Staging: rts5208: ms: Use x instead of x != NULL.
[linux/fpc-iii.git] / block / blk-mq.c
blob13f5a6c1de76827c3aa2eaab28061581971e0c5c
1 /*
2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
26 #include <trace/events/block.h>
28 #include <linux/blk-mq.h>
29 #include "blk.h"
30 #include "blk-mq.h"
31 #include "blk-mq-tag.h"
33 static DEFINE_MUTEX(all_q_mutex);
34 static LIST_HEAD(all_q_list);
36 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
39 * Check if any of the ctx's have pending work in this hardware queue
41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
43 unsigned int i;
45 for (i = 0; i < hctx->ctx_map.size; i++)
46 if (hctx->ctx_map.map[i].word)
47 return true;
49 return false;
52 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
53 struct blk_mq_ctx *ctx)
55 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
58 #define CTX_TO_BIT(hctx, ctx) \
59 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
62 * Mark this ctx as having pending work in this hardware queue
64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
65 struct blk_mq_ctx *ctx)
67 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
69 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
70 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
74 struct blk_mq_ctx *ctx)
76 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
78 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
81 void blk_mq_freeze_queue_start(struct request_queue *q)
83 int freeze_depth;
85 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
86 if (freeze_depth == 1) {
87 percpu_ref_kill(&q->q_usage_counter);
88 blk_mq_run_hw_queues(q, false);
91 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
93 static void blk_mq_freeze_queue_wait(struct request_queue *q)
95 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
99 * Guarantee no request is in use, so we can change any data structure of
100 * the queue afterward.
102 void blk_freeze_queue(struct request_queue *q)
105 * In the !blk_mq case we are only calling this to kill the
106 * q_usage_counter, otherwise this increases the freeze depth
107 * and waits for it to return to zero. For this reason there is
108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 * exported to drivers as the only user for unfreeze is blk_mq.
111 blk_mq_freeze_queue_start(q);
112 blk_mq_freeze_queue_wait(q);
115 void blk_mq_freeze_queue(struct request_queue *q)
118 * ...just an alias to keep freeze and unfreeze actions balanced
119 * in the blk_mq_* namespace
121 blk_freeze_queue(q);
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
125 void blk_mq_unfreeze_queue(struct request_queue *q)
127 int freeze_depth;
129 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 WARN_ON_ONCE(freeze_depth < 0);
131 if (!freeze_depth) {
132 percpu_ref_reinit(&q->q_usage_counter);
133 wake_up_all(&q->mq_freeze_wq);
136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
138 void blk_mq_wake_waiters(struct request_queue *q)
140 struct blk_mq_hw_ctx *hctx;
141 unsigned int i;
143 queue_for_each_hw_ctx(q, hctx, i)
144 if (blk_mq_hw_queue_mapped(hctx))
145 blk_mq_tag_wakeup_all(hctx->tags, true);
148 * If we are called because the queue has now been marked as
149 * dying, we need to ensure that processes currently waiting on
150 * the queue are notified as well.
152 wake_up_all(&q->mq_freeze_wq);
155 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
157 return blk_mq_has_free_tags(hctx->tags);
159 EXPORT_SYMBOL(blk_mq_can_queue);
161 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
162 struct request *rq, int op,
163 unsigned int op_flags)
165 if (blk_queue_io_stat(q))
166 op_flags |= REQ_IO_STAT;
168 INIT_LIST_HEAD(&rq->queuelist);
169 /* csd/requeue_work/fifo_time is initialized before use */
170 rq->q = q;
171 rq->mq_ctx = ctx;
172 req_set_op_attrs(rq, op, op_flags);
173 /* do not touch atomic flags, it needs atomic ops against the timer */
174 rq->cpu = -1;
175 INIT_HLIST_NODE(&rq->hash);
176 RB_CLEAR_NODE(&rq->rb_node);
177 rq->rq_disk = NULL;
178 rq->part = NULL;
179 rq->start_time = jiffies;
180 #ifdef CONFIG_BLK_CGROUP
181 rq->rl = NULL;
182 set_start_time_ns(rq);
183 rq->io_start_time_ns = 0;
184 #endif
185 rq->nr_phys_segments = 0;
186 #if defined(CONFIG_BLK_DEV_INTEGRITY)
187 rq->nr_integrity_segments = 0;
188 #endif
189 rq->special = NULL;
190 /* tag was already set */
191 rq->errors = 0;
193 rq->cmd = rq->__cmd;
195 rq->extra_len = 0;
196 rq->sense_len = 0;
197 rq->resid_len = 0;
198 rq->sense = NULL;
200 INIT_LIST_HEAD(&rq->timeout_list);
201 rq->timeout = 0;
203 rq->end_io = NULL;
204 rq->end_io_data = NULL;
205 rq->next_rq = NULL;
207 ctx->rq_dispatched[rw_is_sync(op, op_flags)]++;
210 static struct request *
211 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int op, int op_flags)
213 struct request *rq;
214 unsigned int tag;
216 tag = blk_mq_get_tag(data);
217 if (tag != BLK_MQ_TAG_FAIL) {
218 rq = data->hctx->tags->rqs[tag];
220 if (blk_mq_tag_busy(data->hctx)) {
221 rq->cmd_flags = REQ_MQ_INFLIGHT;
222 atomic_inc(&data->hctx->nr_active);
225 rq->tag = tag;
226 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op, op_flags);
227 return rq;
230 return NULL;
233 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
234 unsigned int flags)
236 struct blk_mq_ctx *ctx;
237 struct blk_mq_hw_ctx *hctx;
238 struct request *rq;
239 struct blk_mq_alloc_data alloc_data;
240 int ret;
242 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
243 if (ret)
244 return ERR_PTR(ret);
246 ctx = blk_mq_get_ctx(q);
247 hctx = q->mq_ops->map_queue(q, ctx->cpu);
248 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
250 rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
251 if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
252 __blk_mq_run_hw_queue(hctx);
253 blk_mq_put_ctx(ctx);
255 ctx = blk_mq_get_ctx(q);
256 hctx = q->mq_ops->map_queue(q, ctx->cpu);
257 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
258 rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
259 ctx = alloc_data.ctx;
261 blk_mq_put_ctx(ctx);
262 if (!rq) {
263 blk_queue_exit(q);
264 return ERR_PTR(-EWOULDBLOCK);
267 rq->__data_len = 0;
268 rq->__sector = (sector_t) -1;
269 rq->bio = rq->biotail = NULL;
270 return rq;
272 EXPORT_SYMBOL(blk_mq_alloc_request);
274 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
275 unsigned int flags, unsigned int hctx_idx)
277 struct blk_mq_hw_ctx *hctx;
278 struct blk_mq_ctx *ctx;
279 struct request *rq;
280 struct blk_mq_alloc_data alloc_data;
281 int ret;
284 * If the tag allocator sleeps we could get an allocation for a
285 * different hardware context. No need to complicate the low level
286 * allocator for this for the rare use case of a command tied to
287 * a specific queue.
289 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
290 return ERR_PTR(-EINVAL);
292 if (hctx_idx >= q->nr_hw_queues)
293 return ERR_PTR(-EIO);
295 ret = blk_queue_enter(q, true);
296 if (ret)
297 return ERR_PTR(ret);
299 hctx = q->queue_hw_ctx[hctx_idx];
300 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
302 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
303 rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
304 if (!rq) {
305 blk_queue_exit(q);
306 return ERR_PTR(-EWOULDBLOCK);
309 return rq;
311 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
313 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
314 struct blk_mq_ctx *ctx, struct request *rq)
316 const int tag = rq->tag;
317 struct request_queue *q = rq->q;
319 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
320 atomic_dec(&hctx->nr_active);
321 rq->cmd_flags = 0;
323 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
324 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
325 blk_queue_exit(q);
328 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
330 struct blk_mq_ctx *ctx = rq->mq_ctx;
332 ctx->rq_completed[rq_is_sync(rq)]++;
333 __blk_mq_free_request(hctx, ctx, rq);
336 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
338 void blk_mq_free_request(struct request *rq)
340 struct blk_mq_hw_ctx *hctx;
341 struct request_queue *q = rq->q;
343 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
344 blk_mq_free_hctx_request(hctx, rq);
346 EXPORT_SYMBOL_GPL(blk_mq_free_request);
348 inline void __blk_mq_end_request(struct request *rq, int error)
350 blk_account_io_done(rq);
352 if (rq->end_io) {
353 rq->end_io(rq, error);
354 } else {
355 if (unlikely(blk_bidi_rq(rq)))
356 blk_mq_free_request(rq->next_rq);
357 blk_mq_free_request(rq);
360 EXPORT_SYMBOL(__blk_mq_end_request);
362 void blk_mq_end_request(struct request *rq, int error)
364 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
365 BUG();
366 __blk_mq_end_request(rq, error);
368 EXPORT_SYMBOL(blk_mq_end_request);
370 static void __blk_mq_complete_request_remote(void *data)
372 struct request *rq = data;
374 rq->q->softirq_done_fn(rq);
377 static void blk_mq_ipi_complete_request(struct request *rq)
379 struct blk_mq_ctx *ctx = rq->mq_ctx;
380 bool shared = false;
381 int cpu;
383 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
384 rq->q->softirq_done_fn(rq);
385 return;
388 cpu = get_cpu();
389 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
390 shared = cpus_share_cache(cpu, ctx->cpu);
392 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
393 rq->csd.func = __blk_mq_complete_request_remote;
394 rq->csd.info = rq;
395 rq->csd.flags = 0;
396 smp_call_function_single_async(ctx->cpu, &rq->csd);
397 } else {
398 rq->q->softirq_done_fn(rq);
400 put_cpu();
403 static void __blk_mq_complete_request(struct request *rq)
405 struct request_queue *q = rq->q;
407 if (!q->softirq_done_fn)
408 blk_mq_end_request(rq, rq->errors);
409 else
410 blk_mq_ipi_complete_request(rq);
414 * blk_mq_complete_request - end I/O on a request
415 * @rq: the request being processed
417 * Description:
418 * Ends all I/O on a request. It does not handle partial completions.
419 * The actual completion happens out-of-order, through a IPI handler.
421 void blk_mq_complete_request(struct request *rq, int error)
423 struct request_queue *q = rq->q;
425 if (unlikely(blk_should_fake_timeout(q)))
426 return;
427 if (!blk_mark_rq_complete(rq)) {
428 rq->errors = error;
429 __blk_mq_complete_request(rq);
432 EXPORT_SYMBOL(blk_mq_complete_request);
434 int blk_mq_request_started(struct request *rq)
436 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
438 EXPORT_SYMBOL_GPL(blk_mq_request_started);
440 void blk_mq_start_request(struct request *rq)
442 struct request_queue *q = rq->q;
444 trace_block_rq_issue(q, rq);
446 rq->resid_len = blk_rq_bytes(rq);
447 if (unlikely(blk_bidi_rq(rq)))
448 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
450 blk_add_timer(rq);
453 * Ensure that ->deadline is visible before set the started
454 * flag and clear the completed flag.
456 smp_mb__before_atomic();
459 * Mark us as started and clear complete. Complete might have been
460 * set if requeue raced with timeout, which then marked it as
461 * complete. So be sure to clear complete again when we start
462 * the request, otherwise we'll ignore the completion event.
464 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
465 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
466 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
467 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
469 if (q->dma_drain_size && blk_rq_bytes(rq)) {
471 * Make sure space for the drain appears. We know we can do
472 * this because max_hw_segments has been adjusted to be one
473 * fewer than the device can handle.
475 rq->nr_phys_segments++;
478 EXPORT_SYMBOL(blk_mq_start_request);
480 static void __blk_mq_requeue_request(struct request *rq)
482 struct request_queue *q = rq->q;
484 trace_block_rq_requeue(q, rq);
486 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
487 if (q->dma_drain_size && blk_rq_bytes(rq))
488 rq->nr_phys_segments--;
492 void blk_mq_requeue_request(struct request *rq)
494 __blk_mq_requeue_request(rq);
496 BUG_ON(blk_queued_rq(rq));
497 blk_mq_add_to_requeue_list(rq, true);
499 EXPORT_SYMBOL(blk_mq_requeue_request);
501 static void blk_mq_requeue_work(struct work_struct *work)
503 struct request_queue *q =
504 container_of(work, struct request_queue, requeue_work);
505 LIST_HEAD(rq_list);
506 struct request *rq, *next;
507 unsigned long flags;
509 spin_lock_irqsave(&q->requeue_lock, flags);
510 list_splice_init(&q->requeue_list, &rq_list);
511 spin_unlock_irqrestore(&q->requeue_lock, flags);
513 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
514 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
515 continue;
517 rq->cmd_flags &= ~REQ_SOFTBARRIER;
518 list_del_init(&rq->queuelist);
519 blk_mq_insert_request(rq, true, false, false);
522 while (!list_empty(&rq_list)) {
523 rq = list_entry(rq_list.next, struct request, queuelist);
524 list_del_init(&rq->queuelist);
525 blk_mq_insert_request(rq, false, false, false);
529 * Use the start variant of queue running here, so that running
530 * the requeue work will kick stopped queues.
532 blk_mq_start_hw_queues(q);
535 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
537 struct request_queue *q = rq->q;
538 unsigned long flags;
541 * We abuse this flag that is otherwise used by the I/O scheduler to
542 * request head insertation from the workqueue.
544 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
546 spin_lock_irqsave(&q->requeue_lock, flags);
547 if (at_head) {
548 rq->cmd_flags |= REQ_SOFTBARRIER;
549 list_add(&rq->queuelist, &q->requeue_list);
550 } else {
551 list_add_tail(&rq->queuelist, &q->requeue_list);
553 spin_unlock_irqrestore(&q->requeue_lock, flags);
555 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
557 void blk_mq_cancel_requeue_work(struct request_queue *q)
559 cancel_work_sync(&q->requeue_work);
561 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
563 void blk_mq_kick_requeue_list(struct request_queue *q)
565 kblockd_schedule_work(&q->requeue_work);
567 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
569 void blk_mq_abort_requeue_list(struct request_queue *q)
571 unsigned long flags;
572 LIST_HEAD(rq_list);
574 spin_lock_irqsave(&q->requeue_lock, flags);
575 list_splice_init(&q->requeue_list, &rq_list);
576 spin_unlock_irqrestore(&q->requeue_lock, flags);
578 while (!list_empty(&rq_list)) {
579 struct request *rq;
581 rq = list_first_entry(&rq_list, struct request, queuelist);
582 list_del_init(&rq->queuelist);
583 rq->errors = -EIO;
584 blk_mq_end_request(rq, rq->errors);
587 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
589 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
591 if (tag < tags->nr_tags)
592 return tags->rqs[tag];
594 return NULL;
596 EXPORT_SYMBOL(blk_mq_tag_to_rq);
598 struct blk_mq_timeout_data {
599 unsigned long next;
600 unsigned int next_set;
603 void blk_mq_rq_timed_out(struct request *req, bool reserved)
605 struct blk_mq_ops *ops = req->q->mq_ops;
606 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
609 * We know that complete is set at this point. If STARTED isn't set
610 * anymore, then the request isn't active and the "timeout" should
611 * just be ignored. This can happen due to the bitflag ordering.
612 * Timeout first checks if STARTED is set, and if it is, assumes
613 * the request is active. But if we race with completion, then
614 * we both flags will get cleared. So check here again, and ignore
615 * a timeout event with a request that isn't active.
617 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
618 return;
620 if (ops->timeout)
621 ret = ops->timeout(req, reserved);
623 switch (ret) {
624 case BLK_EH_HANDLED:
625 __blk_mq_complete_request(req);
626 break;
627 case BLK_EH_RESET_TIMER:
628 blk_add_timer(req);
629 blk_clear_rq_complete(req);
630 break;
631 case BLK_EH_NOT_HANDLED:
632 break;
633 default:
634 printk(KERN_ERR "block: bad eh return: %d\n", ret);
635 break;
639 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
640 struct request *rq, void *priv, bool reserved)
642 struct blk_mq_timeout_data *data = priv;
644 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
646 * If a request wasn't started before the queue was
647 * marked dying, kill it here or it'll go unnoticed.
649 if (unlikely(blk_queue_dying(rq->q))) {
650 rq->errors = -EIO;
651 blk_mq_end_request(rq, rq->errors);
653 return;
656 if (time_after_eq(jiffies, rq->deadline)) {
657 if (!blk_mark_rq_complete(rq))
658 blk_mq_rq_timed_out(rq, reserved);
659 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
660 data->next = rq->deadline;
661 data->next_set = 1;
665 static void blk_mq_timeout_work(struct work_struct *work)
667 struct request_queue *q =
668 container_of(work, struct request_queue, timeout_work);
669 struct blk_mq_timeout_data data = {
670 .next = 0,
671 .next_set = 0,
673 int i;
675 /* A deadlock might occur if a request is stuck requiring a
676 * timeout at the same time a queue freeze is waiting
677 * completion, since the timeout code would not be able to
678 * acquire the queue reference here.
680 * That's why we don't use blk_queue_enter here; instead, we use
681 * percpu_ref_tryget directly, because we need to be able to
682 * obtain a reference even in the short window between the queue
683 * starting to freeze, by dropping the first reference in
684 * blk_mq_freeze_queue_start, and the moment the last request is
685 * consumed, marked by the instant q_usage_counter reaches
686 * zero.
688 if (!percpu_ref_tryget(&q->q_usage_counter))
689 return;
691 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
693 if (data.next_set) {
694 data.next = blk_rq_timeout(round_jiffies_up(data.next));
695 mod_timer(&q->timeout, data.next);
696 } else {
697 struct blk_mq_hw_ctx *hctx;
699 queue_for_each_hw_ctx(q, hctx, i) {
700 /* the hctx may be unmapped, so check it here */
701 if (blk_mq_hw_queue_mapped(hctx))
702 blk_mq_tag_idle(hctx);
705 blk_queue_exit(q);
709 * Reverse check our software queue for entries that we could potentially
710 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
711 * too much time checking for merges.
713 static bool blk_mq_attempt_merge(struct request_queue *q,
714 struct blk_mq_ctx *ctx, struct bio *bio)
716 struct request *rq;
717 int checked = 8;
719 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
720 int el_ret;
722 if (!checked--)
723 break;
725 if (!blk_rq_merge_ok(rq, bio))
726 continue;
728 el_ret = blk_try_merge(rq, bio);
729 if (el_ret == ELEVATOR_BACK_MERGE) {
730 if (bio_attempt_back_merge(q, rq, bio)) {
731 ctx->rq_merged++;
732 return true;
734 break;
735 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
736 if (bio_attempt_front_merge(q, rq, bio)) {
737 ctx->rq_merged++;
738 return true;
740 break;
744 return false;
748 * Process software queues that have been marked busy, splicing them
749 * to the for-dispatch
751 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
753 struct blk_mq_ctx *ctx;
754 int i;
756 for (i = 0; i < hctx->ctx_map.size; i++) {
757 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
758 unsigned int off, bit;
760 if (!bm->word)
761 continue;
763 bit = 0;
764 off = i * hctx->ctx_map.bits_per_word;
765 do {
766 bit = find_next_bit(&bm->word, bm->depth, bit);
767 if (bit >= bm->depth)
768 break;
770 ctx = hctx->ctxs[bit + off];
771 clear_bit(bit, &bm->word);
772 spin_lock(&ctx->lock);
773 list_splice_tail_init(&ctx->rq_list, list);
774 spin_unlock(&ctx->lock);
776 bit++;
777 } while (1);
782 * Run this hardware queue, pulling any software queues mapped to it in.
783 * Note that this function currently has various problems around ordering
784 * of IO. In particular, we'd like FIFO behaviour on handling existing
785 * items on the hctx->dispatch list. Ignore that for now.
787 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
789 struct request_queue *q = hctx->queue;
790 struct request *rq;
791 LIST_HEAD(rq_list);
792 LIST_HEAD(driver_list);
793 struct list_head *dptr;
794 int queued;
796 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
797 return;
799 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
800 cpu_online(hctx->next_cpu));
802 hctx->run++;
805 * Touch any software queue that has pending entries.
807 flush_busy_ctxs(hctx, &rq_list);
810 * If we have previous entries on our dispatch list, grab them
811 * and stuff them at the front for more fair dispatch.
813 if (!list_empty_careful(&hctx->dispatch)) {
814 spin_lock(&hctx->lock);
815 if (!list_empty(&hctx->dispatch))
816 list_splice_init(&hctx->dispatch, &rq_list);
817 spin_unlock(&hctx->lock);
821 * Start off with dptr being NULL, so we start the first request
822 * immediately, even if we have more pending.
824 dptr = NULL;
827 * Now process all the entries, sending them to the driver.
829 queued = 0;
830 while (!list_empty(&rq_list)) {
831 struct blk_mq_queue_data bd;
832 int ret;
834 rq = list_first_entry(&rq_list, struct request, queuelist);
835 list_del_init(&rq->queuelist);
837 bd.rq = rq;
838 bd.list = dptr;
839 bd.last = list_empty(&rq_list);
841 ret = q->mq_ops->queue_rq(hctx, &bd);
842 switch (ret) {
843 case BLK_MQ_RQ_QUEUE_OK:
844 queued++;
845 break;
846 case BLK_MQ_RQ_QUEUE_BUSY:
847 list_add(&rq->queuelist, &rq_list);
848 __blk_mq_requeue_request(rq);
849 break;
850 default:
851 pr_err("blk-mq: bad return on queue: %d\n", ret);
852 case BLK_MQ_RQ_QUEUE_ERROR:
853 rq->errors = -EIO;
854 blk_mq_end_request(rq, rq->errors);
855 break;
858 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
859 break;
862 * We've done the first request. If we have more than 1
863 * left in the list, set dptr to defer issue.
865 if (!dptr && rq_list.next != rq_list.prev)
866 dptr = &driver_list;
869 if (!queued)
870 hctx->dispatched[0]++;
871 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
872 hctx->dispatched[ilog2(queued) + 1]++;
875 * Any items that need requeuing? Stuff them into hctx->dispatch,
876 * that is where we will continue on next queue run.
878 if (!list_empty(&rq_list)) {
879 spin_lock(&hctx->lock);
880 list_splice(&rq_list, &hctx->dispatch);
881 spin_unlock(&hctx->lock);
883 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
884 * it's possible the queue is stopped and restarted again
885 * before this. Queue restart will dispatch requests. And since
886 * requests in rq_list aren't added into hctx->dispatch yet,
887 * the requests in rq_list might get lost.
889 * blk_mq_run_hw_queue() already checks the STOPPED bit
891 blk_mq_run_hw_queue(hctx, true);
896 * It'd be great if the workqueue API had a way to pass
897 * in a mask and had some smarts for more clever placement.
898 * For now we just round-robin here, switching for every
899 * BLK_MQ_CPU_WORK_BATCH queued items.
901 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
903 if (hctx->queue->nr_hw_queues == 1)
904 return WORK_CPU_UNBOUND;
906 if (--hctx->next_cpu_batch <= 0) {
907 int cpu = hctx->next_cpu, next_cpu;
909 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
910 if (next_cpu >= nr_cpu_ids)
911 next_cpu = cpumask_first(hctx->cpumask);
913 hctx->next_cpu = next_cpu;
914 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
916 return cpu;
919 return hctx->next_cpu;
922 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
924 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
925 !blk_mq_hw_queue_mapped(hctx)))
926 return;
928 if (!async) {
929 int cpu = get_cpu();
930 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
931 __blk_mq_run_hw_queue(hctx);
932 put_cpu();
933 return;
936 put_cpu();
939 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
940 &hctx->run_work, 0);
943 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
945 struct blk_mq_hw_ctx *hctx;
946 int i;
948 queue_for_each_hw_ctx(q, hctx, i) {
949 if ((!blk_mq_hctx_has_pending(hctx) &&
950 list_empty_careful(&hctx->dispatch)) ||
951 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
952 continue;
954 blk_mq_run_hw_queue(hctx, async);
957 EXPORT_SYMBOL(blk_mq_run_hw_queues);
959 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
961 cancel_delayed_work(&hctx->run_work);
962 cancel_delayed_work(&hctx->delay_work);
963 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
965 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
967 void blk_mq_stop_hw_queues(struct request_queue *q)
969 struct blk_mq_hw_ctx *hctx;
970 int i;
972 queue_for_each_hw_ctx(q, hctx, i)
973 blk_mq_stop_hw_queue(hctx);
975 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
977 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
979 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
981 blk_mq_run_hw_queue(hctx, false);
983 EXPORT_SYMBOL(blk_mq_start_hw_queue);
985 void blk_mq_start_hw_queues(struct request_queue *q)
987 struct blk_mq_hw_ctx *hctx;
988 int i;
990 queue_for_each_hw_ctx(q, hctx, i)
991 blk_mq_start_hw_queue(hctx);
993 EXPORT_SYMBOL(blk_mq_start_hw_queues);
995 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
997 struct blk_mq_hw_ctx *hctx;
998 int i;
1000 queue_for_each_hw_ctx(q, hctx, i) {
1001 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1002 continue;
1004 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1005 blk_mq_run_hw_queue(hctx, async);
1008 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1010 static void blk_mq_run_work_fn(struct work_struct *work)
1012 struct blk_mq_hw_ctx *hctx;
1014 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1016 __blk_mq_run_hw_queue(hctx);
1019 static void blk_mq_delay_work_fn(struct work_struct *work)
1021 struct blk_mq_hw_ctx *hctx;
1023 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1025 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1026 __blk_mq_run_hw_queue(hctx);
1029 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1031 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1032 return;
1034 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1035 &hctx->delay_work, msecs_to_jiffies(msecs));
1037 EXPORT_SYMBOL(blk_mq_delay_queue);
1039 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1040 struct request *rq,
1041 bool at_head)
1043 struct blk_mq_ctx *ctx = rq->mq_ctx;
1045 trace_block_rq_insert(hctx->queue, rq);
1047 if (at_head)
1048 list_add(&rq->queuelist, &ctx->rq_list);
1049 else
1050 list_add_tail(&rq->queuelist, &ctx->rq_list);
1053 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1054 struct request *rq, bool at_head)
1056 struct blk_mq_ctx *ctx = rq->mq_ctx;
1058 __blk_mq_insert_req_list(hctx, rq, at_head);
1059 blk_mq_hctx_mark_pending(hctx, ctx);
1062 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1063 bool async)
1065 struct blk_mq_ctx *ctx = rq->mq_ctx;
1066 struct request_queue *q = rq->q;
1067 struct blk_mq_hw_ctx *hctx;
1069 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1071 spin_lock(&ctx->lock);
1072 __blk_mq_insert_request(hctx, rq, at_head);
1073 spin_unlock(&ctx->lock);
1075 if (run_queue)
1076 blk_mq_run_hw_queue(hctx, async);
1079 static void blk_mq_insert_requests(struct request_queue *q,
1080 struct blk_mq_ctx *ctx,
1081 struct list_head *list,
1082 int depth,
1083 bool from_schedule)
1086 struct blk_mq_hw_ctx *hctx;
1088 trace_block_unplug(q, depth, !from_schedule);
1090 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1093 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1094 * offline now
1096 spin_lock(&ctx->lock);
1097 while (!list_empty(list)) {
1098 struct request *rq;
1100 rq = list_first_entry(list, struct request, queuelist);
1101 BUG_ON(rq->mq_ctx != ctx);
1102 list_del_init(&rq->queuelist);
1103 __blk_mq_insert_req_list(hctx, rq, false);
1105 blk_mq_hctx_mark_pending(hctx, ctx);
1106 spin_unlock(&ctx->lock);
1108 blk_mq_run_hw_queue(hctx, from_schedule);
1111 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1113 struct request *rqa = container_of(a, struct request, queuelist);
1114 struct request *rqb = container_of(b, struct request, queuelist);
1116 return !(rqa->mq_ctx < rqb->mq_ctx ||
1117 (rqa->mq_ctx == rqb->mq_ctx &&
1118 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1121 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1123 struct blk_mq_ctx *this_ctx;
1124 struct request_queue *this_q;
1125 struct request *rq;
1126 LIST_HEAD(list);
1127 LIST_HEAD(ctx_list);
1128 unsigned int depth;
1130 list_splice_init(&plug->mq_list, &list);
1132 list_sort(NULL, &list, plug_ctx_cmp);
1134 this_q = NULL;
1135 this_ctx = NULL;
1136 depth = 0;
1138 while (!list_empty(&list)) {
1139 rq = list_entry_rq(list.next);
1140 list_del_init(&rq->queuelist);
1141 BUG_ON(!rq->q);
1142 if (rq->mq_ctx != this_ctx) {
1143 if (this_ctx) {
1144 blk_mq_insert_requests(this_q, this_ctx,
1145 &ctx_list, depth,
1146 from_schedule);
1149 this_ctx = rq->mq_ctx;
1150 this_q = rq->q;
1151 depth = 0;
1154 depth++;
1155 list_add_tail(&rq->queuelist, &ctx_list);
1159 * If 'this_ctx' is set, we know we have entries to complete
1160 * on 'ctx_list'. Do those.
1162 if (this_ctx) {
1163 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1164 from_schedule);
1168 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1170 init_request_from_bio(rq, bio);
1172 blk_account_io_start(rq, 1);
1175 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1177 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1178 !blk_queue_nomerges(hctx->queue);
1181 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1182 struct blk_mq_ctx *ctx,
1183 struct request *rq, struct bio *bio)
1185 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1186 blk_mq_bio_to_request(rq, bio);
1187 spin_lock(&ctx->lock);
1188 insert_rq:
1189 __blk_mq_insert_request(hctx, rq, false);
1190 spin_unlock(&ctx->lock);
1191 return false;
1192 } else {
1193 struct request_queue *q = hctx->queue;
1195 spin_lock(&ctx->lock);
1196 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1197 blk_mq_bio_to_request(rq, bio);
1198 goto insert_rq;
1201 spin_unlock(&ctx->lock);
1202 __blk_mq_free_request(hctx, ctx, rq);
1203 return true;
1207 struct blk_map_ctx {
1208 struct blk_mq_hw_ctx *hctx;
1209 struct blk_mq_ctx *ctx;
1212 static struct request *blk_mq_map_request(struct request_queue *q,
1213 struct bio *bio,
1214 struct blk_map_ctx *data)
1216 struct blk_mq_hw_ctx *hctx;
1217 struct blk_mq_ctx *ctx;
1218 struct request *rq;
1219 int op = bio_data_dir(bio);
1220 int op_flags = 0;
1221 struct blk_mq_alloc_data alloc_data;
1223 blk_queue_enter_live(q);
1224 ctx = blk_mq_get_ctx(q);
1225 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1227 if (rw_is_sync(bio_op(bio), bio->bi_opf))
1228 op_flags |= REQ_SYNC;
1230 trace_block_getrq(q, bio, op);
1231 blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1232 rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1233 if (unlikely(!rq)) {
1234 __blk_mq_run_hw_queue(hctx);
1235 blk_mq_put_ctx(ctx);
1236 trace_block_sleeprq(q, bio, op);
1238 ctx = blk_mq_get_ctx(q);
1239 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1240 blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1241 rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1242 ctx = alloc_data.ctx;
1243 hctx = alloc_data.hctx;
1246 hctx->queued++;
1247 data->hctx = hctx;
1248 data->ctx = ctx;
1249 return rq;
1252 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1254 int ret;
1255 struct request_queue *q = rq->q;
1256 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1257 rq->mq_ctx->cpu);
1258 struct blk_mq_queue_data bd = {
1259 .rq = rq,
1260 .list = NULL,
1261 .last = 1
1263 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1266 * For OK queue, we are done. For error, kill it. Any other
1267 * error (busy), just add it to our list as we previously
1268 * would have done
1270 ret = q->mq_ops->queue_rq(hctx, &bd);
1271 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1272 *cookie = new_cookie;
1273 return 0;
1276 __blk_mq_requeue_request(rq);
1278 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1279 *cookie = BLK_QC_T_NONE;
1280 rq->errors = -EIO;
1281 blk_mq_end_request(rq, rq->errors);
1282 return 0;
1285 return -1;
1289 * Multiple hardware queue variant. This will not use per-process plugs,
1290 * but will attempt to bypass the hctx queueing if we can go straight to
1291 * hardware for SYNC IO.
1293 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1295 const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
1296 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1297 struct blk_map_ctx data;
1298 struct request *rq;
1299 unsigned int request_count = 0;
1300 struct blk_plug *plug;
1301 struct request *same_queue_rq = NULL;
1302 blk_qc_t cookie;
1304 blk_queue_bounce(q, &bio);
1306 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1307 bio_io_error(bio);
1308 return BLK_QC_T_NONE;
1311 blk_queue_split(q, &bio, q->bio_split);
1313 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1314 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1315 return BLK_QC_T_NONE;
1317 rq = blk_mq_map_request(q, bio, &data);
1318 if (unlikely(!rq))
1319 return BLK_QC_T_NONE;
1321 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1323 if (unlikely(is_flush_fua)) {
1324 blk_mq_bio_to_request(rq, bio);
1325 blk_insert_flush(rq);
1326 goto run_queue;
1329 plug = current->plug;
1331 * If the driver supports defer issued based on 'last', then
1332 * queue it up like normal since we can potentially save some
1333 * CPU this way.
1335 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1336 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1337 struct request *old_rq = NULL;
1339 blk_mq_bio_to_request(rq, bio);
1342 * We do limited pluging. If the bio can be merged, do that.
1343 * Otherwise the existing request in the plug list will be
1344 * issued. So the plug list will have one request at most
1346 if (plug) {
1348 * The plug list might get flushed before this. If that
1349 * happens, same_queue_rq is invalid and plug list is
1350 * empty
1352 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1353 old_rq = same_queue_rq;
1354 list_del_init(&old_rq->queuelist);
1356 list_add_tail(&rq->queuelist, &plug->mq_list);
1357 } else /* is_sync */
1358 old_rq = rq;
1359 blk_mq_put_ctx(data.ctx);
1360 if (!old_rq)
1361 goto done;
1362 if (!blk_mq_direct_issue_request(old_rq, &cookie))
1363 goto done;
1364 blk_mq_insert_request(old_rq, false, true, true);
1365 goto done;
1368 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1370 * For a SYNC request, send it to the hardware immediately. For
1371 * an ASYNC request, just ensure that we run it later on. The
1372 * latter allows for merging opportunities and more efficient
1373 * dispatching.
1375 run_queue:
1376 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1378 blk_mq_put_ctx(data.ctx);
1379 done:
1380 return cookie;
1384 * Single hardware queue variant. This will attempt to use any per-process
1385 * plug for merging and IO deferral.
1387 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1389 const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
1390 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1391 struct blk_plug *plug;
1392 unsigned int request_count = 0;
1393 struct blk_map_ctx data;
1394 struct request *rq;
1395 blk_qc_t cookie;
1397 blk_queue_bounce(q, &bio);
1399 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1400 bio_io_error(bio);
1401 return BLK_QC_T_NONE;
1404 blk_queue_split(q, &bio, q->bio_split);
1406 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1407 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1408 return BLK_QC_T_NONE;
1409 } else
1410 request_count = blk_plug_queued_count(q);
1412 rq = blk_mq_map_request(q, bio, &data);
1413 if (unlikely(!rq))
1414 return BLK_QC_T_NONE;
1416 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1418 if (unlikely(is_flush_fua)) {
1419 blk_mq_bio_to_request(rq, bio);
1420 blk_insert_flush(rq);
1421 goto run_queue;
1425 * A task plug currently exists. Since this is completely lockless,
1426 * utilize that to temporarily store requests until the task is
1427 * either done or scheduled away.
1429 plug = current->plug;
1430 if (plug) {
1431 blk_mq_bio_to_request(rq, bio);
1432 if (!request_count)
1433 trace_block_plug(q);
1435 blk_mq_put_ctx(data.ctx);
1437 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1438 blk_flush_plug_list(plug, false);
1439 trace_block_plug(q);
1442 list_add_tail(&rq->queuelist, &plug->mq_list);
1443 return cookie;
1446 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1448 * For a SYNC request, send it to the hardware immediately. For
1449 * an ASYNC request, just ensure that we run it later on. The
1450 * latter allows for merging opportunities and more efficient
1451 * dispatching.
1453 run_queue:
1454 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1457 blk_mq_put_ctx(data.ctx);
1458 return cookie;
1462 * Default mapping to a software queue, since we use one per CPU.
1464 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1466 return q->queue_hw_ctx[q->mq_map[cpu]];
1468 EXPORT_SYMBOL(blk_mq_map_queue);
1470 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1471 struct blk_mq_tags *tags, unsigned int hctx_idx)
1473 struct page *page;
1475 if (tags->rqs && set->ops->exit_request) {
1476 int i;
1478 for (i = 0; i < tags->nr_tags; i++) {
1479 if (!tags->rqs[i])
1480 continue;
1481 set->ops->exit_request(set->driver_data, tags->rqs[i],
1482 hctx_idx, i);
1483 tags->rqs[i] = NULL;
1487 while (!list_empty(&tags->page_list)) {
1488 page = list_first_entry(&tags->page_list, struct page, lru);
1489 list_del_init(&page->lru);
1491 * Remove kmemleak object previously allocated in
1492 * blk_mq_init_rq_map().
1494 kmemleak_free(page_address(page));
1495 __free_pages(page, page->private);
1498 kfree(tags->rqs);
1500 blk_mq_free_tags(tags);
1503 static size_t order_to_size(unsigned int order)
1505 return (size_t)PAGE_SIZE << order;
1508 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1509 unsigned int hctx_idx)
1511 struct blk_mq_tags *tags;
1512 unsigned int i, j, entries_per_page, max_order = 4;
1513 size_t rq_size, left;
1515 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1516 set->numa_node,
1517 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1518 if (!tags)
1519 return NULL;
1521 INIT_LIST_HEAD(&tags->page_list);
1523 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1524 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1525 set->numa_node);
1526 if (!tags->rqs) {
1527 blk_mq_free_tags(tags);
1528 return NULL;
1532 * rq_size is the size of the request plus driver payload, rounded
1533 * to the cacheline size
1535 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1536 cache_line_size());
1537 left = rq_size * set->queue_depth;
1539 for (i = 0; i < set->queue_depth; ) {
1540 int this_order = max_order;
1541 struct page *page;
1542 int to_do;
1543 void *p;
1545 while (this_order && left < order_to_size(this_order - 1))
1546 this_order--;
1548 do {
1549 page = alloc_pages_node(set->numa_node,
1550 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1551 this_order);
1552 if (page)
1553 break;
1554 if (!this_order--)
1555 break;
1556 if (order_to_size(this_order) < rq_size)
1557 break;
1558 } while (1);
1560 if (!page)
1561 goto fail;
1563 page->private = this_order;
1564 list_add_tail(&page->lru, &tags->page_list);
1566 p = page_address(page);
1568 * Allow kmemleak to scan these pages as they contain pointers
1569 * to additional allocations like via ops->init_request().
1571 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1572 entries_per_page = order_to_size(this_order) / rq_size;
1573 to_do = min(entries_per_page, set->queue_depth - i);
1574 left -= to_do * rq_size;
1575 for (j = 0; j < to_do; j++) {
1576 tags->rqs[i] = p;
1577 if (set->ops->init_request) {
1578 if (set->ops->init_request(set->driver_data,
1579 tags->rqs[i], hctx_idx, i,
1580 set->numa_node)) {
1581 tags->rqs[i] = NULL;
1582 goto fail;
1586 p += rq_size;
1587 i++;
1590 return tags;
1592 fail:
1593 blk_mq_free_rq_map(set, tags, hctx_idx);
1594 return NULL;
1597 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1599 kfree(bitmap->map);
1602 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1604 unsigned int bpw = 8, total, num_maps, i;
1606 bitmap->bits_per_word = bpw;
1608 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1609 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1610 GFP_KERNEL, node);
1611 if (!bitmap->map)
1612 return -ENOMEM;
1614 total = nr_cpu_ids;
1615 for (i = 0; i < num_maps; i++) {
1616 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1617 total -= bitmap->map[i].depth;
1620 return 0;
1624 * 'cpu' is going away. splice any existing rq_list entries from this
1625 * software queue to the hw queue dispatch list, and ensure that it
1626 * gets run.
1628 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1630 struct blk_mq_ctx *ctx;
1631 LIST_HEAD(tmp);
1633 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1635 spin_lock(&ctx->lock);
1636 if (!list_empty(&ctx->rq_list)) {
1637 list_splice_init(&ctx->rq_list, &tmp);
1638 blk_mq_hctx_clear_pending(hctx, ctx);
1640 spin_unlock(&ctx->lock);
1642 if (list_empty(&tmp))
1643 return NOTIFY_OK;
1645 spin_lock(&hctx->lock);
1646 list_splice_tail_init(&tmp, &hctx->dispatch);
1647 spin_unlock(&hctx->lock);
1649 blk_mq_run_hw_queue(hctx, true);
1650 return NOTIFY_OK;
1653 static int blk_mq_hctx_notify(void *data, unsigned long action,
1654 unsigned int cpu)
1656 struct blk_mq_hw_ctx *hctx = data;
1658 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1659 return blk_mq_hctx_cpu_offline(hctx, cpu);
1662 * In case of CPU online, tags may be reallocated
1663 * in blk_mq_map_swqueue() after mapping is updated.
1666 return NOTIFY_OK;
1669 /* hctx->ctxs will be freed in queue's release handler */
1670 static void blk_mq_exit_hctx(struct request_queue *q,
1671 struct blk_mq_tag_set *set,
1672 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1674 unsigned flush_start_tag = set->queue_depth;
1676 blk_mq_tag_idle(hctx);
1678 if (set->ops->exit_request)
1679 set->ops->exit_request(set->driver_data,
1680 hctx->fq->flush_rq, hctx_idx,
1681 flush_start_tag + hctx_idx);
1683 if (set->ops->exit_hctx)
1684 set->ops->exit_hctx(hctx, hctx_idx);
1686 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1687 blk_free_flush_queue(hctx->fq);
1688 blk_mq_free_bitmap(&hctx->ctx_map);
1691 static void blk_mq_exit_hw_queues(struct request_queue *q,
1692 struct blk_mq_tag_set *set, int nr_queue)
1694 struct blk_mq_hw_ctx *hctx;
1695 unsigned int i;
1697 queue_for_each_hw_ctx(q, hctx, i) {
1698 if (i == nr_queue)
1699 break;
1700 blk_mq_exit_hctx(q, set, hctx, i);
1704 static void blk_mq_free_hw_queues(struct request_queue *q,
1705 struct blk_mq_tag_set *set)
1707 struct blk_mq_hw_ctx *hctx;
1708 unsigned int i;
1710 queue_for_each_hw_ctx(q, hctx, i)
1711 free_cpumask_var(hctx->cpumask);
1714 static int blk_mq_init_hctx(struct request_queue *q,
1715 struct blk_mq_tag_set *set,
1716 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1718 int node;
1719 unsigned flush_start_tag = set->queue_depth;
1721 node = hctx->numa_node;
1722 if (node == NUMA_NO_NODE)
1723 node = hctx->numa_node = set->numa_node;
1725 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1726 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1727 spin_lock_init(&hctx->lock);
1728 INIT_LIST_HEAD(&hctx->dispatch);
1729 hctx->queue = q;
1730 hctx->queue_num = hctx_idx;
1731 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1733 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1734 blk_mq_hctx_notify, hctx);
1735 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1737 hctx->tags = set->tags[hctx_idx];
1740 * Allocate space for all possible cpus to avoid allocation at
1741 * runtime
1743 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1744 GFP_KERNEL, node);
1745 if (!hctx->ctxs)
1746 goto unregister_cpu_notifier;
1748 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1749 goto free_ctxs;
1751 hctx->nr_ctx = 0;
1753 if (set->ops->init_hctx &&
1754 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1755 goto free_bitmap;
1757 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1758 if (!hctx->fq)
1759 goto exit_hctx;
1761 if (set->ops->init_request &&
1762 set->ops->init_request(set->driver_data,
1763 hctx->fq->flush_rq, hctx_idx,
1764 flush_start_tag + hctx_idx, node))
1765 goto free_fq;
1767 return 0;
1769 free_fq:
1770 kfree(hctx->fq);
1771 exit_hctx:
1772 if (set->ops->exit_hctx)
1773 set->ops->exit_hctx(hctx, hctx_idx);
1774 free_bitmap:
1775 blk_mq_free_bitmap(&hctx->ctx_map);
1776 free_ctxs:
1777 kfree(hctx->ctxs);
1778 unregister_cpu_notifier:
1779 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1781 return -1;
1784 static void blk_mq_init_cpu_queues(struct request_queue *q,
1785 unsigned int nr_hw_queues)
1787 unsigned int i;
1789 for_each_possible_cpu(i) {
1790 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1791 struct blk_mq_hw_ctx *hctx;
1793 memset(__ctx, 0, sizeof(*__ctx));
1794 __ctx->cpu = i;
1795 spin_lock_init(&__ctx->lock);
1796 INIT_LIST_HEAD(&__ctx->rq_list);
1797 __ctx->queue = q;
1799 /* If the cpu isn't online, the cpu is mapped to first hctx */
1800 if (!cpu_online(i))
1801 continue;
1803 hctx = q->mq_ops->map_queue(q, i);
1806 * Set local node, IFF we have more than one hw queue. If
1807 * not, we remain on the home node of the device
1809 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1810 hctx->numa_node = local_memory_node(cpu_to_node(i));
1814 static void blk_mq_map_swqueue(struct request_queue *q,
1815 const struct cpumask *online_mask)
1817 unsigned int i;
1818 struct blk_mq_hw_ctx *hctx;
1819 struct blk_mq_ctx *ctx;
1820 struct blk_mq_tag_set *set = q->tag_set;
1823 * Avoid others reading imcomplete hctx->cpumask through sysfs
1825 mutex_lock(&q->sysfs_lock);
1827 queue_for_each_hw_ctx(q, hctx, i) {
1828 cpumask_clear(hctx->cpumask);
1829 hctx->nr_ctx = 0;
1833 * Map software to hardware queues
1835 for_each_possible_cpu(i) {
1836 /* If the cpu isn't online, the cpu is mapped to first hctx */
1837 if (!cpumask_test_cpu(i, online_mask))
1838 continue;
1840 ctx = per_cpu_ptr(q->queue_ctx, i);
1841 hctx = q->mq_ops->map_queue(q, i);
1843 cpumask_set_cpu(i, hctx->cpumask);
1844 ctx->index_hw = hctx->nr_ctx;
1845 hctx->ctxs[hctx->nr_ctx++] = ctx;
1848 mutex_unlock(&q->sysfs_lock);
1850 queue_for_each_hw_ctx(q, hctx, i) {
1851 struct blk_mq_ctxmap *map = &hctx->ctx_map;
1854 * If no software queues are mapped to this hardware queue,
1855 * disable it and free the request entries.
1857 if (!hctx->nr_ctx) {
1858 if (set->tags[i]) {
1859 blk_mq_free_rq_map(set, set->tags[i], i);
1860 set->tags[i] = NULL;
1862 hctx->tags = NULL;
1863 continue;
1866 /* unmapped hw queue can be remapped after CPU topo changed */
1867 if (!set->tags[i])
1868 set->tags[i] = blk_mq_init_rq_map(set, i);
1869 hctx->tags = set->tags[i];
1870 WARN_ON(!hctx->tags);
1872 cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1874 * Set the map size to the number of mapped software queues.
1875 * This is more accurate and more efficient than looping
1876 * over all possibly mapped software queues.
1878 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1881 * Initialize batch roundrobin counts
1883 hctx->next_cpu = cpumask_first(hctx->cpumask);
1884 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1888 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1890 struct blk_mq_hw_ctx *hctx;
1891 int i;
1893 queue_for_each_hw_ctx(q, hctx, i) {
1894 if (shared)
1895 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1896 else
1897 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1901 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1903 struct request_queue *q;
1905 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1906 blk_mq_freeze_queue(q);
1907 queue_set_hctx_shared(q, shared);
1908 blk_mq_unfreeze_queue(q);
1912 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1914 struct blk_mq_tag_set *set = q->tag_set;
1916 mutex_lock(&set->tag_list_lock);
1917 list_del_init(&q->tag_set_list);
1918 if (list_is_singular(&set->tag_list)) {
1919 /* just transitioned to unshared */
1920 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1921 /* update existing queue */
1922 blk_mq_update_tag_set_depth(set, false);
1924 mutex_unlock(&set->tag_list_lock);
1927 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1928 struct request_queue *q)
1930 q->tag_set = set;
1932 mutex_lock(&set->tag_list_lock);
1934 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1935 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1936 set->flags |= BLK_MQ_F_TAG_SHARED;
1937 /* update existing queue */
1938 blk_mq_update_tag_set_depth(set, true);
1940 if (set->flags & BLK_MQ_F_TAG_SHARED)
1941 queue_set_hctx_shared(q, true);
1942 list_add_tail(&q->tag_set_list, &set->tag_list);
1944 mutex_unlock(&set->tag_list_lock);
1948 * It is the actual release handler for mq, but we do it from
1949 * request queue's release handler for avoiding use-after-free
1950 * and headache because q->mq_kobj shouldn't have been introduced,
1951 * but we can't group ctx/kctx kobj without it.
1953 void blk_mq_release(struct request_queue *q)
1955 struct blk_mq_hw_ctx *hctx;
1956 unsigned int i;
1958 /* hctx kobj stays in hctx */
1959 queue_for_each_hw_ctx(q, hctx, i) {
1960 if (!hctx)
1961 continue;
1962 kfree(hctx->ctxs);
1963 kfree(hctx);
1966 kfree(q->mq_map);
1967 q->mq_map = NULL;
1969 kfree(q->queue_hw_ctx);
1971 /* ctx kobj stays in queue_ctx */
1972 free_percpu(q->queue_ctx);
1975 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1977 struct request_queue *uninit_q, *q;
1979 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1980 if (!uninit_q)
1981 return ERR_PTR(-ENOMEM);
1983 q = blk_mq_init_allocated_queue(set, uninit_q);
1984 if (IS_ERR(q))
1985 blk_cleanup_queue(uninit_q);
1987 return q;
1989 EXPORT_SYMBOL(blk_mq_init_queue);
1991 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
1992 struct request_queue *q)
1994 int i, j;
1995 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
1997 blk_mq_sysfs_unregister(q);
1998 for (i = 0; i < set->nr_hw_queues; i++) {
1999 int node;
2001 if (hctxs[i])
2002 continue;
2004 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2005 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2006 GFP_KERNEL, node);
2007 if (!hctxs[i])
2008 break;
2010 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2011 node)) {
2012 kfree(hctxs[i]);
2013 hctxs[i] = NULL;
2014 break;
2017 atomic_set(&hctxs[i]->nr_active, 0);
2018 hctxs[i]->numa_node = node;
2019 hctxs[i]->queue_num = i;
2021 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2022 free_cpumask_var(hctxs[i]->cpumask);
2023 kfree(hctxs[i]);
2024 hctxs[i] = NULL;
2025 break;
2027 blk_mq_hctx_kobj_init(hctxs[i]);
2029 for (j = i; j < q->nr_hw_queues; j++) {
2030 struct blk_mq_hw_ctx *hctx = hctxs[j];
2032 if (hctx) {
2033 if (hctx->tags) {
2034 blk_mq_free_rq_map(set, hctx->tags, j);
2035 set->tags[j] = NULL;
2037 blk_mq_exit_hctx(q, set, hctx, j);
2038 free_cpumask_var(hctx->cpumask);
2039 kobject_put(&hctx->kobj);
2040 kfree(hctx->ctxs);
2041 kfree(hctx);
2042 hctxs[j] = NULL;
2046 q->nr_hw_queues = i;
2047 blk_mq_sysfs_register(q);
2050 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2051 struct request_queue *q)
2053 /* mark the queue as mq asap */
2054 q->mq_ops = set->ops;
2056 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2057 if (!q->queue_ctx)
2058 goto err_exit;
2060 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2061 GFP_KERNEL, set->numa_node);
2062 if (!q->queue_hw_ctx)
2063 goto err_percpu;
2065 q->mq_map = blk_mq_make_queue_map(set);
2066 if (!q->mq_map)
2067 goto err_map;
2069 blk_mq_realloc_hw_ctxs(set, q);
2070 if (!q->nr_hw_queues)
2071 goto err_hctxs;
2073 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2074 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2076 q->nr_queues = nr_cpu_ids;
2078 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2080 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2081 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2083 q->sg_reserved_size = INT_MAX;
2085 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2086 INIT_LIST_HEAD(&q->requeue_list);
2087 spin_lock_init(&q->requeue_lock);
2089 if (q->nr_hw_queues > 1)
2090 blk_queue_make_request(q, blk_mq_make_request);
2091 else
2092 blk_queue_make_request(q, blk_sq_make_request);
2095 * Do this after blk_queue_make_request() overrides it...
2097 q->nr_requests = set->queue_depth;
2099 if (set->ops->complete)
2100 blk_queue_softirq_done(q, set->ops->complete);
2102 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2104 get_online_cpus();
2105 mutex_lock(&all_q_mutex);
2107 list_add_tail(&q->all_q_node, &all_q_list);
2108 blk_mq_add_queue_tag_set(set, q);
2109 blk_mq_map_swqueue(q, cpu_online_mask);
2111 mutex_unlock(&all_q_mutex);
2112 put_online_cpus();
2114 return q;
2116 err_hctxs:
2117 kfree(q->mq_map);
2118 err_map:
2119 kfree(q->queue_hw_ctx);
2120 err_percpu:
2121 free_percpu(q->queue_ctx);
2122 err_exit:
2123 q->mq_ops = NULL;
2124 return ERR_PTR(-ENOMEM);
2126 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2128 void blk_mq_free_queue(struct request_queue *q)
2130 struct blk_mq_tag_set *set = q->tag_set;
2132 mutex_lock(&all_q_mutex);
2133 list_del_init(&q->all_q_node);
2134 mutex_unlock(&all_q_mutex);
2136 blk_mq_del_queue_tag_set(q);
2138 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2139 blk_mq_free_hw_queues(q, set);
2142 /* Basically redo blk_mq_init_queue with queue frozen */
2143 static void blk_mq_queue_reinit(struct request_queue *q,
2144 const struct cpumask *online_mask)
2146 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2148 blk_mq_sysfs_unregister(q);
2150 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2153 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2154 * we should change hctx numa_node according to new topology (this
2155 * involves free and re-allocate memory, worthy doing?)
2158 blk_mq_map_swqueue(q, online_mask);
2160 blk_mq_sysfs_register(q);
2163 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2164 unsigned long action, void *hcpu)
2166 struct request_queue *q;
2167 int cpu = (unsigned long)hcpu;
2169 * New online cpumask which is going to be set in this hotplug event.
2170 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2171 * one-by-one and dynamically allocating this could result in a failure.
2173 static struct cpumask online_new;
2176 * Before hotadded cpu starts handling requests, new mappings must
2177 * be established. Otherwise, these requests in hw queue might
2178 * never be dispatched.
2180 * For example, there is a single hw queue (hctx) and two CPU queues
2181 * (ctx0 for CPU0, and ctx1 for CPU1).
2183 * Now CPU1 is just onlined and a request is inserted into
2184 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2185 * still zero.
2187 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2188 * set in pending bitmap and tries to retrieve requests in
2189 * hctx->ctxs[0]->rq_list. But htx->ctxs[0] is a pointer to ctx0,
2190 * so the request in ctx1->rq_list is ignored.
2192 switch (action & ~CPU_TASKS_FROZEN) {
2193 case CPU_DEAD:
2194 case CPU_UP_CANCELED:
2195 cpumask_copy(&online_new, cpu_online_mask);
2196 break;
2197 case CPU_UP_PREPARE:
2198 cpumask_copy(&online_new, cpu_online_mask);
2199 cpumask_set_cpu(cpu, &online_new);
2200 break;
2201 default:
2202 return NOTIFY_OK;
2205 mutex_lock(&all_q_mutex);
2208 * We need to freeze and reinit all existing queues. Freezing
2209 * involves synchronous wait for an RCU grace period and doing it
2210 * one by one may take a long time. Start freezing all queues in
2211 * one swoop and then wait for the completions so that freezing can
2212 * take place in parallel.
2214 list_for_each_entry(q, &all_q_list, all_q_node)
2215 blk_mq_freeze_queue_start(q);
2216 list_for_each_entry(q, &all_q_list, all_q_node) {
2217 blk_mq_freeze_queue_wait(q);
2220 * timeout handler can't touch hw queue during the
2221 * reinitialization
2223 del_timer_sync(&q->timeout);
2226 list_for_each_entry(q, &all_q_list, all_q_node)
2227 blk_mq_queue_reinit(q, &online_new);
2229 list_for_each_entry(q, &all_q_list, all_q_node)
2230 blk_mq_unfreeze_queue(q);
2232 mutex_unlock(&all_q_mutex);
2233 return NOTIFY_OK;
2236 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2238 int i;
2240 for (i = 0; i < set->nr_hw_queues; i++) {
2241 set->tags[i] = blk_mq_init_rq_map(set, i);
2242 if (!set->tags[i])
2243 goto out_unwind;
2246 return 0;
2248 out_unwind:
2249 while (--i >= 0)
2250 blk_mq_free_rq_map(set, set->tags[i], i);
2252 return -ENOMEM;
2256 * Allocate the request maps associated with this tag_set. Note that this
2257 * may reduce the depth asked for, if memory is tight. set->queue_depth
2258 * will be updated to reflect the allocated depth.
2260 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2262 unsigned int depth;
2263 int err;
2265 depth = set->queue_depth;
2266 do {
2267 err = __blk_mq_alloc_rq_maps(set);
2268 if (!err)
2269 break;
2271 set->queue_depth >>= 1;
2272 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2273 err = -ENOMEM;
2274 break;
2276 } while (set->queue_depth);
2278 if (!set->queue_depth || err) {
2279 pr_err("blk-mq: failed to allocate request map\n");
2280 return -ENOMEM;
2283 if (depth != set->queue_depth)
2284 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2285 depth, set->queue_depth);
2287 return 0;
2290 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2292 return tags->cpumask;
2294 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2297 * Alloc a tag set to be associated with one or more request queues.
2298 * May fail with EINVAL for various error conditions. May adjust the
2299 * requested depth down, if if it too large. In that case, the set
2300 * value will be stored in set->queue_depth.
2302 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2304 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2306 if (!set->nr_hw_queues)
2307 return -EINVAL;
2308 if (!set->queue_depth)
2309 return -EINVAL;
2310 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2311 return -EINVAL;
2313 if (!set->ops->queue_rq || !set->ops->map_queue)
2314 return -EINVAL;
2316 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2317 pr_info("blk-mq: reduced tag depth to %u\n",
2318 BLK_MQ_MAX_DEPTH);
2319 set->queue_depth = BLK_MQ_MAX_DEPTH;
2323 * If a crashdump is active, then we are potentially in a very
2324 * memory constrained environment. Limit us to 1 queue and
2325 * 64 tags to prevent using too much memory.
2327 if (is_kdump_kernel()) {
2328 set->nr_hw_queues = 1;
2329 set->queue_depth = min(64U, set->queue_depth);
2332 * There is no use for more h/w queues than cpus.
2334 if (set->nr_hw_queues > nr_cpu_ids)
2335 set->nr_hw_queues = nr_cpu_ids;
2337 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2338 GFP_KERNEL, set->numa_node);
2339 if (!set->tags)
2340 return -ENOMEM;
2342 if (blk_mq_alloc_rq_maps(set))
2343 goto enomem;
2345 mutex_init(&set->tag_list_lock);
2346 INIT_LIST_HEAD(&set->tag_list);
2348 return 0;
2349 enomem:
2350 kfree(set->tags);
2351 set->tags = NULL;
2352 return -ENOMEM;
2354 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2356 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2358 int i;
2360 for (i = 0; i < nr_cpu_ids; i++) {
2361 if (set->tags[i])
2362 blk_mq_free_rq_map(set, set->tags[i], i);
2365 kfree(set->tags);
2366 set->tags = NULL;
2368 EXPORT_SYMBOL(blk_mq_free_tag_set);
2370 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2372 struct blk_mq_tag_set *set = q->tag_set;
2373 struct blk_mq_hw_ctx *hctx;
2374 int i, ret;
2376 if (!set || nr > set->queue_depth)
2377 return -EINVAL;
2379 ret = 0;
2380 queue_for_each_hw_ctx(q, hctx, i) {
2381 if (!hctx->tags)
2382 continue;
2383 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2384 if (ret)
2385 break;
2388 if (!ret)
2389 q->nr_requests = nr;
2391 return ret;
2394 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2396 struct request_queue *q;
2398 if (nr_hw_queues > nr_cpu_ids)
2399 nr_hw_queues = nr_cpu_ids;
2400 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2401 return;
2403 list_for_each_entry(q, &set->tag_list, tag_set_list)
2404 blk_mq_freeze_queue(q);
2406 set->nr_hw_queues = nr_hw_queues;
2407 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2408 blk_mq_realloc_hw_ctxs(set, q);
2410 if (q->nr_hw_queues > 1)
2411 blk_queue_make_request(q, blk_mq_make_request);
2412 else
2413 blk_queue_make_request(q, blk_sq_make_request);
2415 blk_mq_queue_reinit(q, cpu_online_mask);
2418 list_for_each_entry(q, &set->tag_list, tag_set_list)
2419 blk_mq_unfreeze_queue(q);
2421 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2423 void blk_mq_disable_hotplug(void)
2425 mutex_lock(&all_q_mutex);
2428 void blk_mq_enable_hotplug(void)
2430 mutex_unlock(&all_q_mutex);
2433 static int __init blk_mq_init(void)
2435 blk_mq_cpu_init();
2437 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2439 return 0;
2441 subsys_initcall(blk_mq_init);