2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
26 #include <trace/events/block.h>
28 #include <linux/blk-mq.h>
31 #include "blk-mq-tag.h"
33 static DEFINE_MUTEX(all_q_mutex
);
34 static LIST_HEAD(all_q_list
);
36 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
);
39 * Check if any of the ctx's have pending work in this hardware queue
41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
45 for (i
= 0; i
< hctx
->ctx_map
.size
; i
++)
46 if (hctx
->ctx_map
.map
[i
].word
)
52 static inline struct blk_align_bitmap
*get_bm(struct blk_mq_hw_ctx
*hctx
,
53 struct blk_mq_ctx
*ctx
)
55 return &hctx
->ctx_map
.map
[ctx
->index_hw
/ hctx
->ctx_map
.bits_per_word
];
58 #define CTX_TO_BIT(hctx, ctx) \
59 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
62 * Mark this ctx as having pending work in this hardware queue
64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
65 struct blk_mq_ctx
*ctx
)
67 struct blk_align_bitmap
*bm
= get_bm(hctx
, ctx
);
69 if (!test_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
))
70 set_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
);
73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
74 struct blk_mq_ctx
*ctx
)
76 struct blk_align_bitmap
*bm
= get_bm(hctx
, ctx
);
78 clear_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
);
81 void blk_mq_freeze_queue_start(struct request_queue
*q
)
85 freeze_depth
= atomic_inc_return(&q
->mq_freeze_depth
);
86 if (freeze_depth
== 1) {
87 percpu_ref_kill(&q
->q_usage_counter
);
88 blk_mq_run_hw_queues(q
, false);
91 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start
);
93 static void blk_mq_freeze_queue_wait(struct request_queue
*q
)
95 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->q_usage_counter
));
99 * Guarantee no request is in use, so we can change any data structure of
100 * the queue afterward.
102 void blk_freeze_queue(struct request_queue
*q
)
105 * In the !blk_mq case we are only calling this to kill the
106 * q_usage_counter, otherwise this increases the freeze depth
107 * and waits for it to return to zero. For this reason there is
108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 * exported to drivers as the only user for unfreeze is blk_mq.
111 blk_mq_freeze_queue_start(q
);
112 blk_mq_freeze_queue_wait(q
);
115 void blk_mq_freeze_queue(struct request_queue
*q
)
118 * ...just an alias to keep freeze and unfreeze actions balanced
119 * in the blk_mq_* namespace
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue
);
125 void blk_mq_unfreeze_queue(struct request_queue
*q
)
129 freeze_depth
= atomic_dec_return(&q
->mq_freeze_depth
);
130 WARN_ON_ONCE(freeze_depth
< 0);
132 percpu_ref_reinit(&q
->q_usage_counter
);
133 wake_up_all(&q
->mq_freeze_wq
);
136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue
);
138 void blk_mq_wake_waiters(struct request_queue
*q
)
140 struct blk_mq_hw_ctx
*hctx
;
143 queue_for_each_hw_ctx(q
, hctx
, i
)
144 if (blk_mq_hw_queue_mapped(hctx
))
145 blk_mq_tag_wakeup_all(hctx
->tags
, true);
148 * If we are called because the queue has now been marked as
149 * dying, we need to ensure that processes currently waiting on
150 * the queue are notified as well.
152 wake_up_all(&q
->mq_freeze_wq
);
155 bool blk_mq_can_queue(struct blk_mq_hw_ctx
*hctx
)
157 return blk_mq_has_free_tags(hctx
->tags
);
159 EXPORT_SYMBOL(blk_mq_can_queue
);
161 static void blk_mq_rq_ctx_init(struct request_queue
*q
, struct blk_mq_ctx
*ctx
,
162 struct request
*rq
, int op
,
163 unsigned int op_flags
)
165 if (blk_queue_io_stat(q
))
166 op_flags
|= REQ_IO_STAT
;
168 INIT_LIST_HEAD(&rq
->queuelist
);
169 /* csd/requeue_work/fifo_time is initialized before use */
172 req_set_op_attrs(rq
, op
, op_flags
);
173 /* do not touch atomic flags, it needs atomic ops against the timer */
175 INIT_HLIST_NODE(&rq
->hash
);
176 RB_CLEAR_NODE(&rq
->rb_node
);
179 rq
->start_time
= jiffies
;
180 #ifdef CONFIG_BLK_CGROUP
182 set_start_time_ns(rq
);
183 rq
->io_start_time_ns
= 0;
185 rq
->nr_phys_segments
= 0;
186 #if defined(CONFIG_BLK_DEV_INTEGRITY)
187 rq
->nr_integrity_segments
= 0;
190 /* tag was already set */
200 INIT_LIST_HEAD(&rq
->timeout_list
);
204 rq
->end_io_data
= NULL
;
207 ctx
->rq_dispatched
[rw_is_sync(op
, op_flags
)]++;
210 static struct request
*
211 __blk_mq_alloc_request(struct blk_mq_alloc_data
*data
, int op
, int op_flags
)
216 tag
= blk_mq_get_tag(data
);
217 if (tag
!= BLK_MQ_TAG_FAIL
) {
218 rq
= data
->hctx
->tags
->rqs
[tag
];
220 if (blk_mq_tag_busy(data
->hctx
)) {
221 rq
->cmd_flags
= REQ_MQ_INFLIGHT
;
222 atomic_inc(&data
->hctx
->nr_active
);
226 blk_mq_rq_ctx_init(data
->q
, data
->ctx
, rq
, op
, op_flags
);
233 struct request
*blk_mq_alloc_request(struct request_queue
*q
, int rw
,
236 struct blk_mq_ctx
*ctx
;
237 struct blk_mq_hw_ctx
*hctx
;
239 struct blk_mq_alloc_data alloc_data
;
242 ret
= blk_queue_enter(q
, flags
& BLK_MQ_REQ_NOWAIT
);
246 ctx
= blk_mq_get_ctx(q
);
247 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
248 blk_mq_set_alloc_data(&alloc_data
, q
, flags
, ctx
, hctx
);
250 rq
= __blk_mq_alloc_request(&alloc_data
, rw
, 0);
251 if (!rq
&& !(flags
& BLK_MQ_REQ_NOWAIT
)) {
252 __blk_mq_run_hw_queue(hctx
);
255 ctx
= blk_mq_get_ctx(q
);
256 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
257 blk_mq_set_alloc_data(&alloc_data
, q
, flags
, ctx
, hctx
);
258 rq
= __blk_mq_alloc_request(&alloc_data
, rw
, 0);
259 ctx
= alloc_data
.ctx
;
264 return ERR_PTR(-EWOULDBLOCK
);
268 rq
->__sector
= (sector_t
) -1;
269 rq
->bio
= rq
->biotail
= NULL
;
272 EXPORT_SYMBOL(blk_mq_alloc_request
);
274 struct request
*blk_mq_alloc_request_hctx(struct request_queue
*q
, int rw
,
275 unsigned int flags
, unsigned int hctx_idx
)
277 struct blk_mq_hw_ctx
*hctx
;
278 struct blk_mq_ctx
*ctx
;
280 struct blk_mq_alloc_data alloc_data
;
284 * If the tag allocator sleeps we could get an allocation for a
285 * different hardware context. No need to complicate the low level
286 * allocator for this for the rare use case of a command tied to
289 if (WARN_ON_ONCE(!(flags
& BLK_MQ_REQ_NOWAIT
)))
290 return ERR_PTR(-EINVAL
);
292 if (hctx_idx
>= q
->nr_hw_queues
)
293 return ERR_PTR(-EIO
);
295 ret
= blk_queue_enter(q
, true);
299 hctx
= q
->queue_hw_ctx
[hctx_idx
];
300 ctx
= __blk_mq_get_ctx(q
, cpumask_first(hctx
->cpumask
));
302 blk_mq_set_alloc_data(&alloc_data
, q
, flags
, ctx
, hctx
);
303 rq
= __blk_mq_alloc_request(&alloc_data
, rw
, 0);
306 return ERR_PTR(-EWOULDBLOCK
);
311 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx
);
313 static void __blk_mq_free_request(struct blk_mq_hw_ctx
*hctx
,
314 struct blk_mq_ctx
*ctx
, struct request
*rq
)
316 const int tag
= rq
->tag
;
317 struct request_queue
*q
= rq
->q
;
319 if (rq
->cmd_flags
& REQ_MQ_INFLIGHT
)
320 atomic_dec(&hctx
->nr_active
);
323 clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
324 blk_mq_put_tag(hctx
, tag
, &ctx
->last_tag
);
328 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
330 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
332 ctx
->rq_completed
[rq_is_sync(rq
)]++;
333 __blk_mq_free_request(hctx
, ctx
, rq
);
336 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request
);
338 void blk_mq_free_request(struct request
*rq
)
340 struct blk_mq_hw_ctx
*hctx
;
341 struct request_queue
*q
= rq
->q
;
343 hctx
= q
->mq_ops
->map_queue(q
, rq
->mq_ctx
->cpu
);
344 blk_mq_free_hctx_request(hctx
, rq
);
346 EXPORT_SYMBOL_GPL(blk_mq_free_request
);
348 inline void __blk_mq_end_request(struct request
*rq
, int error
)
350 blk_account_io_done(rq
);
353 rq
->end_io(rq
, error
);
355 if (unlikely(blk_bidi_rq(rq
)))
356 blk_mq_free_request(rq
->next_rq
);
357 blk_mq_free_request(rq
);
360 EXPORT_SYMBOL(__blk_mq_end_request
);
362 void blk_mq_end_request(struct request
*rq
, int error
)
364 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
366 __blk_mq_end_request(rq
, error
);
368 EXPORT_SYMBOL(blk_mq_end_request
);
370 static void __blk_mq_complete_request_remote(void *data
)
372 struct request
*rq
= data
;
374 rq
->q
->softirq_done_fn(rq
);
377 static void blk_mq_ipi_complete_request(struct request
*rq
)
379 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
383 if (!test_bit(QUEUE_FLAG_SAME_COMP
, &rq
->q
->queue_flags
)) {
384 rq
->q
->softirq_done_fn(rq
);
389 if (!test_bit(QUEUE_FLAG_SAME_FORCE
, &rq
->q
->queue_flags
))
390 shared
= cpus_share_cache(cpu
, ctx
->cpu
);
392 if (cpu
!= ctx
->cpu
&& !shared
&& cpu_online(ctx
->cpu
)) {
393 rq
->csd
.func
= __blk_mq_complete_request_remote
;
396 smp_call_function_single_async(ctx
->cpu
, &rq
->csd
);
398 rq
->q
->softirq_done_fn(rq
);
403 static void __blk_mq_complete_request(struct request
*rq
)
405 struct request_queue
*q
= rq
->q
;
407 if (!q
->softirq_done_fn
)
408 blk_mq_end_request(rq
, rq
->errors
);
410 blk_mq_ipi_complete_request(rq
);
414 * blk_mq_complete_request - end I/O on a request
415 * @rq: the request being processed
418 * Ends all I/O on a request. It does not handle partial completions.
419 * The actual completion happens out-of-order, through a IPI handler.
421 void blk_mq_complete_request(struct request
*rq
, int error
)
423 struct request_queue
*q
= rq
->q
;
425 if (unlikely(blk_should_fake_timeout(q
)))
427 if (!blk_mark_rq_complete(rq
)) {
429 __blk_mq_complete_request(rq
);
432 EXPORT_SYMBOL(blk_mq_complete_request
);
434 int blk_mq_request_started(struct request
*rq
)
436 return test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
438 EXPORT_SYMBOL_GPL(blk_mq_request_started
);
440 void blk_mq_start_request(struct request
*rq
)
442 struct request_queue
*q
= rq
->q
;
444 trace_block_rq_issue(q
, rq
);
446 rq
->resid_len
= blk_rq_bytes(rq
);
447 if (unlikely(blk_bidi_rq(rq
)))
448 rq
->next_rq
->resid_len
= blk_rq_bytes(rq
->next_rq
);
453 * Ensure that ->deadline is visible before set the started
454 * flag and clear the completed flag.
456 smp_mb__before_atomic();
459 * Mark us as started and clear complete. Complete might have been
460 * set if requeue raced with timeout, which then marked it as
461 * complete. So be sure to clear complete again when we start
462 * the request, otherwise we'll ignore the completion event.
464 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
465 set_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
466 if (test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
))
467 clear_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
);
469 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
471 * Make sure space for the drain appears. We know we can do
472 * this because max_hw_segments has been adjusted to be one
473 * fewer than the device can handle.
475 rq
->nr_phys_segments
++;
478 EXPORT_SYMBOL(blk_mq_start_request
);
480 static void __blk_mq_requeue_request(struct request
*rq
)
482 struct request_queue
*q
= rq
->q
;
484 trace_block_rq_requeue(q
, rq
);
486 if (test_and_clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
)) {
487 if (q
->dma_drain_size
&& blk_rq_bytes(rq
))
488 rq
->nr_phys_segments
--;
492 void blk_mq_requeue_request(struct request
*rq
)
494 __blk_mq_requeue_request(rq
);
496 BUG_ON(blk_queued_rq(rq
));
497 blk_mq_add_to_requeue_list(rq
, true);
499 EXPORT_SYMBOL(blk_mq_requeue_request
);
501 static void blk_mq_requeue_work(struct work_struct
*work
)
503 struct request_queue
*q
=
504 container_of(work
, struct request_queue
, requeue_work
);
506 struct request
*rq
, *next
;
509 spin_lock_irqsave(&q
->requeue_lock
, flags
);
510 list_splice_init(&q
->requeue_list
, &rq_list
);
511 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
513 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
514 if (!(rq
->cmd_flags
& REQ_SOFTBARRIER
))
517 rq
->cmd_flags
&= ~REQ_SOFTBARRIER
;
518 list_del_init(&rq
->queuelist
);
519 blk_mq_insert_request(rq
, true, false, false);
522 while (!list_empty(&rq_list
)) {
523 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
524 list_del_init(&rq
->queuelist
);
525 blk_mq_insert_request(rq
, false, false, false);
529 * Use the start variant of queue running here, so that running
530 * the requeue work will kick stopped queues.
532 blk_mq_start_hw_queues(q
);
535 void blk_mq_add_to_requeue_list(struct request
*rq
, bool at_head
)
537 struct request_queue
*q
= rq
->q
;
541 * We abuse this flag that is otherwise used by the I/O scheduler to
542 * request head insertation from the workqueue.
544 BUG_ON(rq
->cmd_flags
& REQ_SOFTBARRIER
);
546 spin_lock_irqsave(&q
->requeue_lock
, flags
);
548 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
549 list_add(&rq
->queuelist
, &q
->requeue_list
);
551 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
553 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
555 EXPORT_SYMBOL(blk_mq_add_to_requeue_list
);
557 void blk_mq_cancel_requeue_work(struct request_queue
*q
)
559 cancel_work_sync(&q
->requeue_work
);
561 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work
);
563 void blk_mq_kick_requeue_list(struct request_queue
*q
)
565 kblockd_schedule_work(&q
->requeue_work
);
567 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
569 void blk_mq_abort_requeue_list(struct request_queue
*q
)
574 spin_lock_irqsave(&q
->requeue_lock
, flags
);
575 list_splice_init(&q
->requeue_list
, &rq_list
);
576 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
578 while (!list_empty(&rq_list
)) {
581 rq
= list_first_entry(&rq_list
, struct request
, queuelist
);
582 list_del_init(&rq
->queuelist
);
584 blk_mq_end_request(rq
, rq
->errors
);
587 EXPORT_SYMBOL(blk_mq_abort_requeue_list
);
589 struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
, unsigned int tag
)
591 if (tag
< tags
->nr_tags
)
592 return tags
->rqs
[tag
];
596 EXPORT_SYMBOL(blk_mq_tag_to_rq
);
598 struct blk_mq_timeout_data
{
600 unsigned int next_set
;
603 void blk_mq_rq_timed_out(struct request
*req
, bool reserved
)
605 struct blk_mq_ops
*ops
= req
->q
->mq_ops
;
606 enum blk_eh_timer_return ret
= BLK_EH_RESET_TIMER
;
609 * We know that complete is set at this point. If STARTED isn't set
610 * anymore, then the request isn't active and the "timeout" should
611 * just be ignored. This can happen due to the bitflag ordering.
612 * Timeout first checks if STARTED is set, and if it is, assumes
613 * the request is active. But if we race with completion, then
614 * we both flags will get cleared. So check here again, and ignore
615 * a timeout event with a request that isn't active.
617 if (!test_bit(REQ_ATOM_STARTED
, &req
->atomic_flags
))
621 ret
= ops
->timeout(req
, reserved
);
625 __blk_mq_complete_request(req
);
627 case BLK_EH_RESET_TIMER
:
629 blk_clear_rq_complete(req
);
631 case BLK_EH_NOT_HANDLED
:
634 printk(KERN_ERR
"block: bad eh return: %d\n", ret
);
639 static void blk_mq_check_expired(struct blk_mq_hw_ctx
*hctx
,
640 struct request
*rq
, void *priv
, bool reserved
)
642 struct blk_mq_timeout_data
*data
= priv
;
644 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
)) {
646 * If a request wasn't started before the queue was
647 * marked dying, kill it here or it'll go unnoticed.
649 if (unlikely(blk_queue_dying(rq
->q
))) {
651 blk_mq_end_request(rq
, rq
->errors
);
656 if (time_after_eq(jiffies
, rq
->deadline
)) {
657 if (!blk_mark_rq_complete(rq
))
658 blk_mq_rq_timed_out(rq
, reserved
);
659 } else if (!data
->next_set
|| time_after(data
->next
, rq
->deadline
)) {
660 data
->next
= rq
->deadline
;
665 static void blk_mq_timeout_work(struct work_struct
*work
)
667 struct request_queue
*q
=
668 container_of(work
, struct request_queue
, timeout_work
);
669 struct blk_mq_timeout_data data
= {
675 /* A deadlock might occur if a request is stuck requiring a
676 * timeout at the same time a queue freeze is waiting
677 * completion, since the timeout code would not be able to
678 * acquire the queue reference here.
680 * That's why we don't use blk_queue_enter here; instead, we use
681 * percpu_ref_tryget directly, because we need to be able to
682 * obtain a reference even in the short window between the queue
683 * starting to freeze, by dropping the first reference in
684 * blk_mq_freeze_queue_start, and the moment the last request is
685 * consumed, marked by the instant q_usage_counter reaches
688 if (!percpu_ref_tryget(&q
->q_usage_counter
))
691 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_expired
, &data
);
694 data
.next
= blk_rq_timeout(round_jiffies_up(data
.next
));
695 mod_timer(&q
->timeout
, data
.next
);
697 struct blk_mq_hw_ctx
*hctx
;
699 queue_for_each_hw_ctx(q
, hctx
, i
) {
700 /* the hctx may be unmapped, so check it here */
701 if (blk_mq_hw_queue_mapped(hctx
))
702 blk_mq_tag_idle(hctx
);
709 * Reverse check our software queue for entries that we could potentially
710 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
711 * too much time checking for merges.
713 static bool blk_mq_attempt_merge(struct request_queue
*q
,
714 struct blk_mq_ctx
*ctx
, struct bio
*bio
)
719 list_for_each_entry_reverse(rq
, &ctx
->rq_list
, queuelist
) {
725 if (!blk_rq_merge_ok(rq
, bio
))
728 el_ret
= blk_try_merge(rq
, bio
);
729 if (el_ret
== ELEVATOR_BACK_MERGE
) {
730 if (bio_attempt_back_merge(q
, rq
, bio
)) {
735 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
736 if (bio_attempt_front_merge(q
, rq
, bio
)) {
748 * Process software queues that have been marked busy, splicing them
749 * to the for-dispatch
751 static void flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
753 struct blk_mq_ctx
*ctx
;
756 for (i
= 0; i
< hctx
->ctx_map
.size
; i
++) {
757 struct blk_align_bitmap
*bm
= &hctx
->ctx_map
.map
[i
];
758 unsigned int off
, bit
;
764 off
= i
* hctx
->ctx_map
.bits_per_word
;
766 bit
= find_next_bit(&bm
->word
, bm
->depth
, bit
);
767 if (bit
>= bm
->depth
)
770 ctx
= hctx
->ctxs
[bit
+ off
];
771 clear_bit(bit
, &bm
->word
);
772 spin_lock(&ctx
->lock
);
773 list_splice_tail_init(&ctx
->rq_list
, list
);
774 spin_unlock(&ctx
->lock
);
782 * Run this hardware queue, pulling any software queues mapped to it in.
783 * Note that this function currently has various problems around ordering
784 * of IO. In particular, we'd like FIFO behaviour on handling existing
785 * items on the hctx->dispatch list. Ignore that for now.
787 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
789 struct request_queue
*q
= hctx
->queue
;
792 LIST_HEAD(driver_list
);
793 struct list_head
*dptr
;
796 if (unlikely(test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
)))
799 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
) &&
800 cpu_online(hctx
->next_cpu
));
805 * Touch any software queue that has pending entries.
807 flush_busy_ctxs(hctx
, &rq_list
);
810 * If we have previous entries on our dispatch list, grab them
811 * and stuff them at the front for more fair dispatch.
813 if (!list_empty_careful(&hctx
->dispatch
)) {
814 spin_lock(&hctx
->lock
);
815 if (!list_empty(&hctx
->dispatch
))
816 list_splice_init(&hctx
->dispatch
, &rq_list
);
817 spin_unlock(&hctx
->lock
);
821 * Start off with dptr being NULL, so we start the first request
822 * immediately, even if we have more pending.
827 * Now process all the entries, sending them to the driver.
830 while (!list_empty(&rq_list
)) {
831 struct blk_mq_queue_data bd
;
834 rq
= list_first_entry(&rq_list
, struct request
, queuelist
);
835 list_del_init(&rq
->queuelist
);
839 bd
.last
= list_empty(&rq_list
);
841 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
843 case BLK_MQ_RQ_QUEUE_OK
:
846 case BLK_MQ_RQ_QUEUE_BUSY
:
847 list_add(&rq
->queuelist
, &rq_list
);
848 __blk_mq_requeue_request(rq
);
851 pr_err("blk-mq: bad return on queue: %d\n", ret
);
852 case BLK_MQ_RQ_QUEUE_ERROR
:
854 blk_mq_end_request(rq
, rq
->errors
);
858 if (ret
== BLK_MQ_RQ_QUEUE_BUSY
)
862 * We've done the first request. If we have more than 1
863 * left in the list, set dptr to defer issue.
865 if (!dptr
&& rq_list
.next
!= rq_list
.prev
)
870 hctx
->dispatched
[0]++;
871 else if (queued
< (1 << (BLK_MQ_MAX_DISPATCH_ORDER
- 1)))
872 hctx
->dispatched
[ilog2(queued
) + 1]++;
875 * Any items that need requeuing? Stuff them into hctx->dispatch,
876 * that is where we will continue on next queue run.
878 if (!list_empty(&rq_list
)) {
879 spin_lock(&hctx
->lock
);
880 list_splice(&rq_list
, &hctx
->dispatch
);
881 spin_unlock(&hctx
->lock
);
883 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
884 * it's possible the queue is stopped and restarted again
885 * before this. Queue restart will dispatch requests. And since
886 * requests in rq_list aren't added into hctx->dispatch yet,
887 * the requests in rq_list might get lost.
889 * blk_mq_run_hw_queue() already checks the STOPPED bit
891 blk_mq_run_hw_queue(hctx
, true);
896 * It'd be great if the workqueue API had a way to pass
897 * in a mask and had some smarts for more clever placement.
898 * For now we just round-robin here, switching for every
899 * BLK_MQ_CPU_WORK_BATCH queued items.
901 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
903 if (hctx
->queue
->nr_hw_queues
== 1)
904 return WORK_CPU_UNBOUND
;
906 if (--hctx
->next_cpu_batch
<= 0) {
907 int cpu
= hctx
->next_cpu
, next_cpu
;
909 next_cpu
= cpumask_next(hctx
->next_cpu
, hctx
->cpumask
);
910 if (next_cpu
>= nr_cpu_ids
)
911 next_cpu
= cpumask_first(hctx
->cpumask
);
913 hctx
->next_cpu
= next_cpu
;
914 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
919 return hctx
->next_cpu
;
922 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
924 if (unlikely(test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
) ||
925 !blk_mq_hw_queue_mapped(hctx
)))
930 if (cpumask_test_cpu(cpu
, hctx
->cpumask
)) {
931 __blk_mq_run_hw_queue(hctx
);
939 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
943 void blk_mq_run_hw_queues(struct request_queue
*q
, bool async
)
945 struct blk_mq_hw_ctx
*hctx
;
948 queue_for_each_hw_ctx(q
, hctx
, i
) {
949 if ((!blk_mq_hctx_has_pending(hctx
) &&
950 list_empty_careful(&hctx
->dispatch
)) ||
951 test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
954 blk_mq_run_hw_queue(hctx
, async
);
957 EXPORT_SYMBOL(blk_mq_run_hw_queues
);
959 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
961 cancel_delayed_work(&hctx
->run_work
);
962 cancel_delayed_work(&hctx
->delay_work
);
963 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
965 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
967 void blk_mq_stop_hw_queues(struct request_queue
*q
)
969 struct blk_mq_hw_ctx
*hctx
;
972 queue_for_each_hw_ctx(q
, hctx
, i
)
973 blk_mq_stop_hw_queue(hctx
);
975 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
977 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
979 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
981 blk_mq_run_hw_queue(hctx
, false);
983 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
985 void blk_mq_start_hw_queues(struct request_queue
*q
)
987 struct blk_mq_hw_ctx
*hctx
;
990 queue_for_each_hw_ctx(q
, hctx
, i
)
991 blk_mq_start_hw_queue(hctx
);
993 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
995 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
997 struct blk_mq_hw_ctx
*hctx
;
1000 queue_for_each_hw_ctx(q
, hctx
, i
) {
1001 if (!test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
1004 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1005 blk_mq_run_hw_queue(hctx
, async
);
1008 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
1010 static void blk_mq_run_work_fn(struct work_struct
*work
)
1012 struct blk_mq_hw_ctx
*hctx
;
1014 hctx
= container_of(work
, struct blk_mq_hw_ctx
, run_work
.work
);
1016 __blk_mq_run_hw_queue(hctx
);
1019 static void blk_mq_delay_work_fn(struct work_struct
*work
)
1021 struct blk_mq_hw_ctx
*hctx
;
1023 hctx
= container_of(work
, struct blk_mq_hw_ctx
, delay_work
.work
);
1025 if (test_and_clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
1026 __blk_mq_run_hw_queue(hctx
);
1029 void blk_mq_delay_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
1031 if (unlikely(!blk_mq_hw_queue_mapped(hctx
)))
1034 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
1035 &hctx
->delay_work
, msecs_to_jiffies(msecs
));
1037 EXPORT_SYMBOL(blk_mq_delay_queue
);
1039 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx
*hctx
,
1043 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1045 trace_block_rq_insert(hctx
->queue
, rq
);
1048 list_add(&rq
->queuelist
, &ctx
->rq_list
);
1050 list_add_tail(&rq
->queuelist
, &ctx
->rq_list
);
1053 static void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
,
1054 struct request
*rq
, bool at_head
)
1056 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1058 __blk_mq_insert_req_list(hctx
, rq
, at_head
);
1059 blk_mq_hctx_mark_pending(hctx
, ctx
);
1062 void blk_mq_insert_request(struct request
*rq
, bool at_head
, bool run_queue
,
1065 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1066 struct request_queue
*q
= rq
->q
;
1067 struct blk_mq_hw_ctx
*hctx
;
1069 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1071 spin_lock(&ctx
->lock
);
1072 __blk_mq_insert_request(hctx
, rq
, at_head
);
1073 spin_unlock(&ctx
->lock
);
1076 blk_mq_run_hw_queue(hctx
, async
);
1079 static void blk_mq_insert_requests(struct request_queue
*q
,
1080 struct blk_mq_ctx
*ctx
,
1081 struct list_head
*list
,
1086 struct blk_mq_hw_ctx
*hctx
;
1088 trace_block_unplug(q
, depth
, !from_schedule
);
1090 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1093 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1096 spin_lock(&ctx
->lock
);
1097 while (!list_empty(list
)) {
1100 rq
= list_first_entry(list
, struct request
, queuelist
);
1101 BUG_ON(rq
->mq_ctx
!= ctx
);
1102 list_del_init(&rq
->queuelist
);
1103 __blk_mq_insert_req_list(hctx
, rq
, false);
1105 blk_mq_hctx_mark_pending(hctx
, ctx
);
1106 spin_unlock(&ctx
->lock
);
1108 blk_mq_run_hw_queue(hctx
, from_schedule
);
1111 static int plug_ctx_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1113 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
1114 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
1116 return !(rqa
->mq_ctx
< rqb
->mq_ctx
||
1117 (rqa
->mq_ctx
== rqb
->mq_ctx
&&
1118 blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
1121 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1123 struct blk_mq_ctx
*this_ctx
;
1124 struct request_queue
*this_q
;
1127 LIST_HEAD(ctx_list
);
1130 list_splice_init(&plug
->mq_list
, &list
);
1132 list_sort(NULL
, &list
, plug_ctx_cmp
);
1138 while (!list_empty(&list
)) {
1139 rq
= list_entry_rq(list
.next
);
1140 list_del_init(&rq
->queuelist
);
1142 if (rq
->mq_ctx
!= this_ctx
) {
1144 blk_mq_insert_requests(this_q
, this_ctx
,
1149 this_ctx
= rq
->mq_ctx
;
1155 list_add_tail(&rq
->queuelist
, &ctx_list
);
1159 * If 'this_ctx' is set, we know we have entries to complete
1160 * on 'ctx_list'. Do those.
1163 blk_mq_insert_requests(this_q
, this_ctx
, &ctx_list
, depth
,
1168 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
)
1170 init_request_from_bio(rq
, bio
);
1172 blk_account_io_start(rq
, 1);
1175 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx
*hctx
)
1177 return (hctx
->flags
& BLK_MQ_F_SHOULD_MERGE
) &&
1178 !blk_queue_nomerges(hctx
->queue
);
1181 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx
*hctx
,
1182 struct blk_mq_ctx
*ctx
,
1183 struct request
*rq
, struct bio
*bio
)
1185 if (!hctx_allow_merges(hctx
) || !bio_mergeable(bio
)) {
1186 blk_mq_bio_to_request(rq
, bio
);
1187 spin_lock(&ctx
->lock
);
1189 __blk_mq_insert_request(hctx
, rq
, false);
1190 spin_unlock(&ctx
->lock
);
1193 struct request_queue
*q
= hctx
->queue
;
1195 spin_lock(&ctx
->lock
);
1196 if (!blk_mq_attempt_merge(q
, ctx
, bio
)) {
1197 blk_mq_bio_to_request(rq
, bio
);
1201 spin_unlock(&ctx
->lock
);
1202 __blk_mq_free_request(hctx
, ctx
, rq
);
1207 struct blk_map_ctx
{
1208 struct blk_mq_hw_ctx
*hctx
;
1209 struct blk_mq_ctx
*ctx
;
1212 static struct request
*blk_mq_map_request(struct request_queue
*q
,
1214 struct blk_map_ctx
*data
)
1216 struct blk_mq_hw_ctx
*hctx
;
1217 struct blk_mq_ctx
*ctx
;
1219 int op
= bio_data_dir(bio
);
1221 struct blk_mq_alloc_data alloc_data
;
1223 blk_queue_enter_live(q
);
1224 ctx
= blk_mq_get_ctx(q
);
1225 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1227 if (rw_is_sync(bio_op(bio
), bio
->bi_opf
))
1228 op_flags
|= REQ_SYNC
;
1230 trace_block_getrq(q
, bio
, op
);
1231 blk_mq_set_alloc_data(&alloc_data
, q
, BLK_MQ_REQ_NOWAIT
, ctx
, hctx
);
1232 rq
= __blk_mq_alloc_request(&alloc_data
, op
, op_flags
);
1233 if (unlikely(!rq
)) {
1234 __blk_mq_run_hw_queue(hctx
);
1235 blk_mq_put_ctx(ctx
);
1236 trace_block_sleeprq(q
, bio
, op
);
1238 ctx
= blk_mq_get_ctx(q
);
1239 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1240 blk_mq_set_alloc_data(&alloc_data
, q
, 0, ctx
, hctx
);
1241 rq
= __blk_mq_alloc_request(&alloc_data
, op
, op_flags
);
1242 ctx
= alloc_data
.ctx
;
1243 hctx
= alloc_data
.hctx
;
1252 static int blk_mq_direct_issue_request(struct request
*rq
, blk_qc_t
*cookie
)
1255 struct request_queue
*q
= rq
->q
;
1256 struct blk_mq_hw_ctx
*hctx
= q
->mq_ops
->map_queue(q
,
1258 struct blk_mq_queue_data bd
= {
1263 blk_qc_t new_cookie
= blk_tag_to_qc_t(rq
->tag
, hctx
->queue_num
);
1266 * For OK queue, we are done. For error, kill it. Any other
1267 * error (busy), just add it to our list as we previously
1270 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1271 if (ret
== BLK_MQ_RQ_QUEUE_OK
) {
1272 *cookie
= new_cookie
;
1276 __blk_mq_requeue_request(rq
);
1278 if (ret
== BLK_MQ_RQ_QUEUE_ERROR
) {
1279 *cookie
= BLK_QC_T_NONE
;
1281 blk_mq_end_request(rq
, rq
->errors
);
1289 * Multiple hardware queue variant. This will not use per-process plugs,
1290 * but will attempt to bypass the hctx queueing if we can go straight to
1291 * hardware for SYNC IO.
1293 static blk_qc_t
blk_mq_make_request(struct request_queue
*q
, struct bio
*bio
)
1295 const int is_sync
= rw_is_sync(bio_op(bio
), bio
->bi_opf
);
1296 const int is_flush_fua
= bio
->bi_opf
& (REQ_PREFLUSH
| REQ_FUA
);
1297 struct blk_map_ctx data
;
1299 unsigned int request_count
= 0;
1300 struct blk_plug
*plug
;
1301 struct request
*same_queue_rq
= NULL
;
1304 blk_queue_bounce(q
, &bio
);
1306 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1308 return BLK_QC_T_NONE
;
1311 blk_queue_split(q
, &bio
, q
->bio_split
);
1313 if (!is_flush_fua
&& !blk_queue_nomerges(q
) &&
1314 blk_attempt_plug_merge(q
, bio
, &request_count
, &same_queue_rq
))
1315 return BLK_QC_T_NONE
;
1317 rq
= blk_mq_map_request(q
, bio
, &data
);
1319 return BLK_QC_T_NONE
;
1321 cookie
= blk_tag_to_qc_t(rq
->tag
, data
.hctx
->queue_num
);
1323 if (unlikely(is_flush_fua
)) {
1324 blk_mq_bio_to_request(rq
, bio
);
1325 blk_insert_flush(rq
);
1329 plug
= current
->plug
;
1331 * If the driver supports defer issued based on 'last', then
1332 * queue it up like normal since we can potentially save some
1335 if (((plug
&& !blk_queue_nomerges(q
)) || is_sync
) &&
1336 !(data
.hctx
->flags
& BLK_MQ_F_DEFER_ISSUE
)) {
1337 struct request
*old_rq
= NULL
;
1339 blk_mq_bio_to_request(rq
, bio
);
1342 * We do limited pluging. If the bio can be merged, do that.
1343 * Otherwise the existing request in the plug list will be
1344 * issued. So the plug list will have one request at most
1348 * The plug list might get flushed before this. If that
1349 * happens, same_queue_rq is invalid and plug list is
1352 if (same_queue_rq
&& !list_empty(&plug
->mq_list
)) {
1353 old_rq
= same_queue_rq
;
1354 list_del_init(&old_rq
->queuelist
);
1356 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1357 } else /* is_sync */
1359 blk_mq_put_ctx(data
.ctx
);
1362 if (!blk_mq_direct_issue_request(old_rq
, &cookie
))
1364 blk_mq_insert_request(old_rq
, false, true, true);
1368 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1370 * For a SYNC request, send it to the hardware immediately. For
1371 * an ASYNC request, just ensure that we run it later on. The
1372 * latter allows for merging opportunities and more efficient
1376 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1378 blk_mq_put_ctx(data
.ctx
);
1384 * Single hardware queue variant. This will attempt to use any per-process
1385 * plug for merging and IO deferral.
1387 static blk_qc_t
blk_sq_make_request(struct request_queue
*q
, struct bio
*bio
)
1389 const int is_sync
= rw_is_sync(bio_op(bio
), bio
->bi_opf
);
1390 const int is_flush_fua
= bio
->bi_opf
& (REQ_PREFLUSH
| REQ_FUA
);
1391 struct blk_plug
*plug
;
1392 unsigned int request_count
= 0;
1393 struct blk_map_ctx data
;
1397 blk_queue_bounce(q
, &bio
);
1399 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1401 return BLK_QC_T_NONE
;
1404 blk_queue_split(q
, &bio
, q
->bio_split
);
1406 if (!is_flush_fua
&& !blk_queue_nomerges(q
)) {
1407 if (blk_attempt_plug_merge(q
, bio
, &request_count
, NULL
))
1408 return BLK_QC_T_NONE
;
1410 request_count
= blk_plug_queued_count(q
);
1412 rq
= blk_mq_map_request(q
, bio
, &data
);
1414 return BLK_QC_T_NONE
;
1416 cookie
= blk_tag_to_qc_t(rq
->tag
, data
.hctx
->queue_num
);
1418 if (unlikely(is_flush_fua
)) {
1419 blk_mq_bio_to_request(rq
, bio
);
1420 blk_insert_flush(rq
);
1425 * A task plug currently exists. Since this is completely lockless,
1426 * utilize that to temporarily store requests until the task is
1427 * either done or scheduled away.
1429 plug
= current
->plug
;
1431 blk_mq_bio_to_request(rq
, bio
);
1433 trace_block_plug(q
);
1435 blk_mq_put_ctx(data
.ctx
);
1437 if (request_count
>= BLK_MAX_REQUEST_COUNT
) {
1438 blk_flush_plug_list(plug
, false);
1439 trace_block_plug(q
);
1442 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1446 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1448 * For a SYNC request, send it to the hardware immediately. For
1449 * an ASYNC request, just ensure that we run it later on. The
1450 * latter allows for merging opportunities and more efficient
1454 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1457 blk_mq_put_ctx(data
.ctx
);
1462 * Default mapping to a software queue, since we use one per CPU.
1464 struct blk_mq_hw_ctx
*blk_mq_map_queue(struct request_queue
*q
, const int cpu
)
1466 return q
->queue_hw_ctx
[q
->mq_map
[cpu
]];
1468 EXPORT_SYMBOL(blk_mq_map_queue
);
1470 static void blk_mq_free_rq_map(struct blk_mq_tag_set
*set
,
1471 struct blk_mq_tags
*tags
, unsigned int hctx_idx
)
1475 if (tags
->rqs
&& set
->ops
->exit_request
) {
1478 for (i
= 0; i
< tags
->nr_tags
; i
++) {
1481 set
->ops
->exit_request(set
->driver_data
, tags
->rqs
[i
],
1483 tags
->rqs
[i
] = NULL
;
1487 while (!list_empty(&tags
->page_list
)) {
1488 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
1489 list_del_init(&page
->lru
);
1491 * Remove kmemleak object previously allocated in
1492 * blk_mq_init_rq_map().
1494 kmemleak_free(page_address(page
));
1495 __free_pages(page
, page
->private);
1500 blk_mq_free_tags(tags
);
1503 static size_t order_to_size(unsigned int order
)
1505 return (size_t)PAGE_SIZE
<< order
;
1508 static struct blk_mq_tags
*blk_mq_init_rq_map(struct blk_mq_tag_set
*set
,
1509 unsigned int hctx_idx
)
1511 struct blk_mq_tags
*tags
;
1512 unsigned int i
, j
, entries_per_page
, max_order
= 4;
1513 size_t rq_size
, left
;
1515 tags
= blk_mq_init_tags(set
->queue_depth
, set
->reserved_tags
,
1517 BLK_MQ_FLAG_TO_ALLOC_POLICY(set
->flags
));
1521 INIT_LIST_HEAD(&tags
->page_list
);
1523 tags
->rqs
= kzalloc_node(set
->queue_depth
* sizeof(struct request
*),
1524 GFP_KERNEL
| __GFP_NOWARN
| __GFP_NORETRY
,
1527 blk_mq_free_tags(tags
);
1532 * rq_size is the size of the request plus driver payload, rounded
1533 * to the cacheline size
1535 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
1537 left
= rq_size
* set
->queue_depth
;
1539 for (i
= 0; i
< set
->queue_depth
; ) {
1540 int this_order
= max_order
;
1545 while (this_order
&& left
< order_to_size(this_order
- 1))
1549 page
= alloc_pages_node(set
->numa_node
,
1550 GFP_KERNEL
| __GFP_NOWARN
| __GFP_NORETRY
| __GFP_ZERO
,
1556 if (order_to_size(this_order
) < rq_size
)
1563 page
->private = this_order
;
1564 list_add_tail(&page
->lru
, &tags
->page_list
);
1566 p
= page_address(page
);
1568 * Allow kmemleak to scan these pages as they contain pointers
1569 * to additional allocations like via ops->init_request().
1571 kmemleak_alloc(p
, order_to_size(this_order
), 1, GFP_KERNEL
);
1572 entries_per_page
= order_to_size(this_order
) / rq_size
;
1573 to_do
= min(entries_per_page
, set
->queue_depth
- i
);
1574 left
-= to_do
* rq_size
;
1575 for (j
= 0; j
< to_do
; j
++) {
1577 if (set
->ops
->init_request
) {
1578 if (set
->ops
->init_request(set
->driver_data
,
1579 tags
->rqs
[i
], hctx_idx
, i
,
1581 tags
->rqs
[i
] = NULL
;
1593 blk_mq_free_rq_map(set
, tags
, hctx_idx
);
1597 static void blk_mq_free_bitmap(struct blk_mq_ctxmap
*bitmap
)
1602 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap
*bitmap
, int node
)
1604 unsigned int bpw
= 8, total
, num_maps
, i
;
1606 bitmap
->bits_per_word
= bpw
;
1608 num_maps
= ALIGN(nr_cpu_ids
, bpw
) / bpw
;
1609 bitmap
->map
= kzalloc_node(num_maps
* sizeof(struct blk_align_bitmap
),
1615 for (i
= 0; i
< num_maps
; i
++) {
1616 bitmap
->map
[i
].depth
= min(total
, bitmap
->bits_per_word
);
1617 total
-= bitmap
->map
[i
].depth
;
1624 * 'cpu' is going away. splice any existing rq_list entries from this
1625 * software queue to the hw queue dispatch list, and ensure that it
1628 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx
*hctx
, int cpu
)
1630 struct blk_mq_ctx
*ctx
;
1633 ctx
= __blk_mq_get_ctx(hctx
->queue
, cpu
);
1635 spin_lock(&ctx
->lock
);
1636 if (!list_empty(&ctx
->rq_list
)) {
1637 list_splice_init(&ctx
->rq_list
, &tmp
);
1638 blk_mq_hctx_clear_pending(hctx
, ctx
);
1640 spin_unlock(&ctx
->lock
);
1642 if (list_empty(&tmp
))
1645 spin_lock(&hctx
->lock
);
1646 list_splice_tail_init(&tmp
, &hctx
->dispatch
);
1647 spin_unlock(&hctx
->lock
);
1649 blk_mq_run_hw_queue(hctx
, true);
1653 static int blk_mq_hctx_notify(void *data
, unsigned long action
,
1656 struct blk_mq_hw_ctx
*hctx
= data
;
1658 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
)
1659 return blk_mq_hctx_cpu_offline(hctx
, cpu
);
1662 * In case of CPU online, tags may be reallocated
1663 * in blk_mq_map_swqueue() after mapping is updated.
1669 /* hctx->ctxs will be freed in queue's release handler */
1670 static void blk_mq_exit_hctx(struct request_queue
*q
,
1671 struct blk_mq_tag_set
*set
,
1672 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
1674 unsigned flush_start_tag
= set
->queue_depth
;
1676 blk_mq_tag_idle(hctx
);
1678 if (set
->ops
->exit_request
)
1679 set
->ops
->exit_request(set
->driver_data
,
1680 hctx
->fq
->flush_rq
, hctx_idx
,
1681 flush_start_tag
+ hctx_idx
);
1683 if (set
->ops
->exit_hctx
)
1684 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1686 blk_mq_unregister_cpu_notifier(&hctx
->cpu_notifier
);
1687 blk_free_flush_queue(hctx
->fq
);
1688 blk_mq_free_bitmap(&hctx
->ctx_map
);
1691 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
1692 struct blk_mq_tag_set
*set
, int nr_queue
)
1694 struct blk_mq_hw_ctx
*hctx
;
1697 queue_for_each_hw_ctx(q
, hctx
, i
) {
1700 blk_mq_exit_hctx(q
, set
, hctx
, i
);
1704 static void blk_mq_free_hw_queues(struct request_queue
*q
,
1705 struct blk_mq_tag_set
*set
)
1707 struct blk_mq_hw_ctx
*hctx
;
1710 queue_for_each_hw_ctx(q
, hctx
, i
)
1711 free_cpumask_var(hctx
->cpumask
);
1714 static int blk_mq_init_hctx(struct request_queue
*q
,
1715 struct blk_mq_tag_set
*set
,
1716 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
1719 unsigned flush_start_tag
= set
->queue_depth
;
1721 node
= hctx
->numa_node
;
1722 if (node
== NUMA_NO_NODE
)
1723 node
= hctx
->numa_node
= set
->numa_node
;
1725 INIT_DELAYED_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
1726 INIT_DELAYED_WORK(&hctx
->delay_work
, blk_mq_delay_work_fn
);
1727 spin_lock_init(&hctx
->lock
);
1728 INIT_LIST_HEAD(&hctx
->dispatch
);
1730 hctx
->queue_num
= hctx_idx
;
1731 hctx
->flags
= set
->flags
& ~BLK_MQ_F_TAG_SHARED
;
1733 blk_mq_init_cpu_notifier(&hctx
->cpu_notifier
,
1734 blk_mq_hctx_notify
, hctx
);
1735 blk_mq_register_cpu_notifier(&hctx
->cpu_notifier
);
1737 hctx
->tags
= set
->tags
[hctx_idx
];
1740 * Allocate space for all possible cpus to avoid allocation at
1743 hctx
->ctxs
= kmalloc_node(nr_cpu_ids
* sizeof(void *),
1746 goto unregister_cpu_notifier
;
1748 if (blk_mq_alloc_bitmap(&hctx
->ctx_map
, node
))
1753 if (set
->ops
->init_hctx
&&
1754 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
1757 hctx
->fq
= blk_alloc_flush_queue(q
, hctx
->numa_node
, set
->cmd_size
);
1761 if (set
->ops
->init_request
&&
1762 set
->ops
->init_request(set
->driver_data
,
1763 hctx
->fq
->flush_rq
, hctx_idx
,
1764 flush_start_tag
+ hctx_idx
, node
))
1772 if (set
->ops
->exit_hctx
)
1773 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1775 blk_mq_free_bitmap(&hctx
->ctx_map
);
1778 unregister_cpu_notifier
:
1779 blk_mq_unregister_cpu_notifier(&hctx
->cpu_notifier
);
1784 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
1785 unsigned int nr_hw_queues
)
1789 for_each_possible_cpu(i
) {
1790 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
1791 struct blk_mq_hw_ctx
*hctx
;
1793 memset(__ctx
, 0, sizeof(*__ctx
));
1795 spin_lock_init(&__ctx
->lock
);
1796 INIT_LIST_HEAD(&__ctx
->rq_list
);
1799 /* If the cpu isn't online, the cpu is mapped to first hctx */
1803 hctx
= q
->mq_ops
->map_queue(q
, i
);
1806 * Set local node, IFF we have more than one hw queue. If
1807 * not, we remain on the home node of the device
1809 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
1810 hctx
->numa_node
= local_memory_node(cpu_to_node(i
));
1814 static void blk_mq_map_swqueue(struct request_queue
*q
,
1815 const struct cpumask
*online_mask
)
1818 struct blk_mq_hw_ctx
*hctx
;
1819 struct blk_mq_ctx
*ctx
;
1820 struct blk_mq_tag_set
*set
= q
->tag_set
;
1823 * Avoid others reading imcomplete hctx->cpumask through sysfs
1825 mutex_lock(&q
->sysfs_lock
);
1827 queue_for_each_hw_ctx(q
, hctx
, i
) {
1828 cpumask_clear(hctx
->cpumask
);
1833 * Map software to hardware queues
1835 for_each_possible_cpu(i
) {
1836 /* If the cpu isn't online, the cpu is mapped to first hctx */
1837 if (!cpumask_test_cpu(i
, online_mask
))
1840 ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
1841 hctx
= q
->mq_ops
->map_queue(q
, i
);
1843 cpumask_set_cpu(i
, hctx
->cpumask
);
1844 ctx
->index_hw
= hctx
->nr_ctx
;
1845 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
1848 mutex_unlock(&q
->sysfs_lock
);
1850 queue_for_each_hw_ctx(q
, hctx
, i
) {
1851 struct blk_mq_ctxmap
*map
= &hctx
->ctx_map
;
1854 * If no software queues are mapped to this hardware queue,
1855 * disable it and free the request entries.
1857 if (!hctx
->nr_ctx
) {
1859 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
1860 set
->tags
[i
] = NULL
;
1866 /* unmapped hw queue can be remapped after CPU topo changed */
1868 set
->tags
[i
] = blk_mq_init_rq_map(set
, i
);
1869 hctx
->tags
= set
->tags
[i
];
1870 WARN_ON(!hctx
->tags
);
1872 cpumask_copy(hctx
->tags
->cpumask
, hctx
->cpumask
);
1874 * Set the map size to the number of mapped software queues.
1875 * This is more accurate and more efficient than looping
1876 * over all possibly mapped software queues.
1878 map
->size
= DIV_ROUND_UP(hctx
->nr_ctx
, map
->bits_per_word
);
1881 * Initialize batch roundrobin counts
1883 hctx
->next_cpu
= cpumask_first(hctx
->cpumask
);
1884 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
1888 static void queue_set_hctx_shared(struct request_queue
*q
, bool shared
)
1890 struct blk_mq_hw_ctx
*hctx
;
1893 queue_for_each_hw_ctx(q
, hctx
, i
) {
1895 hctx
->flags
|= BLK_MQ_F_TAG_SHARED
;
1897 hctx
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
1901 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set
*set
, bool shared
)
1903 struct request_queue
*q
;
1905 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
1906 blk_mq_freeze_queue(q
);
1907 queue_set_hctx_shared(q
, shared
);
1908 blk_mq_unfreeze_queue(q
);
1912 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
1914 struct blk_mq_tag_set
*set
= q
->tag_set
;
1916 mutex_lock(&set
->tag_list_lock
);
1917 list_del_init(&q
->tag_set_list
);
1918 if (list_is_singular(&set
->tag_list
)) {
1919 /* just transitioned to unshared */
1920 set
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
1921 /* update existing queue */
1922 blk_mq_update_tag_set_depth(set
, false);
1924 mutex_unlock(&set
->tag_list_lock
);
1927 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
1928 struct request_queue
*q
)
1932 mutex_lock(&set
->tag_list_lock
);
1934 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1935 if (!list_empty(&set
->tag_list
) && !(set
->flags
& BLK_MQ_F_TAG_SHARED
)) {
1936 set
->flags
|= BLK_MQ_F_TAG_SHARED
;
1937 /* update existing queue */
1938 blk_mq_update_tag_set_depth(set
, true);
1940 if (set
->flags
& BLK_MQ_F_TAG_SHARED
)
1941 queue_set_hctx_shared(q
, true);
1942 list_add_tail(&q
->tag_set_list
, &set
->tag_list
);
1944 mutex_unlock(&set
->tag_list_lock
);
1948 * It is the actual release handler for mq, but we do it from
1949 * request queue's release handler for avoiding use-after-free
1950 * and headache because q->mq_kobj shouldn't have been introduced,
1951 * but we can't group ctx/kctx kobj without it.
1953 void blk_mq_release(struct request_queue
*q
)
1955 struct blk_mq_hw_ctx
*hctx
;
1958 /* hctx kobj stays in hctx */
1959 queue_for_each_hw_ctx(q
, hctx
, i
) {
1969 kfree(q
->queue_hw_ctx
);
1971 /* ctx kobj stays in queue_ctx */
1972 free_percpu(q
->queue_ctx
);
1975 struct request_queue
*blk_mq_init_queue(struct blk_mq_tag_set
*set
)
1977 struct request_queue
*uninit_q
, *q
;
1979 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, set
->numa_node
);
1981 return ERR_PTR(-ENOMEM
);
1983 q
= blk_mq_init_allocated_queue(set
, uninit_q
);
1985 blk_cleanup_queue(uninit_q
);
1989 EXPORT_SYMBOL(blk_mq_init_queue
);
1991 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set
*set
,
1992 struct request_queue
*q
)
1995 struct blk_mq_hw_ctx
**hctxs
= q
->queue_hw_ctx
;
1997 blk_mq_sysfs_unregister(q
);
1998 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2004 node
= blk_mq_hw_queue_to_node(q
->mq_map
, i
);
2005 hctxs
[i
] = kzalloc_node(sizeof(struct blk_mq_hw_ctx
),
2010 if (!zalloc_cpumask_var_node(&hctxs
[i
]->cpumask
, GFP_KERNEL
,
2017 atomic_set(&hctxs
[i
]->nr_active
, 0);
2018 hctxs
[i
]->numa_node
= node
;
2019 hctxs
[i
]->queue_num
= i
;
2021 if (blk_mq_init_hctx(q
, set
, hctxs
[i
], i
)) {
2022 free_cpumask_var(hctxs
[i
]->cpumask
);
2027 blk_mq_hctx_kobj_init(hctxs
[i
]);
2029 for (j
= i
; j
< q
->nr_hw_queues
; j
++) {
2030 struct blk_mq_hw_ctx
*hctx
= hctxs
[j
];
2034 blk_mq_free_rq_map(set
, hctx
->tags
, j
);
2035 set
->tags
[j
] = NULL
;
2037 blk_mq_exit_hctx(q
, set
, hctx
, j
);
2038 free_cpumask_var(hctx
->cpumask
);
2039 kobject_put(&hctx
->kobj
);
2046 q
->nr_hw_queues
= i
;
2047 blk_mq_sysfs_register(q
);
2050 struct request_queue
*blk_mq_init_allocated_queue(struct blk_mq_tag_set
*set
,
2051 struct request_queue
*q
)
2053 /* mark the queue as mq asap */
2054 q
->mq_ops
= set
->ops
;
2056 q
->queue_ctx
= alloc_percpu(struct blk_mq_ctx
);
2060 q
->queue_hw_ctx
= kzalloc_node(nr_cpu_ids
* sizeof(*(q
->queue_hw_ctx
)),
2061 GFP_KERNEL
, set
->numa_node
);
2062 if (!q
->queue_hw_ctx
)
2065 q
->mq_map
= blk_mq_make_queue_map(set
);
2069 blk_mq_realloc_hw_ctxs(set
, q
);
2070 if (!q
->nr_hw_queues
)
2073 INIT_WORK(&q
->timeout_work
, blk_mq_timeout_work
);
2074 blk_queue_rq_timeout(q
, set
->timeout
? set
->timeout
: 30 * HZ
);
2076 q
->nr_queues
= nr_cpu_ids
;
2078 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
2080 if (!(set
->flags
& BLK_MQ_F_SG_MERGE
))
2081 q
->queue_flags
|= 1 << QUEUE_FLAG_NO_SG_MERGE
;
2083 q
->sg_reserved_size
= INT_MAX
;
2085 INIT_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
2086 INIT_LIST_HEAD(&q
->requeue_list
);
2087 spin_lock_init(&q
->requeue_lock
);
2089 if (q
->nr_hw_queues
> 1)
2090 blk_queue_make_request(q
, blk_mq_make_request
);
2092 blk_queue_make_request(q
, blk_sq_make_request
);
2095 * Do this after blk_queue_make_request() overrides it...
2097 q
->nr_requests
= set
->queue_depth
;
2099 if (set
->ops
->complete
)
2100 blk_queue_softirq_done(q
, set
->ops
->complete
);
2102 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
2105 mutex_lock(&all_q_mutex
);
2107 list_add_tail(&q
->all_q_node
, &all_q_list
);
2108 blk_mq_add_queue_tag_set(set
, q
);
2109 blk_mq_map_swqueue(q
, cpu_online_mask
);
2111 mutex_unlock(&all_q_mutex
);
2119 kfree(q
->queue_hw_ctx
);
2121 free_percpu(q
->queue_ctx
);
2124 return ERR_PTR(-ENOMEM
);
2126 EXPORT_SYMBOL(blk_mq_init_allocated_queue
);
2128 void blk_mq_free_queue(struct request_queue
*q
)
2130 struct blk_mq_tag_set
*set
= q
->tag_set
;
2132 mutex_lock(&all_q_mutex
);
2133 list_del_init(&q
->all_q_node
);
2134 mutex_unlock(&all_q_mutex
);
2136 blk_mq_del_queue_tag_set(q
);
2138 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
2139 blk_mq_free_hw_queues(q
, set
);
2142 /* Basically redo blk_mq_init_queue with queue frozen */
2143 static void blk_mq_queue_reinit(struct request_queue
*q
,
2144 const struct cpumask
*online_mask
)
2146 WARN_ON_ONCE(!atomic_read(&q
->mq_freeze_depth
));
2148 blk_mq_sysfs_unregister(q
);
2150 blk_mq_update_queue_map(q
->mq_map
, q
->nr_hw_queues
, online_mask
);
2153 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2154 * we should change hctx numa_node according to new topology (this
2155 * involves free and re-allocate memory, worthy doing?)
2158 blk_mq_map_swqueue(q
, online_mask
);
2160 blk_mq_sysfs_register(q
);
2163 static int blk_mq_queue_reinit_notify(struct notifier_block
*nb
,
2164 unsigned long action
, void *hcpu
)
2166 struct request_queue
*q
;
2167 int cpu
= (unsigned long)hcpu
;
2169 * New online cpumask which is going to be set in this hotplug event.
2170 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2171 * one-by-one and dynamically allocating this could result in a failure.
2173 static struct cpumask online_new
;
2176 * Before hotadded cpu starts handling requests, new mappings must
2177 * be established. Otherwise, these requests in hw queue might
2178 * never be dispatched.
2180 * For example, there is a single hw queue (hctx) and two CPU queues
2181 * (ctx0 for CPU0, and ctx1 for CPU1).
2183 * Now CPU1 is just onlined and a request is inserted into
2184 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2187 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2188 * set in pending bitmap and tries to retrieve requests in
2189 * hctx->ctxs[0]->rq_list. But htx->ctxs[0] is a pointer to ctx0,
2190 * so the request in ctx1->rq_list is ignored.
2192 switch (action
& ~CPU_TASKS_FROZEN
) {
2194 case CPU_UP_CANCELED
:
2195 cpumask_copy(&online_new
, cpu_online_mask
);
2197 case CPU_UP_PREPARE
:
2198 cpumask_copy(&online_new
, cpu_online_mask
);
2199 cpumask_set_cpu(cpu
, &online_new
);
2205 mutex_lock(&all_q_mutex
);
2208 * We need to freeze and reinit all existing queues. Freezing
2209 * involves synchronous wait for an RCU grace period and doing it
2210 * one by one may take a long time. Start freezing all queues in
2211 * one swoop and then wait for the completions so that freezing can
2212 * take place in parallel.
2214 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2215 blk_mq_freeze_queue_start(q
);
2216 list_for_each_entry(q
, &all_q_list
, all_q_node
) {
2217 blk_mq_freeze_queue_wait(q
);
2220 * timeout handler can't touch hw queue during the
2223 del_timer_sync(&q
->timeout
);
2226 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2227 blk_mq_queue_reinit(q
, &online_new
);
2229 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2230 blk_mq_unfreeze_queue(q
);
2232 mutex_unlock(&all_q_mutex
);
2236 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2240 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2241 set
->tags
[i
] = blk_mq_init_rq_map(set
, i
);
2250 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
2256 * Allocate the request maps associated with this tag_set. Note that this
2257 * may reduce the depth asked for, if memory is tight. set->queue_depth
2258 * will be updated to reflect the allocated depth.
2260 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2265 depth
= set
->queue_depth
;
2267 err
= __blk_mq_alloc_rq_maps(set
);
2271 set
->queue_depth
>>= 1;
2272 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
2276 } while (set
->queue_depth
);
2278 if (!set
->queue_depth
|| err
) {
2279 pr_err("blk-mq: failed to allocate request map\n");
2283 if (depth
!= set
->queue_depth
)
2284 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2285 depth
, set
->queue_depth
);
2290 struct cpumask
*blk_mq_tags_cpumask(struct blk_mq_tags
*tags
)
2292 return tags
->cpumask
;
2294 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask
);
2297 * Alloc a tag set to be associated with one or more request queues.
2298 * May fail with EINVAL for various error conditions. May adjust the
2299 * requested depth down, if if it too large. In that case, the set
2300 * value will be stored in set->queue_depth.
2302 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
2304 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH
> 1 << BLK_MQ_UNIQUE_TAG_BITS
);
2306 if (!set
->nr_hw_queues
)
2308 if (!set
->queue_depth
)
2310 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
2313 if (!set
->ops
->queue_rq
|| !set
->ops
->map_queue
)
2316 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
2317 pr_info("blk-mq: reduced tag depth to %u\n",
2319 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
2323 * If a crashdump is active, then we are potentially in a very
2324 * memory constrained environment. Limit us to 1 queue and
2325 * 64 tags to prevent using too much memory.
2327 if (is_kdump_kernel()) {
2328 set
->nr_hw_queues
= 1;
2329 set
->queue_depth
= min(64U, set
->queue_depth
);
2332 * There is no use for more h/w queues than cpus.
2334 if (set
->nr_hw_queues
> nr_cpu_ids
)
2335 set
->nr_hw_queues
= nr_cpu_ids
;
2337 set
->tags
= kzalloc_node(nr_cpu_ids
* sizeof(struct blk_mq_tags
*),
2338 GFP_KERNEL
, set
->numa_node
);
2342 if (blk_mq_alloc_rq_maps(set
))
2345 mutex_init(&set
->tag_list_lock
);
2346 INIT_LIST_HEAD(&set
->tag_list
);
2354 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
2356 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
2360 for (i
= 0; i
< nr_cpu_ids
; i
++) {
2362 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
2368 EXPORT_SYMBOL(blk_mq_free_tag_set
);
2370 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
2372 struct blk_mq_tag_set
*set
= q
->tag_set
;
2373 struct blk_mq_hw_ctx
*hctx
;
2376 if (!set
|| nr
> set
->queue_depth
)
2380 queue_for_each_hw_ctx(q
, hctx
, i
) {
2383 ret
= blk_mq_tag_update_depth(hctx
->tags
, nr
);
2389 q
->nr_requests
= nr
;
2394 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
, int nr_hw_queues
)
2396 struct request_queue
*q
;
2398 if (nr_hw_queues
> nr_cpu_ids
)
2399 nr_hw_queues
= nr_cpu_ids
;
2400 if (nr_hw_queues
< 1 || nr_hw_queues
== set
->nr_hw_queues
)
2403 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
2404 blk_mq_freeze_queue(q
);
2406 set
->nr_hw_queues
= nr_hw_queues
;
2407 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
2408 blk_mq_realloc_hw_ctxs(set
, q
);
2410 if (q
->nr_hw_queues
> 1)
2411 blk_queue_make_request(q
, blk_mq_make_request
);
2413 blk_queue_make_request(q
, blk_sq_make_request
);
2415 blk_mq_queue_reinit(q
, cpu_online_mask
);
2418 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
2419 blk_mq_unfreeze_queue(q
);
2421 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues
);
2423 void blk_mq_disable_hotplug(void)
2425 mutex_lock(&all_q_mutex
);
2428 void blk_mq_enable_hotplug(void)
2430 mutex_unlock(&all_q_mutex
);
2433 static int __init
blk_mq_init(void)
2437 hotcpu_notifier(blk_mq_queue_reinit_notify
, 0);
2441 subsys_initcall(blk_mq_init
);