Linux 3.2.58
[linux/fpc-iii.git] / fs / fs-writeback.c
blob13bfa07c861c8cdf6281a69d7e875bc0c03989dc
1 /*
2 * fs/fs-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
33 * Passed into wb_writeback(), essentially a subset of writeback_control
35 struct wb_writeback_work {
36 long nr_pages;
37 struct super_block *sb;
38 unsigned long *older_than_this;
39 enum writeback_sync_modes sync_mode;
40 unsigned int tagged_writepages:1;
41 unsigned int for_kupdate:1;
42 unsigned int range_cyclic:1;
43 unsigned int for_background:1;
44 enum wb_reason reason; /* why was writeback initiated? */
46 struct list_head list; /* pending work list */
47 struct completion *done; /* set if the caller waits */
51 * We don't actually have pdflush, but this one is exported though /proc...
53 int nr_pdflush_threads;
55 /**
56 * writeback_in_progress - determine whether there is writeback in progress
57 * @bdi: the device's backing_dev_info structure.
59 * Determine whether there is writeback waiting to be handled against a
60 * backing device.
62 int writeback_in_progress(struct backing_dev_info *bdi)
64 return test_bit(BDI_writeback_running, &bdi->state);
66 EXPORT_SYMBOL(writeback_in_progress);
68 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
70 struct super_block *sb = inode->i_sb;
72 if (strcmp(sb->s_type->name, "bdev") == 0)
73 return inode->i_mapping->backing_dev_info;
75 return sb->s_bdi;
78 static inline struct inode *wb_inode(struct list_head *head)
80 return list_entry(head, struct inode, i_wb_list);
84 * Include the creation of the trace points after defining the
85 * wb_writeback_work structure and inline functions so that the definition
86 * remains local to this file.
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/writeback.h>
91 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
92 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
94 if (bdi->wb.task) {
95 wake_up_process(bdi->wb.task);
96 } else {
98 * The bdi thread isn't there, wake up the forker thread which
99 * will create and run it.
101 wake_up_process(default_backing_dev_info.wb.task);
105 static void bdi_queue_work(struct backing_dev_info *bdi,
106 struct wb_writeback_work *work)
108 trace_writeback_queue(bdi, work);
110 spin_lock_bh(&bdi->wb_lock);
111 list_add_tail(&work->list, &bdi->work_list);
112 if (!bdi->wb.task)
113 trace_writeback_nothread(bdi, work);
114 bdi_wakeup_flusher(bdi);
115 spin_unlock_bh(&bdi->wb_lock);
118 static void
119 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
120 bool range_cyclic, enum wb_reason reason)
122 struct wb_writeback_work *work;
125 * This is WB_SYNC_NONE writeback, so if allocation fails just
126 * wakeup the thread for old dirty data writeback
128 work = kzalloc(sizeof(*work), GFP_ATOMIC);
129 if (!work) {
130 if (bdi->wb.task) {
131 trace_writeback_nowork(bdi);
132 wake_up_process(bdi->wb.task);
134 return;
137 work->sync_mode = WB_SYNC_NONE;
138 work->nr_pages = nr_pages;
139 work->range_cyclic = range_cyclic;
140 work->reason = reason;
142 bdi_queue_work(bdi, work);
146 * bdi_start_writeback - start writeback
147 * @bdi: the backing device to write from
148 * @nr_pages: the number of pages to write
149 * @reason: reason why some writeback work was initiated
151 * Description:
152 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
153 * started when this function returns, we make no guarantees on
154 * completion. Caller need not hold sb s_umount semaphore.
157 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
158 enum wb_reason reason)
160 __bdi_start_writeback(bdi, nr_pages, true, reason);
164 * bdi_start_background_writeback - start background writeback
165 * @bdi: the backing device to write from
167 * Description:
168 * This makes sure WB_SYNC_NONE background writeback happens. When
169 * this function returns, it is only guaranteed that for given BDI
170 * some IO is happening if we are over background dirty threshold.
171 * Caller need not hold sb s_umount semaphore.
173 void bdi_start_background_writeback(struct backing_dev_info *bdi)
176 * We just wake up the flusher thread. It will perform background
177 * writeback as soon as there is no other work to do.
179 trace_writeback_wake_background(bdi);
180 spin_lock_bh(&bdi->wb_lock);
181 bdi_wakeup_flusher(bdi);
182 spin_unlock_bh(&bdi->wb_lock);
186 * Remove the inode from the writeback list it is on.
188 void inode_wb_list_del(struct inode *inode)
190 struct backing_dev_info *bdi = inode_to_bdi(inode);
192 spin_lock(&bdi->wb.list_lock);
193 list_del_init(&inode->i_wb_list);
194 spin_unlock(&bdi->wb.list_lock);
198 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
199 * furthest end of its superblock's dirty-inode list.
201 * Before stamping the inode's ->dirtied_when, we check to see whether it is
202 * already the most-recently-dirtied inode on the b_dirty list. If that is
203 * the case then the inode must have been redirtied while it was being written
204 * out and we don't reset its dirtied_when.
206 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
208 assert_spin_locked(&wb->list_lock);
209 if (!list_empty(&wb->b_dirty)) {
210 struct inode *tail;
212 tail = wb_inode(wb->b_dirty.next);
213 if (time_before(inode->dirtied_when, tail->dirtied_when))
214 inode->dirtied_when = jiffies;
216 list_move(&inode->i_wb_list, &wb->b_dirty);
220 * requeue inode for re-scanning after bdi->b_io list is exhausted.
222 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
224 assert_spin_locked(&wb->list_lock);
225 list_move(&inode->i_wb_list, &wb->b_more_io);
228 static void inode_sync_complete(struct inode *inode)
231 * Prevent speculative execution through
232 * spin_unlock(&wb->list_lock);
235 smp_mb();
236 wake_up_bit(&inode->i_state, __I_SYNC);
239 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
241 bool ret = time_after(inode->dirtied_when, t);
242 #ifndef CONFIG_64BIT
244 * For inodes being constantly redirtied, dirtied_when can get stuck.
245 * It _appears_ to be in the future, but is actually in distant past.
246 * This test is necessary to prevent such wrapped-around relative times
247 * from permanently stopping the whole bdi writeback.
249 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
250 #endif
251 return ret;
255 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
257 static int move_expired_inodes(struct list_head *delaying_queue,
258 struct list_head *dispatch_queue,
259 struct wb_writeback_work *work)
261 LIST_HEAD(tmp);
262 struct list_head *pos, *node;
263 struct super_block *sb = NULL;
264 struct inode *inode;
265 int do_sb_sort = 0;
266 int moved = 0;
268 while (!list_empty(delaying_queue)) {
269 inode = wb_inode(delaying_queue->prev);
270 if (work->older_than_this &&
271 inode_dirtied_after(inode, *work->older_than_this))
272 break;
273 if (sb && sb != inode->i_sb)
274 do_sb_sort = 1;
275 sb = inode->i_sb;
276 list_move(&inode->i_wb_list, &tmp);
277 moved++;
280 /* just one sb in list, splice to dispatch_queue and we're done */
281 if (!do_sb_sort) {
282 list_splice(&tmp, dispatch_queue);
283 goto out;
286 /* Move inodes from one superblock together */
287 while (!list_empty(&tmp)) {
288 sb = wb_inode(tmp.prev)->i_sb;
289 list_for_each_prev_safe(pos, node, &tmp) {
290 inode = wb_inode(pos);
291 if (inode->i_sb == sb)
292 list_move(&inode->i_wb_list, dispatch_queue);
295 out:
296 return moved;
300 * Queue all expired dirty inodes for io, eldest first.
301 * Before
302 * newly dirtied b_dirty b_io b_more_io
303 * =============> gf edc BA
304 * After
305 * newly dirtied b_dirty b_io b_more_io
306 * =============> g fBAedc
308 * +--> dequeue for IO
310 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
312 int moved;
313 assert_spin_locked(&wb->list_lock);
314 list_splice_init(&wb->b_more_io, &wb->b_io);
315 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
316 trace_writeback_queue_io(wb, work, moved);
319 static int write_inode(struct inode *inode, struct writeback_control *wbc)
321 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
322 return inode->i_sb->s_op->write_inode(inode, wbc);
323 return 0;
327 * Wait for writeback on an inode to complete.
329 static void inode_wait_for_writeback(struct inode *inode,
330 struct bdi_writeback *wb)
332 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
333 wait_queue_head_t *wqh;
335 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
336 while (inode->i_state & I_SYNC) {
337 spin_unlock(&inode->i_lock);
338 spin_unlock(&wb->list_lock);
339 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
340 spin_lock(&wb->list_lock);
341 spin_lock(&inode->i_lock);
346 * Write out an inode's dirty pages. Called under wb->list_lock and
347 * inode->i_lock. Either the caller has an active reference on the inode or
348 * the inode has I_WILL_FREE set.
350 * If `wait' is set, wait on the writeout.
352 * The whole writeout design is quite complex and fragile. We want to avoid
353 * starvation of particular inodes when others are being redirtied, prevent
354 * livelocks, etc.
356 static int
357 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
358 struct writeback_control *wbc)
360 struct address_space *mapping = inode->i_mapping;
361 long nr_to_write = wbc->nr_to_write;
362 unsigned dirty;
363 int ret;
365 assert_spin_locked(&wb->list_lock);
366 assert_spin_locked(&inode->i_lock);
368 if (!atomic_read(&inode->i_count))
369 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
370 else
371 WARN_ON(inode->i_state & I_WILL_FREE);
373 if (inode->i_state & I_SYNC) {
375 * If this inode is locked for writeback and we are not doing
376 * writeback-for-data-integrity, move it to b_more_io so that
377 * writeback can proceed with the other inodes on s_io.
379 * We'll have another go at writing back this inode when we
380 * completed a full scan of b_io.
382 if (wbc->sync_mode != WB_SYNC_ALL) {
383 requeue_io(inode, wb);
384 trace_writeback_single_inode_requeue(inode, wbc,
385 nr_to_write);
386 return 0;
390 * It's a data-integrity sync. We must wait.
392 inode_wait_for_writeback(inode, wb);
395 BUG_ON(inode->i_state & I_SYNC);
397 /* Set I_SYNC, reset I_DIRTY_PAGES */
398 inode->i_state |= I_SYNC;
399 inode->i_state &= ~I_DIRTY_PAGES;
400 spin_unlock(&inode->i_lock);
401 spin_unlock(&wb->list_lock);
403 ret = do_writepages(mapping, wbc);
406 * Make sure to wait on the data before writing out the metadata.
407 * This is important for filesystems that modify metadata on data
408 * I/O completion.
410 if (wbc->sync_mode == WB_SYNC_ALL) {
411 int err = filemap_fdatawait(mapping);
412 if (ret == 0)
413 ret = err;
417 * Some filesystems may redirty the inode during the writeback
418 * due to delalloc, clear dirty metadata flags right before
419 * write_inode()
421 spin_lock(&inode->i_lock);
422 dirty = inode->i_state & I_DIRTY;
423 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
424 spin_unlock(&inode->i_lock);
425 /* Don't write the inode if only I_DIRTY_PAGES was set */
426 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
427 int err = write_inode(inode, wbc);
428 if (ret == 0)
429 ret = err;
432 spin_lock(&wb->list_lock);
433 spin_lock(&inode->i_lock);
434 inode->i_state &= ~I_SYNC;
435 if (!(inode->i_state & I_FREEING)) {
437 * Sync livelock prevention. Each inode is tagged and synced in
438 * one shot. If still dirty, it will be redirty_tail()'ed below.
439 * Update the dirty time to prevent enqueue and sync it again.
441 if ((inode->i_state & I_DIRTY) &&
442 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
443 inode->dirtied_when = jiffies;
445 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
447 * We didn't write back all the pages. nfs_writepages()
448 * sometimes bales out without doing anything.
450 inode->i_state |= I_DIRTY_PAGES;
451 if (wbc->nr_to_write <= 0) {
453 * slice used up: queue for next turn
455 requeue_io(inode, wb);
456 } else {
458 * Writeback blocked by something other than
459 * congestion. Delay the inode for some time to
460 * avoid spinning on the CPU (100% iowait)
461 * retrying writeback of the dirty page/inode
462 * that cannot be performed immediately.
464 redirty_tail(inode, wb);
466 } else if (inode->i_state & I_DIRTY) {
468 * Filesystems can dirty the inode during writeback
469 * operations, such as delayed allocation during
470 * submission or metadata updates after data IO
471 * completion.
473 redirty_tail(inode, wb);
474 } else {
476 * The inode is clean. At this point we either have
477 * a reference to the inode or it's on it's way out.
478 * No need to add it back to the LRU.
480 list_del_init(&inode->i_wb_list);
483 inode_sync_complete(inode);
484 trace_writeback_single_inode(inode, wbc, nr_to_write);
485 return ret;
488 static long writeback_chunk_size(struct backing_dev_info *bdi,
489 struct wb_writeback_work *work)
491 long pages;
494 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
495 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
496 * here avoids calling into writeback_inodes_wb() more than once.
498 * The intended call sequence for WB_SYNC_ALL writeback is:
500 * wb_writeback()
501 * writeback_sb_inodes() <== called only once
502 * write_cache_pages() <== called once for each inode
503 * (quickly) tag currently dirty pages
504 * (maybe slowly) sync all tagged pages
506 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
507 pages = LONG_MAX;
508 else {
509 pages = min(bdi->avg_write_bandwidth / 2,
510 global_dirty_limit / DIRTY_SCOPE);
511 pages = min(pages, work->nr_pages);
512 pages = round_down(pages + MIN_WRITEBACK_PAGES,
513 MIN_WRITEBACK_PAGES);
516 return pages;
520 * Write a portion of b_io inodes which belong to @sb.
522 * If @only_this_sb is true, then find and write all such
523 * inodes. Otherwise write only ones which go sequentially
524 * in reverse order.
526 * Return the number of pages and/or inodes written.
528 static long writeback_sb_inodes(struct super_block *sb,
529 struct bdi_writeback *wb,
530 struct wb_writeback_work *work)
532 struct writeback_control wbc = {
533 .sync_mode = work->sync_mode,
534 .tagged_writepages = work->tagged_writepages,
535 .for_kupdate = work->for_kupdate,
536 .for_background = work->for_background,
537 .range_cyclic = work->range_cyclic,
538 .range_start = 0,
539 .range_end = LLONG_MAX,
541 unsigned long start_time = jiffies;
542 long write_chunk;
543 long wrote = 0; /* count both pages and inodes */
545 while (!list_empty(&wb->b_io)) {
546 struct inode *inode = wb_inode(wb->b_io.prev);
548 if (inode->i_sb != sb) {
549 if (work->sb) {
551 * We only want to write back data for this
552 * superblock, move all inodes not belonging
553 * to it back onto the dirty list.
555 redirty_tail(inode, wb);
556 continue;
560 * The inode belongs to a different superblock.
561 * Bounce back to the caller to unpin this and
562 * pin the next superblock.
564 break;
568 * Don't bother with new inodes or inodes beeing freed, first
569 * kind does not need peridic writeout yet, and for the latter
570 * kind writeout is handled by the freer.
572 spin_lock(&inode->i_lock);
573 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
574 spin_unlock(&inode->i_lock);
575 redirty_tail(inode, wb);
576 continue;
578 __iget(inode);
579 write_chunk = writeback_chunk_size(wb->bdi, work);
580 wbc.nr_to_write = write_chunk;
581 wbc.pages_skipped = 0;
583 writeback_single_inode(inode, wb, &wbc);
585 work->nr_pages -= write_chunk - wbc.nr_to_write;
586 wrote += write_chunk - wbc.nr_to_write;
587 if (!(inode->i_state & I_DIRTY))
588 wrote++;
589 if (wbc.pages_skipped) {
591 * writeback is not making progress due to locked
592 * buffers. Skip this inode for now.
594 redirty_tail(inode, wb);
596 spin_unlock(&inode->i_lock);
597 spin_unlock(&wb->list_lock);
598 iput(inode);
599 cond_resched();
600 spin_lock(&wb->list_lock);
602 * bail out to wb_writeback() often enough to check
603 * background threshold and other termination conditions.
605 if (wrote) {
606 if (time_is_before_jiffies(start_time + HZ / 10UL))
607 break;
608 if (work->nr_pages <= 0)
609 break;
612 return wrote;
615 static long __writeback_inodes_wb(struct bdi_writeback *wb,
616 struct wb_writeback_work *work)
618 unsigned long start_time = jiffies;
619 long wrote = 0;
621 while (!list_empty(&wb->b_io)) {
622 struct inode *inode = wb_inode(wb->b_io.prev);
623 struct super_block *sb = inode->i_sb;
625 if (!grab_super_passive(sb)) {
627 * grab_super_passive() may fail consistently due to
628 * s_umount being grabbed by someone else. Don't use
629 * requeue_io() to avoid busy retrying the inode/sb.
631 redirty_tail(inode, wb);
632 continue;
634 wrote += writeback_sb_inodes(sb, wb, work);
635 drop_super(sb);
637 /* refer to the same tests at the end of writeback_sb_inodes */
638 if (wrote) {
639 if (time_is_before_jiffies(start_time + HZ / 10UL))
640 break;
641 if (work->nr_pages <= 0)
642 break;
645 /* Leave any unwritten inodes on b_io */
646 return wrote;
649 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
650 enum wb_reason reason)
652 struct wb_writeback_work work = {
653 .nr_pages = nr_pages,
654 .sync_mode = WB_SYNC_NONE,
655 .range_cyclic = 1,
656 .reason = reason,
659 spin_lock(&wb->list_lock);
660 if (list_empty(&wb->b_io))
661 queue_io(wb, &work);
662 __writeback_inodes_wb(wb, &work);
663 spin_unlock(&wb->list_lock);
665 return nr_pages - work.nr_pages;
668 static bool over_bground_thresh(struct backing_dev_info *bdi)
670 unsigned long background_thresh, dirty_thresh;
672 global_dirty_limits(&background_thresh, &dirty_thresh);
674 if (global_page_state(NR_FILE_DIRTY) +
675 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
676 return true;
678 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
679 bdi_dirty_limit(bdi, background_thresh))
680 return true;
682 return false;
686 * Called under wb->list_lock. If there are multiple wb per bdi,
687 * only the flusher working on the first wb should do it.
689 static void wb_update_bandwidth(struct bdi_writeback *wb,
690 unsigned long start_time)
692 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
696 * Explicit flushing or periodic writeback of "old" data.
698 * Define "old": the first time one of an inode's pages is dirtied, we mark the
699 * dirtying-time in the inode's address_space. So this periodic writeback code
700 * just walks the superblock inode list, writing back any inodes which are
701 * older than a specific point in time.
703 * Try to run once per dirty_writeback_interval. But if a writeback event
704 * takes longer than a dirty_writeback_interval interval, then leave a
705 * one-second gap.
707 * older_than_this takes precedence over nr_to_write. So we'll only write back
708 * all dirty pages if they are all attached to "old" mappings.
710 static long wb_writeback(struct bdi_writeback *wb,
711 struct wb_writeback_work *work)
713 unsigned long wb_start = jiffies;
714 long nr_pages = work->nr_pages;
715 unsigned long oldest_jif;
716 struct inode *inode;
717 long progress;
719 oldest_jif = jiffies;
720 work->older_than_this = &oldest_jif;
722 spin_lock(&wb->list_lock);
723 for (;;) {
725 * Stop writeback when nr_pages has been consumed
727 if (work->nr_pages <= 0)
728 break;
731 * Background writeout and kupdate-style writeback may
732 * run forever. Stop them if there is other work to do
733 * so that e.g. sync can proceed. They'll be restarted
734 * after the other works are all done.
736 if ((work->for_background || work->for_kupdate) &&
737 !list_empty(&wb->bdi->work_list))
738 break;
741 * For background writeout, stop when we are below the
742 * background dirty threshold
744 if (work->for_background && !over_bground_thresh(wb->bdi))
745 break;
747 if (work->for_kupdate) {
748 oldest_jif = jiffies -
749 msecs_to_jiffies(dirty_expire_interval * 10);
750 work->older_than_this = &oldest_jif;
753 trace_writeback_start(wb->bdi, work);
754 if (list_empty(&wb->b_io))
755 queue_io(wb, work);
756 if (work->sb)
757 progress = writeback_sb_inodes(work->sb, wb, work);
758 else
759 progress = __writeback_inodes_wb(wb, work);
760 trace_writeback_written(wb->bdi, work);
762 wb_update_bandwidth(wb, wb_start);
765 * Did we write something? Try for more
767 * Dirty inodes are moved to b_io for writeback in batches.
768 * The completion of the current batch does not necessarily
769 * mean the overall work is done. So we keep looping as long
770 * as made some progress on cleaning pages or inodes.
772 if (progress)
773 continue;
775 * No more inodes for IO, bail
777 if (list_empty(&wb->b_more_io))
778 break;
780 * Nothing written. Wait for some inode to
781 * become available for writeback. Otherwise
782 * we'll just busyloop.
784 if (!list_empty(&wb->b_more_io)) {
785 trace_writeback_wait(wb->bdi, work);
786 inode = wb_inode(wb->b_more_io.prev);
787 spin_lock(&inode->i_lock);
788 inode_wait_for_writeback(inode, wb);
789 spin_unlock(&inode->i_lock);
792 spin_unlock(&wb->list_lock);
794 return nr_pages - work->nr_pages;
798 * Return the next wb_writeback_work struct that hasn't been processed yet.
800 static struct wb_writeback_work *
801 get_next_work_item(struct backing_dev_info *bdi)
803 struct wb_writeback_work *work = NULL;
805 spin_lock_bh(&bdi->wb_lock);
806 if (!list_empty(&bdi->work_list)) {
807 work = list_entry(bdi->work_list.next,
808 struct wb_writeback_work, list);
809 list_del_init(&work->list);
811 spin_unlock_bh(&bdi->wb_lock);
812 return work;
816 * Add in the number of potentially dirty inodes, because each inode
817 * write can dirty pagecache in the underlying blockdev.
819 static unsigned long get_nr_dirty_pages(void)
821 return global_page_state(NR_FILE_DIRTY) +
822 global_page_state(NR_UNSTABLE_NFS) +
823 get_nr_dirty_inodes();
826 static long wb_check_background_flush(struct bdi_writeback *wb)
828 if (over_bground_thresh(wb->bdi)) {
830 struct wb_writeback_work work = {
831 .nr_pages = LONG_MAX,
832 .sync_mode = WB_SYNC_NONE,
833 .for_background = 1,
834 .range_cyclic = 1,
835 .reason = WB_REASON_BACKGROUND,
838 return wb_writeback(wb, &work);
841 return 0;
844 static long wb_check_old_data_flush(struct bdi_writeback *wb)
846 unsigned long expired;
847 long nr_pages;
850 * When set to zero, disable periodic writeback
852 if (!dirty_writeback_interval)
853 return 0;
855 expired = wb->last_old_flush +
856 msecs_to_jiffies(dirty_writeback_interval * 10);
857 if (time_before(jiffies, expired))
858 return 0;
860 wb->last_old_flush = jiffies;
861 nr_pages = get_nr_dirty_pages();
863 if (nr_pages) {
864 struct wb_writeback_work work = {
865 .nr_pages = nr_pages,
866 .sync_mode = WB_SYNC_NONE,
867 .for_kupdate = 1,
868 .range_cyclic = 1,
869 .reason = WB_REASON_PERIODIC,
872 return wb_writeback(wb, &work);
875 return 0;
879 * Retrieve work items and do the writeback they describe
881 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
883 struct backing_dev_info *bdi = wb->bdi;
884 struct wb_writeback_work *work;
885 long wrote = 0;
887 set_bit(BDI_writeback_running, &wb->bdi->state);
888 while ((work = get_next_work_item(bdi)) != NULL) {
890 * Override sync mode, in case we must wait for completion
891 * because this thread is exiting now.
893 if (force_wait)
894 work->sync_mode = WB_SYNC_ALL;
896 trace_writeback_exec(bdi, work);
898 wrote += wb_writeback(wb, work);
901 * Notify the caller of completion if this is a synchronous
902 * work item, otherwise just free it.
904 if (work->done)
905 complete(work->done);
906 else
907 kfree(work);
911 * Check for periodic writeback, kupdated() style
913 wrote += wb_check_old_data_flush(wb);
914 wrote += wb_check_background_flush(wb);
915 clear_bit(BDI_writeback_running, &wb->bdi->state);
917 return wrote;
921 * Handle writeback of dirty data for the device backed by this bdi. Also
922 * wakes up periodically and does kupdated style flushing.
924 int bdi_writeback_thread(void *data)
926 struct bdi_writeback *wb = data;
927 struct backing_dev_info *bdi = wb->bdi;
928 long pages_written;
930 current->flags |= PF_SWAPWRITE;
931 set_freezable();
932 wb->last_active = jiffies;
935 * Our parent may run at a different priority, just set us to normal
937 set_user_nice(current, 0);
939 trace_writeback_thread_start(bdi);
941 while (!kthread_should_stop()) {
943 * Remove own delayed wake-up timer, since we are already awake
944 * and we'll take care of the preriodic write-back.
946 del_timer(&wb->wakeup_timer);
948 pages_written = wb_do_writeback(wb, 0);
950 trace_writeback_pages_written(pages_written);
952 if (pages_written)
953 wb->last_active = jiffies;
955 set_current_state(TASK_INTERRUPTIBLE);
956 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
957 __set_current_state(TASK_RUNNING);
958 continue;
961 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
962 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
963 else {
965 * We have nothing to do, so can go sleep without any
966 * timeout and save power. When a work is queued or
967 * something is made dirty - we will be woken up.
969 schedule();
972 try_to_freeze();
975 /* Flush any work that raced with us exiting */
976 if (!list_empty(&bdi->work_list))
977 wb_do_writeback(wb, 1);
979 trace_writeback_thread_stop(bdi);
980 return 0;
985 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
986 * the whole world.
988 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
990 struct backing_dev_info *bdi;
992 if (!nr_pages) {
993 nr_pages = global_page_state(NR_FILE_DIRTY) +
994 global_page_state(NR_UNSTABLE_NFS);
997 rcu_read_lock();
998 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
999 if (!bdi_has_dirty_io(bdi))
1000 continue;
1001 __bdi_start_writeback(bdi, nr_pages, false, reason);
1003 rcu_read_unlock();
1006 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1008 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1009 struct dentry *dentry;
1010 const char *name = "?";
1012 dentry = d_find_alias(inode);
1013 if (dentry) {
1014 spin_lock(&dentry->d_lock);
1015 name = (const char *) dentry->d_name.name;
1017 printk(KERN_DEBUG
1018 "%s(%d): dirtied inode %lu (%s) on %s\n",
1019 current->comm, task_pid_nr(current), inode->i_ino,
1020 name, inode->i_sb->s_id);
1021 if (dentry) {
1022 spin_unlock(&dentry->d_lock);
1023 dput(dentry);
1029 * __mark_inode_dirty - internal function
1030 * @inode: inode to mark
1031 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1032 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1033 * mark_inode_dirty_sync.
1035 * Put the inode on the super block's dirty list.
1037 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1038 * dirty list only if it is hashed or if it refers to a blockdev.
1039 * If it was not hashed, it will never be added to the dirty list
1040 * even if it is later hashed, as it will have been marked dirty already.
1042 * In short, make sure you hash any inodes _before_ you start marking
1043 * them dirty.
1045 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1046 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1047 * the kernel-internal blockdev inode represents the dirtying time of the
1048 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1049 * page->mapping->host, so the page-dirtying time is recorded in the internal
1050 * blockdev inode.
1052 void __mark_inode_dirty(struct inode *inode, int flags)
1054 struct super_block *sb = inode->i_sb;
1055 struct backing_dev_info *bdi = NULL;
1058 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1059 * dirty the inode itself
1061 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1062 if (sb->s_op->dirty_inode)
1063 sb->s_op->dirty_inode(inode, flags);
1067 * make sure that changes are seen by all cpus before we test i_state
1068 * -- mikulas
1070 smp_mb();
1072 /* avoid the locking if we can */
1073 if ((inode->i_state & flags) == flags)
1074 return;
1076 if (unlikely(block_dump))
1077 block_dump___mark_inode_dirty(inode);
1079 spin_lock(&inode->i_lock);
1080 if ((inode->i_state & flags) != flags) {
1081 const int was_dirty = inode->i_state & I_DIRTY;
1083 inode->i_state |= flags;
1086 * If the inode is being synced, just update its dirty state.
1087 * The unlocker will place the inode on the appropriate
1088 * superblock list, based upon its state.
1090 if (inode->i_state & I_SYNC)
1091 goto out_unlock_inode;
1094 * Only add valid (hashed) inodes to the superblock's
1095 * dirty list. Add blockdev inodes as well.
1097 if (!S_ISBLK(inode->i_mode)) {
1098 if (inode_unhashed(inode))
1099 goto out_unlock_inode;
1101 if (inode->i_state & I_FREEING)
1102 goto out_unlock_inode;
1105 * If the inode was already on b_dirty/b_io/b_more_io, don't
1106 * reposition it (that would break b_dirty time-ordering).
1108 if (!was_dirty) {
1109 bool wakeup_bdi = false;
1110 bdi = inode_to_bdi(inode);
1112 if (bdi_cap_writeback_dirty(bdi)) {
1113 WARN(!test_bit(BDI_registered, &bdi->state),
1114 "bdi-%s not registered\n", bdi->name);
1117 * If this is the first dirty inode for this
1118 * bdi, we have to wake-up the corresponding
1119 * bdi thread to make sure background
1120 * write-back happens later.
1122 if (!wb_has_dirty_io(&bdi->wb))
1123 wakeup_bdi = true;
1126 spin_unlock(&inode->i_lock);
1127 spin_lock(&bdi->wb.list_lock);
1128 inode->dirtied_when = jiffies;
1129 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1130 spin_unlock(&bdi->wb.list_lock);
1132 if (wakeup_bdi)
1133 bdi_wakeup_thread_delayed(bdi);
1134 return;
1137 out_unlock_inode:
1138 spin_unlock(&inode->i_lock);
1141 EXPORT_SYMBOL(__mark_inode_dirty);
1144 * Write out a superblock's list of dirty inodes. A wait will be performed
1145 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1147 * If older_than_this is non-NULL, then only write out inodes which
1148 * had their first dirtying at a time earlier than *older_than_this.
1150 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1151 * This function assumes that the blockdev superblock's inodes are backed by
1152 * a variety of queues, so all inodes are searched. For other superblocks,
1153 * assume that all inodes are backed by the same queue.
1155 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1156 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1157 * on the writer throttling path, and we get decent balancing between many
1158 * throttled threads: we don't want them all piling up on inode_sync_wait.
1160 static void wait_sb_inodes(struct super_block *sb)
1162 struct inode *inode, *old_inode = NULL;
1165 * We need to be protected against the filesystem going from
1166 * r/o to r/w or vice versa.
1168 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1170 spin_lock(&inode_sb_list_lock);
1173 * Data integrity sync. Must wait for all pages under writeback,
1174 * because there may have been pages dirtied before our sync
1175 * call, but which had writeout started before we write it out.
1176 * In which case, the inode may not be on the dirty list, but
1177 * we still have to wait for that writeout.
1179 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1180 struct address_space *mapping = inode->i_mapping;
1182 spin_lock(&inode->i_lock);
1183 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1184 (mapping->nrpages == 0)) {
1185 spin_unlock(&inode->i_lock);
1186 continue;
1188 __iget(inode);
1189 spin_unlock(&inode->i_lock);
1190 spin_unlock(&inode_sb_list_lock);
1193 * We hold a reference to 'inode' so it couldn't have been
1194 * removed from s_inodes list while we dropped the
1195 * inode_sb_list_lock. We cannot iput the inode now as we can
1196 * be holding the last reference and we cannot iput it under
1197 * inode_sb_list_lock. So we keep the reference and iput it
1198 * later.
1200 iput(old_inode);
1201 old_inode = inode;
1203 filemap_fdatawait(mapping);
1205 cond_resched();
1207 spin_lock(&inode_sb_list_lock);
1209 spin_unlock(&inode_sb_list_lock);
1210 iput(old_inode);
1214 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1215 * @sb: the superblock
1216 * @nr: the number of pages to write
1217 * @reason: reason why some writeback work initiated
1219 * Start writeback on some inodes on this super_block. No guarantees are made
1220 * on how many (if any) will be written, and this function does not wait
1221 * for IO completion of submitted IO.
1223 void writeback_inodes_sb_nr(struct super_block *sb,
1224 unsigned long nr,
1225 enum wb_reason reason)
1227 DECLARE_COMPLETION_ONSTACK(done);
1228 struct wb_writeback_work work = {
1229 .sb = sb,
1230 .sync_mode = WB_SYNC_NONE,
1231 .tagged_writepages = 1,
1232 .done = &done,
1233 .nr_pages = nr,
1234 .reason = reason,
1237 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1238 bdi_queue_work(sb->s_bdi, &work);
1239 wait_for_completion(&done);
1241 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1244 * writeback_inodes_sb - writeback dirty inodes from given super_block
1245 * @sb: the superblock
1246 * @reason: reason why some writeback work was initiated
1248 * Start writeback on some inodes on this super_block. No guarantees are made
1249 * on how many (if any) will be written, and this function does not wait
1250 * for IO completion of submitted IO.
1252 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1254 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1256 EXPORT_SYMBOL(writeback_inodes_sb);
1259 * writeback_inodes_sb_if_idle - start writeback if none underway
1260 * @sb: the superblock
1261 * @reason: reason why some writeback work was initiated
1263 * Invoke writeback_inodes_sb if no writeback is currently underway.
1264 * Returns 1 if writeback was started, 0 if not.
1266 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1268 if (!writeback_in_progress(sb->s_bdi)) {
1269 down_read(&sb->s_umount);
1270 writeback_inodes_sb(sb, reason);
1271 up_read(&sb->s_umount);
1272 return 1;
1273 } else
1274 return 0;
1276 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1279 * writeback_inodes_sb_if_idle - start writeback if none underway
1280 * @sb: the superblock
1281 * @nr: the number of pages to write
1282 * @reason: reason why some writeback work was initiated
1284 * Invoke writeback_inodes_sb if no writeback is currently underway.
1285 * Returns 1 if writeback was started, 0 if not.
1287 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1288 unsigned long nr,
1289 enum wb_reason reason)
1291 if (!writeback_in_progress(sb->s_bdi)) {
1292 down_read(&sb->s_umount);
1293 writeback_inodes_sb_nr(sb, nr, reason);
1294 up_read(&sb->s_umount);
1295 return 1;
1296 } else
1297 return 0;
1299 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1302 * sync_inodes_sb - sync sb inode pages
1303 * @sb: the superblock
1305 * This function writes and waits on any dirty inode belonging to this
1306 * super_block.
1308 void sync_inodes_sb(struct super_block *sb)
1310 DECLARE_COMPLETION_ONSTACK(done);
1311 struct wb_writeback_work work = {
1312 .sb = sb,
1313 .sync_mode = WB_SYNC_ALL,
1314 .nr_pages = LONG_MAX,
1315 .range_cyclic = 0,
1316 .done = &done,
1317 .reason = WB_REASON_SYNC,
1320 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1322 bdi_queue_work(sb->s_bdi, &work);
1323 wait_for_completion(&done);
1325 wait_sb_inodes(sb);
1327 EXPORT_SYMBOL(sync_inodes_sb);
1330 * write_inode_now - write an inode to disk
1331 * @inode: inode to write to disk
1332 * @sync: whether the write should be synchronous or not
1334 * This function commits an inode to disk immediately if it is dirty. This is
1335 * primarily needed by knfsd.
1337 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1339 int write_inode_now(struct inode *inode, int sync)
1341 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1342 int ret;
1343 struct writeback_control wbc = {
1344 .nr_to_write = LONG_MAX,
1345 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1346 .range_start = 0,
1347 .range_end = LLONG_MAX,
1350 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1351 wbc.nr_to_write = 0;
1353 might_sleep();
1354 spin_lock(&wb->list_lock);
1355 spin_lock(&inode->i_lock);
1356 ret = writeback_single_inode(inode, wb, &wbc);
1357 spin_unlock(&inode->i_lock);
1358 spin_unlock(&wb->list_lock);
1359 if (sync)
1360 inode_sync_wait(inode);
1361 return ret;
1363 EXPORT_SYMBOL(write_inode_now);
1366 * sync_inode - write an inode and its pages to disk.
1367 * @inode: the inode to sync
1368 * @wbc: controls the writeback mode
1370 * sync_inode() will write an inode and its pages to disk. It will also
1371 * correctly update the inode on its superblock's dirty inode lists and will
1372 * update inode->i_state.
1374 * The caller must have a ref on the inode.
1376 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1378 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1379 int ret;
1381 spin_lock(&wb->list_lock);
1382 spin_lock(&inode->i_lock);
1383 ret = writeback_single_inode(inode, wb, wbc);
1384 spin_unlock(&inode->i_lock);
1385 spin_unlock(&wb->list_lock);
1386 return ret;
1388 EXPORT_SYMBOL(sync_inode);
1391 * sync_inode_metadata - write an inode to disk
1392 * @inode: the inode to sync
1393 * @wait: wait for I/O to complete.
1395 * Write an inode to disk and adjust its dirty state after completion.
1397 * Note: only writes the actual inode, no associated data or other metadata.
1399 int sync_inode_metadata(struct inode *inode, int wait)
1401 struct writeback_control wbc = {
1402 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1403 .nr_to_write = 0, /* metadata-only */
1406 return sync_inode(inode, &wbc);
1408 EXPORT_SYMBOL(sync_inode_metadata);