 spin_lock_irq(&mapping
->tree_lock
);
321 error
= shmem_radix_tree_replace(mapping
, page
->index
, page
, radswap
);
322 page
->mapping
= NULL
;
324 __dec_zone_page_state(page
, NR_FILE_PAGES
);
325 __dec_zone_page_state(page
, NR_SHMEM
);
326 spin_unlock_irq(&mapping
->tree_lock
);
327 page_cache_release(page
);
332 * Remove swap entry from radix tree, free the swap and its page cache.
334 static int shmem_free_swap(struct address_space
*mapping
,
335 pgoff_t index
, void *radswap
)
339 spin_lock_irq(&mapping
->tree_lock
);
340 old
= radix_tree_delete_item(&mapping
->page_tree
, index
, radswap
);
341 spin_unlock_irq(&mapping
->tree_lock
);
344 free_swap_and_cache(radix_to_swp_entry(radswap
));
349 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
351 void shmem_unlock_mapping(struct address_space
*mapping
)
354 pgoff_t indices
[PAGEVEC_SIZE
];
357 pagevec_init(&pvec
, 0);
359 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
361 while (!mapping_unevictable(mapping
)) {
363 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
364 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
366 pvec
.nr
= find_get_entries(mapping
, index
,
367 PAGEVEC_SIZE
, pvec
.pages
, indices
);
370 index
= indices
[pvec
.nr
- 1] + 1;
371 pagevec_remove_exceptionals(&pvec
);
372 check_move_unevictable_pages(pvec
.pages
, pvec
.nr
);
373 pagevec_release(&pvec
);
379 * Remove range of pages and swap entries from radix tree, and free them.
380 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
382 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
385 struct address_space
*mapping
= inode
->i_mapping
;
386 struct shmem_inode_info
*info
= SHMEM_I(inode
);
387 pgoff_t start
= (lstart
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
388 pgoff_t end
= (lend
+ 1) >> PAGE_CACHE_SHIFT
;
389 unsigned int partial_start
= lstart
& (PAGE_CACHE_SIZE
- 1);
390 unsigned int partial_end
= (lend
+ 1) & (PAGE_CACHE_SIZE
- 1);
392 pgoff_t indices
[PAGEVEC_SIZE
];
393 long nr_swaps_freed
= 0;
398 end
= -1; /* unsigned, so actually very big */
400 pagevec_init(&pvec
, 0);
402 while (index
< end
) {
403 pvec
.nr
= find_get_entries(mapping
, index
,
404 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
405 pvec
.pages
, indices
);
408 mem_cgroup_uncharge_start();
409 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
410 struct page
*page
= pvec
.pages
[i
];
416 if (radix_tree_exceptional_entry(page
)) {
419 nr_swaps_freed
+= !shmem_free_swap(mapping
,
424 if (!trylock_page(page
))
426 if (!unfalloc
|| !PageUptodate(page
)) {
427 if (page
->mapping
== mapping
) {
428 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
429 truncate_inode_page(mapping
, page
);
434 pagevec_remove_exceptionals(&pvec
);
435 pagevec_release(&pvec
);
436 mem_cgroup_uncharge_end();
442 struct page
*page
= NULL
;
443 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
, NULL
);
445 unsigned int top
= PAGE_CACHE_SIZE
;
450 zero_user_segment(page
, partial_start
, top
);
451 set_page_dirty(page
);
453 page_cache_release(page
);
457 struct page
*page
= NULL
;
458 shmem_getpage(inode
, end
, &page
, SGP_READ
, NULL
);
460 zero_user_segment(page
, 0, partial_end
);
461 set_page_dirty(page
);
463 page_cache_release(page
);
473 pvec
.nr
= find_get_entries(mapping
, index
,
474 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
475 pvec
.pages
, indices
);
477 if (index
== start
|| unfalloc
)
482 if ((index
== start
|| unfalloc
) && indices
[0] >= end
) {
483 pagevec_remove_exceptionals(&pvec
);
484 pagevec_release(&pvec
);
487 mem_cgroup_uncharge_start();
488 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
489 struct page
*page
= pvec
.pages
[i
];
495 if (radix_tree_exceptional_entry(page
)) {
498 nr_swaps_freed
+= !shmem_free_swap(mapping
,
504 if (!unfalloc
|| !PageUptodate(page
)) {
505 if (page
->mapping
== mapping
) {
506 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
507 truncate_inode_page(mapping
, page
);
512 pagevec_remove_exceptionals(&pvec
);
513 pagevec_release(&pvec
);
514 mem_cgroup_uncharge_end();
518 spin_lock(&info
->lock
);
519 info
->swapped
-= nr_swaps_freed
;
520 shmem_recalc_inode(inode
);
521 spin_unlock(&info
->lock
);
524 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
526 shmem_undo_range(inode
, lstart
, lend
, false);
527 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
529 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
531 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
533 struct inode
*inode
= dentry
->d_inode
;
536 error
= inode_change_ok(inode
, attr
);
540 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
541 loff_t oldsize
= inode
->i_size
;
542 loff_t newsize
= attr
->ia_size
;
544 if (newsize
!= oldsize
) {
545 i_size_write(inode
, newsize
);
546 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
548 if (newsize
< oldsize
) {
549 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
550 unmap_mapping_range(inode
->i_mapping
, holebegin
, 0, 1);
551 shmem_truncate_range(inode
, newsize
, (loff_t
)-1);
552 /* unmap again to remove racily COWed private pages */
553 unmap_mapping_range(inode
->i_mapping
, holebegin
, 0, 1);
557 setattr_copy(inode
, attr
);
558 if (attr
->ia_valid
& ATTR_MODE
)
559 error
= posix_acl_chmod(inode
, inode
->i_mode
);
563 static void shmem_evict_inode(struct inode
*inode
)
565 struct shmem_inode_info
*info
= SHMEM_I(inode
);
567 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
568 shmem_unacct_size(info
->flags
, inode
->i_size
);
570 shmem_truncate_range(inode
, 0, (loff_t
)-1);
571 if (!list_empty(&info
->swaplist
)) {
572 mutex_lock(&shmem_swaplist_mutex
);
573 list_del_init(&info
->swaplist
);
574 mutex_unlock(&shmem_swaplist_mutex
);
577 kfree(info
->symlink
);
579 simple_xattrs_free(&info
->xattrs
);
580 WARN_ON(inode
->i_blocks
);
581 shmem_free_inode(inode
->i_sb
);
586 * If swap found in inode, free it and move page from swapcache to filecache.
588 static int shmem_unuse_inode(struct shmem_inode_info
*info
,
589 swp_entry_t swap
, struct page
**pagep
)
591 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
597 radswap
= swp_to_radix_entry(swap
);
598 index
= radix_tree_locate_item(&mapping
->page_tree
, radswap
);
603 * Move _head_ to start search for next from here.
604 * But be careful: shmem_evict_inode checks list_empty without taking
605 * mutex, and there's an instant in list_move_tail when info->swaplist
606 * would appear empty, if it were the only one on shmem_swaplist.
608 if (shmem_swaplist
.next
!= &info
->swaplist
)
609 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
611 gfp
= mapping_gfp_mask(mapping
);
612 if (shmem_should_replace_page(*pagep
, gfp
)) {
613 mutex_unlock(&shmem_swaplist_mutex
);
614 error
= shmem_replace_page(pagep
, gfp
, info
, index
);
615 mutex_lock(&shmem_swaplist_mutex
);
617 * We needed to drop mutex to make that restrictive page
618 * allocation, but the inode might have been freed while we
619 * dropped it: although a racing shmem_evict_inode() cannot
620 * complete without emptying the radix_tree, our page lock
621 * on this swapcache page is not enough to prevent that -
622 * free_swap_and_cache() of our swap entry will only
623 * trylock_page(), removing swap from radix_tree whatever.
625 * We must not proceed to shmem_add_to_page_cache() if the
626 * inode has been freed, but of course we cannot rely on
627 * inode or mapping or info to check that. However, we can
628 * safely check if our swap entry is still in use (and here
629 * it can't have got reused for another page): if it's still
630 * in use, then the inode cannot have been freed yet, and we
631 * can safely proceed (if it's no longer in use, that tells
632 * nothing about the inode, but we don't need to unuse swap).
634 if (!page_swapcount(*pagep
))
639 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
640 * but also to hold up shmem_evict_inode(): so inode cannot be freed
641 * beneath us (pagelock doesn't help until the page is in pagecache).
644 error
= shmem_add_to_page_cache(*pagep
, mapping
, index
,
645 GFP_NOWAIT
, radswap
);
646 if (error
!= -ENOMEM
) {
648 * Truncation and eviction use free_swap_and_cache(), which
649 * only does trylock page: if we raced, best clean up here.
651 delete_from_swap_cache(*pagep
);
652 set_page_dirty(*pagep
);
654 spin_lock(&info
->lock
);
656 spin_unlock(&info
->lock
);
659 error
= 1; /* not an error, but entry was found */
665 * Search through swapped inodes to find and replace swap by page.
667 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
669 struct list_head
*this, *next
;
670 struct shmem_inode_info
*info
;
675 * There's a faint possibility that swap page was replaced before
676 * caller locked it: caller will come back later with the right page.
678 if (unlikely(!PageSwapCache(page
) || page_private(page
) != swap
.val
))
682 * Charge page using GFP_KERNEL while we can wait, before taking
683 * the shmem_swaplist_mutex which might hold up shmem_writepage().
684 * Charged back to the user (not to caller) when swap account is used.
686 error
= mem_cgroup_charge_file(page
, current
->mm
, GFP_KERNEL
);
689 /* No radix_tree_preload: swap entry keeps a place for page in tree */
691 mutex_lock(&shmem_swaplist_mutex
);
692 list_for_each_safe(this, next
, &shmem_swaplist
) {
693 info
= list_entry(this, struct shmem_inode_info
, swaplist
);
695 found
= shmem_unuse_inode(info
, swap
, &page
);
697 list_del_init(&info
->swaplist
);
702 mutex_unlock(&shmem_swaplist_mutex
);
708 page_cache_release(page
);
713 * Move the page from the page cache to the swap cache.
715 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
717 struct shmem_inode_info
*info
;
718 struct address_space
*mapping
;
723 BUG_ON(!PageLocked(page
));
724 mapping
= page
->mapping
;
726 inode
= mapping
->host
;
727 info
= SHMEM_I(inode
);
728 if (info
->flags
& VM_LOCKED
)
730 if (!total_swap_pages
)
734 * shmem_backing_dev_info's capabilities prevent regular writeback or
735 * sync from ever calling shmem_writepage; but a stacking filesystem
736 * might use ->writepage of its underlying filesystem, in which case
737 * tmpfs should write out to swap only in response to memory pressure,
738 * and not for the writeback threads or sync.
740 if (!wbc
->for_reclaim
) {
741 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
746 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
747 * value into swapfile.c, the only way we can correctly account for a
748 * fallocated page arriving here is now to initialize it and write it.
750 * That's okay for a page already fallocated earlier, but if we have
751 * not yet completed the fallocation, then (a) we want to keep track
752 * of this page in case we have to undo it, and (b) it may not be a
753 * good idea to continue anyway, once we're pushing into swap. So
754 * reactivate the page, and let shmem_fallocate() quit when too many.
756 if (!PageUptodate(page
)) {
757 if (inode
->i_private
) {
758 struct shmem_falloc
*shmem_falloc
;
759 spin_lock(&inode
->i_lock
);
760 shmem_falloc
= inode
->i_private
;
762 index
>= shmem_falloc
->start
&&
763 index
< shmem_falloc
->next
)
764 shmem_falloc
->nr_unswapped
++;
767 spin_unlock(&inode
->i_lock
);
771 clear_highpage(page
);
772 flush_dcache_page(page
);
773 SetPageUptodate(page
);
776 swap
= get_swap_page();
781 * Add inode to shmem_unuse()'s list of swapped-out inodes,
782 * if it's not already there. Do it now before the page is
783 * moved to swap cache, when its pagelock no longer protects
784 * the inode from eviction. But don't unlock the mutex until
785 * we've incremented swapped, because shmem_unuse_inode() will
786 * prune a !swapped inode from the swaplist under this mutex.
788 mutex_lock(&shmem_swaplist_mutex
);
789 if (list_empty(&info
->swaplist
))
790 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
792 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
793 swap_shmem_alloc(swap
);
794 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
796 spin_lock(&info
->lock
);
798 shmem_recalc_inode(inode
);
799 spin_unlock(&info
->lock
);
801 mutex_unlock(&shmem_swaplist_mutex
);
802 BUG_ON(page_mapped(page
));
803 swap_writepage(page
, wbc
);
807 mutex_unlock(&shmem_swaplist_mutex
);
808 swapcache_free(swap
, NULL
);
810 set_page_dirty(page
);
811 if (wbc
->for_reclaim
)
812 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
819 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
823 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
824 return; /* show nothing */
826 mpol_to_str(buffer
, sizeof(buffer
), mpol
);
828 seq_printf(seq
, ",mpol=%s", buffer
);
831 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
833 struct mempolicy
*mpol
= NULL
;
835 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
838 spin_unlock(&sbinfo
->stat_lock
);
842 #endif /* CONFIG_TMPFS */
844 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
845 struct shmem_inode_info
*info
, pgoff_t index
)
847 struct vm_area_struct pvma
;
850 /* Create a pseudo vma that just contains the policy */
852 /* Bias interleave by inode number to distribute better across nodes */
853 pvma
.vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
855 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
857 page
= swapin_readahead(swap
, gfp
, &pvma
, 0);
859 /* Drop reference taken by mpol_shared_policy_lookup() */
860 mpol_cond_put(pvma
.vm_policy
);
865 static struct page
*shmem_alloc_page(gfp_t gfp
,
866 struct shmem_inode_info
*info
, pgoff_t index
)
868 struct vm_area_struct pvma
;
871 /* Create a pseudo vma that just contains the policy */
873 /* Bias interleave by inode number to distribute better across nodes */
874 pvma
.vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
876 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
878 page
= alloc_page_vma(gfp
, &pvma
, 0);
880 /* Drop reference taken by mpol_shared_policy_lookup() */
881 mpol_cond_put(pvma
.vm_policy
);
885 #else /* !CONFIG_NUMA */
887 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
890 #endif /* CONFIG_TMPFS */
892 static inline struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
893 struct shmem_inode_info
*info
, pgoff_t index
)
895 return swapin_readahead(swap
, gfp
, NULL
, 0);
898 static inline struct page
*shmem_alloc_page(gfp_t gfp
,
899 struct shmem_inode_info
*info
, pgoff_t index
)
901 return alloc_page(gfp
);
903 #endif /* CONFIG_NUMA */
905 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
906 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
913 * When a page is moved from swapcache to shmem filecache (either by the
914 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
915 * shmem_unuse_inode()), it may have been read in earlier from swap, in
916 * ignorance of the mapping it belongs to. If that mapping has special
917 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
918 * we may need to copy to a suitable page before moving to filecache.
920 * In a future release, this may well be extended to respect cpuset and
921 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
922 * but for now it is a simple matter of zone.
924 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
926 return page_zonenum(page
) > gfp_zone(gfp
);
929 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
930 struct shmem_inode_info
*info
, pgoff_t index
)
932 struct page
*oldpage
, *newpage
;
933 struct address_space
*swap_mapping
;
938 swap_index
= page_private(oldpage
);
939 swap_mapping
= page_mapping(oldpage
);
942 * We have arrived here because our zones are constrained, so don't
943 * limit chance of success by further cpuset and node constraints.
945 gfp
&= ~GFP_CONSTRAINT_MASK
;
946 newpage
= shmem_alloc_page(gfp
, info
, index
);
950 page_cache_get(newpage
);
951 copy_highpage(newpage
, oldpage
);
952 flush_dcache_page(newpage
);
954 __set_page_locked(newpage
);
955 SetPageUptodate(newpage
);
956 SetPageSwapBacked(newpage
);
957 set_page_private(newpage
, swap_index
);
958 SetPageSwapCache(newpage
);
961 * Our caller will very soon move newpage out of swapcache, but it's
962 * a nice clean interface for us to replace oldpage by newpage there.
964 spin_lock_irq(&swap_mapping
->tree_lock
);
965 error
= shmem_radix_tree_replace(swap_mapping
, swap_index
, oldpage
,
968 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
969 __dec_zone_page_state(oldpage
, NR_FILE_PAGES
);
971 spin_unlock_irq(&swap_mapping
->tree_lock
);
973 if (unlikely(error
)) {
975 * Is this possible? I think not, now that our callers check
976 * both PageSwapCache and page_private after getting page lock;
977 * but be defensive. Reverse old to newpage for clear and free.
981 mem_cgroup_replace_page_cache(oldpage
, newpage
);
982 lru_cache_add_anon(newpage
);
986 ClearPageSwapCache(oldpage
);
987 set_page_private(oldpage
, 0);
989 unlock_page(oldpage
);
990 page_cache_release(oldpage
);
991 page_cache_release(oldpage
);
996 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
998 * If we allocate a new one we do not mark it dirty. That's up to the
999 * vm. If we swap it in we mark it dirty since we also free the swap
1000 * entry since a page cannot live in both the swap and page cache
1002 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1003 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
, int *fault_type
)
1005 struct address_space
*mapping
= inode
->i_mapping
;
1006 struct shmem_inode_info
*info
;
1007 struct shmem_sb_info
*sbinfo
;
1014 if (index
> (MAX_LFS_FILESIZE
>> PAGE_CACHE_SHIFT
))
1018 page
= find_lock_entry(mapping
, index
);
1019 if (radix_tree_exceptional_entry(page
)) {
1020 swap
= radix_to_swp_entry(page
);
1024 if (sgp
!= SGP_WRITE
&& sgp
!= SGP_FALLOC
&&
1025 ((loff_t
)index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
1030 /* fallocated page? */
1031 if (page
&& !PageUptodate(page
)) {
1032 if (sgp
!= SGP_READ
)
1035 page_cache_release(page
);
1038 if (page
|| (sgp
== SGP_READ
&& !swap
.val
)) {
1044 * Fast cache lookup did not find it:
1045 * bring it back from swap or allocate.
1047 info
= SHMEM_I(inode
);
1048 sbinfo
= SHMEM_SB(inode
->i_sb
);
1051 /* Look it up and read it in.. */
1052 page
= lookup_swap_cache(swap
);
1054 /* here we actually do the io */
1056 *fault_type
|= VM_FAULT_MAJOR
;
1057 page
= shmem_swapin(swap
, gfp
, info
, index
);
1064 /* We have to do this with page locked to prevent races */
1066 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1067 !shmem_confirm_swap(mapping
, index
, swap
)) {
1068 error
= -EEXIST
; /* try again */
1071 if (!PageUptodate(page
)) {
1075 wait_on_page_writeback(page
);
1077 if (shmem_should_replace_page(page
, gfp
)) {
1078 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1083 error
= mem_cgroup_charge_file(page
, current
->mm
,
1084 gfp
& GFP_RECLAIM_MASK
);
1086 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1087 gfp
, swp_to_radix_entry(swap
));
1089 * We already confirmed swap under page lock, and make
1090 * no memory allocation here, so usually no possibility
1091 * of error; but free_swap_and_cache() only trylocks a
1092 * page, so it is just possible that the entry has been
1093 * truncated or holepunched since swap was confirmed.
1094 * shmem_undo_range() will have done some of the
1095 * unaccounting, now delete_from_swap_cache() will do
1096 * the rest (including mem_cgroup_uncharge_swapcache).
1097 * Reset swap.val? No, leave it so "failed" goes back to
1098 * "repeat": reading a hole and writing should succeed.
1101 delete_from_swap_cache(page
);
1106 spin_lock(&info
->lock
);
1108 shmem_recalc_inode(inode
);
1109 spin_unlock(&info
->lock
);
1111 delete_from_swap_cache(page
);
1112 set_page_dirty(page
);
1116 if (shmem_acct_block(info
->flags
)) {
1120 if (sbinfo
->max_blocks
) {
1121 if (percpu_counter_compare(&sbinfo
->used_blocks
,
1122 sbinfo
->max_blocks
) >= 0) {
1126 percpu_counter_inc(&sbinfo
->used_blocks
);
1129 page
= shmem_alloc_page(gfp
, info
, index
);
1135 SetPageSwapBacked(page
);
1136 __set_page_locked(page
);
1137 error
= mem_cgroup_charge_file(page
, current
->mm
,
1138 gfp
& GFP_RECLAIM_MASK
);
1141 error
= radix_tree_maybe_preload(gfp
& GFP_RECLAIM_MASK
);
1143 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1145 radix_tree_preload_end();
1148 mem_cgroup_uncharge_cache_page(page
);
1151 lru_cache_add_anon(page
);
1153 spin_lock(&info
->lock
);
1155 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
1156 shmem_recalc_inode(inode
);
1157 spin_unlock(&info
->lock
);
1161 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1163 if (sgp
== SGP_FALLOC
)
1167 * Let SGP_WRITE caller clear ends if write does not fill page;
1168 * but SGP_FALLOC on a page fallocated earlier must initialize
1169 * it now, lest undo on failure cancel our earlier guarantee.
1171 if (sgp
!= SGP_WRITE
) {
1172 clear_highpage(page
);
1173 flush_dcache_page(page
);
1174 SetPageUptodate(page
);
1176 if (sgp
== SGP_DIRTY
)
1177 set_page_dirty(page
);
1180 /* Perhaps the file has been truncated since we checked */
1181 if (sgp
!= SGP_WRITE
&& sgp
!= SGP_FALLOC
&&
1182 ((loff_t
)index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
1196 info
= SHMEM_I(inode
);
1197 ClearPageDirty(page
);
1198 delete_from_page_cache(page
);
1199 spin_lock(&info
->lock
);
1201 inode
->i_blocks
-= BLOCKS_PER_PAGE
;
1202 spin_unlock(&info
->lock
);
1204 sbinfo
= SHMEM_SB(inode
->i_sb
);
1205 if (sbinfo
->max_blocks
)
1206 percpu_counter_add(&sbinfo
->used_blocks
, -1);
1208 shmem_unacct_blocks(info
->flags
, 1);
1210 if (swap
.val
&& error
!= -EINVAL
&&
1211 !shmem_confirm_swap(mapping
, index
, swap
))
1216 page_cache_release(page
);
1218 if (error
== -ENOSPC
&& !once
++) {
1219 info
= SHMEM_I(inode
);
1220 spin_lock(&info
->lock
);
1221 shmem_recalc_inode(inode
);
1222 spin_unlock(&info
->lock
);
1225 if (error
== -EEXIST
) /* from above or from radix_tree_insert */
1230 static int shmem_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1232 struct inode
*inode
= file_inode(vma
->vm_file
);
1234 int ret
= VM_FAULT_LOCKED
;
1236 error
= shmem_getpage(inode
, vmf
->pgoff
, &vmf
->page
, SGP_CACHE
, &ret
);
1238 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1240 if (ret
& VM_FAULT_MAJOR
) {
1241 count_vm_event(PGMAJFAULT
);
1242 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
1248 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
1250 struct inode
*inode
= file_inode(vma
->vm_file
);
1251 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
1254 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
1257 struct inode
*inode
= file_inode(vma
->vm_file
);
1260 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
1261 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
1265 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
1267 struct inode
*inode
= file_inode(file
);
1268 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1269 int retval
= -ENOMEM
;
1271 spin_lock(&info
->lock
);
1272 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
1273 if (!user_shm_lock(inode
->i_size
, user
))
1275 info
->flags
|= VM_LOCKED
;
1276 mapping_set_unevictable(file
->f_mapping
);
1278 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
1279 user_shm_unlock(inode
->i_size
, user
);
1280 info
->flags
&= ~VM_LOCKED
;
1281 mapping_clear_unevictable(file
->f_mapping
);
1286 spin_unlock(&info
->lock
);
1290 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1292 file_accessed(file
);
1293 vma
->vm_ops
= &shmem_vm_ops
;
1297 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
1298 umode_t mode
, dev_t dev
, unsigned long flags
)
1300 struct inode
*inode
;
1301 struct shmem_inode_info
*info
;
1302 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
1304 if (shmem_reserve_inode(sb
))
1307 inode
= new_inode(sb
);
1309 inode
->i_ino
= get_next_ino();
1310 inode_init_owner(inode
, dir
, mode
);
1311 inode
->i_blocks
= 0;
1312 inode
->i_mapping
->backing_dev_info
= &shmem_backing_dev_info
;
1313 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1314 inode
->i_generation
= get_seconds();
1315 info
= SHMEM_I(inode
);
1316 memset(info
, 0, (char *)inode
- (char *)info
);
1317 spin_lock_init(&info
->lock
);
1318 info
->flags
= flags
& VM_NORESERVE
;
1319 INIT_LIST_HEAD(&info
->swaplist
);
1320 simple_xattrs_init(&info
->xattrs
);
1321 cache_no_acl(inode
);
1323 switch (mode
& S_IFMT
) {
1325 inode
->i_op
= &shmem_special_inode_operations
;
1326 init_special_inode(inode
, mode
, dev
);
1329 inode
->i_mapping
->a_ops
= &shmem_aops
;
1330 inode
->i_op
= &shmem_inode_operations
;
1331 inode
->i_fop
= &shmem_file_operations
;
1332 mpol_shared_policy_init(&info
->policy
,
1333 shmem_get_sbmpol(sbinfo
));
1337 /* Some things misbehave if size == 0 on a directory */
1338 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
1339 inode
->i_op
= &shmem_dir_inode_operations
;
1340 inode
->i_fop
= &simple_dir_operations
;
1344 * Must not load anything in the rbtree,
1345 * mpol_free_shared_policy will not be called.
1347 mpol_shared_policy_init(&info
->policy
, NULL
);
1351 shmem_free_inode(sb
);
1355 bool shmem_mapping(struct address_space
*mapping
)
1357 return mapping
->backing_dev_info
== &shmem_backing_dev_info
;
1361 static const struct inode_operations shmem_symlink_inode_operations
;
1362 static const struct inode_operations shmem_short_symlink_operations
;
1364 #ifdef CONFIG_TMPFS_XATTR
1365 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
1367 #define shmem_initxattrs NULL
1371 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
1372 loff_t pos
, unsigned len
, unsigned flags
,
1373 struct page
**pagep
, void **fsdata
)
1375 struct inode
*inode
= mapping
->host
;
1376 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1377 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
, NULL
);
1381 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
1382 loff_t pos
, unsigned len
, unsigned copied
,
1383 struct page
*page
, void *fsdata
)
1385 struct inode
*inode
= mapping
->host
;
1387 if (pos
+ copied
> inode
->i_size
)
1388 i_size_write(inode
, pos
+ copied
);
1390 if (!PageUptodate(page
)) {
1391 if (copied
< PAGE_CACHE_SIZE
) {
1392 unsigned from
= pos
& (PAGE_CACHE_SIZE
- 1);
1393 zero_user_segments(page
, 0, from
,
1394 from
+ copied
, PAGE_CACHE_SIZE
);
1396 SetPageUptodate(page
);
1398 set_page_dirty(page
);
1400 page_cache_release(page
);
1405 static ssize_t
shmem_file_aio_read(struct kiocb
*iocb
,
1406 const struct iovec
*iov
, unsigned long nr_segs
, loff_t pos
)
1408 struct file
*file
= iocb
->ki_filp
;
1409 struct inode
*inode
= file_inode(file
);
1410 struct address_space
*mapping
= inode
->i_mapping
;
1412 unsigned long offset
;
1413 enum sgp_type sgp
= SGP_READ
;
1417 loff_t
*ppos
= &iocb
->ki_pos
;
1418 struct iov_iter iter
;
1420 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1423 iov_iter_init(&iter
, iov
, nr_segs
, count
, 0);
1426 * Might this read be for a stacking filesystem? Then when reading
1427 * holes of a sparse file, we actually need to allocate those pages,
1428 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1430 if (segment_eq(get_fs(), KERNEL_DS
))
1433 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1434 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1437 struct page
*page
= NULL
;
1439 unsigned long nr
, ret
;
1440 loff_t i_size
= i_size_read(inode
);
1442 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1443 if (index
> end_index
)
1445 if (index
== end_index
) {
1446 nr
= i_size
& ~PAGE_CACHE_MASK
;
1451 error
= shmem_getpage(inode
, index
, &page
, sgp
, NULL
);
1453 if (error
== -EINVAL
)
1461 * We must evaluate after, since reads (unlike writes)
1462 * are called without i_mutex protection against truncate
1464 nr
= PAGE_CACHE_SIZE
;
1465 i_size
= i_size_read(inode
);
1466 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1467 if (index
== end_index
) {
1468 nr
= i_size
& ~PAGE_CACHE_MASK
;
1471 page_cache_release(page
);
1479 * If users can be writing to this page using arbitrary
1480 * virtual addresses, take care about potential aliasing
1481 * before reading the page on the kernel side.
1483 if (mapping_writably_mapped(mapping
))
1484 flush_dcache_page(page
);
1486 * Mark the page accessed if we read the beginning.
1489 mark_page_accessed(page
);
1491 page
= ZERO_PAGE(0);
1492 page_cache_get(page
);
1496 * Ok, we have the page, and it's up-to-date, so
1497 * now we can copy it to user space...
1499 ret
= copy_page_to_iter(page
, offset
, nr
, &iter
);
1502 index
+= offset
>> PAGE_CACHE_SHIFT
;
1503 offset
&= ~PAGE_CACHE_MASK
;
1505 page_cache_release(page
);
1506 if (!iov_iter_count(&iter
))
1515 *ppos
= ((loff_t
) index
<< PAGE_CACHE_SHIFT
) + offset
;
1516 file_accessed(file
);
1517 return retval
? retval
: error
;
1520 static ssize_t
shmem_file_splice_read(struct file
*in
, loff_t
*ppos
,
1521 struct pipe_inode_info
*pipe
, size_t len
,
1524 struct address_space
*mapping
= in
->f_mapping
;
1525 struct inode
*inode
= mapping
->host
;
1526 unsigned int loff
, nr_pages
, req_pages
;
1527 struct page
*pages
[PIPE_DEF_BUFFERS
];
1528 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1530 pgoff_t index
, end_index
;
1533 struct splice_pipe_desc spd
= {
1536 .nr_pages_max
= PIPE_DEF_BUFFERS
,
1538 .ops
= &page_cache_pipe_buf_ops
,
1539 .spd_release
= spd_release_page
,
1542 isize
= i_size_read(inode
);
1543 if (unlikely(*ppos
>= isize
))
1546 left
= isize
- *ppos
;
1547 if (unlikely(left
< len
))
1550 if (splice_grow_spd(pipe
, &spd
))
1553 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1554 loff
= *ppos
& ~PAGE_CACHE_MASK
;
1555 req_pages
= (len
+ loff
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1556 nr_pages
= min(req_pages
, spd
.nr_pages_max
);
1558 spd
.nr_pages
= find_get_pages_contig(mapping
, index
,
1559 nr_pages
, spd
.pages
);
1560 index
+= spd
.nr_pages
;
1563 while (spd
.nr_pages
< nr_pages
) {
1564 error
= shmem_getpage(inode
, index
, &page
, SGP_CACHE
, NULL
);
1568 spd
.pages
[spd
.nr_pages
++] = page
;
1572 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1573 nr_pages
= spd
.nr_pages
;
1576 for (page_nr
= 0; page_nr
< nr_pages
; page_nr
++) {
1577 unsigned int this_len
;
1582 this_len
= min_t(unsigned long, len
, PAGE_CACHE_SIZE
- loff
);
1583 page
= spd
.pages
[page_nr
];
1585 if (!PageUptodate(page
) || page
->mapping
!= mapping
) {
1586 error
= shmem_getpage(inode
, index
, &page
,
1591 page_cache_release(spd
.pages
[page_nr
]);
1592 spd
.pages
[page_nr
] = page
;
1595 isize
= i_size_read(inode
);
1596 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1597 if (unlikely(!isize
|| index
> end_index
))
1600 if (end_index
== index
) {
1603 plen
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1607 this_len
= min(this_len
, plen
- loff
);
1611 spd
.partial
[page_nr
].offset
= loff
;
1612 spd
.partial
[page_nr
].len
= this_len
;
1619 while (page_nr
< nr_pages
)
1620 page_cache_release(spd
.pages
[page_nr
++]);
1623 error
= splice_to_pipe(pipe
, &spd
);
1625 splice_shrink_spd(&spd
);
1635 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1637 static pgoff_t
shmem_seek_hole_data(struct address_space
*mapping
,
1638 pgoff_t index
, pgoff_t end
, int whence
)
1641 struct pagevec pvec
;
1642 pgoff_t indices
[PAGEVEC_SIZE
];
1646 pagevec_init(&pvec
, 0);
1647 pvec
.nr
= 1; /* start small: we may be there already */
1649 pvec
.nr
= find_get_entries(mapping
, index
,
1650 pvec
.nr
, pvec
.pages
, indices
);
1652 if (whence
== SEEK_DATA
)
1656 for (i
= 0; i
< pvec
.nr
; i
++, index
++) {
1657 if (index
< indices
[i
]) {
1658 if (whence
== SEEK_HOLE
) {
1664 page
= pvec
.pages
[i
];
1665 if (page
&& !radix_tree_exceptional_entry(page
)) {
1666 if (!PageUptodate(page
))
1670 (page
&& whence
== SEEK_DATA
) ||
1671 (!page
&& whence
== SEEK_HOLE
)) {
1676 pagevec_remove_exceptionals(&pvec
);
1677 pagevec_release(&pvec
);
1678 pvec
.nr
= PAGEVEC_SIZE
;
1684 static loff_t
shmem_file_llseek(struct file
*file
, loff_t offset
, int whence
)
1686 struct address_space
*mapping
= file
->f_mapping
;
1687 struct inode
*inode
= mapping
->host
;
1691 if (whence
!= SEEK_DATA
&& whence
!= SEEK_HOLE
)
1692 return generic_file_llseek_size(file
, offset
, whence
,
1693 MAX_LFS_FILESIZE
, i_size_read(inode
));
1694 mutex_lock(&inode
->i_mutex
);
1695 /* We're holding i_mutex so we can access i_size directly */
1699 else if (offset
>= inode
->i_size
)
1702 start
= offset
>> PAGE_CACHE_SHIFT
;
1703 end
= (inode
->i_size
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1704 new_offset
= shmem_seek_hole_data(mapping
, start
, end
, whence
);
1705 new_offset
<<= PAGE_CACHE_SHIFT
;
1706 if (new_offset
> offset
) {
1707 if (new_offset
< inode
->i_size
)
1708 offset
= new_offset
;
1709 else if (whence
== SEEK_DATA
)
1712 offset
= inode
->i_size
;
1717 offset
= vfs_setpos(file
, offset
, MAX_LFS_FILESIZE
);
1718 mutex_unlock(&inode
->i_mutex
);
1722 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
1725 struct inode
*inode
= file_inode(file
);
1726 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1727 struct shmem_falloc shmem_falloc
;
1728 pgoff_t start
, index
, end
;
1731 mutex_lock(&inode
->i_mutex
);
1733 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
1734 struct address_space
*mapping
= file
->f_mapping
;
1735 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
1736 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
1738 if ((u64
)unmap_end
> (u64
)unmap_start
)
1739 unmap_mapping_range(mapping
, unmap_start
,
1740 1 + unmap_end
- unmap_start
, 0);
1741 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
1742 /* No need to unmap again: hole-punching leaves COWed pages */
1747 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1748 error
= inode_newsize_ok(inode
, offset
+ len
);
1752 start
= offset
>> PAGE_CACHE_SHIFT
;
1753 end
= (offset
+ len
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1754 /* Try to avoid a swapstorm if len is impossible to satisfy */
1755 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
1760 shmem_falloc
.start
= start
;
1761 shmem_falloc
.next
= start
;
1762 shmem_falloc
.nr_falloced
= 0;
1763 shmem_falloc
.nr_unswapped
= 0;
1764 spin_lock(&inode
->i_lock
);
1765 inode
->i_private
= &shmem_falloc
;
1766 spin_unlock(&inode
->i_lock
);
1768 for (index
= start
; index
< end
; index
++) {
1772 * Good, the fallocate(2) manpage permits EINTR: we may have
1773 * been interrupted because we are using up too much memory.
1775 if (signal_pending(current
))
1777 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
1780 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
,
1783 /* Remove the !PageUptodate pages we added */
1784 shmem_undo_range(inode
,
1785 (loff_t
)start
<< PAGE_CACHE_SHIFT
,
1786 (loff_t
)index
<< PAGE_CACHE_SHIFT
, true);
1791 * Inform shmem_writepage() how far we have reached.
1792 * No need for lock or barrier: we have the page lock.
1794 shmem_falloc
.next
++;
1795 if (!PageUptodate(page
))
1796 shmem_falloc
.nr_falloced
++;
1799 * If !PageUptodate, leave it that way so that freeable pages
1800 * can be recognized if we need to rollback on error later.
1801 * But set_page_dirty so that memory pressure will swap rather
1802 * than free the pages we are allocating (and SGP_CACHE pages
1803 * might still be clean: we now need to mark those dirty too).
1805 set_page_dirty(page
);
1807 page_cache_release(page
);
1811 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
1812 i_size_write(inode
, offset
+ len
);
1813 inode
->i_ctime
= CURRENT_TIME
;
1815 spin_lock(&inode
->i_lock
);
1816 inode
->i_private
= NULL
;
1817 spin_unlock(&inode
->i_lock
);
1819 mutex_unlock(&inode
->i_mutex
);
1823 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
1825 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
1827 buf
->f_type
= TMPFS_MAGIC
;
1828 buf
->f_bsize
= PAGE_CACHE_SIZE
;
1829 buf
->f_namelen
= NAME_MAX
;
1830 if (sbinfo
->max_blocks
) {
1831 buf
->f_blocks
= sbinfo
->max_blocks
;
1833 buf
->f_bfree
= sbinfo
->max_blocks
-
1834 percpu_counter_sum(&sbinfo
->used_blocks
);
1836 if (sbinfo
->max_inodes
) {
1837 buf
->f_files
= sbinfo
->max_inodes
;
1838 buf
->f_ffree
= sbinfo
->free_inodes
;
1840 /* else leave those fields 0 like simple_statfs */
1845 * File creation. Allocate an inode, and we're done..
1848 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
1850 struct inode
*inode
;
1851 int error
= -ENOSPC
;
1853 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
1855 error
= simple_acl_create(dir
, inode
);
1858 error
= security_inode_init_security(inode
, dir
,
1860 shmem_initxattrs
, NULL
);
1861 if (error
&& error
!= -EOPNOTSUPP
)
1865 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1866 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1867 d_instantiate(dentry
, inode
);
1868 dget(dentry
); /* Extra count - pin the dentry in core */
1877 shmem_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
1879 struct inode
*inode
;
1880 int error
= -ENOSPC
;
1882 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, 0, VM_NORESERVE
);
1884 error
= security_inode_init_security(inode
, dir
,
1886 shmem_initxattrs
, NULL
);
1887 if (error
&& error
!= -EOPNOTSUPP
)
1889 error
= simple_acl_create(dir
, inode
);
1892 d_tmpfile(dentry
, inode
);
1900 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
1904 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
1910 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
1913 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
1919 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1921 struct inode
*inode
= old_dentry
->d_inode
;
1925 * No ordinary (disk based) filesystem counts links as inodes;
1926 * but each new link needs a new dentry, pinning lowmem, and
1927 * tmpfs dentries cannot be pruned until they are unlinked.
1929 ret
= shmem_reserve_inode(inode
->i_sb
);
1933 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1934 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1936 ihold(inode
); /* New dentry reference */
1937 dget(dentry
); /* Extra pinning count for the created dentry */
1938 d_instantiate(dentry
, inode
);
1943 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
1945 struct inode
*inode
= dentry
->d_inode
;
1947 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
1948 shmem_free_inode(inode
->i_sb
);
1950 dir
->i_size
-= BOGO_DIRENT_SIZE
;
1951 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1953 dput(dentry
); /* Undo the count from "create" - this does all the work */
1957 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1959 if (!simple_empty(dentry
))
1962 drop_nlink(dentry
->d_inode
);
1964 return shmem_unlink(dir
, dentry
);
1968 * The VFS layer already does all the dentry stuff for rename,
1969 * we just have to decrement the usage count for the target if
1970 * it exists so that the VFS layer correctly free's it when it
1973 static int shmem_rename(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
1975 struct inode
*inode
= old_dentry
->d_inode
;
1976 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
1978 if (!simple_empty(new_dentry
))
1981 if (new_dentry
->d_inode
) {
1982 (void) shmem_unlink(new_dir
, new_dentry
);
1984 drop_nlink(old_dir
);
1985 } else if (they_are_dirs
) {
1986 drop_nlink(old_dir
);
1990 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
1991 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
1992 old_dir
->i_ctime
= old_dir
->i_mtime
=
1993 new_dir
->i_ctime
= new_dir
->i_mtime
=
1994 inode
->i_ctime
= CURRENT_TIME
;
1998 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
2002 struct inode
*inode
;
2005 struct shmem_inode_info
*info
;
2007 len
= strlen(symname
) + 1;
2008 if (len
> PAGE_CACHE_SIZE
)
2009 return -ENAMETOOLONG
;
2011 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0, VM_NORESERVE
);
2015 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
2016 shmem_initxattrs
, NULL
);
2018 if (error
!= -EOPNOTSUPP
) {
2025 info
= SHMEM_I(inode
);
2026 inode
->i_size
= len
-1;
2027 if (len
<= SHORT_SYMLINK_LEN
) {
2028 info
->symlink
= kmemdup(symname
, len
, GFP_KERNEL
);
2029 if (!info
->symlink
) {
2033 inode
->i_op
= &shmem_short_symlink_operations
;
2035 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
, NULL
);
2040 inode
->i_mapping
->a_ops
= &shmem_aops
;
2041 inode
->i_op
= &shmem_symlink_inode_operations
;
2042 kaddr
= kmap_atomic(page
);
2043 memcpy(kaddr
, symname
, len
);
2044 kunmap_atomic(kaddr
);
2045 SetPageUptodate(page
);
2046 set_page_dirty(page
);
2048 page_cache_release(page
);
2050 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2051 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2052 d_instantiate(dentry
, inode
);
2057 static void *shmem_follow_short_symlink(struct dentry
*dentry
, struct nameidata
*nd
)
2059 nd_set_link(nd
, SHMEM_I(dentry
->d_inode
)->symlink
);
2063 static void *shmem_follow_link(struct dentry
*dentry
, struct nameidata
*nd
)
2065 struct page
*page
= NULL
;
2066 int error
= shmem_getpage(dentry
->d_inode
, 0, &page
, SGP_READ
, NULL
);
2067 nd_set_link(nd
, error
? ERR_PTR(error
) : kmap(page
));
2073 static void shmem_put_link(struct dentry
*dentry
, struct nameidata
*nd
, void *cookie
)
2075 if (!IS_ERR(nd_get_link(nd
))) {
2076 struct page
*page
= cookie
;
2078 mark_page_accessed(page
);
2079 page_cache_release(page
);
2083 #ifdef CONFIG_TMPFS_XATTR
2085 * Superblocks without xattr inode operations may get some security.* xattr
2086 * support from the LSM "for free". As soon as we have any other xattrs
2087 * like ACLs, we also need to implement the security.* handlers at
2088 * filesystem level, though.
2092 * Callback for security_inode_init_security() for acquiring xattrs.
2094 static int shmem_initxattrs(struct inode
*inode
,
2095 const struct xattr
*xattr_array
,
2098 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2099 const struct xattr
*xattr
;
2100 struct simple_xattr
*new_xattr
;
2103 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
2104 new_xattr
= simple_xattr_alloc(xattr
->value
, xattr
->value_len
);
2108 len
= strlen(xattr
->name
) + 1;
2109 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
2111 if (!new_xattr
->name
) {
2116 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
2117 XATTR_SECURITY_PREFIX_LEN
);
2118 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
2121 simple_xattr_list_add(&info
->xattrs
, new_xattr
);
2127 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
2128 #ifdef CONFIG_TMPFS_POSIX_ACL
2129 &posix_acl_access_xattr_handler
,
2130 &posix_acl_default_xattr_handler
,
2135 static int shmem_xattr_validate(const char *name
)
2137 struct { const char *prefix
; size_t len
; } arr
[] = {
2138 { XATTR_SECURITY_PREFIX
, XATTR_SECURITY_PREFIX_LEN
},
2139 { XATTR_TRUSTED_PREFIX
, XATTR_TRUSTED_PREFIX_LEN
}
2143 for (i
= 0; i
< ARRAY_SIZE(arr
); i
++) {
2144 size_t preflen
= arr
[i
].len
;
2145 if (strncmp(name
, arr
[i
].prefix
, preflen
) == 0) {
2154 static ssize_t
shmem_getxattr(struct dentry
*dentry
, const char *name
,
2155 void *buffer
, size_t size
)
2157 struct shmem_inode_info
*info
= SHMEM_I(dentry
->d_inode
);
2161 * If this is a request for a synthetic attribute in the system.*
2162 * namespace use the generic infrastructure to resolve a handler
2163 * for it via sb->s_xattr.
2165 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2166 return generic_getxattr(dentry
, name
, buffer
, size
);
2168 err
= shmem_xattr_validate(name
);
2172 return simple_xattr_get(&info
->xattrs
, name
, buffer
, size
);
2175 static int shmem_setxattr(struct dentry
*dentry
, const char *name
,
2176 const void *value
, size_t size
, int flags
)
2178 struct shmem_inode_info
*info
= SHMEM_I(dentry
->d_inode
);
2182 * If this is a request for a synthetic attribute in the system.*
2183 * namespace use the generic infrastructure to resolve a handler
2184 * for it via sb->s_xattr.
2186 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2187 return generic_setxattr(dentry
, name
, value
, size
, flags
);
2189 err
= shmem_xattr_validate(name
);
2193 return simple_xattr_set(&info
->xattrs
, name
, value
, size
, flags
);
2196 static int shmem_removexattr(struct dentry
*dentry
, const char *name
)
2198 struct shmem_inode_info
*info
= SHMEM_I(dentry
->d_inode
);
2202 * If this is a request for a synthetic attribute in the system.*
2203 * namespace use the generic infrastructure to resolve a handler
2204 * for it via sb->s_xattr.
2206 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2207 return generic_removexattr(dentry
, name
);
2209 err
= shmem_xattr_validate(name
);
2213 return simple_xattr_remove(&info
->xattrs
, name
);
2216 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
2218 struct shmem_inode_info
*info
= SHMEM_I(dentry
->d_inode
);
2219 return simple_xattr_list(&info
->xattrs
, buffer
, size
);
2221 #endif /* CONFIG_TMPFS_XATTR */
2223 static const struct inode_operations shmem_short_symlink_operations
= {
2224 .readlink
= generic_readlink
,
2225 .follow_link
= shmem_follow_short_symlink
,
2226 #ifdef CONFIG_TMPFS_XATTR
2227 .setxattr
= shmem_setxattr
,
2228 .getxattr
= shmem_getxattr
,
2229 .listxattr
= shmem_listxattr
,
2230 .removexattr
= shmem_removexattr
,
2234 static const struct inode_operations shmem_symlink_inode_operations
= {
2235 .readlink
= generic_readlink
,
2236 .follow_link
= shmem_follow_link
,
2237 .put_link
= shmem_put_link
,
2238 #ifdef CONFIG_TMPFS_XATTR
2239 .setxattr
= shmem_setxattr
,
2240 .getxattr
= shmem_getxattr
,
2241 .listxattr
= shmem_listxattr
,
2242 .removexattr
= shmem_removexattr
,
2246 static struct dentry
*shmem_get_parent(struct dentry
*child
)
2248 return ERR_PTR(-ESTALE
);
2251 static int shmem_match(struct inode
*ino
, void *vfh
)
2255 inum
= (inum
<< 32) | fh
[1];
2256 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
2259 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
2260 struct fid
*fid
, int fh_len
, int fh_type
)
2262 struct inode
*inode
;
2263 struct dentry
*dentry
= NULL
;
2270 inum
= (inum
<< 32) | fid
->raw
[1];
2272 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
2273 shmem_match
, fid
->raw
);
2275 dentry
= d_find_alias(inode
);
2282 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
2283 struct inode
*parent
)
2287 return FILEID_INVALID
;
2290 if (inode_unhashed(inode
)) {
2291 /* Unfortunately insert_inode_hash is not idempotent,
2292 * so as we hash inodes here rather than at creation
2293 * time, we need a lock to ensure we only try
2296 static DEFINE_SPINLOCK(lock
);
2298 if (inode_unhashed(inode
))
2299 __insert_inode_hash(inode
,
2300 inode
->i_ino
+ inode
->i_generation
);
2304 fh
[0] = inode
->i_generation
;
2305 fh
[1] = inode
->i_ino
;
2306 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
2312 static const struct export_operations shmem_export_ops
= {
2313 .get_parent
= shmem_get_parent
,
2314 .encode_fh
= shmem_encode_fh
,
2315 .fh_to_dentry
= shmem_fh_to_dentry
,
2318 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
2321 char *this_char
, *value
, *rest
;
2322 struct mempolicy
*mpol
= NULL
;
2326 while (options
!= NULL
) {
2327 this_char
= options
;
2330 * NUL-terminate this option: unfortunately,
2331 * mount options form a comma-separated list,
2332 * but mpol's nodelist may also contain commas.
2334 options
= strchr(options
, ',');
2335 if (options
== NULL
)
2338 if (!isdigit(*options
)) {
2345 if ((value
= strchr(this_char
,'=')) != NULL
) {
2349 "tmpfs: No value for mount option '%s'\n",
2354 if (!strcmp(this_char
,"size")) {
2355 unsigned long long size
;
2356 size
= memparse(value
,&rest
);
2358 size
<<= PAGE_SHIFT
;
2359 size
*= totalram_pages
;
2365 sbinfo
->max_blocks
=
2366 DIV_ROUND_UP(size
, PAGE_CACHE_SIZE
);
2367 } else if (!strcmp(this_char
,"nr_blocks")) {
2368 sbinfo
->max_blocks
= memparse(value
, &rest
);
2371 } else if (!strcmp(this_char
,"nr_inodes")) {
2372 sbinfo
->max_inodes
= memparse(value
, &rest
);
2375 } else if (!strcmp(this_char
,"mode")) {
2378 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
2381 } else if (!strcmp(this_char
,"uid")) {
2384 uid
= simple_strtoul(value
, &rest
, 0);
2387 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
2388 if (!uid_valid(sbinfo
->uid
))
2390 } else if (!strcmp(this_char
,"gid")) {
2393 gid
= simple_strtoul(value
, &rest
, 0);
2396 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
2397 if (!gid_valid(sbinfo
->gid
))
2399 } else if (!strcmp(this_char
,"mpol")) {
2402 if (mpol_parse_str(value
, &mpol
))
2405 printk(KERN_ERR
"tmpfs: Bad mount option %s\n",
2410 sbinfo
->mpol
= mpol
;
2414 printk(KERN_ERR
"tmpfs: Bad value '%s' for mount option '%s'\n",
2422 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
2424 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2425 struct shmem_sb_info config
= *sbinfo
;
2426 unsigned long inodes
;
2427 int error
= -EINVAL
;
2430 if (shmem_parse_options(data
, &config
, true))
2433 spin_lock(&sbinfo
->stat_lock
);
2434 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
2435 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
2437 if (config
.max_inodes
< inodes
)
2440 * Those tests disallow limited->unlimited while any are in use;
2441 * but we must separately disallow unlimited->limited, because
2442 * in that case we have no record of how much is already in use.
2444 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
2446 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
2450 sbinfo
->max_blocks
= config
.max_blocks
;
2451 sbinfo
->max_inodes
= config
.max_inodes
;
2452 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
2455 * Preserve previous mempolicy unless mpol remount option was specified.
2458 mpol_put(sbinfo
->mpol
);
2459 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
2462 spin_unlock(&sbinfo
->stat_lock
);
2466 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
2468 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
2470 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
2471 seq_printf(seq
, ",size=%luk",
2472 sbinfo
->max_blocks
<< (PAGE_CACHE_SHIFT
- 10));
2473 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
2474 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
2475 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
2476 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
2477 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
2478 seq_printf(seq
, ",uid=%u",
2479 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
2480 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
2481 seq_printf(seq
, ",gid=%u",
2482 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
2483 shmem_show_mpol(seq
, sbinfo
->mpol
);
2486 #endif /* CONFIG_TMPFS */
2488 static void shmem_put_super(struct super_block
*sb
)
2490 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2492 percpu_counter_destroy(&sbinfo
->used_blocks
);
2493 mpol_put(sbinfo
->mpol
);
2495 sb
->s_fs_info
= NULL
;
2498 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
2500 struct inode
*inode
;
2501 struct shmem_sb_info
*sbinfo
;
2504 /* Round up to L1_CACHE_BYTES to resist false sharing */
2505 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
2506 L1_CACHE_BYTES
), GFP_KERNEL
);
2510 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
2511 sbinfo
->uid
= current_fsuid();
2512 sbinfo
->gid
= current_fsgid();
2513 sb
->s_fs_info
= sbinfo
;
2517 * Per default we only allow half of the physical ram per
2518 * tmpfs instance, limiting inodes to one per page of lowmem;
2519 * but the internal instance is left unlimited.
2521 if (!(sb
->s_flags
& MS_KERNMOUNT
)) {
2522 sbinfo
->max_blocks
= shmem_default_max_blocks();
2523 sbinfo
->max_inodes
= shmem_default_max_inodes();
2524 if (shmem_parse_options(data
, sbinfo
, false)) {
2529 sb
->s_flags
|= MS_NOUSER
;
2531 sb
->s_export_op
= &shmem_export_ops
;
2532 sb
->s_flags
|= MS_NOSEC
;
2534 sb
->s_flags
|= MS_NOUSER
;
2537 spin_lock_init(&sbinfo
->stat_lock
);
2538 if (percpu_counter_init(&sbinfo
->used_blocks
, 0))
2540 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
2542 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
2543 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
2544 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
2545 sb
->s_magic
= TMPFS_MAGIC
;
2546 sb
->s_op
= &shmem_ops
;
2547 sb
->s_time_gran
= 1;
2548 #ifdef CONFIG_TMPFS_XATTR
2549 sb
->s_xattr
= shmem_xattr_handlers
;
2551 #ifdef CONFIG_TMPFS_POSIX_ACL
2552 sb
->s_flags
|= MS_POSIXACL
;
2555 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
2558 inode
->i_uid
= sbinfo
->uid
;
2559 inode
->i_gid
= sbinfo
->gid
;
2560 sb
->s_root
= d_make_root(inode
);
2566 shmem_put_super(sb
);
2570 static struct kmem_cache
*shmem_inode_cachep
;
2572 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
2574 struct shmem_inode_info
*info
;
2575 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
2578 return &info
->vfs_inode
;
2581 static void shmem_destroy_callback(struct rcu_head
*head
)
2583 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
2584 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
2587 static void shmem_destroy_inode(struct inode
*inode
)
2589 if (S_ISREG(inode
->i_mode
))
2590 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
2591 call_rcu(&inode
->i_rcu
, shmem_destroy_callback
);
2594 static void shmem_init_inode(void *foo
)
2596 struct shmem_inode_info
*info
= foo
;
2597 inode_init_once(&info
->vfs_inode
);
2600 static int shmem_init_inodecache(void)
2602 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
2603 sizeof(struct shmem_inode_info
),
2604 0, SLAB_PANIC
, shmem_init_inode
);
2608 static void shmem_destroy_inodecache(void)
2610 kmem_cache_destroy(shmem_inode_cachep
);
2613 static const struct address_space_operations shmem_aops
= {
2614 .writepage
= shmem_writepage
,
2615 .set_page_dirty
= __set_page_dirty_no_writeback
,
2617 .write_begin
= shmem_write_begin
,
2618 .write_end
= shmem_write_end
,
2620 .migratepage
= migrate_page
,
2621 .error_remove_page
= generic_error_remove_page
,
2624 static const struct file_operations shmem_file_operations
= {
2627 .llseek
= shmem_file_llseek
,
2628 .read
= do_sync_read
,
2629 .write
= do_sync_write
,
2630 .aio_read
= shmem_file_aio_read
,
2631 .aio_write
= generic_file_aio_write
,
2632 .fsync
= noop_fsync
,
2633 .splice_read
= shmem_file_splice_read
,
2634 .splice_write
= generic_file_splice_write
,
2635 .fallocate
= shmem_fallocate
,
2639 static const struct inode_operations shmem_inode_operations
= {
2640 .setattr
= shmem_setattr
,
2641 #ifdef CONFIG_TMPFS_XATTR
2642 .setxattr
= shmem_setxattr
,
2643 .getxattr
= shmem_getxattr
,
2644 .listxattr
= shmem_listxattr
,
2645 .removexattr
= shmem_removexattr
,
2646 .set_acl
= simple_set_acl
,
2650 static const struct inode_operations shmem_dir_inode_operations
= {
2652 .create
= shmem_create
,
2653 .lookup
= simple_lookup
,
2655 .unlink
= shmem_unlink
,
2656 .symlink
= shmem_symlink
,
2657 .mkdir
= shmem_mkdir
,
2658 .rmdir
= shmem_rmdir
,
2659 .mknod
= shmem_mknod
,
2660 .rename
= shmem_rename
,
2661 .tmpfile
= shmem_tmpfile
,
2663 #ifdef CONFIG_TMPFS_XATTR
2664 .setxattr
= shmem_setxattr
,
2665 .getxattr
= shmem_getxattr
,
2666 .listxattr
= shmem_listxattr
,
2667 .removexattr
= shmem_removexattr
,
2669 #ifdef CONFIG_TMPFS_POSIX_ACL
2670 .setattr
= shmem_setattr
,
2671 .set_acl
= simple_set_acl
,
2675 static const struct inode_operations shmem_special_inode_operations
= {
2676 #ifdef CONFIG_TMPFS_XATTR
2677 .setxattr
= shmem_setxattr
,
2678 .getxattr
= shmem_getxattr
,
2679 .listxattr
= shmem_listxattr
,
2680 .removexattr
= shmem_removexattr
,
2682 #ifdef CONFIG_TMPFS_POSIX_ACL
2683 .setattr
= shmem_setattr
,
2684 .set_acl
= simple_set_acl
,
2688 static const struct super_operations shmem_ops
= {
2689 .alloc_inode
= shmem_alloc_inode
,
2690 .destroy_inode
= shmem_destroy_inode
,
2692 .statfs
= shmem_statfs
,
2693 .remount_fs
= shmem_remount_fs
,
2694 .show_options
= shmem_show_options
,
2696 .evict_inode
= shmem_evict_inode
,
2697 .drop_inode
= generic_delete_inode
,
2698 .put_super
= shmem_put_super
,
2701 static const struct vm_operations_struct shmem_vm_ops
= {
2702 .fault
= shmem_fault
,
2703 .map_pages
= filemap_map_pages
,
2705 .set_policy
= shmem_set_policy
,
2706 .get_policy
= shmem_get_policy
,
2708 .remap_pages
= generic_file_remap_pages
,
2711 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
2712 int flags
, const char *dev_name
, void *data
)
2714 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
2717 static struct file_system_type shmem_fs_type
= {
2718 .owner
= THIS_MODULE
,
2720 .mount
= shmem_mount
,
2721 .kill_sb
= kill_litter_super
,
2722 .fs_flags
= FS_USERNS_MOUNT
,
2725 int __init
shmem_init(void)
2729 /* If rootfs called this, don't re-init */
2730 if (shmem_inode_cachep
)
2733 error
= bdi_init(&shmem_backing_dev_info
);
2737 error
= shmem_init_inodecache();
2741 error
= register_filesystem(&shmem_fs_type
);
2743 printk(KERN_ERR
"Could not register tmpfs\n");
2747 shm_mnt
= kern_mount(&shmem_fs_type
);
2748 if (IS_ERR(shm_mnt
)) {
2749 error
= PTR_ERR(shm_mnt
);
2750 printk(KERN_ERR
"Could not kern_mount tmpfs\n");
2756 unregister_filesystem(&shmem_fs_type
);
2758 shmem_destroy_inodecache();
2760 bdi_destroy(&shmem_backing_dev_info
);
2762 shm_mnt
= ERR_PTR(error
);
2766 #else /* !CONFIG_SHMEM */
2769 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2771 * This is intended for small system where the benefits of the full
2772 * shmem code (swap-backed and resource-limited) are outweighed by
2773 * their complexity. On systems without swap this code should be
2774 * effectively equivalent, but much lighter weight.
2777 static struct file_system_type shmem_fs_type
= {
2779 .mount
= ramfs_mount
,
2780 .kill_sb
= kill_litter_super
,
2781 .fs_flags
= FS_USERNS_MOUNT
,
2784 int __init
shmem_init(void)
2786 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
2788 shm_mnt
= kern_mount(&shmem_fs_type
);
2789 BUG_ON(IS_ERR(shm_mnt
));
2794 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
2799 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2804 void shmem_unlock_mapping(struct address_space
*mapping
)
2808 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
2810 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
2812 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
2814 #define shmem_vm_ops generic_file_vm_ops
2815 #define shmem_file_operations ramfs_file_operations
2816 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2817 #define shmem_acct_size(flags, size) 0
2818 #define shmem_unacct_size(flags, size) do {} while (0)
2820 #endif /* CONFIG_SHMEM */
2824 static struct dentry_operations anon_ops
= {
2825 .d_dname
= simple_dname
2828 static struct file
*__shmem_file_setup(const char *name
, loff_t size
,
2829 unsigned long flags
, unsigned int i_flags
)
2832 struct inode
*inode
;
2834 struct super_block
*sb
;
2837 if (IS_ERR(shm_mnt
))
2838 return ERR_CAST(shm_mnt
);
2840 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
2841 return ERR_PTR(-EINVAL
);
2843 if (shmem_acct_size(flags
, size
))
2844 return ERR_PTR(-ENOMEM
);
2846 res
= ERR_PTR(-ENOMEM
);
2848 this.len
= strlen(name
);
2849 this.hash
= 0; /* will go */
2850 sb
= shm_mnt
->mnt_sb
;
2851 path
.dentry
= d_alloc_pseudo(sb
, &this);
2854 d_set_d_op(path
.dentry
, &anon_ops
);
2855 path
.mnt
= mntget(shm_mnt
);
2857 res
= ERR_PTR(-ENOSPC
);
2858 inode
= shmem_get_inode(sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0, flags
);
2862 inode
->i_flags
|= i_flags
;
2863 d_instantiate(path
.dentry
, inode
);
2864 inode
->i_size
= size
;
2865 clear_nlink(inode
); /* It is unlinked */
2866 res
= ERR_PTR(ramfs_nommu_expand_for_mapping(inode
, size
));
2870 res
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
2871 &shmem_file_operations
);
2880 shmem_unacct_size(flags
, size
);
2885 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2886 * kernel internal. There will be NO LSM permission checks against the
2887 * underlying inode. So users of this interface must do LSM checks at a
2888 * higher layer. The one user is the big_key implementation. LSM checks
2889 * are provided at the key level rather than the inode level.
2890 * @name: name for dentry (to be seen in /proc/<pid>/maps
2891 * @size: size to be set for the file
2892 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2894 struct file
*shmem_kernel_file_setup(const char *name
, loff_t size
, unsigned long flags
)
2896 return __shmem_file_setup(name
, size
, flags
, S_PRIVATE
);
2900 * shmem_file_setup - get an unlinked file living in tmpfs
2901 * @name: name for dentry (to be seen in /proc/<pid>/maps
2902 * @size: size to be set for the file
2903 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2905 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
2907 return __shmem_file_setup(name
, size
, flags
, 0);
2909 EXPORT_SYMBOL_GPL(shmem_file_setup
);
2912 * shmem_zero_setup - setup a shared anonymous mapping
2913 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2915 int shmem_zero_setup(struct vm_area_struct
*vma
)
2918 loff_t size
= vma
->vm_end
- vma
->vm_start
;
2920 file
= shmem_file_setup("dev/zero", size
, vma
->vm_flags
);
2922 return PTR_ERR(file
);
2926 vma
->vm_file
= file
;
2927 vma
->vm_ops
= &shmem_vm_ops
;
2932 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2933 * @mapping: the page's address_space
2934 * @index: the page index
2935 * @gfp: the page allocator flags to use if allocating
2937 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2938 * with any new page allocations done using the specified allocation flags.
2939 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2940 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2941 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2943 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2944 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2946 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
2947 pgoff_t index
, gfp_t gfp
)
2950 struct inode
*inode
= mapping
->host
;
2954 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
2955 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
, gfp
, NULL
);
2957 page
= ERR_PTR(error
);
2963 * The tiny !SHMEM case uses ramfs without swap
2965 return read_cache_page_gfp(mapping
, index
, gfp
);
2968 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);