2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright © 2001-2007 Red Hat, Inc.
6 * Created by David Woodhouse <dwmw2@infradead.org>
8 * For licensing information, see the file 'LICENCE' in this directory.
12 #include <linux/kernel.h>
13 #include <linux/mtd/mtd.h>
14 #include <linux/compiler.h>
15 #include <linux/sched.h> /* For cond_resched() */
20 * jffs2_reserve_space - request physical space to write nodes to flash
22 * @minsize: Minimum acceptable size of allocation
23 * @len: Returned value of allocation length
24 * @prio: Allocation type - ALLOC_{NORMAL,DELETION}
26 * Requests a block of physical space on the flash. Returns zero for success
27 * and puts 'len' into the appropriate place, or returns -ENOSPC or other
28 * error if appropriate. Doesn't return len since that's
30 * If it returns zero, jffs2_reserve_space() also downs the per-filesystem
31 * allocation semaphore, to prevent more than one allocation from being
32 * active at any time. The semaphore is later released by jffs2_commit_allocation()
34 * jffs2_reserve_space() may trigger garbage collection in order to make room
35 * for the requested allocation.
38 static int jffs2_do_reserve_space(struct jffs2_sb_info
*c
, uint32_t minsize
,
39 uint32_t *len
, uint32_t sumsize
);
41 int jffs2_reserve_space(struct jffs2_sb_info
*c
, uint32_t minsize
,
42 uint32_t *len
, int prio
, uint32_t sumsize
)
45 int blocksneeded
= c
->resv_blocks_write
;
47 minsize
= PAD(minsize
);
49 D1(printk(KERN_DEBUG
"jffs2_reserve_space(): Requested 0x%x bytes\n", minsize
));
50 mutex_lock(&c
->alloc_sem
);
52 D1(printk(KERN_DEBUG
"jffs2_reserve_space(): alloc sem got\n"));
54 spin_lock(&c
->erase_completion_lock
);
56 /* this needs a little more thought (true <tglx> :)) */
57 while(ret
== -EAGAIN
) {
58 while(c
->nr_free_blocks
+ c
->nr_erasing_blocks
< blocksneeded
) {
59 uint32_t dirty
, avail
;
61 /* calculate real dirty size
62 * dirty_size contains blocks on erase_pending_list
63 * those blocks are counted in c->nr_erasing_blocks.
64 * If one block is actually erased, it is not longer counted as dirty_space
65 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
66 * with c->nr_erasing_blocks * c->sector_size again.
67 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
68 * This helps us to force gc and pick eventually a clean block to spread the load.
69 * We add unchecked_size here, as we hopefully will find some space to use.
70 * This will affect the sum only once, as gc first finishes checking
73 dirty
= c
->dirty_size
+ c
->erasing_size
- c
->nr_erasing_blocks
* c
->sector_size
+ c
->unchecked_size
;
74 if (dirty
< c
->nospc_dirty_size
) {
75 if (prio
== ALLOC_DELETION
&& c
->nr_free_blocks
+ c
->nr_erasing_blocks
>= c
->resv_blocks_deletion
) {
76 D1(printk(KERN_NOTICE
"jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n"));
79 D1(printk(KERN_DEBUG
"dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
80 dirty
, c
->unchecked_size
, c
->sector_size
));
82 spin_unlock(&c
->erase_completion_lock
);
83 mutex_unlock(&c
->alloc_sem
);
87 /* Calc possibly available space. Possibly available means that we
88 * don't know, if unchecked size contains obsoleted nodes, which could give us some
89 * more usable space. This will affect the sum only once, as gc first finishes checking
91 + Return -ENOSPC, if the maximum possibly available space is less or equal than
92 * blocksneeded * sector_size.
93 * This blocks endless gc looping on a filesystem, which is nearly full, even if
94 * the check above passes.
96 avail
= c
->free_size
+ c
->dirty_size
+ c
->erasing_size
+ c
->unchecked_size
;
97 if ( (avail
/ c
->sector_size
) <= blocksneeded
) {
98 if (prio
== ALLOC_DELETION
&& c
->nr_free_blocks
+ c
->nr_erasing_blocks
>= c
->resv_blocks_deletion
) {
99 D1(printk(KERN_NOTICE
"jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n"));
103 D1(printk(KERN_DEBUG
"max. available size 0x%08x < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
104 avail
, blocksneeded
* c
->sector_size
));
105 spin_unlock(&c
->erase_completion_lock
);
106 mutex_unlock(&c
->alloc_sem
);
110 mutex_unlock(&c
->alloc_sem
);
112 D1(printk(KERN_DEBUG
"Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
113 c
->nr_free_blocks
, c
->nr_erasing_blocks
, c
->free_size
, c
->dirty_size
, c
->wasted_size
, c
->used_size
, c
->erasing_size
, c
->bad_size
,
114 c
->free_size
+ c
->dirty_size
+ c
->wasted_size
+ c
->used_size
+ c
->erasing_size
+ c
->bad_size
, c
->flash_size
));
115 spin_unlock(&c
->erase_completion_lock
);
117 ret
= jffs2_garbage_collect_pass(c
);
119 if (ret
== -EAGAIN
) {
120 spin_lock(&c
->erase_completion_lock
);
121 if (c
->nr_erasing_blocks
&&
122 list_empty(&c
->erase_pending_list
) &&
123 list_empty(&c
->erase_complete_list
)) {
124 DECLARE_WAITQUEUE(wait
, current
);
125 set_current_state(TASK_UNINTERRUPTIBLE
);
126 add_wait_queue(&c
->erase_wait
, &wait
);
127 D1(printk(KERN_DEBUG
"%s waiting for erase to complete\n", __func__
));
128 spin_unlock(&c
->erase_completion_lock
);
131 remove_wait_queue(&c
->erase_wait
, &wait
);
133 spin_unlock(&c
->erase_completion_lock
);
139 if (signal_pending(current
))
142 mutex_lock(&c
->alloc_sem
);
143 spin_lock(&c
->erase_completion_lock
);
146 ret
= jffs2_do_reserve_space(c
, minsize
, len
, sumsize
);
148 D1(printk(KERN_DEBUG
"jffs2_reserve_space: ret is %d\n", ret
));
151 spin_unlock(&c
->erase_completion_lock
);
153 ret
= jffs2_prealloc_raw_node_refs(c
, c
->nextblock
, 1);
155 mutex_unlock(&c
->alloc_sem
);
159 int jffs2_reserve_space_gc(struct jffs2_sb_info
*c
, uint32_t minsize
,
160 uint32_t *len
, uint32_t sumsize
)
163 minsize
= PAD(minsize
);
165 D1(printk(KERN_DEBUG
"jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize
));
168 spin_lock(&c
->erase_completion_lock
);
169 ret
= jffs2_do_reserve_space(c
, minsize
, len
, sumsize
);
171 D1(printk(KERN_DEBUG
"jffs2_reserve_space_gc: looping, ret is %d\n", ret
));
173 spin_unlock(&c
->erase_completion_lock
);
181 ret
= jffs2_prealloc_raw_node_refs(c
, c
->nextblock
, 1);
187 /* Classify nextblock (clean, dirty of verydirty) and force to select an other one */
189 static void jffs2_close_nextblock(struct jffs2_sb_info
*c
, struct jffs2_eraseblock
*jeb
)
192 if (c
->nextblock
== NULL
) {
193 D1(printk(KERN_DEBUG
"jffs2_close_nextblock: Erase block at 0x%08x has already been placed in a list\n",
197 /* Check, if we have a dirty block now, or if it was dirty already */
198 if (ISDIRTY (jeb
->wasted_size
+ jeb
->dirty_size
)) {
199 c
->dirty_size
+= jeb
->wasted_size
;
200 c
->wasted_size
-= jeb
->wasted_size
;
201 jeb
->dirty_size
+= jeb
->wasted_size
;
202 jeb
->wasted_size
= 0;
203 if (VERYDIRTY(c
, jeb
->dirty_size
)) {
204 D1(printk(KERN_DEBUG
"Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
205 jeb
->offset
, jeb
->free_size
, jeb
->dirty_size
, jeb
->used_size
));
206 list_add_tail(&jeb
->list
, &c
->very_dirty_list
);
208 D1(printk(KERN_DEBUG
"Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
209 jeb
->offset
, jeb
->free_size
, jeb
->dirty_size
, jeb
->used_size
));
210 list_add_tail(&jeb
->list
, &c
->dirty_list
);
213 D1(printk(KERN_DEBUG
"Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
214 jeb
->offset
, jeb
->free_size
, jeb
->dirty_size
, jeb
->used_size
));
215 list_add_tail(&jeb
->list
, &c
->clean_list
);
221 /* Select a new jeb for nextblock */
223 static int jffs2_find_nextblock(struct jffs2_sb_info
*c
)
225 struct list_head
*next
;
227 /* Take the next block off the 'free' list */
229 if (list_empty(&c
->free_list
)) {
231 if (!c
->nr_erasing_blocks
&&
232 !list_empty(&c
->erasable_list
)) {
233 struct jffs2_eraseblock
*ejeb
;
235 ejeb
= list_entry(c
->erasable_list
.next
, struct jffs2_eraseblock
, list
);
236 list_move_tail(&ejeb
->list
, &c
->erase_pending_list
);
237 c
->nr_erasing_blocks
++;
238 jffs2_garbage_collect_trigger(c
);
239 D1(printk(KERN_DEBUG
"jffs2_find_nextblock: Triggering erase of erasable block at 0x%08x\n",
243 if (!c
->nr_erasing_blocks
&&
244 !list_empty(&c
->erasable_pending_wbuf_list
)) {
245 D1(printk(KERN_DEBUG
"jffs2_find_nextblock: Flushing write buffer\n"));
246 /* c->nextblock is NULL, no update to c->nextblock allowed */
247 spin_unlock(&c
->erase_completion_lock
);
248 jffs2_flush_wbuf_pad(c
);
249 spin_lock(&c
->erase_completion_lock
);
250 /* Have another go. It'll be on the erasable_list now */
254 if (!c
->nr_erasing_blocks
) {
255 /* Ouch. We're in GC, or we wouldn't have got here.
256 And there's no space left. At all. */
257 printk(KERN_CRIT
"Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
258 c
->nr_erasing_blocks
, c
->nr_free_blocks
, list_empty(&c
->erasable_list
)?"yes":"no",
259 list_empty(&c
->erasing_list
)?"yes":"no", list_empty(&c
->erase_pending_list
)?"yes":"no");
263 spin_unlock(&c
->erase_completion_lock
);
264 /* Don't wait for it; just erase one right now */
265 jffs2_erase_pending_blocks(c
, 1);
266 spin_lock(&c
->erase_completion_lock
);
268 /* An erase may have failed, decreasing the
269 amount of free space available. So we must
270 restart from the beginning */
274 next
= c
->free_list
.next
;
276 c
->nextblock
= list_entry(next
, struct jffs2_eraseblock
, list
);
279 jffs2_sum_reset_collected(c
->summary
); /* reset collected summary */
281 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
282 /* adjust write buffer offset, else we get a non contiguous write bug */
283 if (!(c
->wbuf_ofs
% c
->sector_size
) && !c
->wbuf_len
)
284 c
->wbuf_ofs
= 0xffffffff;
287 D1(printk(KERN_DEBUG
"jffs2_find_nextblock(): new nextblock = 0x%08x\n", c
->nextblock
->offset
));
292 /* Called with alloc sem _and_ erase_completion_lock */
293 static int jffs2_do_reserve_space(struct jffs2_sb_info
*c
, uint32_t minsize
,
294 uint32_t *len
, uint32_t sumsize
)
296 struct jffs2_eraseblock
*jeb
= c
->nextblock
;
297 uint32_t reserved_size
; /* for summary information at the end of the jeb */
303 if (jffs2_sum_active() && (sumsize
!= JFFS2_SUMMARY_NOSUM_SIZE
)) {
304 /* NOSUM_SIZE means not to generate summary */
307 reserved_size
= PAD(sumsize
+ c
->summary
->sum_size
+ JFFS2_SUMMARY_FRAME_SIZE
);
308 dbg_summary("minsize=%d , jeb->free=%d ,"
309 "summary->size=%d , sumsize=%d\n",
310 minsize
, jeb
->free_size
,
311 c
->summary
->sum_size
, sumsize
);
314 /* Is there enough space for writing out the current node, or we have to
315 write out summary information now, close this jeb and select new nextblock? */
316 if (jeb
&& (PAD(minsize
) + PAD(c
->summary
->sum_size
+ sumsize
+
317 JFFS2_SUMMARY_FRAME_SIZE
) > jeb
->free_size
)) {
319 /* Has summary been disabled for this jeb? */
320 if (jffs2_sum_is_disabled(c
->summary
)) {
321 sumsize
= JFFS2_SUMMARY_NOSUM_SIZE
;
325 /* Writing out the collected summary information */
326 dbg_summary("generating summary for 0x%08x.\n", jeb
->offset
);
327 ret
= jffs2_sum_write_sumnode(c
);
332 if (jffs2_sum_is_disabled(c
->summary
)) {
333 /* jffs2_write_sumnode() couldn't write out the summary information
334 diabling summary for this jeb and free the collected information
336 sumsize
= JFFS2_SUMMARY_NOSUM_SIZE
;
340 jffs2_close_nextblock(c
, jeb
);
342 /* keep always valid value in reserved_size */
343 reserved_size
= PAD(sumsize
+ c
->summary
->sum_size
+ JFFS2_SUMMARY_FRAME_SIZE
);
346 if (jeb
&& minsize
> jeb
->free_size
) {
349 /* Skip the end of this block and file it as having some dirty space */
350 /* If there's a pending write to it, flush now */
352 if (jffs2_wbuf_dirty(c
)) {
353 spin_unlock(&c
->erase_completion_lock
);
354 D1(printk(KERN_DEBUG
"jffs2_do_reserve_space: Flushing write buffer\n"));
355 jffs2_flush_wbuf_pad(c
);
356 spin_lock(&c
->erase_completion_lock
);
361 spin_unlock(&c
->erase_completion_lock
);
363 ret
= jffs2_prealloc_raw_node_refs(c
, jeb
, 1);
366 /* Just lock it again and continue. Nothing much can change because
367 we hold c->alloc_sem anyway. In fact, it's not entirely clear why
368 we hold c->erase_completion_lock in the majority of this function...
369 but that's a question for another (more caffeine-rich) day. */
370 spin_lock(&c
->erase_completion_lock
);
372 waste
= jeb
->free_size
;
373 jffs2_link_node_ref(c
, jeb
,
374 (jeb
->offset
+ c
->sector_size
- waste
) | REF_OBSOLETE
,
376 /* FIXME: that made it count as dirty. Convert to wasted */
377 jeb
->dirty_size
-= waste
;
378 c
->dirty_size
-= waste
;
379 jeb
->wasted_size
+= waste
;
380 c
->wasted_size
+= waste
;
382 jffs2_close_nextblock(c
, jeb
);
389 ret
= jffs2_find_nextblock(c
);
395 if (jeb
->free_size
!= c
->sector_size
- c
->cleanmarker_size
) {
396 printk(KERN_WARNING
"Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb
->offset
, jeb
->free_size
);
400 /* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
402 *len
= jeb
->free_size
- reserved_size
;
404 if (c
->cleanmarker_size
&& jeb
->used_size
== c
->cleanmarker_size
&&
405 !jeb
->first_node
->next_in_ino
) {
406 /* Only node in it beforehand was a CLEANMARKER node (we think).
407 So mark it obsolete now that there's going to be another node
408 in the block. This will reduce used_size to zero but We've
409 already set c->nextblock so that jffs2_mark_node_obsolete()
410 won't try to refile it to the dirty_list.
412 spin_unlock(&c
->erase_completion_lock
);
413 jffs2_mark_node_obsolete(c
, jeb
->first_node
);
414 spin_lock(&c
->erase_completion_lock
);
417 D1(printk(KERN_DEBUG
"jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n",
418 *len
, jeb
->offset
+ (c
->sector_size
- jeb
->free_size
)));
423 * jffs2_add_physical_node_ref - add a physical node reference to the list
424 * @c: superblock info
425 * @new: new node reference to add
426 * @len: length of this physical node
428 * Should only be used to report nodes for which space has been allocated
429 * by jffs2_reserve_space.
431 * Must be called with the alloc_sem held.
434 struct jffs2_raw_node_ref
*jffs2_add_physical_node_ref(struct jffs2_sb_info
*c
,
435 uint32_t ofs
, uint32_t len
,
436 struct jffs2_inode_cache
*ic
)
438 struct jffs2_eraseblock
*jeb
;
439 struct jffs2_raw_node_ref
*new;
441 jeb
= &c
->blocks
[ofs
/ c
->sector_size
];
443 D1(printk(KERN_DEBUG
"jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n",
444 ofs
& ~3, ofs
& 3, len
));
446 /* Allow non-obsolete nodes only to be added at the end of c->nextblock,
447 if c->nextblock is set. Note that wbuf.c will file obsolete nodes
448 even after refiling c->nextblock */
449 if ((c
->nextblock
|| ((ofs
& 3) != REF_OBSOLETE
))
450 && (jeb
!= c
->nextblock
|| (ofs
& ~3) != jeb
->offset
+ (c
->sector_size
- jeb
->free_size
))) {
451 printk(KERN_WARNING
"argh. node added in wrong place at 0x%08x(%d)\n", ofs
& ~3, ofs
& 3);
453 printk(KERN_WARNING
"nextblock 0x%08x", c
->nextblock
->offset
);
455 printk(KERN_WARNING
"No nextblock");
456 printk(", expected at %08x\n", jeb
->offset
+ (c
->sector_size
- jeb
->free_size
));
457 return ERR_PTR(-EINVAL
);
460 spin_lock(&c
->erase_completion_lock
);
462 new = jffs2_link_node_ref(c
, jeb
, ofs
, len
, ic
);
464 if (!jeb
->free_size
&& !jeb
->dirty_size
&& !ISDIRTY(jeb
->wasted_size
)) {
465 /* If it lives on the dirty_list, jffs2_reserve_space will put it there */
466 D1(printk(KERN_DEBUG
"Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
467 jeb
->offset
, jeb
->free_size
, jeb
->dirty_size
, jeb
->used_size
));
468 if (jffs2_wbuf_dirty(c
)) {
469 /* Flush the last write in the block if it's outstanding */
470 spin_unlock(&c
->erase_completion_lock
);
471 jffs2_flush_wbuf_pad(c
);
472 spin_lock(&c
->erase_completion_lock
);
475 list_add_tail(&jeb
->list
, &c
->clean_list
);
478 jffs2_dbg_acct_sanity_check_nolock(c
,jeb
);
479 jffs2_dbg_acct_paranoia_check_nolock(c
, jeb
);
481 spin_unlock(&c
->erase_completion_lock
);
487 void jffs2_complete_reservation(struct jffs2_sb_info
*c
)
489 D1(printk(KERN_DEBUG
"jffs2_complete_reservation()\n"));
490 spin_lock(&c
->erase_completion_lock
);
491 jffs2_garbage_collect_trigger(c
);
492 spin_unlock(&c
->erase_completion_lock
);
493 mutex_unlock(&c
->alloc_sem
);
496 static inline int on_list(struct list_head
*obj
, struct list_head
*head
)
498 struct list_head
*this;
500 list_for_each(this, head
) {
502 D1(printk("%p is on list at %p\n", obj
, head
));
510 void jffs2_mark_node_obsolete(struct jffs2_sb_info
*c
, struct jffs2_raw_node_ref
*ref
)
512 struct jffs2_eraseblock
*jeb
;
514 struct jffs2_unknown_node n
;
520 printk(KERN_NOTICE
"EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
523 if (ref_obsolete(ref
)) {
524 D1(printk(KERN_DEBUG
"jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref
)));
527 blocknr
= ref
->flash_offset
/ c
->sector_size
;
528 if (blocknr
>= c
->nr_blocks
) {
529 printk(KERN_NOTICE
"raw node at 0x%08x is off the end of device!\n", ref
->flash_offset
);
532 jeb
= &c
->blocks
[blocknr
];
534 if (jffs2_can_mark_obsolete(c
) && !jffs2_is_readonly(c
) &&
535 !(c
->flags
& (JFFS2_SB_FLAG_SCANNING
| JFFS2_SB_FLAG_BUILDING
))) {
536 /* Hm. This may confuse static lock analysis. If any of the above
537 three conditions is false, we're going to return from this
538 function without actually obliterating any nodes or freeing
539 any jffs2_raw_node_refs. So we don't need to stop erases from
540 happening, or protect against people holding an obsolete
541 jffs2_raw_node_ref without the erase_completion_lock. */
542 mutex_lock(&c
->erase_free_sem
);
545 spin_lock(&c
->erase_completion_lock
);
547 freed_len
= ref_totlen(c
, jeb
, ref
);
549 if (ref_flags(ref
) == REF_UNCHECKED
) {
550 D1(if (unlikely(jeb
->unchecked_size
< freed_len
)) {
551 printk(KERN_NOTICE
"raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
552 freed_len
, blocknr
, ref
->flash_offset
, jeb
->used_size
);
555 D1(printk(KERN_DEBUG
"Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref
), freed_len
));
556 jeb
->unchecked_size
-= freed_len
;
557 c
->unchecked_size
-= freed_len
;
559 D1(if (unlikely(jeb
->used_size
< freed_len
)) {
560 printk(KERN_NOTICE
"raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
561 freed_len
, blocknr
, ref
->flash_offset
, jeb
->used_size
);
564 D1(printk(KERN_DEBUG
"Obsoleting node at 0x%08x of len %#x: ", ref_offset(ref
), freed_len
));
565 jeb
->used_size
-= freed_len
;
566 c
->used_size
-= freed_len
;
569 // Take care, that wasted size is taken into concern
570 if ((jeb
->dirty_size
|| ISDIRTY(jeb
->wasted_size
+ freed_len
)) && jeb
!= c
->nextblock
) {
571 D1(printk("Dirtying\n"));
572 addedsize
= freed_len
;
573 jeb
->dirty_size
+= freed_len
;
574 c
->dirty_size
+= freed_len
;
576 /* Convert wasted space to dirty, if not a bad block */
577 if (jeb
->wasted_size
) {
578 if (on_list(&jeb
->list
, &c
->bad_used_list
)) {
579 D1(printk(KERN_DEBUG
"Leaving block at %08x on the bad_used_list\n",
581 addedsize
= 0; /* To fool the refiling code later */
583 D1(printk(KERN_DEBUG
"Converting %d bytes of wasted space to dirty in block at %08x\n",
584 jeb
->wasted_size
, jeb
->offset
));
585 addedsize
+= jeb
->wasted_size
;
586 jeb
->dirty_size
+= jeb
->wasted_size
;
587 c
->dirty_size
+= jeb
->wasted_size
;
588 c
->wasted_size
-= jeb
->wasted_size
;
589 jeb
->wasted_size
= 0;
593 D1(printk("Wasting\n"));
595 jeb
->wasted_size
+= freed_len
;
596 c
->wasted_size
+= freed_len
;
598 ref
->flash_offset
= ref_offset(ref
) | REF_OBSOLETE
;
600 jffs2_dbg_acct_sanity_check_nolock(c
, jeb
);
601 jffs2_dbg_acct_paranoia_check_nolock(c
, jeb
);
603 if (c
->flags
& JFFS2_SB_FLAG_SCANNING
) {
604 /* Flash scanning is in progress. Don't muck about with the block
605 lists because they're not ready yet, and don't actually
606 obliterate nodes that look obsolete. If they weren't
607 marked obsolete on the flash at the time they _became_
608 obsolete, there was probably a reason for that. */
609 spin_unlock(&c
->erase_completion_lock
);
610 /* We didn't lock the erase_free_sem */
614 if (jeb
== c
->nextblock
) {
615 D2(printk(KERN_DEBUG
"Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb
->offset
));
616 } else if (!jeb
->used_size
&& !jeb
->unchecked_size
) {
617 if (jeb
== c
->gcblock
) {
618 D1(printk(KERN_DEBUG
"gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb
->offset
));
621 D1(printk(KERN_DEBUG
"Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb
->offset
));
622 list_del(&jeb
->list
);
624 if (jffs2_wbuf_dirty(c
)) {
625 D1(printk(KERN_DEBUG
"...and adding to erasable_pending_wbuf_list\n"));
626 list_add_tail(&jeb
->list
, &c
->erasable_pending_wbuf_list
);
629 /* Most of the time, we just erase it immediately. Otherwise we
630 spend ages scanning it on mount, etc. */
631 D1(printk(KERN_DEBUG
"...and adding to erase_pending_list\n"));
632 list_add_tail(&jeb
->list
, &c
->erase_pending_list
);
633 c
->nr_erasing_blocks
++;
634 jffs2_garbage_collect_trigger(c
);
636 /* Sometimes, however, we leave it elsewhere so it doesn't get
637 immediately reused, and we spread the load a bit. */
638 D1(printk(KERN_DEBUG
"...and adding to erasable_list\n"));
639 list_add_tail(&jeb
->list
, &c
->erasable_list
);
642 D1(printk(KERN_DEBUG
"Done OK\n"));
643 } else if (jeb
== c
->gcblock
) {
644 D2(printk(KERN_DEBUG
"Not moving gcblock 0x%08x to dirty_list\n", jeb
->offset
));
645 } else if (ISDIRTY(jeb
->dirty_size
) && !ISDIRTY(jeb
->dirty_size
- addedsize
)) {
646 D1(printk(KERN_DEBUG
"Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb
->offset
));
647 list_del(&jeb
->list
);
648 D1(printk(KERN_DEBUG
"...and adding to dirty_list\n"));
649 list_add_tail(&jeb
->list
, &c
->dirty_list
);
650 } else if (VERYDIRTY(c
, jeb
->dirty_size
) &&
651 !VERYDIRTY(c
, jeb
->dirty_size
- addedsize
)) {
652 D1(printk(KERN_DEBUG
"Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb
->offset
));
653 list_del(&jeb
->list
);
654 D1(printk(KERN_DEBUG
"...and adding to very_dirty_list\n"));
655 list_add_tail(&jeb
->list
, &c
->very_dirty_list
);
657 D1(printk(KERN_DEBUG
"Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
658 jeb
->offset
, jeb
->free_size
, jeb
->dirty_size
, jeb
->used_size
));
661 spin_unlock(&c
->erase_completion_lock
);
663 if (!jffs2_can_mark_obsolete(c
) || jffs2_is_readonly(c
) ||
664 (c
->flags
& JFFS2_SB_FLAG_BUILDING
)) {
665 /* We didn't lock the erase_free_sem */
669 /* The erase_free_sem is locked, and has been since before we marked the node obsolete
670 and potentially put its eraseblock onto the erase_pending_list. Thus, we know that
671 the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
672 by jffs2_free_jeb_node_refs() in erase.c. Which is nice. */
674 D1(printk(KERN_DEBUG
"obliterating obsoleted node at 0x%08x\n", ref_offset(ref
)));
675 ret
= jffs2_flash_read(c
, ref_offset(ref
), sizeof(n
), &retlen
, (char *)&n
);
677 printk(KERN_WARNING
"Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref
), ret
);
680 if (retlen
!= sizeof(n
)) {
681 printk(KERN_WARNING
"Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref
), retlen
);
684 if (PAD(je32_to_cpu(n
.totlen
)) != PAD(freed_len
)) {
685 printk(KERN_WARNING
"Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n
.totlen
), freed_len
);
688 if (!(je16_to_cpu(n
.nodetype
) & JFFS2_NODE_ACCURATE
)) {
689 D1(printk(KERN_DEBUG
"Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref
), je16_to_cpu(n
.nodetype
)));
692 /* XXX FIXME: This is ugly now */
693 n
.nodetype
= cpu_to_je16(je16_to_cpu(n
.nodetype
) & ~JFFS2_NODE_ACCURATE
);
694 ret
= jffs2_flash_write(c
, ref_offset(ref
), sizeof(n
), &retlen
, (char *)&n
);
696 printk(KERN_WARNING
"Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref
), ret
);
699 if (retlen
!= sizeof(n
)) {
700 printk(KERN_WARNING
"Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref
), retlen
);
704 /* Nodes which have been marked obsolete no longer need to be
705 associated with any inode. Remove them from the per-inode list.
707 Note we can't do this for NAND at the moment because we need
708 obsolete dirent nodes to stay on the lists, because of the
709 horridness in jffs2_garbage_collect_deletion_dirent(). Also
710 because we delete the inocache, and on NAND we need that to
711 stay around until all the nodes are actually erased, in order
712 to stop us from giving the same inode number to another newly
714 if (ref
->next_in_ino
) {
715 struct jffs2_inode_cache
*ic
;
716 struct jffs2_raw_node_ref
**p
;
718 spin_lock(&c
->erase_completion_lock
);
720 ic
= jffs2_raw_ref_to_ic(ref
);
721 for (p
= &ic
->nodes
; (*p
) != ref
; p
= &((*p
)->next_in_ino
))
724 *p
= ref
->next_in_ino
;
725 ref
->next_in_ino
= NULL
;
728 #ifdef CONFIG_JFFS2_FS_XATTR
729 case RAWNODE_CLASS_XATTR_DATUM
:
730 jffs2_release_xattr_datum(c
, (struct jffs2_xattr_datum
*)ic
);
732 case RAWNODE_CLASS_XATTR_REF
:
733 jffs2_release_xattr_ref(c
, (struct jffs2_xattr_ref
*)ic
);
737 if (ic
->nodes
== (void *)ic
&& ic
->pino_nlink
== 0)
738 jffs2_del_ino_cache(c
, ic
);
741 spin_unlock(&c
->erase_completion_lock
);
745 mutex_unlock(&c
->erase_free_sem
);
748 int jffs2_thread_should_wake(struct jffs2_sb_info
*c
)
752 int nr_very_dirty
= 0;
753 struct jffs2_eraseblock
*jeb
;
755 if (!list_empty(&c
->erase_complete_list
) ||
756 !list_empty(&c
->erase_pending_list
))
759 if (c
->unchecked_size
) {
760 D1(printk(KERN_DEBUG
"jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n",
761 c
->unchecked_size
, c
->checked_ino
));
765 /* dirty_size contains blocks on erase_pending_list
766 * those blocks are counted in c->nr_erasing_blocks.
767 * If one block is actually erased, it is not longer counted as dirty_space
768 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
769 * with c->nr_erasing_blocks * c->sector_size again.
770 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
771 * This helps us to force gc and pick eventually a clean block to spread the load.
773 dirty
= c
->dirty_size
+ c
->erasing_size
- c
->nr_erasing_blocks
* c
->sector_size
;
775 if (c
->nr_free_blocks
+ c
->nr_erasing_blocks
< c
->resv_blocks_gctrigger
&&
776 (dirty
> c
->nospc_dirty_size
))
779 list_for_each_entry(jeb
, &c
->very_dirty_list
, list
) {
781 if (nr_very_dirty
== c
->vdirty_blocks_gctrigger
) {
783 /* In debug mode, actually go through and count them all */
789 D1(printk(KERN_DEBUG
"jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x, vdirty_blocks %d: %s\n",
790 c
->nr_free_blocks
, c
->nr_erasing_blocks
, c
->dirty_size
, nr_very_dirty
, ret
?"yes":"no"));