Linux 3.2.58
[linux/fpc-iii.git] / fs / btrfs / tree-log.c
blob21faa12edd799b31d68456b38a11d2754ec31f18
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "transaction.h"
23 #include "disk-io.h"
24 #include "locking.h"
25 #include "print-tree.h"
26 #include "compat.h"
27 #include "tree-log.h"
29 /* magic values for the inode_only field in btrfs_log_inode:
31 * LOG_INODE_ALL means to log everything
32 * LOG_INODE_EXISTS means to log just enough to recreate the inode
33 * during log replay
35 #define LOG_INODE_ALL 0
36 #define LOG_INODE_EXISTS 1
39 * directory trouble cases
41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42 * log, we must force a full commit before doing an fsync of the directory
43 * where the unlink was done.
44 * ---> record transid of last unlink/rename per directory
46 * mkdir foo/some_dir
47 * normal commit
48 * rename foo/some_dir foo2/some_dir
49 * mkdir foo/some_dir
50 * fsync foo/some_dir/some_file
52 * The fsync above will unlink the original some_dir without recording
53 * it in its new location (foo2). After a crash, some_dir will be gone
54 * unless the fsync of some_file forces a full commit
56 * 2) we must log any new names for any file or dir that is in the fsync
57 * log. ---> check inode while renaming/linking.
59 * 2a) we must log any new names for any file or dir during rename
60 * when the directory they are being removed from was logged.
61 * ---> check inode and old parent dir during rename
63 * 2a is actually the more important variant. With the extra logging
64 * a crash might unlink the old name without recreating the new one
66 * 3) after a crash, we must go through any directories with a link count
67 * of zero and redo the rm -rf
69 * mkdir f1/foo
70 * normal commit
71 * rm -rf f1/foo
72 * fsync(f1)
74 * The directory f1 was fully removed from the FS, but fsync was never
75 * called on f1, only its parent dir. After a crash the rm -rf must
76 * be replayed. This must be able to recurse down the entire
77 * directory tree. The inode link count fixup code takes care of the
78 * ugly details.
82 * stages for the tree walking. The first
83 * stage (0) is to only pin down the blocks we find
84 * the second stage (1) is to make sure that all the inodes
85 * we find in the log are created in the subvolume.
87 * The last stage is to deal with directories and links and extents
88 * and all the other fun semantics
90 #define LOG_WALK_PIN_ONLY 0
91 #define LOG_WALK_REPLAY_INODES 1
92 #define LOG_WALK_REPLAY_ALL 2
94 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root, struct inode *inode,
96 int inode_only);
97 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root,
99 struct btrfs_path *path, u64 objectid);
100 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_root *log,
103 struct btrfs_path *path,
104 u64 dirid, int del_all);
107 * tree logging is a special write ahead log used to make sure that
108 * fsyncs and O_SYNCs can happen without doing full tree commits.
110 * Full tree commits are expensive because they require commonly
111 * modified blocks to be recowed, creating many dirty pages in the
112 * extent tree an 4x-6x higher write load than ext3.
114 * Instead of doing a tree commit on every fsync, we use the
115 * key ranges and transaction ids to find items for a given file or directory
116 * that have changed in this transaction. Those items are copied into
117 * a special tree (one per subvolume root), that tree is written to disk
118 * and then the fsync is considered complete.
120 * After a crash, items are copied out of the log-tree back into the
121 * subvolume tree. Any file data extents found are recorded in the extent
122 * allocation tree, and the log-tree freed.
124 * The log tree is read three times, once to pin down all the extents it is
125 * using in ram and once, once to create all the inodes logged in the tree
126 * and once to do all the other items.
130 * start a sub transaction and setup the log tree
131 * this increments the log tree writer count to make the people
132 * syncing the tree wait for us to finish
134 static int start_log_trans(struct btrfs_trans_handle *trans,
135 struct btrfs_root *root)
137 int ret;
138 int err = 0;
140 mutex_lock(&root->log_mutex);
141 if (root->log_root) {
142 if (!root->log_start_pid) {
143 root->log_start_pid = current->pid;
144 root->log_multiple_pids = false;
145 } else if (root->log_start_pid != current->pid) {
146 root->log_multiple_pids = true;
149 root->log_batch++;
150 atomic_inc(&root->log_writers);
151 mutex_unlock(&root->log_mutex);
152 return 0;
154 root->log_multiple_pids = false;
155 root->log_start_pid = current->pid;
156 mutex_lock(&root->fs_info->tree_log_mutex);
157 if (!root->fs_info->log_root_tree) {
158 ret = btrfs_init_log_root_tree(trans, root->fs_info);
159 if (ret)
160 err = ret;
162 if (err == 0 && !root->log_root) {
163 ret = btrfs_add_log_tree(trans, root);
164 if (ret)
165 err = ret;
167 mutex_unlock(&root->fs_info->tree_log_mutex);
168 root->log_batch++;
169 atomic_inc(&root->log_writers);
170 mutex_unlock(&root->log_mutex);
171 return err;
175 * returns 0 if there was a log transaction running and we were able
176 * to join, or returns -ENOENT if there were not transactions
177 * in progress
179 static int join_running_log_trans(struct btrfs_root *root)
181 int ret = -ENOENT;
183 smp_mb();
184 if (!root->log_root)
185 return -ENOENT;
187 mutex_lock(&root->log_mutex);
188 if (root->log_root) {
189 ret = 0;
190 atomic_inc(&root->log_writers);
192 mutex_unlock(&root->log_mutex);
193 return ret;
197 * This either makes the current running log transaction wait
198 * until you call btrfs_end_log_trans() or it makes any future
199 * log transactions wait until you call btrfs_end_log_trans()
201 int btrfs_pin_log_trans(struct btrfs_root *root)
203 int ret = -ENOENT;
205 mutex_lock(&root->log_mutex);
206 atomic_inc(&root->log_writers);
207 mutex_unlock(&root->log_mutex);
208 return ret;
212 * indicate we're done making changes to the log tree
213 * and wake up anyone waiting to do a sync
215 int btrfs_end_log_trans(struct btrfs_root *root)
217 if (atomic_dec_and_test(&root->log_writers)) {
218 smp_mb();
219 if (waitqueue_active(&root->log_writer_wait))
220 wake_up(&root->log_writer_wait);
222 return 0;
227 * the walk control struct is used to pass state down the chain when
228 * processing the log tree. The stage field tells us which part
229 * of the log tree processing we are currently doing. The others
230 * are state fields used for that specific part
232 struct walk_control {
233 /* should we free the extent on disk when done? This is used
234 * at transaction commit time while freeing a log tree
236 int free;
238 /* should we write out the extent buffer? This is used
239 * while flushing the log tree to disk during a sync
241 int write;
243 /* should we wait for the extent buffer io to finish? Also used
244 * while flushing the log tree to disk for a sync
246 int wait;
248 /* pin only walk, we record which extents on disk belong to the
249 * log trees
251 int pin;
253 /* what stage of the replay code we're currently in */
254 int stage;
256 /* the root we are currently replaying */
257 struct btrfs_root *replay_dest;
259 /* the trans handle for the current replay */
260 struct btrfs_trans_handle *trans;
262 /* the function that gets used to process blocks we find in the
263 * tree. Note the extent_buffer might not be up to date when it is
264 * passed in, and it must be checked or read if you need the data
265 * inside it
267 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
268 struct walk_control *wc, u64 gen);
272 * process_func used to pin down extents, write them or wait on them
274 static int process_one_buffer(struct btrfs_root *log,
275 struct extent_buffer *eb,
276 struct walk_control *wc, u64 gen)
278 if (wc->pin)
279 btrfs_pin_extent_for_log_replay(wc->trans,
280 log->fs_info->extent_root,
281 eb->start, eb->len);
283 if (btrfs_buffer_uptodate(eb, gen)) {
284 if (wc->write)
285 btrfs_write_tree_block(eb);
286 if (wc->wait)
287 btrfs_wait_tree_block_writeback(eb);
289 return 0;
293 * Item overwrite used by replay and tree logging. eb, slot and key all refer
294 * to the src data we are copying out.
296 * root is the tree we are copying into, and path is a scratch
297 * path for use in this function (it should be released on entry and
298 * will be released on exit).
300 * If the key is already in the destination tree the existing item is
301 * overwritten. If the existing item isn't big enough, it is extended.
302 * If it is too large, it is truncated.
304 * If the key isn't in the destination yet, a new item is inserted.
306 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
307 struct btrfs_root *root,
308 struct btrfs_path *path,
309 struct extent_buffer *eb, int slot,
310 struct btrfs_key *key)
312 int ret;
313 u32 item_size;
314 u64 saved_i_size = 0;
315 int save_old_i_size = 0;
316 unsigned long src_ptr;
317 unsigned long dst_ptr;
318 int overwrite_root = 0;
319 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
321 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
322 overwrite_root = 1;
324 item_size = btrfs_item_size_nr(eb, slot);
325 src_ptr = btrfs_item_ptr_offset(eb, slot);
327 /* look for the key in the destination tree */
328 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
329 if (ret < 0)
330 return ret;
332 if (ret == 0) {
333 char *src_copy;
334 char *dst_copy;
335 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
336 path->slots[0]);
337 if (dst_size != item_size)
338 goto insert;
340 if (item_size == 0) {
341 btrfs_release_path(path);
342 return 0;
344 dst_copy = kmalloc(item_size, GFP_NOFS);
345 src_copy = kmalloc(item_size, GFP_NOFS);
346 if (!dst_copy || !src_copy) {
347 btrfs_release_path(path);
348 kfree(dst_copy);
349 kfree(src_copy);
350 return -ENOMEM;
353 read_extent_buffer(eb, src_copy, src_ptr, item_size);
355 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
356 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
357 item_size);
358 ret = memcmp(dst_copy, src_copy, item_size);
360 kfree(dst_copy);
361 kfree(src_copy);
363 * they have the same contents, just return, this saves
364 * us from cowing blocks in the destination tree and doing
365 * extra writes that may not have been done by a previous
366 * sync
368 if (ret == 0) {
369 btrfs_release_path(path);
370 return 0;
374 * We need to load the old nbytes into the inode so when we
375 * replay the extents we've logged we get the right nbytes.
377 if (inode_item) {
378 struct btrfs_inode_item *item;
379 u64 nbytes;
381 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
382 struct btrfs_inode_item);
383 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
384 item = btrfs_item_ptr(eb, slot,
385 struct btrfs_inode_item);
386 btrfs_set_inode_nbytes(eb, item, nbytes);
388 } else if (inode_item) {
389 struct btrfs_inode_item *item;
392 * New inode, set nbytes to 0 so that the nbytes comes out
393 * properly when we replay the extents.
395 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
396 btrfs_set_inode_nbytes(eb, item, 0);
398 insert:
399 btrfs_release_path(path);
400 /* try to insert the key into the destination tree */
401 ret = btrfs_insert_empty_item(trans, root, path,
402 key, item_size);
404 /* make sure any existing item is the correct size */
405 if (ret == -EEXIST) {
406 u32 found_size;
407 found_size = btrfs_item_size_nr(path->nodes[0],
408 path->slots[0]);
409 if (found_size > item_size) {
410 btrfs_truncate_item(trans, root, path, item_size, 1);
411 } else if (found_size < item_size) {
412 ret = btrfs_extend_item(trans, root, path,
413 item_size - found_size);
415 } else if (ret) {
416 return ret;
418 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
419 path->slots[0]);
421 /* don't overwrite an existing inode if the generation number
422 * was logged as zero. This is done when the tree logging code
423 * is just logging an inode to make sure it exists after recovery.
425 * Also, don't overwrite i_size on directories during replay.
426 * log replay inserts and removes directory items based on the
427 * state of the tree found in the subvolume, and i_size is modified
428 * as it goes
430 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
431 struct btrfs_inode_item *src_item;
432 struct btrfs_inode_item *dst_item;
434 src_item = (struct btrfs_inode_item *)src_ptr;
435 dst_item = (struct btrfs_inode_item *)dst_ptr;
437 if (btrfs_inode_generation(eb, src_item) == 0)
438 goto no_copy;
440 if (overwrite_root &&
441 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
442 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
443 save_old_i_size = 1;
444 saved_i_size = btrfs_inode_size(path->nodes[0],
445 dst_item);
449 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
450 src_ptr, item_size);
452 if (save_old_i_size) {
453 struct btrfs_inode_item *dst_item;
454 dst_item = (struct btrfs_inode_item *)dst_ptr;
455 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
458 /* make sure the generation is filled in */
459 if (key->type == BTRFS_INODE_ITEM_KEY) {
460 struct btrfs_inode_item *dst_item;
461 dst_item = (struct btrfs_inode_item *)dst_ptr;
462 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
463 btrfs_set_inode_generation(path->nodes[0], dst_item,
464 trans->transid);
467 no_copy:
468 btrfs_mark_buffer_dirty(path->nodes[0]);
469 btrfs_release_path(path);
470 return 0;
474 * simple helper to read an inode off the disk from a given root
475 * This can only be called for subvolume roots and not for the log
477 static noinline struct inode *read_one_inode(struct btrfs_root *root,
478 u64 objectid)
480 struct btrfs_key key;
481 struct inode *inode;
483 key.objectid = objectid;
484 key.type = BTRFS_INODE_ITEM_KEY;
485 key.offset = 0;
486 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
487 if (IS_ERR(inode)) {
488 inode = NULL;
489 } else if (is_bad_inode(inode)) {
490 iput(inode);
491 inode = NULL;
493 return inode;
496 /* replays a single extent in 'eb' at 'slot' with 'key' into the
497 * subvolume 'root'. path is released on entry and should be released
498 * on exit.
500 * extents in the log tree have not been allocated out of the extent
501 * tree yet. So, this completes the allocation, taking a reference
502 * as required if the extent already exists or creating a new extent
503 * if it isn't in the extent allocation tree yet.
505 * The extent is inserted into the file, dropping any existing extents
506 * from the file that overlap the new one.
508 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
509 struct btrfs_root *root,
510 struct btrfs_path *path,
511 struct extent_buffer *eb, int slot,
512 struct btrfs_key *key)
514 int found_type;
515 u64 mask = root->sectorsize - 1;
516 u64 extent_end;
517 u64 alloc_hint;
518 u64 start = key->offset;
519 u64 nbytes = 0;
520 struct btrfs_file_extent_item *item;
521 struct inode *inode = NULL;
522 unsigned long size;
523 int ret = 0;
525 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
526 found_type = btrfs_file_extent_type(eb, item);
528 if (found_type == BTRFS_FILE_EXTENT_REG ||
529 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
530 nbytes = btrfs_file_extent_num_bytes(eb, item);
531 extent_end = start + nbytes;
534 * We don't add to the inodes nbytes if we are prealloc or a
535 * hole.
537 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
538 nbytes = 0;
539 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
540 size = btrfs_file_extent_inline_len(eb, item);
541 nbytes = btrfs_file_extent_ram_bytes(eb, item);
542 extent_end = (start + size + mask) & ~mask;
543 } else {
544 ret = 0;
545 goto out;
548 inode = read_one_inode(root, key->objectid);
549 if (!inode) {
550 ret = -EIO;
551 goto out;
555 * first check to see if we already have this extent in the
556 * file. This must be done before the btrfs_drop_extents run
557 * so we don't try to drop this extent.
559 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
560 start, 0);
562 if (ret == 0 &&
563 (found_type == BTRFS_FILE_EXTENT_REG ||
564 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
565 struct btrfs_file_extent_item cmp1;
566 struct btrfs_file_extent_item cmp2;
567 struct btrfs_file_extent_item *existing;
568 struct extent_buffer *leaf;
570 leaf = path->nodes[0];
571 existing = btrfs_item_ptr(leaf, path->slots[0],
572 struct btrfs_file_extent_item);
574 read_extent_buffer(eb, &cmp1, (unsigned long)item,
575 sizeof(cmp1));
576 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
577 sizeof(cmp2));
580 * we already have a pointer to this exact extent,
581 * we don't have to do anything
583 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
584 btrfs_release_path(path);
585 goto out;
588 btrfs_release_path(path);
590 /* drop any overlapping extents */
591 ret = btrfs_drop_extents(trans, inode, start, extent_end,
592 &alloc_hint, 1);
593 BUG_ON(ret);
595 if (found_type == BTRFS_FILE_EXTENT_REG ||
596 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
597 u64 offset;
598 unsigned long dest_offset;
599 struct btrfs_key ins;
601 ret = btrfs_insert_empty_item(trans, root, path, key,
602 sizeof(*item));
603 BUG_ON(ret);
604 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
605 path->slots[0]);
606 copy_extent_buffer(path->nodes[0], eb, dest_offset,
607 (unsigned long)item, sizeof(*item));
609 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
610 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
611 ins.type = BTRFS_EXTENT_ITEM_KEY;
612 offset = key->offset - btrfs_file_extent_offset(eb, item);
614 if (ins.objectid > 0) {
615 u64 csum_start;
616 u64 csum_end;
617 LIST_HEAD(ordered_sums);
619 * is this extent already allocated in the extent
620 * allocation tree? If so, just add a reference
622 ret = btrfs_lookup_extent(root, ins.objectid,
623 ins.offset);
624 if (ret == 0) {
625 ret = btrfs_inc_extent_ref(trans, root,
626 ins.objectid, ins.offset,
627 0, root->root_key.objectid,
628 key->objectid, offset);
629 BUG_ON(ret);
630 } else {
632 * insert the extent pointer in the extent
633 * allocation tree
635 ret = btrfs_alloc_logged_file_extent(trans,
636 root, root->root_key.objectid,
637 key->objectid, offset, &ins);
638 BUG_ON(ret);
640 btrfs_release_path(path);
642 if (btrfs_file_extent_compression(eb, item)) {
643 csum_start = ins.objectid;
644 csum_end = csum_start + ins.offset;
645 } else {
646 csum_start = ins.objectid +
647 btrfs_file_extent_offset(eb, item);
648 csum_end = csum_start +
649 btrfs_file_extent_num_bytes(eb, item);
652 ret = btrfs_lookup_csums_range(root->log_root,
653 csum_start, csum_end - 1,
654 &ordered_sums, 0);
655 BUG_ON(ret);
656 while (!list_empty(&ordered_sums)) {
657 struct btrfs_ordered_sum *sums;
658 sums = list_entry(ordered_sums.next,
659 struct btrfs_ordered_sum,
660 list);
661 ret = btrfs_csum_file_blocks(trans,
662 root->fs_info->csum_root,
663 sums);
664 BUG_ON(ret);
665 list_del(&sums->list);
666 kfree(sums);
668 } else {
669 btrfs_release_path(path);
671 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
672 /* inline extents are easy, we just overwrite them */
673 ret = overwrite_item(trans, root, path, eb, slot, key);
674 BUG_ON(ret);
677 inode_add_bytes(inode, nbytes);
678 btrfs_update_inode(trans, root, inode);
679 out:
680 if (inode)
681 iput(inode);
682 return ret;
686 * when cleaning up conflicts between the directory names in the
687 * subvolume, directory names in the log and directory names in the
688 * inode back references, we may have to unlink inodes from directories.
690 * This is a helper function to do the unlink of a specific directory
691 * item
693 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
694 struct btrfs_root *root,
695 struct btrfs_path *path,
696 struct inode *dir,
697 struct btrfs_dir_item *di)
699 struct inode *inode;
700 char *name;
701 int name_len;
702 struct extent_buffer *leaf;
703 struct btrfs_key location;
704 int ret;
706 leaf = path->nodes[0];
708 btrfs_dir_item_key_to_cpu(leaf, di, &location);
709 name_len = btrfs_dir_name_len(leaf, di);
710 name = kmalloc(name_len, GFP_NOFS);
711 if (!name)
712 return -ENOMEM;
714 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
715 btrfs_release_path(path);
717 inode = read_one_inode(root, location.objectid);
718 if (!inode) {
719 kfree(name);
720 return -EIO;
723 ret = link_to_fixup_dir(trans, root, path, location.objectid);
724 BUG_ON(ret);
726 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
727 BUG_ON(ret);
728 kfree(name);
730 iput(inode);
732 btrfs_run_delayed_items(trans, root);
733 return ret;
737 * helper function to see if a given name and sequence number found
738 * in an inode back reference are already in a directory and correctly
739 * point to this inode
741 static noinline int inode_in_dir(struct btrfs_root *root,
742 struct btrfs_path *path,
743 u64 dirid, u64 objectid, u64 index,
744 const char *name, int name_len)
746 struct btrfs_dir_item *di;
747 struct btrfs_key location;
748 int match = 0;
750 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
751 index, name, name_len, 0);
752 if (di && !IS_ERR(di)) {
753 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
754 if (location.objectid != objectid)
755 goto out;
756 } else
757 goto out;
758 btrfs_release_path(path);
760 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
761 if (di && !IS_ERR(di)) {
762 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
763 if (location.objectid != objectid)
764 goto out;
765 } else
766 goto out;
767 match = 1;
768 out:
769 btrfs_release_path(path);
770 return match;
774 * helper function to check a log tree for a named back reference in
775 * an inode. This is used to decide if a back reference that is
776 * found in the subvolume conflicts with what we find in the log.
778 * inode backreferences may have multiple refs in a single item,
779 * during replay we process one reference at a time, and we don't
780 * want to delete valid links to a file from the subvolume if that
781 * link is also in the log.
783 static noinline int backref_in_log(struct btrfs_root *log,
784 struct btrfs_key *key,
785 char *name, int namelen)
787 struct btrfs_path *path;
788 struct btrfs_inode_ref *ref;
789 unsigned long ptr;
790 unsigned long ptr_end;
791 unsigned long name_ptr;
792 int found_name_len;
793 int item_size;
794 int ret;
795 int match = 0;
797 path = btrfs_alloc_path();
798 if (!path)
799 return -ENOMEM;
801 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
802 if (ret != 0)
803 goto out;
805 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
806 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
807 ptr_end = ptr + item_size;
808 while (ptr < ptr_end) {
809 ref = (struct btrfs_inode_ref *)ptr;
810 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
811 if (found_name_len == namelen) {
812 name_ptr = (unsigned long)(ref + 1);
813 ret = memcmp_extent_buffer(path->nodes[0], name,
814 name_ptr, namelen);
815 if (ret == 0) {
816 match = 1;
817 goto out;
820 ptr = (unsigned long)(ref + 1) + found_name_len;
822 out:
823 btrfs_free_path(path);
824 return match;
829 * replay one inode back reference item found in the log tree.
830 * eb, slot and key refer to the buffer and key found in the log tree.
831 * root is the destination we are replaying into, and path is for temp
832 * use by this function. (it should be released on return).
834 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
835 struct btrfs_root *root,
836 struct btrfs_root *log,
837 struct btrfs_path *path,
838 struct extent_buffer *eb, int slot,
839 struct btrfs_key *key)
841 struct btrfs_inode_ref *ref;
842 struct btrfs_dir_item *di;
843 struct inode *dir;
844 struct inode *inode;
845 unsigned long ref_ptr;
846 unsigned long ref_end;
847 char *name;
848 int namelen;
849 int ret;
850 int search_done = 0;
853 * it is possible that we didn't log all the parent directories
854 * for a given inode. If we don't find the dir, just don't
855 * copy the back ref in. The link count fixup code will take
856 * care of the rest
858 dir = read_one_inode(root, key->offset);
859 if (!dir)
860 return -ENOENT;
862 inode = read_one_inode(root, key->objectid);
863 if (!inode) {
864 iput(dir);
865 return -EIO;
868 ref_ptr = btrfs_item_ptr_offset(eb, slot);
869 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
871 again:
872 ref = (struct btrfs_inode_ref *)ref_ptr;
874 namelen = btrfs_inode_ref_name_len(eb, ref);
875 name = kmalloc(namelen, GFP_NOFS);
876 BUG_ON(!name);
878 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
880 /* if we already have a perfect match, we're done */
881 if (inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
882 btrfs_inode_ref_index(eb, ref),
883 name, namelen)) {
884 goto out;
888 * look for a conflicting back reference in the metadata.
889 * if we find one we have to unlink that name of the file
890 * before we add our new link. Later on, we overwrite any
891 * existing back reference, and we don't want to create
892 * dangling pointers in the directory.
895 if (search_done)
896 goto insert;
898 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
899 if (ret == 0) {
900 char *victim_name;
901 int victim_name_len;
902 struct btrfs_inode_ref *victim_ref;
903 unsigned long ptr;
904 unsigned long ptr_end;
905 struct extent_buffer *leaf = path->nodes[0];
907 /* are we trying to overwrite a back ref for the root directory
908 * if so, just jump out, we're done
910 if (key->objectid == key->offset)
911 goto out_nowrite;
913 /* check all the names in this back reference to see
914 * if they are in the log. if so, we allow them to stay
915 * otherwise they must be unlinked as a conflict
917 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
918 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
919 while (ptr < ptr_end) {
920 victim_ref = (struct btrfs_inode_ref *)ptr;
921 victim_name_len = btrfs_inode_ref_name_len(leaf,
922 victim_ref);
923 victim_name = kmalloc(victim_name_len, GFP_NOFS);
924 BUG_ON(!victim_name);
926 read_extent_buffer(leaf, victim_name,
927 (unsigned long)(victim_ref + 1),
928 victim_name_len);
930 if (!backref_in_log(log, key, victim_name,
931 victim_name_len)) {
932 btrfs_inc_nlink(inode);
933 btrfs_release_path(path);
935 ret = btrfs_unlink_inode(trans, root, dir,
936 inode, victim_name,
937 victim_name_len);
938 btrfs_run_delayed_items(trans, root);
940 kfree(victim_name);
941 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
943 BUG_ON(ret);
946 * NOTE: we have searched root tree and checked the
947 * coresponding ref, it does not need to check again.
949 search_done = 1;
951 btrfs_release_path(path);
953 /* look for a conflicting sequence number */
954 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
955 btrfs_inode_ref_index(eb, ref),
956 name, namelen, 0);
957 if (di && !IS_ERR(di)) {
958 ret = drop_one_dir_item(trans, root, path, dir, di);
959 BUG_ON(ret);
961 btrfs_release_path(path);
963 /* look for a conflicing name */
964 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
965 name, namelen, 0);
966 if (di && !IS_ERR(di)) {
967 ret = drop_one_dir_item(trans, root, path, dir, di);
968 BUG_ON(ret);
970 btrfs_release_path(path);
972 insert:
973 /* insert our name */
974 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
975 btrfs_inode_ref_index(eb, ref));
976 BUG_ON(ret);
978 btrfs_update_inode(trans, root, inode);
980 out:
981 ref_ptr = (unsigned long)(ref + 1) + namelen;
982 kfree(name);
983 if (ref_ptr < ref_end)
984 goto again;
986 /* finally write the back reference in the inode */
987 ret = overwrite_item(trans, root, path, eb, slot, key);
988 BUG_ON(ret);
990 out_nowrite:
991 btrfs_release_path(path);
992 iput(dir);
993 iput(inode);
994 return 0;
997 static int insert_orphan_item(struct btrfs_trans_handle *trans,
998 struct btrfs_root *root, u64 offset)
1000 int ret;
1001 ret = btrfs_find_orphan_item(root, offset);
1002 if (ret > 0)
1003 ret = btrfs_insert_orphan_item(trans, root, offset);
1004 return ret;
1009 * There are a few corners where the link count of the file can't
1010 * be properly maintained during replay. So, instead of adding
1011 * lots of complexity to the log code, we just scan the backrefs
1012 * for any file that has been through replay.
1014 * The scan will update the link count on the inode to reflect the
1015 * number of back refs found. If it goes down to zero, the iput
1016 * will free the inode.
1018 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1019 struct btrfs_root *root,
1020 struct inode *inode)
1022 struct btrfs_path *path;
1023 int ret;
1024 struct btrfs_key key;
1025 u64 nlink = 0;
1026 unsigned long ptr;
1027 unsigned long ptr_end;
1028 int name_len;
1029 u64 ino = btrfs_ino(inode);
1031 key.objectid = ino;
1032 key.type = BTRFS_INODE_REF_KEY;
1033 key.offset = (u64)-1;
1035 path = btrfs_alloc_path();
1036 if (!path)
1037 return -ENOMEM;
1039 while (1) {
1040 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1041 if (ret < 0)
1042 break;
1043 if (ret > 0) {
1044 if (path->slots[0] == 0)
1045 break;
1046 path->slots[0]--;
1048 btrfs_item_key_to_cpu(path->nodes[0], &key,
1049 path->slots[0]);
1050 if (key.objectid != ino ||
1051 key.type != BTRFS_INODE_REF_KEY)
1052 break;
1053 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1054 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1055 path->slots[0]);
1056 while (ptr < ptr_end) {
1057 struct btrfs_inode_ref *ref;
1059 ref = (struct btrfs_inode_ref *)ptr;
1060 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1061 ref);
1062 ptr = (unsigned long)(ref + 1) + name_len;
1063 nlink++;
1066 if (key.offset == 0)
1067 break;
1068 key.offset--;
1069 btrfs_release_path(path);
1071 btrfs_release_path(path);
1072 if (nlink != inode->i_nlink) {
1073 set_nlink(inode, nlink);
1074 btrfs_update_inode(trans, root, inode);
1076 BTRFS_I(inode)->index_cnt = (u64)-1;
1078 if (inode->i_nlink == 0) {
1079 if (S_ISDIR(inode->i_mode)) {
1080 ret = replay_dir_deletes(trans, root, NULL, path,
1081 ino, 1);
1082 BUG_ON(ret);
1084 ret = insert_orphan_item(trans, root, ino);
1085 BUG_ON(ret);
1087 btrfs_free_path(path);
1089 return 0;
1092 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1093 struct btrfs_root *root,
1094 struct btrfs_path *path)
1096 int ret;
1097 struct btrfs_key key;
1098 struct inode *inode;
1100 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1101 key.type = BTRFS_ORPHAN_ITEM_KEY;
1102 key.offset = (u64)-1;
1103 while (1) {
1104 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1105 if (ret < 0)
1106 break;
1108 if (ret == 1) {
1109 if (path->slots[0] == 0)
1110 break;
1111 path->slots[0]--;
1114 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1115 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1116 key.type != BTRFS_ORPHAN_ITEM_KEY)
1117 break;
1119 ret = btrfs_del_item(trans, root, path);
1120 if (ret)
1121 goto out;
1123 btrfs_release_path(path);
1124 inode = read_one_inode(root, key.offset);
1125 if (!inode)
1126 return -EIO;
1128 ret = fixup_inode_link_count(trans, root, inode);
1129 BUG_ON(ret);
1131 iput(inode);
1134 * fixup on a directory may create new entries,
1135 * make sure we always look for the highset possible
1136 * offset
1138 key.offset = (u64)-1;
1140 ret = 0;
1141 out:
1142 btrfs_release_path(path);
1143 return ret;
1148 * record a given inode in the fixup dir so we can check its link
1149 * count when replay is done. The link count is incremented here
1150 * so the inode won't go away until we check it
1152 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1153 struct btrfs_root *root,
1154 struct btrfs_path *path,
1155 u64 objectid)
1157 struct btrfs_key key;
1158 int ret = 0;
1159 struct inode *inode;
1161 inode = read_one_inode(root, objectid);
1162 if (!inode)
1163 return -EIO;
1165 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1166 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1167 key.offset = objectid;
1169 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1171 btrfs_release_path(path);
1172 if (ret == 0) {
1173 btrfs_inc_nlink(inode);
1174 btrfs_update_inode(trans, root, inode);
1175 } else if (ret == -EEXIST) {
1176 ret = 0;
1177 } else {
1178 BUG();
1180 iput(inode);
1182 return ret;
1186 * when replaying the log for a directory, we only insert names
1187 * for inodes that actually exist. This means an fsync on a directory
1188 * does not implicitly fsync all the new files in it
1190 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1191 struct btrfs_root *root,
1192 struct btrfs_path *path,
1193 u64 dirid, u64 index,
1194 char *name, int name_len, u8 type,
1195 struct btrfs_key *location)
1197 struct inode *inode;
1198 struct inode *dir;
1199 int ret;
1201 inode = read_one_inode(root, location->objectid);
1202 if (!inode)
1203 return -ENOENT;
1205 dir = read_one_inode(root, dirid);
1206 if (!dir) {
1207 iput(inode);
1208 return -EIO;
1210 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1212 /* FIXME, put inode into FIXUP list */
1214 iput(inode);
1215 iput(dir);
1216 return ret;
1220 * take a single entry in a log directory item and replay it into
1221 * the subvolume.
1223 * if a conflicting item exists in the subdirectory already,
1224 * the inode it points to is unlinked and put into the link count
1225 * fix up tree.
1227 * If a name from the log points to a file or directory that does
1228 * not exist in the FS, it is skipped. fsyncs on directories
1229 * do not force down inodes inside that directory, just changes to the
1230 * names or unlinks in a directory.
1232 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1233 struct btrfs_root *root,
1234 struct btrfs_path *path,
1235 struct extent_buffer *eb,
1236 struct btrfs_dir_item *di,
1237 struct btrfs_key *key)
1239 char *name;
1240 int name_len;
1241 struct btrfs_dir_item *dst_di;
1242 struct btrfs_key found_key;
1243 struct btrfs_key log_key;
1244 struct inode *dir;
1245 u8 log_type;
1246 int exists;
1247 int ret;
1249 dir = read_one_inode(root, key->objectid);
1250 if (!dir)
1251 return -EIO;
1253 name_len = btrfs_dir_name_len(eb, di);
1254 name = kmalloc(name_len, GFP_NOFS);
1255 if (!name)
1256 return -ENOMEM;
1258 log_type = btrfs_dir_type(eb, di);
1259 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1260 name_len);
1262 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1263 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1264 if (exists == 0)
1265 exists = 1;
1266 else
1267 exists = 0;
1268 btrfs_release_path(path);
1270 if (key->type == BTRFS_DIR_ITEM_KEY) {
1271 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1272 name, name_len, 1);
1273 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1274 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1275 key->objectid,
1276 key->offset, name,
1277 name_len, 1);
1278 } else {
1279 BUG();
1281 if (IS_ERR_OR_NULL(dst_di)) {
1282 /* we need a sequence number to insert, so we only
1283 * do inserts for the BTRFS_DIR_INDEX_KEY types
1285 if (key->type != BTRFS_DIR_INDEX_KEY)
1286 goto out;
1287 goto insert;
1290 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1291 /* the existing item matches the logged item */
1292 if (found_key.objectid == log_key.objectid &&
1293 found_key.type == log_key.type &&
1294 found_key.offset == log_key.offset &&
1295 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1296 goto out;
1300 * don't drop the conflicting directory entry if the inode
1301 * for the new entry doesn't exist
1303 if (!exists)
1304 goto out;
1306 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1307 BUG_ON(ret);
1309 if (key->type == BTRFS_DIR_INDEX_KEY)
1310 goto insert;
1311 out:
1312 btrfs_release_path(path);
1313 kfree(name);
1314 iput(dir);
1315 return 0;
1317 insert:
1318 btrfs_release_path(path);
1319 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1320 name, name_len, log_type, &log_key);
1322 BUG_ON(ret && ret != -ENOENT);
1323 goto out;
1327 * find all the names in a directory item and reconcile them into
1328 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1329 * one name in a directory item, but the same code gets used for
1330 * both directory index types
1332 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1333 struct btrfs_root *root,
1334 struct btrfs_path *path,
1335 struct extent_buffer *eb, int slot,
1336 struct btrfs_key *key)
1338 int ret;
1339 u32 item_size = btrfs_item_size_nr(eb, slot);
1340 struct btrfs_dir_item *di;
1341 int name_len;
1342 unsigned long ptr;
1343 unsigned long ptr_end;
1345 ptr = btrfs_item_ptr_offset(eb, slot);
1346 ptr_end = ptr + item_size;
1347 while (ptr < ptr_end) {
1348 di = (struct btrfs_dir_item *)ptr;
1349 if (verify_dir_item(root, eb, di))
1350 return -EIO;
1351 name_len = btrfs_dir_name_len(eb, di);
1352 ret = replay_one_name(trans, root, path, eb, di, key);
1353 BUG_ON(ret);
1354 ptr = (unsigned long)(di + 1);
1355 ptr += name_len;
1357 return 0;
1361 * directory replay has two parts. There are the standard directory
1362 * items in the log copied from the subvolume, and range items
1363 * created in the log while the subvolume was logged.
1365 * The range items tell us which parts of the key space the log
1366 * is authoritative for. During replay, if a key in the subvolume
1367 * directory is in a logged range item, but not actually in the log
1368 * that means it was deleted from the directory before the fsync
1369 * and should be removed.
1371 static noinline int find_dir_range(struct btrfs_root *root,
1372 struct btrfs_path *path,
1373 u64 dirid, int key_type,
1374 u64 *start_ret, u64 *end_ret)
1376 struct btrfs_key key;
1377 u64 found_end;
1378 struct btrfs_dir_log_item *item;
1379 int ret;
1380 int nritems;
1382 if (*start_ret == (u64)-1)
1383 return 1;
1385 key.objectid = dirid;
1386 key.type = key_type;
1387 key.offset = *start_ret;
1389 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1390 if (ret < 0)
1391 goto out;
1392 if (ret > 0) {
1393 if (path->slots[0] == 0)
1394 goto out;
1395 path->slots[0]--;
1397 if (ret != 0)
1398 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1400 if (key.type != key_type || key.objectid != dirid) {
1401 ret = 1;
1402 goto next;
1404 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1405 struct btrfs_dir_log_item);
1406 found_end = btrfs_dir_log_end(path->nodes[0], item);
1408 if (*start_ret >= key.offset && *start_ret <= found_end) {
1409 ret = 0;
1410 *start_ret = key.offset;
1411 *end_ret = found_end;
1412 goto out;
1414 ret = 1;
1415 next:
1416 /* check the next slot in the tree to see if it is a valid item */
1417 nritems = btrfs_header_nritems(path->nodes[0]);
1418 if (path->slots[0] >= nritems) {
1419 ret = btrfs_next_leaf(root, path);
1420 if (ret)
1421 goto out;
1422 } else {
1423 path->slots[0]++;
1426 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1428 if (key.type != key_type || key.objectid != dirid) {
1429 ret = 1;
1430 goto out;
1432 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1433 struct btrfs_dir_log_item);
1434 found_end = btrfs_dir_log_end(path->nodes[0], item);
1435 *start_ret = key.offset;
1436 *end_ret = found_end;
1437 ret = 0;
1438 out:
1439 btrfs_release_path(path);
1440 return ret;
1444 * this looks for a given directory item in the log. If the directory
1445 * item is not in the log, the item is removed and the inode it points
1446 * to is unlinked
1448 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1449 struct btrfs_root *root,
1450 struct btrfs_root *log,
1451 struct btrfs_path *path,
1452 struct btrfs_path *log_path,
1453 struct inode *dir,
1454 struct btrfs_key *dir_key)
1456 int ret;
1457 struct extent_buffer *eb;
1458 int slot;
1459 u32 item_size;
1460 struct btrfs_dir_item *di;
1461 struct btrfs_dir_item *log_di;
1462 int name_len;
1463 unsigned long ptr;
1464 unsigned long ptr_end;
1465 char *name;
1466 struct inode *inode;
1467 struct btrfs_key location;
1469 again:
1470 eb = path->nodes[0];
1471 slot = path->slots[0];
1472 item_size = btrfs_item_size_nr(eb, slot);
1473 ptr = btrfs_item_ptr_offset(eb, slot);
1474 ptr_end = ptr + item_size;
1475 while (ptr < ptr_end) {
1476 di = (struct btrfs_dir_item *)ptr;
1477 if (verify_dir_item(root, eb, di)) {
1478 ret = -EIO;
1479 goto out;
1482 name_len = btrfs_dir_name_len(eb, di);
1483 name = kmalloc(name_len, GFP_NOFS);
1484 if (!name) {
1485 ret = -ENOMEM;
1486 goto out;
1488 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1489 name_len);
1490 log_di = NULL;
1491 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1492 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1493 dir_key->objectid,
1494 name, name_len, 0);
1495 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1496 log_di = btrfs_lookup_dir_index_item(trans, log,
1497 log_path,
1498 dir_key->objectid,
1499 dir_key->offset,
1500 name, name_len, 0);
1502 if (IS_ERR_OR_NULL(log_di)) {
1503 btrfs_dir_item_key_to_cpu(eb, di, &location);
1504 btrfs_release_path(path);
1505 btrfs_release_path(log_path);
1506 inode = read_one_inode(root, location.objectid);
1507 if (!inode) {
1508 kfree(name);
1509 return -EIO;
1512 ret = link_to_fixup_dir(trans, root,
1513 path, location.objectid);
1514 BUG_ON(ret);
1515 btrfs_inc_nlink(inode);
1516 ret = btrfs_unlink_inode(trans, root, dir, inode,
1517 name, name_len);
1518 BUG_ON(ret);
1520 btrfs_run_delayed_items(trans, root);
1522 kfree(name);
1523 iput(inode);
1525 /* there might still be more names under this key
1526 * check and repeat if required
1528 ret = btrfs_search_slot(NULL, root, dir_key, path,
1529 0, 0);
1530 if (ret == 0)
1531 goto again;
1532 ret = 0;
1533 goto out;
1535 btrfs_release_path(log_path);
1536 kfree(name);
1538 ptr = (unsigned long)(di + 1);
1539 ptr += name_len;
1541 ret = 0;
1542 out:
1543 btrfs_release_path(path);
1544 btrfs_release_path(log_path);
1545 return ret;
1549 * deletion replay happens before we copy any new directory items
1550 * out of the log or out of backreferences from inodes. It
1551 * scans the log to find ranges of keys that log is authoritative for,
1552 * and then scans the directory to find items in those ranges that are
1553 * not present in the log.
1555 * Anything we don't find in the log is unlinked and removed from the
1556 * directory.
1558 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1559 struct btrfs_root *root,
1560 struct btrfs_root *log,
1561 struct btrfs_path *path,
1562 u64 dirid, int del_all)
1564 u64 range_start;
1565 u64 range_end;
1566 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1567 int ret = 0;
1568 struct btrfs_key dir_key;
1569 struct btrfs_key found_key;
1570 struct btrfs_path *log_path;
1571 struct inode *dir;
1573 dir_key.objectid = dirid;
1574 dir_key.type = BTRFS_DIR_ITEM_KEY;
1575 log_path = btrfs_alloc_path();
1576 if (!log_path)
1577 return -ENOMEM;
1579 dir = read_one_inode(root, dirid);
1580 /* it isn't an error if the inode isn't there, that can happen
1581 * because we replay the deletes before we copy in the inode item
1582 * from the log
1584 if (!dir) {
1585 btrfs_free_path(log_path);
1586 return 0;
1588 again:
1589 range_start = 0;
1590 range_end = 0;
1591 while (1) {
1592 if (del_all)
1593 range_end = (u64)-1;
1594 else {
1595 ret = find_dir_range(log, path, dirid, key_type,
1596 &range_start, &range_end);
1597 if (ret != 0)
1598 break;
1601 dir_key.offset = range_start;
1602 while (1) {
1603 int nritems;
1604 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1605 0, 0);
1606 if (ret < 0)
1607 goto out;
1609 nritems = btrfs_header_nritems(path->nodes[0]);
1610 if (path->slots[0] >= nritems) {
1611 ret = btrfs_next_leaf(root, path);
1612 if (ret)
1613 break;
1615 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1616 path->slots[0]);
1617 if (found_key.objectid != dirid ||
1618 found_key.type != dir_key.type)
1619 goto next_type;
1621 if (found_key.offset > range_end)
1622 break;
1624 ret = check_item_in_log(trans, root, log, path,
1625 log_path, dir,
1626 &found_key);
1627 BUG_ON(ret);
1628 if (found_key.offset == (u64)-1)
1629 break;
1630 dir_key.offset = found_key.offset + 1;
1632 btrfs_release_path(path);
1633 if (range_end == (u64)-1)
1634 break;
1635 range_start = range_end + 1;
1638 next_type:
1639 ret = 0;
1640 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1641 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1642 dir_key.type = BTRFS_DIR_INDEX_KEY;
1643 btrfs_release_path(path);
1644 goto again;
1646 out:
1647 btrfs_release_path(path);
1648 btrfs_free_path(log_path);
1649 iput(dir);
1650 return ret;
1654 * the process_func used to replay items from the log tree. This
1655 * gets called in two different stages. The first stage just looks
1656 * for inodes and makes sure they are all copied into the subvolume.
1658 * The second stage copies all the other item types from the log into
1659 * the subvolume. The two stage approach is slower, but gets rid of
1660 * lots of complexity around inodes referencing other inodes that exist
1661 * only in the log (references come from either directory items or inode
1662 * back refs).
1664 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1665 struct walk_control *wc, u64 gen)
1667 int nritems;
1668 struct btrfs_path *path;
1669 struct btrfs_root *root = wc->replay_dest;
1670 struct btrfs_key key;
1671 int level;
1672 int i;
1673 int ret;
1675 btrfs_read_buffer(eb, gen);
1677 level = btrfs_header_level(eb);
1679 if (level != 0)
1680 return 0;
1682 path = btrfs_alloc_path();
1683 if (!path)
1684 return -ENOMEM;
1686 nritems = btrfs_header_nritems(eb);
1687 for (i = 0; i < nritems; i++) {
1688 btrfs_item_key_to_cpu(eb, &key, i);
1690 /* inode keys are done during the first stage */
1691 if (key.type == BTRFS_INODE_ITEM_KEY &&
1692 wc->stage == LOG_WALK_REPLAY_INODES) {
1693 struct btrfs_inode_item *inode_item;
1694 u32 mode;
1696 inode_item = btrfs_item_ptr(eb, i,
1697 struct btrfs_inode_item);
1698 mode = btrfs_inode_mode(eb, inode_item);
1699 if (S_ISDIR(mode)) {
1700 ret = replay_dir_deletes(wc->trans,
1701 root, log, path, key.objectid, 0);
1702 BUG_ON(ret);
1704 ret = overwrite_item(wc->trans, root, path,
1705 eb, i, &key);
1706 BUG_ON(ret);
1708 /* for regular files, make sure corresponding
1709 * orhpan item exist. extents past the new EOF
1710 * will be truncated later by orphan cleanup.
1712 if (S_ISREG(mode)) {
1713 ret = insert_orphan_item(wc->trans, root,
1714 key.objectid);
1715 BUG_ON(ret);
1718 ret = link_to_fixup_dir(wc->trans, root,
1719 path, key.objectid);
1720 BUG_ON(ret);
1722 if (wc->stage < LOG_WALK_REPLAY_ALL)
1723 continue;
1725 /* these keys are simply copied */
1726 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1727 ret = overwrite_item(wc->trans, root, path,
1728 eb, i, &key);
1729 BUG_ON(ret);
1730 } else if (key.type == BTRFS_INODE_REF_KEY) {
1731 ret = add_inode_ref(wc->trans, root, log, path,
1732 eb, i, &key);
1733 BUG_ON(ret && ret != -ENOENT);
1734 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1735 ret = replay_one_extent(wc->trans, root, path,
1736 eb, i, &key);
1737 BUG_ON(ret);
1738 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1739 key.type == BTRFS_DIR_INDEX_KEY) {
1740 ret = replay_one_dir_item(wc->trans, root, path,
1741 eb, i, &key);
1742 BUG_ON(ret);
1745 btrfs_free_path(path);
1746 return 0;
1749 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1750 struct btrfs_root *root,
1751 struct btrfs_path *path, int *level,
1752 struct walk_control *wc)
1754 u64 root_owner;
1755 u64 bytenr;
1756 u64 ptr_gen;
1757 struct extent_buffer *next;
1758 struct extent_buffer *cur;
1759 struct extent_buffer *parent;
1760 u32 blocksize;
1761 int ret = 0;
1763 WARN_ON(*level < 0);
1764 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1766 while (*level > 0) {
1767 WARN_ON(*level < 0);
1768 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1769 cur = path->nodes[*level];
1771 if (btrfs_header_level(cur) != *level)
1772 WARN_ON(1);
1774 if (path->slots[*level] >=
1775 btrfs_header_nritems(cur))
1776 break;
1778 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1779 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1780 blocksize = btrfs_level_size(root, *level - 1);
1782 parent = path->nodes[*level];
1783 root_owner = btrfs_header_owner(parent);
1785 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1786 if (!next)
1787 return -ENOMEM;
1789 if (*level == 1) {
1790 ret = wc->process_func(root, next, wc, ptr_gen);
1791 if (ret)
1792 return ret;
1794 path->slots[*level]++;
1795 if (wc->free) {
1796 btrfs_read_buffer(next, ptr_gen);
1798 btrfs_tree_lock(next);
1799 btrfs_set_lock_blocking(next);
1800 clean_tree_block(trans, root, next);
1801 btrfs_wait_tree_block_writeback(next);
1802 btrfs_tree_unlock(next);
1804 WARN_ON(root_owner !=
1805 BTRFS_TREE_LOG_OBJECTID);
1806 ret = btrfs_free_and_pin_reserved_extent(root,
1807 bytenr, blocksize);
1808 BUG_ON(ret);
1810 free_extent_buffer(next);
1811 continue;
1813 btrfs_read_buffer(next, ptr_gen);
1815 WARN_ON(*level <= 0);
1816 if (path->nodes[*level-1])
1817 free_extent_buffer(path->nodes[*level-1]);
1818 path->nodes[*level-1] = next;
1819 *level = btrfs_header_level(next);
1820 path->slots[*level] = 0;
1821 cond_resched();
1823 WARN_ON(*level < 0);
1824 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1826 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
1828 cond_resched();
1829 return 0;
1832 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1833 struct btrfs_root *root,
1834 struct btrfs_path *path, int *level,
1835 struct walk_control *wc)
1837 u64 root_owner;
1838 int i;
1839 int slot;
1840 int ret;
1842 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1843 slot = path->slots[i];
1844 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
1845 path->slots[i]++;
1846 *level = i;
1847 WARN_ON(*level == 0);
1848 return 0;
1849 } else {
1850 struct extent_buffer *parent;
1851 if (path->nodes[*level] == root->node)
1852 parent = path->nodes[*level];
1853 else
1854 parent = path->nodes[*level + 1];
1856 root_owner = btrfs_header_owner(parent);
1857 ret = wc->process_func(root, path->nodes[*level], wc,
1858 btrfs_header_generation(path->nodes[*level]));
1859 if (ret)
1860 return ret;
1862 if (wc->free) {
1863 struct extent_buffer *next;
1865 next = path->nodes[*level];
1867 btrfs_tree_lock(next);
1868 btrfs_set_lock_blocking(next);
1869 clean_tree_block(trans, root, next);
1870 btrfs_wait_tree_block_writeback(next);
1871 btrfs_tree_unlock(next);
1873 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1874 ret = btrfs_free_and_pin_reserved_extent(root,
1875 path->nodes[*level]->start,
1876 path->nodes[*level]->len);
1877 BUG_ON(ret);
1879 free_extent_buffer(path->nodes[*level]);
1880 path->nodes[*level] = NULL;
1881 *level = i + 1;
1884 return 1;
1888 * drop the reference count on the tree rooted at 'snap'. This traverses
1889 * the tree freeing any blocks that have a ref count of zero after being
1890 * decremented.
1892 static int walk_log_tree(struct btrfs_trans_handle *trans,
1893 struct btrfs_root *log, struct walk_control *wc)
1895 int ret = 0;
1896 int wret;
1897 int level;
1898 struct btrfs_path *path;
1899 int i;
1900 int orig_level;
1902 path = btrfs_alloc_path();
1903 if (!path)
1904 return -ENOMEM;
1906 level = btrfs_header_level(log->node);
1907 orig_level = level;
1908 path->nodes[level] = log->node;
1909 extent_buffer_get(log->node);
1910 path->slots[level] = 0;
1912 while (1) {
1913 wret = walk_down_log_tree(trans, log, path, &level, wc);
1914 if (wret > 0)
1915 break;
1916 if (wret < 0)
1917 ret = wret;
1919 wret = walk_up_log_tree(trans, log, path, &level, wc);
1920 if (wret > 0)
1921 break;
1922 if (wret < 0)
1923 ret = wret;
1926 /* was the root node processed? if not, catch it here */
1927 if (path->nodes[orig_level]) {
1928 wc->process_func(log, path->nodes[orig_level], wc,
1929 btrfs_header_generation(path->nodes[orig_level]));
1930 if (wc->free) {
1931 struct extent_buffer *next;
1933 next = path->nodes[orig_level];
1935 btrfs_tree_lock(next);
1936 btrfs_set_lock_blocking(next);
1937 clean_tree_block(trans, log, next);
1938 btrfs_wait_tree_block_writeback(next);
1939 btrfs_tree_unlock(next);
1941 WARN_ON(log->root_key.objectid !=
1942 BTRFS_TREE_LOG_OBJECTID);
1943 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
1944 next->len);
1945 BUG_ON(ret);
1949 for (i = 0; i <= orig_level; i++) {
1950 if (path->nodes[i]) {
1951 free_extent_buffer(path->nodes[i]);
1952 path->nodes[i] = NULL;
1955 btrfs_free_path(path);
1956 return ret;
1960 * helper function to update the item for a given subvolumes log root
1961 * in the tree of log roots
1963 static int update_log_root(struct btrfs_trans_handle *trans,
1964 struct btrfs_root *log)
1966 int ret;
1968 if (log->log_transid == 1) {
1969 /* insert root item on the first sync */
1970 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1971 &log->root_key, &log->root_item);
1972 } else {
1973 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1974 &log->root_key, &log->root_item);
1976 return ret;
1979 static int wait_log_commit(struct btrfs_trans_handle *trans,
1980 struct btrfs_root *root, unsigned long transid)
1982 DEFINE_WAIT(wait);
1983 int index = transid % 2;
1986 * we only allow two pending log transactions at a time,
1987 * so we know that if ours is more than 2 older than the
1988 * current transaction, we're done
1990 do {
1991 prepare_to_wait(&root->log_commit_wait[index],
1992 &wait, TASK_UNINTERRUPTIBLE);
1993 mutex_unlock(&root->log_mutex);
1995 if (root->fs_info->last_trans_log_full_commit !=
1996 trans->transid && root->log_transid < transid + 2 &&
1997 atomic_read(&root->log_commit[index]))
1998 schedule();
2000 finish_wait(&root->log_commit_wait[index], &wait);
2001 mutex_lock(&root->log_mutex);
2002 } while (root->log_transid < transid + 2 &&
2003 atomic_read(&root->log_commit[index]));
2004 return 0;
2007 static int wait_for_writer(struct btrfs_trans_handle *trans,
2008 struct btrfs_root *root)
2010 DEFINE_WAIT(wait);
2011 while (atomic_read(&root->log_writers)) {
2012 prepare_to_wait(&root->log_writer_wait,
2013 &wait, TASK_UNINTERRUPTIBLE);
2014 mutex_unlock(&root->log_mutex);
2015 if (root->fs_info->last_trans_log_full_commit !=
2016 trans->transid && atomic_read(&root->log_writers))
2017 schedule();
2018 mutex_lock(&root->log_mutex);
2019 finish_wait(&root->log_writer_wait, &wait);
2021 return 0;
2025 * btrfs_sync_log does sends a given tree log down to the disk and
2026 * updates the super blocks to record it. When this call is done,
2027 * you know that any inodes previously logged are safely on disk only
2028 * if it returns 0.
2030 * Any other return value means you need to call btrfs_commit_transaction.
2031 * Some of the edge cases for fsyncing directories that have had unlinks
2032 * or renames done in the past mean that sometimes the only safe
2033 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2034 * that has happened.
2036 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2037 struct btrfs_root *root)
2039 int index1;
2040 int index2;
2041 int mark;
2042 int ret;
2043 struct btrfs_root *log = root->log_root;
2044 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2045 unsigned long log_transid = 0;
2047 mutex_lock(&root->log_mutex);
2048 index1 = root->log_transid % 2;
2049 if (atomic_read(&root->log_commit[index1])) {
2050 wait_log_commit(trans, root, root->log_transid);
2051 mutex_unlock(&root->log_mutex);
2052 return 0;
2054 atomic_set(&root->log_commit[index1], 1);
2056 /* wait for previous tree log sync to complete */
2057 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2058 wait_log_commit(trans, root, root->log_transid - 1);
2059 while (1) {
2060 unsigned long batch = root->log_batch;
2061 /* when we're on an ssd, just kick the log commit out */
2062 if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
2063 mutex_unlock(&root->log_mutex);
2064 schedule_timeout_uninterruptible(1);
2065 mutex_lock(&root->log_mutex);
2067 wait_for_writer(trans, root);
2068 if (batch == root->log_batch)
2069 break;
2072 /* bail out if we need to do a full commit */
2073 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2074 ret = -EAGAIN;
2075 mutex_unlock(&root->log_mutex);
2076 goto out;
2079 log_transid = root->log_transid;
2080 if (log_transid % 2 == 0)
2081 mark = EXTENT_DIRTY;
2082 else
2083 mark = EXTENT_NEW;
2085 /* we start IO on all the marked extents here, but we don't actually
2086 * wait for them until later.
2088 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2089 BUG_ON(ret);
2091 btrfs_set_root_node(&log->root_item, log->node);
2093 root->log_batch = 0;
2094 root->log_transid++;
2095 log->log_transid = root->log_transid;
2096 root->log_start_pid = 0;
2097 smp_mb();
2099 * IO has been started, blocks of the log tree have WRITTEN flag set
2100 * in their headers. new modifications of the log will be written to
2101 * new positions. so it's safe to allow log writers to go in.
2103 mutex_unlock(&root->log_mutex);
2105 mutex_lock(&log_root_tree->log_mutex);
2106 log_root_tree->log_batch++;
2107 atomic_inc(&log_root_tree->log_writers);
2108 mutex_unlock(&log_root_tree->log_mutex);
2110 ret = update_log_root(trans, log);
2112 mutex_lock(&log_root_tree->log_mutex);
2113 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2114 smp_mb();
2115 if (waitqueue_active(&log_root_tree->log_writer_wait))
2116 wake_up(&log_root_tree->log_writer_wait);
2119 if (ret) {
2120 BUG_ON(ret != -ENOSPC);
2121 root->fs_info->last_trans_log_full_commit = trans->transid;
2122 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2123 mutex_unlock(&log_root_tree->log_mutex);
2124 ret = -EAGAIN;
2125 goto out;
2128 index2 = log_root_tree->log_transid % 2;
2129 if (atomic_read(&log_root_tree->log_commit[index2])) {
2130 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2131 wait_log_commit(trans, log_root_tree,
2132 log_root_tree->log_transid);
2133 mutex_unlock(&log_root_tree->log_mutex);
2134 ret = 0;
2135 goto out;
2137 atomic_set(&log_root_tree->log_commit[index2], 1);
2139 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2140 wait_log_commit(trans, log_root_tree,
2141 log_root_tree->log_transid - 1);
2144 wait_for_writer(trans, log_root_tree);
2147 * now that we've moved on to the tree of log tree roots,
2148 * check the full commit flag again
2150 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2151 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2152 mutex_unlock(&log_root_tree->log_mutex);
2153 ret = -EAGAIN;
2154 goto out_wake_log_root;
2157 ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2158 &log_root_tree->dirty_log_pages,
2159 EXTENT_DIRTY | EXTENT_NEW);
2160 BUG_ON(ret);
2161 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2163 btrfs_set_super_log_root(root->fs_info->super_for_commit,
2164 log_root_tree->node->start);
2165 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2166 btrfs_header_level(log_root_tree->node));
2168 log_root_tree->log_batch = 0;
2169 log_root_tree->log_transid++;
2170 smp_mb();
2172 mutex_unlock(&log_root_tree->log_mutex);
2175 * nobody else is going to jump in and write the the ctree
2176 * super here because the log_commit atomic below is protecting
2177 * us. We must be called with a transaction handle pinning
2178 * the running transaction open, so a full commit can't hop
2179 * in and cause problems either.
2181 btrfs_scrub_pause_super(root);
2182 write_ctree_super(trans, root->fs_info->tree_root, 1);
2183 btrfs_scrub_continue_super(root);
2184 ret = 0;
2186 mutex_lock(&root->log_mutex);
2187 if (root->last_log_commit < log_transid)
2188 root->last_log_commit = log_transid;
2189 mutex_unlock(&root->log_mutex);
2191 out_wake_log_root:
2192 atomic_set(&log_root_tree->log_commit[index2], 0);
2193 smp_mb();
2194 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2195 wake_up(&log_root_tree->log_commit_wait[index2]);
2196 out:
2197 atomic_set(&root->log_commit[index1], 0);
2198 smp_mb();
2199 if (waitqueue_active(&root->log_commit_wait[index1]))
2200 wake_up(&root->log_commit_wait[index1]);
2201 return ret;
2204 static void free_log_tree(struct btrfs_trans_handle *trans,
2205 struct btrfs_root *log)
2207 int ret;
2208 u64 start;
2209 u64 end;
2210 struct walk_control wc = {
2211 .free = 1,
2212 .process_func = process_one_buffer
2215 ret = walk_log_tree(trans, log, &wc);
2216 BUG_ON(ret);
2218 while (1) {
2219 ret = find_first_extent_bit(&log->dirty_log_pages,
2220 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
2221 if (ret)
2222 break;
2224 clear_extent_bits(&log->dirty_log_pages, start, end,
2225 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2228 free_extent_buffer(log->node);
2229 kfree(log);
2233 * free all the extents used by the tree log. This should be called
2234 * at commit time of the full transaction
2236 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2238 if (root->log_root) {
2239 free_log_tree(trans, root->log_root);
2240 root->log_root = NULL;
2242 return 0;
2245 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2246 struct btrfs_fs_info *fs_info)
2248 if (fs_info->log_root_tree) {
2249 free_log_tree(trans, fs_info->log_root_tree);
2250 fs_info->log_root_tree = NULL;
2252 return 0;
2256 * If both a file and directory are logged, and unlinks or renames are
2257 * mixed in, we have a few interesting corners:
2259 * create file X in dir Y
2260 * link file X to X.link in dir Y
2261 * fsync file X
2262 * unlink file X but leave X.link
2263 * fsync dir Y
2265 * After a crash we would expect only X.link to exist. But file X
2266 * didn't get fsync'd again so the log has back refs for X and X.link.
2268 * We solve this by removing directory entries and inode backrefs from the
2269 * log when a file that was logged in the current transaction is
2270 * unlinked. Any later fsync will include the updated log entries, and
2271 * we'll be able to reconstruct the proper directory items from backrefs.
2273 * This optimizations allows us to avoid relogging the entire inode
2274 * or the entire directory.
2276 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2277 struct btrfs_root *root,
2278 const char *name, int name_len,
2279 struct inode *dir, u64 index)
2281 struct btrfs_root *log;
2282 struct btrfs_dir_item *di;
2283 struct btrfs_path *path;
2284 int ret;
2285 int err = 0;
2286 int bytes_del = 0;
2287 u64 dir_ino = btrfs_ino(dir);
2289 if (BTRFS_I(dir)->logged_trans < trans->transid)
2290 return 0;
2292 ret = join_running_log_trans(root);
2293 if (ret)
2294 return 0;
2296 mutex_lock(&BTRFS_I(dir)->log_mutex);
2298 log = root->log_root;
2299 path = btrfs_alloc_path();
2300 if (!path) {
2301 err = -ENOMEM;
2302 goto out_unlock;
2305 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2306 name, name_len, -1);
2307 if (IS_ERR(di)) {
2308 err = PTR_ERR(di);
2309 goto fail;
2311 if (di) {
2312 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2313 bytes_del += name_len;
2314 BUG_ON(ret);
2316 btrfs_release_path(path);
2317 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2318 index, name, name_len, -1);
2319 if (IS_ERR(di)) {
2320 err = PTR_ERR(di);
2321 goto fail;
2323 if (di) {
2324 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2325 bytes_del += name_len;
2326 BUG_ON(ret);
2329 /* update the directory size in the log to reflect the names
2330 * we have removed
2332 if (bytes_del) {
2333 struct btrfs_key key;
2335 key.objectid = dir_ino;
2336 key.offset = 0;
2337 key.type = BTRFS_INODE_ITEM_KEY;
2338 btrfs_release_path(path);
2340 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2341 if (ret < 0) {
2342 err = ret;
2343 goto fail;
2345 if (ret == 0) {
2346 struct btrfs_inode_item *item;
2347 u64 i_size;
2349 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2350 struct btrfs_inode_item);
2351 i_size = btrfs_inode_size(path->nodes[0], item);
2352 if (i_size > bytes_del)
2353 i_size -= bytes_del;
2354 else
2355 i_size = 0;
2356 btrfs_set_inode_size(path->nodes[0], item, i_size);
2357 btrfs_mark_buffer_dirty(path->nodes[0]);
2358 } else
2359 ret = 0;
2360 btrfs_release_path(path);
2362 fail:
2363 btrfs_free_path(path);
2364 out_unlock:
2365 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2366 if (ret == -ENOSPC) {
2367 root->fs_info->last_trans_log_full_commit = trans->transid;
2368 ret = 0;
2370 btrfs_end_log_trans(root);
2372 return err;
2375 /* see comments for btrfs_del_dir_entries_in_log */
2376 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2377 struct btrfs_root *root,
2378 const char *name, int name_len,
2379 struct inode *inode, u64 dirid)
2381 struct btrfs_root *log;
2382 u64 index;
2383 int ret;
2385 if (BTRFS_I(inode)->logged_trans < trans->transid)
2386 return 0;
2388 ret = join_running_log_trans(root);
2389 if (ret)
2390 return 0;
2391 log = root->log_root;
2392 mutex_lock(&BTRFS_I(inode)->log_mutex);
2394 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2395 dirid, &index);
2396 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2397 if (ret == -ENOSPC) {
2398 root->fs_info->last_trans_log_full_commit = trans->transid;
2399 ret = 0;
2401 btrfs_end_log_trans(root);
2403 return ret;
2407 * creates a range item in the log for 'dirid'. first_offset and
2408 * last_offset tell us which parts of the key space the log should
2409 * be considered authoritative for.
2411 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2412 struct btrfs_root *log,
2413 struct btrfs_path *path,
2414 int key_type, u64 dirid,
2415 u64 first_offset, u64 last_offset)
2417 int ret;
2418 struct btrfs_key key;
2419 struct btrfs_dir_log_item *item;
2421 key.objectid = dirid;
2422 key.offset = first_offset;
2423 if (key_type == BTRFS_DIR_ITEM_KEY)
2424 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2425 else
2426 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2427 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2428 if (ret)
2429 return ret;
2431 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2432 struct btrfs_dir_log_item);
2433 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2434 btrfs_mark_buffer_dirty(path->nodes[0]);
2435 btrfs_release_path(path);
2436 return 0;
2440 * log all the items included in the current transaction for a given
2441 * directory. This also creates the range items in the log tree required
2442 * to replay anything deleted before the fsync
2444 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2445 struct btrfs_root *root, struct inode *inode,
2446 struct btrfs_path *path,
2447 struct btrfs_path *dst_path, int key_type,
2448 u64 min_offset, u64 *last_offset_ret)
2450 struct btrfs_key min_key;
2451 struct btrfs_key max_key;
2452 struct btrfs_root *log = root->log_root;
2453 struct extent_buffer *src;
2454 int err = 0;
2455 int ret;
2456 int i;
2457 int nritems;
2458 u64 first_offset = min_offset;
2459 u64 last_offset = (u64)-1;
2460 u64 ino = btrfs_ino(inode);
2462 log = root->log_root;
2463 max_key.objectid = ino;
2464 max_key.offset = (u64)-1;
2465 max_key.type = key_type;
2467 min_key.objectid = ino;
2468 min_key.type = key_type;
2469 min_key.offset = min_offset;
2471 path->keep_locks = 1;
2473 ret = btrfs_search_forward(root, &min_key, &max_key,
2474 path, 0, trans->transid);
2477 * we didn't find anything from this transaction, see if there
2478 * is anything at all
2480 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2481 min_key.objectid = ino;
2482 min_key.type = key_type;
2483 min_key.offset = (u64)-1;
2484 btrfs_release_path(path);
2485 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2486 if (ret < 0) {
2487 btrfs_release_path(path);
2488 return ret;
2490 ret = btrfs_previous_item(root, path, ino, key_type);
2492 /* if ret == 0 there are items for this type,
2493 * create a range to tell us the last key of this type.
2494 * otherwise, there are no items in this directory after
2495 * *min_offset, and we create a range to indicate that.
2497 if (ret == 0) {
2498 struct btrfs_key tmp;
2499 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2500 path->slots[0]);
2501 if (key_type == tmp.type)
2502 first_offset = max(min_offset, tmp.offset) + 1;
2504 goto done;
2507 /* go backward to find any previous key */
2508 ret = btrfs_previous_item(root, path, ino, key_type);
2509 if (ret == 0) {
2510 struct btrfs_key tmp;
2511 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2512 if (key_type == tmp.type) {
2513 first_offset = tmp.offset;
2514 ret = overwrite_item(trans, log, dst_path,
2515 path->nodes[0], path->slots[0],
2516 &tmp);
2517 if (ret) {
2518 err = ret;
2519 goto done;
2523 btrfs_release_path(path);
2525 /* find the first key from this transaction again */
2526 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2527 if (ret != 0) {
2528 WARN_ON(1);
2529 goto done;
2533 * we have a block from this transaction, log every item in it
2534 * from our directory
2536 while (1) {
2537 struct btrfs_key tmp;
2538 src = path->nodes[0];
2539 nritems = btrfs_header_nritems(src);
2540 for (i = path->slots[0]; i < nritems; i++) {
2541 btrfs_item_key_to_cpu(src, &min_key, i);
2543 if (min_key.objectid != ino || min_key.type != key_type)
2544 goto done;
2545 ret = overwrite_item(trans, log, dst_path, src, i,
2546 &min_key);
2547 if (ret) {
2548 err = ret;
2549 goto done;
2552 path->slots[0] = nritems;
2555 * look ahead to the next item and see if it is also
2556 * from this directory and from this transaction
2558 ret = btrfs_next_leaf(root, path);
2559 if (ret == 1) {
2560 last_offset = (u64)-1;
2561 goto done;
2563 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2564 if (tmp.objectid != ino || tmp.type != key_type) {
2565 last_offset = (u64)-1;
2566 goto done;
2568 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2569 ret = overwrite_item(trans, log, dst_path,
2570 path->nodes[0], path->slots[0],
2571 &tmp);
2572 if (ret)
2573 err = ret;
2574 else
2575 last_offset = tmp.offset;
2576 goto done;
2579 done:
2580 btrfs_release_path(path);
2581 btrfs_release_path(dst_path);
2583 if (err == 0) {
2584 *last_offset_ret = last_offset;
2586 * insert the log range keys to indicate where the log
2587 * is valid
2589 ret = insert_dir_log_key(trans, log, path, key_type,
2590 ino, first_offset, last_offset);
2591 if (ret)
2592 err = ret;
2594 return err;
2598 * logging directories is very similar to logging inodes, We find all the items
2599 * from the current transaction and write them to the log.
2601 * The recovery code scans the directory in the subvolume, and if it finds a
2602 * key in the range logged that is not present in the log tree, then it means
2603 * that dir entry was unlinked during the transaction.
2605 * In order for that scan to work, we must include one key smaller than
2606 * the smallest logged by this transaction and one key larger than the largest
2607 * key logged by this transaction.
2609 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2610 struct btrfs_root *root, struct inode *inode,
2611 struct btrfs_path *path,
2612 struct btrfs_path *dst_path)
2614 u64 min_key;
2615 u64 max_key;
2616 int ret;
2617 int key_type = BTRFS_DIR_ITEM_KEY;
2619 again:
2620 min_key = 0;
2621 max_key = 0;
2622 while (1) {
2623 ret = log_dir_items(trans, root, inode, path,
2624 dst_path, key_type, min_key,
2625 &max_key);
2626 if (ret)
2627 return ret;
2628 if (max_key == (u64)-1)
2629 break;
2630 min_key = max_key + 1;
2633 if (key_type == BTRFS_DIR_ITEM_KEY) {
2634 key_type = BTRFS_DIR_INDEX_KEY;
2635 goto again;
2637 return 0;
2641 * a helper function to drop items from the log before we relog an
2642 * inode. max_key_type indicates the highest item type to remove.
2643 * This cannot be run for file data extents because it does not
2644 * free the extents they point to.
2646 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2647 struct btrfs_root *log,
2648 struct btrfs_path *path,
2649 u64 objectid, int max_key_type)
2651 int ret;
2652 struct btrfs_key key;
2653 struct btrfs_key found_key;
2655 key.objectid = objectid;
2656 key.type = max_key_type;
2657 key.offset = (u64)-1;
2659 while (1) {
2660 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2661 BUG_ON(ret == 0);
2662 if (ret < 0)
2663 break;
2665 if (path->slots[0] == 0)
2666 break;
2668 path->slots[0]--;
2669 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2670 path->slots[0]);
2672 if (found_key.objectid != objectid)
2673 break;
2675 ret = btrfs_del_item(trans, log, path);
2676 if (ret)
2677 break;
2678 btrfs_release_path(path);
2680 btrfs_release_path(path);
2681 return ret;
2684 static noinline int copy_items(struct btrfs_trans_handle *trans,
2685 struct btrfs_root *log,
2686 struct btrfs_path *dst_path,
2687 struct extent_buffer *src,
2688 int start_slot, int nr, int inode_only)
2690 unsigned long src_offset;
2691 unsigned long dst_offset;
2692 struct btrfs_file_extent_item *extent;
2693 struct btrfs_inode_item *inode_item;
2694 int ret;
2695 struct btrfs_key *ins_keys;
2696 u32 *ins_sizes;
2697 char *ins_data;
2698 int i;
2699 struct list_head ordered_sums;
2701 INIT_LIST_HEAD(&ordered_sums);
2703 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2704 nr * sizeof(u32), GFP_NOFS);
2705 if (!ins_data)
2706 return -ENOMEM;
2708 ins_sizes = (u32 *)ins_data;
2709 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2711 for (i = 0; i < nr; i++) {
2712 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2713 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2715 ret = btrfs_insert_empty_items(trans, log, dst_path,
2716 ins_keys, ins_sizes, nr);
2717 if (ret) {
2718 kfree(ins_data);
2719 return ret;
2722 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
2723 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2724 dst_path->slots[0]);
2726 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2728 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2729 src_offset, ins_sizes[i]);
2731 if (inode_only == LOG_INODE_EXISTS &&
2732 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2733 inode_item = btrfs_item_ptr(dst_path->nodes[0],
2734 dst_path->slots[0],
2735 struct btrfs_inode_item);
2736 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2738 /* set the generation to zero so the recover code
2739 * can tell the difference between an logging
2740 * just to say 'this inode exists' and a logging
2741 * to say 'update this inode with these values'
2743 btrfs_set_inode_generation(dst_path->nodes[0],
2744 inode_item, 0);
2746 /* take a reference on file data extents so that truncates
2747 * or deletes of this inode don't have to relog the inode
2748 * again
2750 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2751 int found_type;
2752 extent = btrfs_item_ptr(src, start_slot + i,
2753 struct btrfs_file_extent_item);
2755 if (btrfs_file_extent_generation(src, extent) < trans->transid)
2756 continue;
2758 found_type = btrfs_file_extent_type(src, extent);
2759 if (found_type == BTRFS_FILE_EXTENT_REG ||
2760 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2761 u64 ds, dl, cs, cl;
2762 ds = btrfs_file_extent_disk_bytenr(src,
2763 extent);
2764 /* ds == 0 is a hole */
2765 if (ds == 0)
2766 continue;
2768 dl = btrfs_file_extent_disk_num_bytes(src,
2769 extent);
2770 cs = btrfs_file_extent_offset(src, extent);
2771 cl = btrfs_file_extent_num_bytes(src,
2772 extent);
2773 if (btrfs_file_extent_compression(src,
2774 extent)) {
2775 cs = 0;
2776 cl = dl;
2779 ret = btrfs_lookup_csums_range(
2780 log->fs_info->csum_root,
2781 ds + cs, ds + cs + cl - 1,
2782 &ordered_sums, 0);
2783 BUG_ON(ret);
2788 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2789 btrfs_release_path(dst_path);
2790 kfree(ins_data);
2793 * we have to do this after the loop above to avoid changing the
2794 * log tree while trying to change the log tree.
2796 ret = 0;
2797 while (!list_empty(&ordered_sums)) {
2798 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2799 struct btrfs_ordered_sum,
2800 list);
2801 if (!ret)
2802 ret = btrfs_csum_file_blocks(trans, log, sums);
2803 list_del(&sums->list);
2804 kfree(sums);
2806 return ret;
2809 /* log a single inode in the tree log.
2810 * At least one parent directory for this inode must exist in the tree
2811 * or be logged already.
2813 * Any items from this inode changed by the current transaction are copied
2814 * to the log tree. An extra reference is taken on any extents in this
2815 * file, allowing us to avoid a whole pile of corner cases around logging
2816 * blocks that have been removed from the tree.
2818 * See LOG_INODE_ALL and related defines for a description of what inode_only
2819 * does.
2821 * This handles both files and directories.
2823 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2824 struct btrfs_root *root, struct inode *inode,
2825 int inode_only)
2827 struct btrfs_path *path;
2828 struct btrfs_path *dst_path;
2829 struct btrfs_key min_key;
2830 struct btrfs_key max_key;
2831 struct btrfs_root *log = root->log_root;
2832 struct extent_buffer *src = NULL;
2833 int err = 0;
2834 int ret;
2835 int nritems;
2836 int ins_start_slot = 0;
2837 int ins_nr;
2838 u64 ino = btrfs_ino(inode);
2840 log = root->log_root;
2842 path = btrfs_alloc_path();
2843 if (!path)
2844 return -ENOMEM;
2845 dst_path = btrfs_alloc_path();
2846 if (!dst_path) {
2847 btrfs_free_path(path);
2848 return -ENOMEM;
2851 min_key.objectid = ino;
2852 min_key.type = BTRFS_INODE_ITEM_KEY;
2853 min_key.offset = 0;
2855 max_key.objectid = ino;
2857 /* today the code can only do partial logging of directories */
2858 if (!S_ISDIR(inode->i_mode))
2859 inode_only = LOG_INODE_ALL;
2861 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2862 max_key.type = BTRFS_XATTR_ITEM_KEY;
2863 else
2864 max_key.type = (u8)-1;
2865 max_key.offset = (u64)-1;
2867 ret = btrfs_commit_inode_delayed_items(trans, inode);
2868 if (ret) {
2869 btrfs_free_path(path);
2870 btrfs_free_path(dst_path);
2871 return ret;
2874 mutex_lock(&BTRFS_I(inode)->log_mutex);
2877 * a brute force approach to making sure we get the most uptodate
2878 * copies of everything.
2880 if (S_ISDIR(inode->i_mode)) {
2881 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2883 if (inode_only == LOG_INODE_EXISTS)
2884 max_key_type = BTRFS_XATTR_ITEM_KEY;
2885 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
2886 } else {
2887 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2889 if (ret) {
2890 err = ret;
2891 goto out_unlock;
2893 path->keep_locks = 1;
2895 while (1) {
2896 ins_nr = 0;
2897 ret = btrfs_search_forward(root, &min_key, &max_key,
2898 path, 0, trans->transid);
2899 if (ret != 0)
2900 break;
2901 again:
2902 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2903 if (min_key.objectid != ino)
2904 break;
2905 if (min_key.type > max_key.type)
2906 break;
2908 src = path->nodes[0];
2909 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2910 ins_nr++;
2911 goto next_slot;
2912 } else if (!ins_nr) {
2913 ins_start_slot = path->slots[0];
2914 ins_nr = 1;
2915 goto next_slot;
2918 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2919 ins_nr, inode_only);
2920 if (ret) {
2921 err = ret;
2922 goto out_unlock;
2924 ins_nr = 1;
2925 ins_start_slot = path->slots[0];
2926 next_slot:
2928 nritems = btrfs_header_nritems(path->nodes[0]);
2929 path->slots[0]++;
2930 if (path->slots[0] < nritems) {
2931 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2932 path->slots[0]);
2933 goto again;
2935 if (ins_nr) {
2936 ret = copy_items(trans, log, dst_path, src,
2937 ins_start_slot,
2938 ins_nr, inode_only);
2939 if (ret) {
2940 err = ret;
2941 goto out_unlock;
2943 ins_nr = 0;
2945 btrfs_release_path(path);
2947 if (min_key.offset < (u64)-1)
2948 min_key.offset++;
2949 else if (min_key.type < (u8)-1)
2950 min_key.type++;
2951 else if (min_key.objectid < (u64)-1)
2952 min_key.objectid++;
2953 else
2954 break;
2956 if (ins_nr) {
2957 ret = copy_items(trans, log, dst_path, src,
2958 ins_start_slot,
2959 ins_nr, inode_only);
2960 if (ret) {
2961 err = ret;
2962 goto out_unlock;
2964 ins_nr = 0;
2966 WARN_ON(ins_nr);
2967 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2968 btrfs_release_path(path);
2969 btrfs_release_path(dst_path);
2970 ret = log_directory_changes(trans, root, inode, path, dst_path);
2971 if (ret) {
2972 err = ret;
2973 goto out_unlock;
2976 BTRFS_I(inode)->logged_trans = trans->transid;
2977 out_unlock:
2978 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2980 btrfs_free_path(path);
2981 btrfs_free_path(dst_path);
2982 return err;
2986 * follow the dentry parent pointers up the chain and see if any
2987 * of the directories in it require a full commit before they can
2988 * be logged. Returns zero if nothing special needs to be done or 1 if
2989 * a full commit is required.
2991 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2992 struct inode *inode,
2993 struct dentry *parent,
2994 struct super_block *sb,
2995 u64 last_committed)
2997 int ret = 0;
2998 struct btrfs_root *root;
2999 struct dentry *old_parent = NULL;
3002 * for regular files, if its inode is already on disk, we don't
3003 * have to worry about the parents at all. This is because
3004 * we can use the last_unlink_trans field to record renames
3005 * and other fun in this file.
3007 if (S_ISREG(inode->i_mode) &&
3008 BTRFS_I(inode)->generation <= last_committed &&
3009 BTRFS_I(inode)->last_unlink_trans <= last_committed)
3010 goto out;
3012 if (!S_ISDIR(inode->i_mode)) {
3013 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3014 goto out;
3015 inode = parent->d_inode;
3018 while (1) {
3019 BTRFS_I(inode)->logged_trans = trans->transid;
3020 smp_mb();
3022 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
3023 root = BTRFS_I(inode)->root;
3026 * make sure any commits to the log are forced
3027 * to be full commits
3029 root->fs_info->last_trans_log_full_commit =
3030 trans->transid;
3031 ret = 1;
3032 break;
3035 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3036 break;
3038 if (IS_ROOT(parent))
3039 break;
3041 parent = dget_parent(parent);
3042 dput(old_parent);
3043 old_parent = parent;
3044 inode = parent->d_inode;
3047 dput(old_parent);
3048 out:
3049 return ret;
3052 static int inode_in_log(struct btrfs_trans_handle *trans,
3053 struct inode *inode)
3055 struct btrfs_root *root = BTRFS_I(inode)->root;
3056 int ret = 0;
3058 mutex_lock(&root->log_mutex);
3059 if (BTRFS_I(inode)->logged_trans == trans->transid &&
3060 BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
3061 ret = 1;
3062 mutex_unlock(&root->log_mutex);
3063 return ret;
3068 * helper function around btrfs_log_inode to make sure newly created
3069 * parent directories also end up in the log. A minimal inode and backref
3070 * only logging is done of any parent directories that are older than
3071 * the last committed transaction
3073 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3074 struct btrfs_root *root, struct inode *inode,
3075 struct dentry *parent, int exists_only)
3077 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3078 struct super_block *sb;
3079 struct dentry *old_parent = NULL;
3080 int ret = 0;
3081 u64 last_committed = root->fs_info->last_trans_committed;
3083 sb = inode->i_sb;
3085 if (btrfs_test_opt(root, NOTREELOG)) {
3086 ret = 1;
3087 goto end_no_trans;
3090 if (root->fs_info->last_trans_log_full_commit >
3091 root->fs_info->last_trans_committed) {
3092 ret = 1;
3093 goto end_no_trans;
3096 if (root != BTRFS_I(inode)->root ||
3097 btrfs_root_refs(&root->root_item) == 0) {
3098 ret = 1;
3099 goto end_no_trans;
3102 ret = check_parent_dirs_for_sync(trans, inode, parent,
3103 sb, last_committed);
3104 if (ret)
3105 goto end_no_trans;
3107 if (inode_in_log(trans, inode)) {
3108 ret = BTRFS_NO_LOG_SYNC;
3109 goto end_no_trans;
3112 ret = start_log_trans(trans, root);
3113 if (ret)
3114 goto end_trans;
3116 ret = btrfs_log_inode(trans, root, inode, inode_only);
3117 if (ret)
3118 goto end_trans;
3121 * for regular files, if its inode is already on disk, we don't
3122 * have to worry about the parents at all. This is because
3123 * we can use the last_unlink_trans field to record renames
3124 * and other fun in this file.
3126 if (S_ISREG(inode->i_mode) &&
3127 BTRFS_I(inode)->generation <= last_committed &&
3128 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3129 ret = 0;
3130 goto end_trans;
3133 inode_only = LOG_INODE_EXISTS;
3134 while (1) {
3135 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3136 break;
3138 inode = parent->d_inode;
3139 if (root != BTRFS_I(inode)->root)
3140 break;
3142 if (BTRFS_I(inode)->generation >
3143 root->fs_info->last_trans_committed) {
3144 ret = btrfs_log_inode(trans, root, inode, inode_only);
3145 if (ret)
3146 goto end_trans;
3148 if (IS_ROOT(parent))
3149 break;
3151 parent = dget_parent(parent);
3152 dput(old_parent);
3153 old_parent = parent;
3155 ret = 0;
3156 end_trans:
3157 dput(old_parent);
3158 if (ret < 0) {
3159 BUG_ON(ret != -ENOSPC);
3160 root->fs_info->last_trans_log_full_commit = trans->transid;
3161 ret = 1;
3163 btrfs_end_log_trans(root);
3164 end_no_trans:
3165 return ret;
3169 * it is not safe to log dentry if the chunk root has added new
3170 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
3171 * If this returns 1, you must commit the transaction to safely get your
3172 * data on disk.
3174 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3175 struct btrfs_root *root, struct dentry *dentry)
3177 struct dentry *parent = dget_parent(dentry);
3178 int ret;
3180 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3181 dput(parent);
3183 return ret;
3187 * should be called during mount to recover any replay any log trees
3188 * from the FS
3190 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3192 int ret;
3193 struct btrfs_path *path;
3194 struct btrfs_trans_handle *trans;
3195 struct btrfs_key key;
3196 struct btrfs_key found_key;
3197 struct btrfs_key tmp_key;
3198 struct btrfs_root *log;
3199 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3200 struct walk_control wc = {
3201 .process_func = process_one_buffer,
3202 .stage = 0,
3205 path = btrfs_alloc_path();
3206 if (!path)
3207 return -ENOMEM;
3209 fs_info->log_root_recovering = 1;
3211 trans = btrfs_start_transaction(fs_info->tree_root, 0);
3212 BUG_ON(IS_ERR(trans));
3214 wc.trans = trans;
3215 wc.pin = 1;
3217 ret = walk_log_tree(trans, log_root_tree, &wc);
3218 BUG_ON(ret);
3220 again:
3221 key.objectid = BTRFS_TREE_LOG_OBJECTID;
3222 key.offset = (u64)-1;
3223 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3225 while (1) {
3226 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3227 if (ret < 0)
3228 break;
3229 if (ret > 0) {
3230 if (path->slots[0] == 0)
3231 break;
3232 path->slots[0]--;
3234 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3235 path->slots[0]);
3236 btrfs_release_path(path);
3237 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3238 break;
3240 log = btrfs_read_fs_root_no_radix(log_root_tree,
3241 &found_key);
3242 BUG_ON(IS_ERR(log));
3244 tmp_key.objectid = found_key.offset;
3245 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3246 tmp_key.offset = (u64)-1;
3248 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3249 BUG_ON(IS_ERR_OR_NULL(wc.replay_dest));
3251 wc.replay_dest->log_root = log;
3252 btrfs_record_root_in_trans(trans, wc.replay_dest);
3253 ret = walk_log_tree(trans, log, &wc);
3254 BUG_ON(ret);
3256 if (wc.stage == LOG_WALK_REPLAY_ALL) {
3257 ret = fixup_inode_link_counts(trans, wc.replay_dest,
3258 path);
3259 BUG_ON(ret);
3262 key.offset = found_key.offset - 1;
3263 wc.replay_dest->log_root = NULL;
3264 free_extent_buffer(log->node);
3265 free_extent_buffer(log->commit_root);
3266 kfree(log);
3268 if (found_key.offset == 0)
3269 break;
3271 btrfs_release_path(path);
3273 /* step one is to pin it all, step two is to replay just inodes */
3274 if (wc.pin) {
3275 wc.pin = 0;
3276 wc.process_func = replay_one_buffer;
3277 wc.stage = LOG_WALK_REPLAY_INODES;
3278 goto again;
3280 /* step three is to replay everything */
3281 if (wc.stage < LOG_WALK_REPLAY_ALL) {
3282 wc.stage++;
3283 goto again;
3286 btrfs_free_path(path);
3288 free_extent_buffer(log_root_tree->node);
3289 log_root_tree->log_root = NULL;
3290 fs_info->log_root_recovering = 0;
3292 /* step 4: commit the transaction, which also unpins the blocks */
3293 btrfs_commit_transaction(trans, fs_info->tree_root);
3295 kfree(log_root_tree);
3296 return 0;
3300 * there are some corner cases where we want to force a full
3301 * commit instead of allowing a directory to be logged.
3303 * They revolve around files there were unlinked from the directory, and
3304 * this function updates the parent directory so that a full commit is
3305 * properly done if it is fsync'd later after the unlinks are done.
3307 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3308 struct inode *dir, struct inode *inode,
3309 int for_rename)
3312 * when we're logging a file, if it hasn't been renamed
3313 * or unlinked, and its inode is fully committed on disk,
3314 * we don't have to worry about walking up the directory chain
3315 * to log its parents.
3317 * So, we use the last_unlink_trans field to put this transid
3318 * into the file. When the file is logged we check it and
3319 * don't log the parents if the file is fully on disk.
3321 if (S_ISREG(inode->i_mode))
3322 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3325 * if this directory was already logged any new
3326 * names for this file/dir will get recorded
3328 smp_mb();
3329 if (BTRFS_I(dir)->logged_trans == trans->transid)
3330 return;
3333 * if the inode we're about to unlink was logged,
3334 * the log will be properly updated for any new names
3336 if (BTRFS_I(inode)->logged_trans == trans->transid)
3337 return;
3340 * when renaming files across directories, if the directory
3341 * there we're unlinking from gets fsync'd later on, there's
3342 * no way to find the destination directory later and fsync it
3343 * properly. So, we have to be conservative and force commits
3344 * so the new name gets discovered.
3346 if (for_rename)
3347 goto record;
3349 /* we can safely do the unlink without any special recording */
3350 return;
3352 record:
3353 BTRFS_I(dir)->last_unlink_trans = trans->transid;
3357 * Call this after adding a new name for a file and it will properly
3358 * update the log to reflect the new name.
3360 * It will return zero if all goes well, and it will return 1 if a
3361 * full transaction commit is required.
3363 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3364 struct inode *inode, struct inode *old_dir,
3365 struct dentry *parent)
3367 struct btrfs_root * root = BTRFS_I(inode)->root;
3370 * this will force the logging code to walk the dentry chain
3371 * up for the file
3373 if (S_ISREG(inode->i_mode))
3374 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3377 * if this inode hasn't been logged and directory we're renaming it
3378 * from hasn't been logged, we don't need to log it
3380 if (BTRFS_I(inode)->logged_trans <=
3381 root->fs_info->last_trans_committed &&
3382 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3383 root->fs_info->last_trans_committed))
3384 return 0;
3386 return btrfs_log_inode_parent(trans, root, inode, parent, 1);