Linux 3.2.58
[linux/fpc-iii.git] / fs / udf / super.c
blobf66439eb9b39b701539448b72ba98cdce89c514b
1 /*
2 * super.c
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
27 * HISTORY
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
41 #include "udfdecl.h"
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/buffer_head.h>
52 #include <linux/vfs.h>
53 #include <linux/vmalloc.h>
54 #include <linux/errno.h>
55 #include <linux/mount.h>
56 #include <linux/seq_file.h>
57 #include <linux/bitmap.h>
58 #include <linux/crc-itu-t.h>
59 #include <linux/log2.h>
60 #include <asm/byteorder.h>
62 #include "udf_sb.h"
63 #include "udf_i.h"
65 #include <linux/init.h>
66 #include <asm/uaccess.h>
68 #define VDS_POS_PRIMARY_VOL_DESC 0
69 #define VDS_POS_UNALLOC_SPACE_DESC 1
70 #define VDS_POS_LOGICAL_VOL_DESC 2
71 #define VDS_POS_PARTITION_DESC 3
72 #define VDS_POS_IMP_USE_VOL_DESC 4
73 #define VDS_POS_VOL_DESC_PTR 5
74 #define VDS_POS_TERMINATING_DESC 6
75 #define VDS_POS_LENGTH 7
77 #define UDF_DEFAULT_BLOCKSIZE 2048
79 /* These are the "meat" - everything else is stuffing */
80 static int udf_fill_super(struct super_block *, void *, int);
81 static void udf_put_super(struct super_block *);
82 static int udf_sync_fs(struct super_block *, int);
83 static int udf_remount_fs(struct super_block *, int *, char *);
84 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
85 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
86 struct kernel_lb_addr *);
87 static void udf_load_fileset(struct super_block *, struct buffer_head *,
88 struct kernel_lb_addr *);
89 static void udf_open_lvid(struct super_block *);
90 static void udf_close_lvid(struct super_block *);
91 static unsigned int udf_count_free(struct super_block *);
92 static int udf_statfs(struct dentry *, struct kstatfs *);
93 static int udf_show_options(struct seq_file *, struct vfsmount *);
95 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
97 struct logicalVolIntegrityDesc *lvid =
98 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
99 __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
100 __u32 offset = number_of_partitions * 2 *
101 sizeof(uint32_t)/sizeof(uint8_t);
102 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
105 /* UDF filesystem type */
106 static struct dentry *udf_mount(struct file_system_type *fs_type,
107 int flags, const char *dev_name, void *data)
109 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
112 static struct file_system_type udf_fstype = {
113 .owner = THIS_MODULE,
114 .name = "udf",
115 .mount = udf_mount,
116 .kill_sb = kill_block_super,
117 .fs_flags = FS_REQUIRES_DEV,
120 static struct kmem_cache *udf_inode_cachep;
122 static struct inode *udf_alloc_inode(struct super_block *sb)
124 struct udf_inode_info *ei;
125 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
126 if (!ei)
127 return NULL;
129 ei->i_unique = 0;
130 ei->i_lenExtents = 0;
131 ei->i_next_alloc_block = 0;
132 ei->i_next_alloc_goal = 0;
133 ei->i_strat4096 = 0;
134 init_rwsem(&ei->i_data_sem);
136 return &ei->vfs_inode;
139 static void udf_i_callback(struct rcu_head *head)
141 struct inode *inode = container_of(head, struct inode, i_rcu);
142 INIT_LIST_HEAD(&inode->i_dentry);
143 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
146 static void udf_destroy_inode(struct inode *inode)
148 call_rcu(&inode->i_rcu, udf_i_callback);
151 static void init_once(void *foo)
153 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
155 ei->i_ext.i_data = NULL;
156 inode_init_once(&ei->vfs_inode);
159 static int init_inodecache(void)
161 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
162 sizeof(struct udf_inode_info),
163 0, (SLAB_RECLAIM_ACCOUNT |
164 SLAB_MEM_SPREAD),
165 init_once);
166 if (!udf_inode_cachep)
167 return -ENOMEM;
168 return 0;
171 static void destroy_inodecache(void)
173 kmem_cache_destroy(udf_inode_cachep);
176 /* Superblock operations */
177 static const struct super_operations udf_sb_ops = {
178 .alloc_inode = udf_alloc_inode,
179 .destroy_inode = udf_destroy_inode,
180 .write_inode = udf_write_inode,
181 .evict_inode = udf_evict_inode,
182 .put_super = udf_put_super,
183 .sync_fs = udf_sync_fs,
184 .statfs = udf_statfs,
185 .remount_fs = udf_remount_fs,
186 .show_options = udf_show_options,
189 struct udf_options {
190 unsigned char novrs;
191 unsigned int blocksize;
192 unsigned int session;
193 unsigned int lastblock;
194 unsigned int anchor;
195 unsigned int volume;
196 unsigned short partition;
197 unsigned int fileset;
198 unsigned int rootdir;
199 unsigned int flags;
200 mode_t umask;
201 gid_t gid;
202 uid_t uid;
203 mode_t fmode;
204 mode_t dmode;
205 struct nls_table *nls_map;
208 static int __init init_udf_fs(void)
210 int err;
212 err = init_inodecache();
213 if (err)
214 goto out1;
215 err = register_filesystem(&udf_fstype);
216 if (err)
217 goto out;
219 return 0;
221 out:
222 destroy_inodecache();
224 out1:
225 return err;
228 static void __exit exit_udf_fs(void)
230 unregister_filesystem(&udf_fstype);
231 destroy_inodecache();
234 module_init(init_udf_fs)
235 module_exit(exit_udf_fs)
237 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
239 struct udf_sb_info *sbi = UDF_SB(sb);
241 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
242 GFP_KERNEL);
243 if (!sbi->s_partmaps) {
244 udf_err(sb, "Unable to allocate space for %d partition maps\n",
245 count);
246 sbi->s_partitions = 0;
247 return -ENOMEM;
250 sbi->s_partitions = count;
251 return 0;
254 static int udf_show_options(struct seq_file *seq, struct vfsmount *mnt)
256 struct super_block *sb = mnt->mnt_sb;
257 struct udf_sb_info *sbi = UDF_SB(sb);
259 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
260 seq_puts(seq, ",nostrict");
261 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
262 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
263 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
264 seq_puts(seq, ",unhide");
265 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
266 seq_puts(seq, ",undelete");
267 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
268 seq_puts(seq, ",noadinicb");
269 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
270 seq_puts(seq, ",shortad");
271 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
272 seq_puts(seq, ",uid=forget");
273 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
274 seq_puts(seq, ",uid=ignore");
275 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
276 seq_puts(seq, ",gid=forget");
277 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
278 seq_puts(seq, ",gid=ignore");
279 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
280 seq_printf(seq, ",uid=%u", sbi->s_uid);
281 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
282 seq_printf(seq, ",gid=%u", sbi->s_gid);
283 if (sbi->s_umask != 0)
284 seq_printf(seq, ",umask=%o", sbi->s_umask);
285 if (sbi->s_fmode != UDF_INVALID_MODE)
286 seq_printf(seq, ",mode=%o", sbi->s_fmode);
287 if (sbi->s_dmode != UDF_INVALID_MODE)
288 seq_printf(seq, ",dmode=%o", sbi->s_dmode);
289 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
290 seq_printf(seq, ",session=%u", sbi->s_session);
291 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
292 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
293 if (sbi->s_anchor != 0)
294 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
296 * volume, partition, fileset and rootdir seem to be ignored
297 * currently
299 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
300 seq_puts(seq, ",utf8");
301 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
302 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
304 return 0;
308 * udf_parse_options
310 * PURPOSE
311 * Parse mount options.
313 * DESCRIPTION
314 * The following mount options are supported:
316 * gid= Set the default group.
317 * umask= Set the default umask.
318 * mode= Set the default file permissions.
319 * dmode= Set the default directory permissions.
320 * uid= Set the default user.
321 * bs= Set the block size.
322 * unhide Show otherwise hidden files.
323 * undelete Show deleted files in lists.
324 * adinicb Embed data in the inode (default)
325 * noadinicb Don't embed data in the inode
326 * shortad Use short ad's
327 * longad Use long ad's (default)
328 * nostrict Unset strict conformance
329 * iocharset= Set the NLS character set
331 * The remaining are for debugging and disaster recovery:
333 * novrs Skip volume sequence recognition
335 * The following expect a offset from 0.
337 * session= Set the CDROM session (default= last session)
338 * anchor= Override standard anchor location. (default= 256)
339 * volume= Override the VolumeDesc location. (unused)
340 * partition= Override the PartitionDesc location. (unused)
341 * lastblock= Set the last block of the filesystem/
343 * The following expect a offset from the partition root.
345 * fileset= Override the fileset block location. (unused)
346 * rootdir= Override the root directory location. (unused)
347 * WARNING: overriding the rootdir to a non-directory may
348 * yield highly unpredictable results.
350 * PRE-CONDITIONS
351 * options Pointer to mount options string.
352 * uopts Pointer to mount options variable.
354 * POST-CONDITIONS
355 * <return> 1 Mount options parsed okay.
356 * <return> 0 Error parsing mount options.
358 * HISTORY
359 * July 1, 1997 - Andrew E. Mileski
360 * Written, tested, and released.
363 enum {
364 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
365 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
366 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
367 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
368 Opt_rootdir, Opt_utf8, Opt_iocharset,
369 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
370 Opt_fmode, Opt_dmode
373 static const match_table_t tokens = {
374 {Opt_novrs, "novrs"},
375 {Opt_nostrict, "nostrict"},
376 {Opt_bs, "bs=%u"},
377 {Opt_unhide, "unhide"},
378 {Opt_undelete, "undelete"},
379 {Opt_noadinicb, "noadinicb"},
380 {Opt_adinicb, "adinicb"},
381 {Opt_shortad, "shortad"},
382 {Opt_longad, "longad"},
383 {Opt_uforget, "uid=forget"},
384 {Opt_uignore, "uid=ignore"},
385 {Opt_gforget, "gid=forget"},
386 {Opt_gignore, "gid=ignore"},
387 {Opt_gid, "gid=%u"},
388 {Opt_uid, "uid=%u"},
389 {Opt_umask, "umask=%o"},
390 {Opt_session, "session=%u"},
391 {Opt_lastblock, "lastblock=%u"},
392 {Opt_anchor, "anchor=%u"},
393 {Opt_volume, "volume=%u"},
394 {Opt_partition, "partition=%u"},
395 {Opt_fileset, "fileset=%u"},
396 {Opt_rootdir, "rootdir=%u"},
397 {Opt_utf8, "utf8"},
398 {Opt_iocharset, "iocharset=%s"},
399 {Opt_fmode, "mode=%o"},
400 {Opt_dmode, "dmode=%o"},
401 {Opt_err, NULL}
404 static int udf_parse_options(char *options, struct udf_options *uopt,
405 bool remount)
407 char *p;
408 int option;
410 uopt->novrs = 0;
411 uopt->partition = 0xFFFF;
412 uopt->session = 0xFFFFFFFF;
413 uopt->lastblock = 0;
414 uopt->anchor = 0;
415 uopt->volume = 0xFFFFFFFF;
416 uopt->rootdir = 0xFFFFFFFF;
417 uopt->fileset = 0xFFFFFFFF;
418 uopt->nls_map = NULL;
420 if (!options)
421 return 1;
423 while ((p = strsep(&options, ",")) != NULL) {
424 substring_t args[MAX_OPT_ARGS];
425 int token;
426 if (!*p)
427 continue;
429 token = match_token(p, tokens, args);
430 switch (token) {
431 case Opt_novrs:
432 uopt->novrs = 1;
433 break;
434 case Opt_bs:
435 if (match_int(&args[0], &option))
436 return 0;
437 uopt->blocksize = option;
438 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
439 break;
440 case Opt_unhide:
441 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
442 break;
443 case Opt_undelete:
444 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
445 break;
446 case Opt_noadinicb:
447 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
448 break;
449 case Opt_adinicb:
450 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
451 break;
452 case Opt_shortad:
453 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
454 break;
455 case Opt_longad:
456 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
457 break;
458 case Opt_gid:
459 if (match_int(args, &option))
460 return 0;
461 uopt->gid = option;
462 uopt->flags |= (1 << UDF_FLAG_GID_SET);
463 break;
464 case Opt_uid:
465 if (match_int(args, &option))
466 return 0;
467 uopt->uid = option;
468 uopt->flags |= (1 << UDF_FLAG_UID_SET);
469 break;
470 case Opt_umask:
471 if (match_octal(args, &option))
472 return 0;
473 uopt->umask = option;
474 break;
475 case Opt_nostrict:
476 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
477 break;
478 case Opt_session:
479 if (match_int(args, &option))
480 return 0;
481 uopt->session = option;
482 if (!remount)
483 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
484 break;
485 case Opt_lastblock:
486 if (match_int(args, &option))
487 return 0;
488 uopt->lastblock = option;
489 if (!remount)
490 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
491 break;
492 case Opt_anchor:
493 if (match_int(args, &option))
494 return 0;
495 uopt->anchor = option;
496 break;
497 case Opt_volume:
498 if (match_int(args, &option))
499 return 0;
500 uopt->volume = option;
501 break;
502 case Opt_partition:
503 if (match_int(args, &option))
504 return 0;
505 uopt->partition = option;
506 break;
507 case Opt_fileset:
508 if (match_int(args, &option))
509 return 0;
510 uopt->fileset = option;
511 break;
512 case Opt_rootdir:
513 if (match_int(args, &option))
514 return 0;
515 uopt->rootdir = option;
516 break;
517 case Opt_utf8:
518 uopt->flags |= (1 << UDF_FLAG_UTF8);
519 break;
520 #ifdef CONFIG_UDF_NLS
521 case Opt_iocharset:
522 uopt->nls_map = load_nls(args[0].from);
523 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
524 break;
525 #endif
526 case Opt_uignore:
527 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
528 break;
529 case Opt_uforget:
530 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
531 break;
532 case Opt_gignore:
533 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
534 break;
535 case Opt_gforget:
536 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
537 break;
538 case Opt_fmode:
539 if (match_octal(args, &option))
540 return 0;
541 uopt->fmode = option & 0777;
542 break;
543 case Opt_dmode:
544 if (match_octal(args, &option))
545 return 0;
546 uopt->dmode = option & 0777;
547 break;
548 default:
549 pr_err("bad mount option \"%s\" or missing value\n", p);
550 return 0;
553 return 1;
556 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
558 struct udf_options uopt;
559 struct udf_sb_info *sbi = UDF_SB(sb);
560 int error = 0;
562 uopt.flags = sbi->s_flags;
563 uopt.uid = sbi->s_uid;
564 uopt.gid = sbi->s_gid;
565 uopt.umask = sbi->s_umask;
566 uopt.fmode = sbi->s_fmode;
567 uopt.dmode = sbi->s_dmode;
569 if (!udf_parse_options(options, &uopt, true))
570 return -EINVAL;
572 write_lock(&sbi->s_cred_lock);
573 sbi->s_flags = uopt.flags;
574 sbi->s_uid = uopt.uid;
575 sbi->s_gid = uopt.gid;
576 sbi->s_umask = uopt.umask;
577 sbi->s_fmode = uopt.fmode;
578 sbi->s_dmode = uopt.dmode;
579 write_unlock(&sbi->s_cred_lock);
581 if (sbi->s_lvid_bh) {
582 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
583 if (write_rev > UDF_MAX_WRITE_VERSION)
584 *flags |= MS_RDONLY;
587 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
588 goto out_unlock;
590 if (*flags & MS_RDONLY)
591 udf_close_lvid(sb);
592 else
593 udf_open_lvid(sb);
595 out_unlock:
596 return error;
599 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
600 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
601 static loff_t udf_check_vsd(struct super_block *sb)
603 struct volStructDesc *vsd = NULL;
604 loff_t sector = 32768;
605 int sectorsize;
606 struct buffer_head *bh = NULL;
607 int nsr02 = 0;
608 int nsr03 = 0;
609 struct udf_sb_info *sbi;
611 sbi = UDF_SB(sb);
612 if (sb->s_blocksize < sizeof(struct volStructDesc))
613 sectorsize = sizeof(struct volStructDesc);
614 else
615 sectorsize = sb->s_blocksize;
617 sector += (sbi->s_session << sb->s_blocksize_bits);
619 udf_debug("Starting at sector %u (%ld byte sectors)\n",
620 (unsigned int)(sector >> sb->s_blocksize_bits),
621 sb->s_blocksize);
622 /* Process the sequence (if applicable) */
623 for (; !nsr02 && !nsr03; sector += sectorsize) {
624 /* Read a block */
625 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
626 if (!bh)
627 break;
629 /* Look for ISO descriptors */
630 vsd = (struct volStructDesc *)(bh->b_data +
631 (sector & (sb->s_blocksize - 1)));
633 if (vsd->stdIdent[0] == 0) {
634 brelse(bh);
635 break;
636 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
637 VSD_STD_ID_LEN)) {
638 switch (vsd->structType) {
639 case 0:
640 udf_debug("ISO9660 Boot Record found\n");
641 break;
642 case 1:
643 udf_debug("ISO9660 Primary Volume Descriptor found\n");
644 break;
645 case 2:
646 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
647 break;
648 case 3:
649 udf_debug("ISO9660 Volume Partition Descriptor found\n");
650 break;
651 case 255:
652 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
653 break;
654 default:
655 udf_debug("ISO9660 VRS (%u) found\n",
656 vsd->structType);
657 break;
659 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
660 VSD_STD_ID_LEN))
661 ; /* nothing */
662 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
663 VSD_STD_ID_LEN)) {
664 brelse(bh);
665 break;
666 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
667 VSD_STD_ID_LEN))
668 nsr02 = sector;
669 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
670 VSD_STD_ID_LEN))
671 nsr03 = sector;
672 brelse(bh);
675 if (nsr03)
676 return nsr03;
677 else if (nsr02)
678 return nsr02;
679 else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
680 return -1;
681 else
682 return 0;
685 static int udf_find_fileset(struct super_block *sb,
686 struct kernel_lb_addr *fileset,
687 struct kernel_lb_addr *root)
689 struct buffer_head *bh = NULL;
690 long lastblock;
691 uint16_t ident;
692 struct udf_sb_info *sbi;
694 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
695 fileset->partitionReferenceNum != 0xFFFF) {
696 bh = udf_read_ptagged(sb, fileset, 0, &ident);
698 if (!bh) {
699 return 1;
700 } else if (ident != TAG_IDENT_FSD) {
701 brelse(bh);
702 return 1;
707 sbi = UDF_SB(sb);
708 if (!bh) {
709 /* Search backwards through the partitions */
710 struct kernel_lb_addr newfileset;
712 /* --> cvg: FIXME - is it reasonable? */
713 return 1;
715 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
716 (newfileset.partitionReferenceNum != 0xFFFF &&
717 fileset->logicalBlockNum == 0xFFFFFFFF &&
718 fileset->partitionReferenceNum == 0xFFFF);
719 newfileset.partitionReferenceNum--) {
720 lastblock = sbi->s_partmaps
721 [newfileset.partitionReferenceNum]
722 .s_partition_len;
723 newfileset.logicalBlockNum = 0;
725 do {
726 bh = udf_read_ptagged(sb, &newfileset, 0,
727 &ident);
728 if (!bh) {
729 newfileset.logicalBlockNum++;
730 continue;
733 switch (ident) {
734 case TAG_IDENT_SBD:
736 struct spaceBitmapDesc *sp;
737 sp = (struct spaceBitmapDesc *)
738 bh->b_data;
739 newfileset.logicalBlockNum += 1 +
740 ((le32_to_cpu(sp->numOfBytes) +
741 sizeof(struct spaceBitmapDesc)
742 - 1) >> sb->s_blocksize_bits);
743 brelse(bh);
744 break;
746 case TAG_IDENT_FSD:
747 *fileset = newfileset;
748 break;
749 default:
750 newfileset.logicalBlockNum++;
751 brelse(bh);
752 bh = NULL;
753 break;
755 } while (newfileset.logicalBlockNum < lastblock &&
756 fileset->logicalBlockNum == 0xFFFFFFFF &&
757 fileset->partitionReferenceNum == 0xFFFF);
761 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
762 fileset->partitionReferenceNum != 0xFFFF) && bh) {
763 udf_debug("Fileset at block=%d, partition=%d\n",
764 fileset->logicalBlockNum,
765 fileset->partitionReferenceNum);
767 sbi->s_partition = fileset->partitionReferenceNum;
768 udf_load_fileset(sb, bh, root);
769 brelse(bh);
770 return 0;
772 return 1;
775 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
777 struct primaryVolDesc *pvoldesc;
778 struct ustr *instr, *outstr;
779 struct buffer_head *bh;
780 uint16_t ident;
781 int ret = 1;
783 instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
784 if (!instr)
785 return 1;
787 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
788 if (!outstr)
789 goto out1;
791 bh = udf_read_tagged(sb, block, block, &ident);
792 if (!bh)
793 goto out2;
795 BUG_ON(ident != TAG_IDENT_PVD);
797 pvoldesc = (struct primaryVolDesc *)bh->b_data;
799 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
800 pvoldesc->recordingDateAndTime)) {
801 #ifdef UDFFS_DEBUG
802 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
803 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
804 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
805 ts->minute, le16_to_cpu(ts->typeAndTimezone));
806 #endif
809 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
810 if (udf_CS0toUTF8(outstr, instr)) {
811 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
812 outstr->u_len > 31 ? 31 : outstr->u_len);
813 udf_debug("volIdent[] = '%s'\n",
814 UDF_SB(sb)->s_volume_ident);
817 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
818 if (udf_CS0toUTF8(outstr, instr))
819 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
821 brelse(bh);
822 ret = 0;
823 out2:
824 kfree(outstr);
825 out1:
826 kfree(instr);
827 return ret;
830 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
831 u32 meta_file_loc, u32 partition_num)
833 struct kernel_lb_addr addr;
834 struct inode *metadata_fe;
836 addr.logicalBlockNum = meta_file_loc;
837 addr.partitionReferenceNum = partition_num;
839 metadata_fe = udf_iget(sb, &addr);
841 if (metadata_fe == NULL)
842 udf_warn(sb, "metadata inode efe not found\n");
843 else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
844 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
845 iput(metadata_fe);
846 metadata_fe = NULL;
849 return metadata_fe;
852 static int udf_load_metadata_files(struct super_block *sb, int partition)
854 struct udf_sb_info *sbi = UDF_SB(sb);
855 struct udf_part_map *map;
856 struct udf_meta_data *mdata;
857 struct kernel_lb_addr addr;
859 map = &sbi->s_partmaps[partition];
860 mdata = &map->s_type_specific.s_metadata;
862 /* metadata address */
863 udf_debug("Metadata file location: block = %d part = %d\n",
864 mdata->s_meta_file_loc, map->s_partition_num);
866 mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb,
867 mdata->s_meta_file_loc, map->s_partition_num);
869 if (mdata->s_metadata_fe == NULL) {
870 /* mirror file entry */
871 udf_debug("Mirror metadata file location: block = %d part = %d\n",
872 mdata->s_mirror_file_loc, map->s_partition_num);
874 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
875 mdata->s_mirror_file_loc, map->s_partition_num);
877 if (mdata->s_mirror_fe == NULL) {
878 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
879 goto error_exit;
884 * bitmap file entry
885 * Note:
886 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
888 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
889 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
890 addr.partitionReferenceNum = map->s_partition_num;
892 udf_debug("Bitmap file location: block = %d part = %d\n",
893 addr.logicalBlockNum, addr.partitionReferenceNum);
895 mdata->s_bitmap_fe = udf_iget(sb, &addr);
897 if (mdata->s_bitmap_fe == NULL) {
898 if (sb->s_flags & MS_RDONLY)
899 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
900 else {
901 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
902 goto error_exit;
907 udf_debug("udf_load_metadata_files Ok\n");
909 return 0;
911 error_exit:
912 return 1;
915 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
916 struct kernel_lb_addr *root)
918 struct fileSetDesc *fset;
920 fset = (struct fileSetDesc *)bh->b_data;
922 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
924 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
926 udf_debug("Rootdir at block=%d, partition=%d\n",
927 root->logicalBlockNum, root->partitionReferenceNum);
930 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
932 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
933 return DIV_ROUND_UP(map->s_partition_len +
934 (sizeof(struct spaceBitmapDesc) << 3),
935 sb->s_blocksize * 8);
938 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
940 struct udf_bitmap *bitmap;
941 int nr_groups;
942 int size;
944 nr_groups = udf_compute_nr_groups(sb, index);
945 size = sizeof(struct udf_bitmap) +
946 (sizeof(struct buffer_head *) * nr_groups);
948 if (size <= PAGE_SIZE)
949 bitmap = kzalloc(size, GFP_KERNEL);
950 else
951 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
953 if (bitmap == NULL) {
954 udf_err(sb, "Unable to allocate space for bitmap and %d buffer_head pointers\n",
955 nr_groups);
956 return NULL;
959 bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
960 bitmap->s_nr_groups = nr_groups;
961 return bitmap;
964 static int udf_fill_partdesc_info(struct super_block *sb,
965 struct partitionDesc *p, int p_index)
967 struct udf_part_map *map;
968 struct udf_sb_info *sbi = UDF_SB(sb);
969 struct partitionHeaderDesc *phd;
971 map = &sbi->s_partmaps[p_index];
973 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
974 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
976 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
977 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
978 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
979 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
980 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
981 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
982 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
983 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
985 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
986 p_index, map->s_partition_type,
987 map->s_partition_root, map->s_partition_len);
989 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
990 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
991 return 0;
993 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
994 if (phd->unallocSpaceTable.extLength) {
995 struct kernel_lb_addr loc = {
996 .logicalBlockNum = le32_to_cpu(
997 phd->unallocSpaceTable.extPosition),
998 .partitionReferenceNum = p_index,
1001 map->s_uspace.s_table = udf_iget(sb, &loc);
1002 if (!map->s_uspace.s_table) {
1003 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1004 p_index);
1005 return 1;
1007 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1008 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1009 p_index, map->s_uspace.s_table->i_ino);
1012 if (phd->unallocSpaceBitmap.extLength) {
1013 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1014 if (!bitmap)
1015 return 1;
1016 map->s_uspace.s_bitmap = bitmap;
1017 bitmap->s_extLength = le32_to_cpu(
1018 phd->unallocSpaceBitmap.extLength);
1019 bitmap->s_extPosition = le32_to_cpu(
1020 phd->unallocSpaceBitmap.extPosition);
1021 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1022 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1023 p_index, bitmap->s_extPosition);
1026 if (phd->partitionIntegrityTable.extLength)
1027 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1029 if (phd->freedSpaceTable.extLength) {
1030 struct kernel_lb_addr loc = {
1031 .logicalBlockNum = le32_to_cpu(
1032 phd->freedSpaceTable.extPosition),
1033 .partitionReferenceNum = p_index,
1036 map->s_fspace.s_table = udf_iget(sb, &loc);
1037 if (!map->s_fspace.s_table) {
1038 udf_debug("cannot load freedSpaceTable (part %d)\n",
1039 p_index);
1040 return 1;
1043 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1044 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1045 p_index, map->s_fspace.s_table->i_ino);
1048 if (phd->freedSpaceBitmap.extLength) {
1049 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1050 if (!bitmap)
1051 return 1;
1052 map->s_fspace.s_bitmap = bitmap;
1053 bitmap->s_extLength = le32_to_cpu(
1054 phd->freedSpaceBitmap.extLength);
1055 bitmap->s_extPosition = le32_to_cpu(
1056 phd->freedSpaceBitmap.extPosition);
1057 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1058 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1059 p_index, bitmap->s_extPosition);
1061 return 0;
1064 static void udf_find_vat_block(struct super_block *sb, int p_index,
1065 int type1_index, sector_t start_block)
1067 struct udf_sb_info *sbi = UDF_SB(sb);
1068 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1069 sector_t vat_block;
1070 struct kernel_lb_addr ino;
1073 * VAT file entry is in the last recorded block. Some broken disks have
1074 * it a few blocks before so try a bit harder...
1076 ino.partitionReferenceNum = type1_index;
1077 for (vat_block = start_block;
1078 vat_block >= map->s_partition_root &&
1079 vat_block >= start_block - 3 &&
1080 !sbi->s_vat_inode; vat_block--) {
1081 ino.logicalBlockNum = vat_block - map->s_partition_root;
1082 sbi->s_vat_inode = udf_iget(sb, &ino);
1086 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1088 struct udf_sb_info *sbi = UDF_SB(sb);
1089 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1090 struct buffer_head *bh = NULL;
1091 struct udf_inode_info *vati;
1092 uint32_t pos;
1093 struct virtualAllocationTable20 *vat20;
1094 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1096 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1097 if (!sbi->s_vat_inode &&
1098 sbi->s_last_block != blocks - 1) {
1099 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1100 (unsigned long)sbi->s_last_block,
1101 (unsigned long)blocks - 1);
1102 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1104 if (!sbi->s_vat_inode)
1105 return 1;
1107 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1108 map->s_type_specific.s_virtual.s_start_offset = 0;
1109 map->s_type_specific.s_virtual.s_num_entries =
1110 (sbi->s_vat_inode->i_size - 36) >> 2;
1111 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1112 vati = UDF_I(sbi->s_vat_inode);
1113 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1114 pos = udf_block_map(sbi->s_vat_inode, 0);
1115 bh = sb_bread(sb, pos);
1116 if (!bh)
1117 return 1;
1118 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1119 } else {
1120 vat20 = (struct virtualAllocationTable20 *)
1121 vati->i_ext.i_data;
1124 map->s_type_specific.s_virtual.s_start_offset =
1125 le16_to_cpu(vat20->lengthHeader);
1126 map->s_type_specific.s_virtual.s_num_entries =
1127 (sbi->s_vat_inode->i_size -
1128 map->s_type_specific.s_virtual.
1129 s_start_offset) >> 2;
1130 brelse(bh);
1132 return 0;
1135 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1137 struct buffer_head *bh;
1138 struct partitionDesc *p;
1139 struct udf_part_map *map;
1140 struct udf_sb_info *sbi = UDF_SB(sb);
1141 int i, type1_idx;
1142 uint16_t partitionNumber;
1143 uint16_t ident;
1144 int ret = 0;
1146 bh = udf_read_tagged(sb, block, block, &ident);
1147 if (!bh)
1148 return 1;
1149 if (ident != TAG_IDENT_PD)
1150 goto out_bh;
1152 p = (struct partitionDesc *)bh->b_data;
1153 partitionNumber = le16_to_cpu(p->partitionNumber);
1155 /* First scan for TYPE1, SPARABLE and METADATA partitions */
1156 for (i = 0; i < sbi->s_partitions; i++) {
1157 map = &sbi->s_partmaps[i];
1158 udf_debug("Searching map: (%d == %d)\n",
1159 map->s_partition_num, partitionNumber);
1160 if (map->s_partition_num == partitionNumber &&
1161 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1162 map->s_partition_type == UDF_SPARABLE_MAP15))
1163 break;
1166 if (i >= sbi->s_partitions) {
1167 udf_debug("Partition (%d) not found in partition map\n",
1168 partitionNumber);
1169 goto out_bh;
1172 ret = udf_fill_partdesc_info(sb, p, i);
1175 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1176 * PHYSICAL partitions are already set up
1178 type1_idx = i;
1179 for (i = 0; i < sbi->s_partitions; i++) {
1180 map = &sbi->s_partmaps[i];
1182 if (map->s_partition_num == partitionNumber &&
1183 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1184 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1185 map->s_partition_type == UDF_METADATA_MAP25))
1186 break;
1189 if (i >= sbi->s_partitions)
1190 goto out_bh;
1192 ret = udf_fill_partdesc_info(sb, p, i);
1193 if (ret)
1194 goto out_bh;
1196 if (map->s_partition_type == UDF_METADATA_MAP25) {
1197 ret = udf_load_metadata_files(sb, i);
1198 if (ret) {
1199 udf_err(sb, "error loading MetaData partition map %d\n",
1201 goto out_bh;
1203 } else {
1204 ret = udf_load_vat(sb, i, type1_idx);
1205 if (ret)
1206 goto out_bh;
1208 * Mark filesystem read-only if we have a partition with
1209 * virtual map since we don't handle writing to it (we
1210 * overwrite blocks instead of relocating them).
1212 sb->s_flags |= MS_RDONLY;
1213 pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n");
1215 out_bh:
1216 /* In case loading failed, we handle cleanup in udf_fill_super */
1217 brelse(bh);
1218 return ret;
1221 static int udf_load_sparable_map(struct super_block *sb,
1222 struct udf_part_map *map,
1223 struct sparablePartitionMap *spm)
1225 uint32_t loc;
1226 uint16_t ident;
1227 struct sparingTable *st;
1228 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1229 int i;
1230 struct buffer_head *bh;
1232 map->s_partition_type = UDF_SPARABLE_MAP15;
1233 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1234 if (!is_power_of_2(sdata->s_packet_len)) {
1235 udf_err(sb, "error loading logical volume descriptor: "
1236 "Invalid packet length %u\n",
1237 (unsigned)sdata->s_packet_len);
1238 return -EIO;
1240 if (spm->numSparingTables > 4) {
1241 udf_err(sb, "error loading logical volume descriptor: "
1242 "Too many sparing tables (%d)\n",
1243 (int)spm->numSparingTables);
1244 return -EIO;
1247 for (i = 0; i < spm->numSparingTables; i++) {
1248 loc = le32_to_cpu(spm->locSparingTable[i]);
1249 bh = udf_read_tagged(sb, loc, loc, &ident);
1250 if (!bh)
1251 continue;
1253 st = (struct sparingTable *)bh->b_data;
1254 if (ident != 0 ||
1255 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1256 strlen(UDF_ID_SPARING)) ||
1257 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1258 sb->s_blocksize) {
1259 brelse(bh);
1260 continue;
1263 sdata->s_spar_map[i] = bh;
1265 map->s_partition_func = udf_get_pblock_spar15;
1266 return 0;
1269 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1270 struct kernel_lb_addr *fileset)
1272 struct logicalVolDesc *lvd;
1273 int i, offset;
1274 uint8_t type;
1275 struct udf_sb_info *sbi = UDF_SB(sb);
1276 struct genericPartitionMap *gpm;
1277 uint16_t ident;
1278 struct buffer_head *bh;
1279 unsigned int table_len;
1280 int ret = 0;
1282 bh = udf_read_tagged(sb, block, block, &ident);
1283 if (!bh)
1284 return 1;
1285 BUG_ON(ident != TAG_IDENT_LVD);
1286 lvd = (struct logicalVolDesc *)bh->b_data;
1287 table_len = le32_to_cpu(lvd->mapTableLength);
1288 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1289 udf_err(sb, "error loading logical volume descriptor: "
1290 "Partition table too long (%u > %lu)\n", table_len,
1291 sb->s_blocksize - sizeof(*lvd));
1292 ret = 1;
1293 goto out_bh;
1296 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1297 if (ret)
1298 goto out_bh;
1300 for (i = 0, offset = 0;
1301 i < sbi->s_partitions && offset < table_len;
1302 i++, offset += gpm->partitionMapLength) {
1303 struct udf_part_map *map = &sbi->s_partmaps[i];
1304 gpm = (struct genericPartitionMap *)
1305 &(lvd->partitionMaps[offset]);
1306 type = gpm->partitionMapType;
1307 if (type == 1) {
1308 struct genericPartitionMap1 *gpm1 =
1309 (struct genericPartitionMap1 *)gpm;
1310 map->s_partition_type = UDF_TYPE1_MAP15;
1311 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1312 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1313 map->s_partition_func = NULL;
1314 } else if (type == 2) {
1315 struct udfPartitionMap2 *upm2 =
1316 (struct udfPartitionMap2 *)gpm;
1317 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1318 strlen(UDF_ID_VIRTUAL))) {
1319 u16 suf =
1320 le16_to_cpu(((__le16 *)upm2->partIdent.
1321 identSuffix)[0]);
1322 if (suf < 0x0200) {
1323 map->s_partition_type =
1324 UDF_VIRTUAL_MAP15;
1325 map->s_partition_func =
1326 udf_get_pblock_virt15;
1327 } else {
1328 map->s_partition_type =
1329 UDF_VIRTUAL_MAP20;
1330 map->s_partition_func =
1331 udf_get_pblock_virt20;
1333 } else if (!strncmp(upm2->partIdent.ident,
1334 UDF_ID_SPARABLE,
1335 strlen(UDF_ID_SPARABLE))) {
1336 if (udf_load_sparable_map(sb, map,
1337 (struct sparablePartitionMap *)gpm) < 0) {
1338 ret = 1;
1339 goto out_bh;
1341 } else if (!strncmp(upm2->partIdent.ident,
1342 UDF_ID_METADATA,
1343 strlen(UDF_ID_METADATA))) {
1344 struct udf_meta_data *mdata =
1345 &map->s_type_specific.s_metadata;
1346 struct metadataPartitionMap *mdm =
1347 (struct metadataPartitionMap *)
1348 &(lvd->partitionMaps[offset]);
1349 udf_debug("Parsing Logical vol part %d type %d id=%s\n",
1350 i, type, UDF_ID_METADATA);
1352 map->s_partition_type = UDF_METADATA_MAP25;
1353 map->s_partition_func = udf_get_pblock_meta25;
1355 mdata->s_meta_file_loc =
1356 le32_to_cpu(mdm->metadataFileLoc);
1357 mdata->s_mirror_file_loc =
1358 le32_to_cpu(mdm->metadataMirrorFileLoc);
1359 mdata->s_bitmap_file_loc =
1360 le32_to_cpu(mdm->metadataBitmapFileLoc);
1361 mdata->s_alloc_unit_size =
1362 le32_to_cpu(mdm->allocUnitSize);
1363 mdata->s_align_unit_size =
1364 le16_to_cpu(mdm->alignUnitSize);
1365 if (mdm->flags & 0x01)
1366 mdata->s_flags |= MF_DUPLICATE_MD;
1368 udf_debug("Metadata Ident suffix=0x%x\n",
1369 le16_to_cpu(*(__le16 *)
1370 mdm->partIdent.identSuffix));
1371 udf_debug("Metadata part num=%d\n",
1372 le16_to_cpu(mdm->partitionNum));
1373 udf_debug("Metadata part alloc unit size=%d\n",
1374 le32_to_cpu(mdm->allocUnitSize));
1375 udf_debug("Metadata file loc=%d\n",
1376 le32_to_cpu(mdm->metadataFileLoc));
1377 udf_debug("Mirror file loc=%d\n",
1378 le32_to_cpu(mdm->metadataMirrorFileLoc));
1379 udf_debug("Bitmap file loc=%d\n",
1380 le32_to_cpu(mdm->metadataBitmapFileLoc));
1381 udf_debug("Flags: %d %d\n",
1382 mdata->s_flags, mdm->flags);
1383 } else {
1384 udf_debug("Unknown ident: %s\n",
1385 upm2->partIdent.ident);
1386 continue;
1388 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1389 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1391 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1392 i, map->s_partition_num, type, map->s_volumeseqnum);
1395 if (fileset) {
1396 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1398 *fileset = lelb_to_cpu(la->extLocation);
1399 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1400 fileset->logicalBlockNum,
1401 fileset->partitionReferenceNum);
1403 if (lvd->integritySeqExt.extLength)
1404 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1406 out_bh:
1407 brelse(bh);
1408 return ret;
1412 * udf_load_logicalvolint
1415 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1417 struct buffer_head *bh = NULL;
1418 uint16_t ident;
1419 struct udf_sb_info *sbi = UDF_SB(sb);
1420 struct logicalVolIntegrityDesc *lvid;
1422 while (loc.extLength > 0 &&
1423 (bh = udf_read_tagged(sb, loc.extLocation,
1424 loc.extLocation, &ident)) &&
1425 ident == TAG_IDENT_LVID) {
1426 sbi->s_lvid_bh = bh;
1427 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1429 if (lvid->nextIntegrityExt.extLength)
1430 udf_load_logicalvolint(sb,
1431 leea_to_cpu(lvid->nextIntegrityExt));
1433 if (sbi->s_lvid_bh != bh)
1434 brelse(bh);
1435 loc.extLength -= sb->s_blocksize;
1436 loc.extLocation++;
1438 if (sbi->s_lvid_bh != bh)
1439 brelse(bh);
1443 * udf_process_sequence
1445 * PURPOSE
1446 * Process a main/reserve volume descriptor sequence.
1448 * PRE-CONDITIONS
1449 * sb Pointer to _locked_ superblock.
1450 * block First block of first extent of the sequence.
1451 * lastblock Lastblock of first extent of the sequence.
1453 * HISTORY
1454 * July 1, 1997 - Andrew E. Mileski
1455 * Written, tested, and released.
1457 static noinline int udf_process_sequence(struct super_block *sb, long block,
1458 long lastblock, struct kernel_lb_addr *fileset)
1460 struct buffer_head *bh = NULL;
1461 struct udf_vds_record vds[VDS_POS_LENGTH];
1462 struct udf_vds_record *curr;
1463 struct generic_desc *gd;
1464 struct volDescPtr *vdp;
1465 int done = 0;
1466 uint32_t vdsn;
1467 uint16_t ident;
1468 long next_s = 0, next_e = 0;
1470 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1473 * Read the main descriptor sequence and find which descriptors
1474 * are in it.
1476 for (; (!done && block <= lastblock); block++) {
1478 bh = udf_read_tagged(sb, block, block, &ident);
1479 if (!bh) {
1480 udf_err(sb,
1481 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1482 (unsigned long long)block);
1483 return 1;
1486 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1487 gd = (struct generic_desc *)bh->b_data;
1488 vdsn = le32_to_cpu(gd->volDescSeqNum);
1489 switch (ident) {
1490 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1491 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1492 if (vdsn >= curr->volDescSeqNum) {
1493 curr->volDescSeqNum = vdsn;
1494 curr->block = block;
1496 break;
1497 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1498 curr = &vds[VDS_POS_VOL_DESC_PTR];
1499 if (vdsn >= curr->volDescSeqNum) {
1500 curr->volDescSeqNum = vdsn;
1501 curr->block = block;
1503 vdp = (struct volDescPtr *)bh->b_data;
1504 next_s = le32_to_cpu(
1505 vdp->nextVolDescSeqExt.extLocation);
1506 next_e = le32_to_cpu(
1507 vdp->nextVolDescSeqExt.extLength);
1508 next_e = next_e >> sb->s_blocksize_bits;
1509 next_e += next_s;
1511 break;
1512 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1513 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1514 if (vdsn >= curr->volDescSeqNum) {
1515 curr->volDescSeqNum = vdsn;
1516 curr->block = block;
1518 break;
1519 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1520 curr = &vds[VDS_POS_PARTITION_DESC];
1521 if (!curr->block)
1522 curr->block = block;
1523 break;
1524 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1525 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1526 if (vdsn >= curr->volDescSeqNum) {
1527 curr->volDescSeqNum = vdsn;
1528 curr->block = block;
1530 break;
1531 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1532 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1533 if (vdsn >= curr->volDescSeqNum) {
1534 curr->volDescSeqNum = vdsn;
1535 curr->block = block;
1537 break;
1538 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1539 vds[VDS_POS_TERMINATING_DESC].block = block;
1540 if (next_e) {
1541 block = next_s;
1542 lastblock = next_e;
1543 next_s = next_e = 0;
1544 } else
1545 done = 1;
1546 break;
1548 brelse(bh);
1551 * Now read interesting descriptors again and process them
1552 * in a suitable order
1554 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1555 udf_err(sb, "Primary Volume Descriptor not found!\n");
1556 return 1;
1558 if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1559 return 1;
1561 if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1562 vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1563 return 1;
1565 if (vds[VDS_POS_PARTITION_DESC].block) {
1567 * We rescan the whole descriptor sequence to find
1568 * partition descriptor blocks and process them.
1570 for (block = vds[VDS_POS_PARTITION_DESC].block;
1571 block < vds[VDS_POS_TERMINATING_DESC].block;
1572 block++)
1573 if (udf_load_partdesc(sb, block))
1574 return 1;
1577 return 0;
1580 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1581 struct kernel_lb_addr *fileset)
1583 struct anchorVolDescPtr *anchor;
1584 long main_s, main_e, reserve_s, reserve_e;
1586 anchor = (struct anchorVolDescPtr *)bh->b_data;
1588 /* Locate the main sequence */
1589 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1590 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1591 main_e = main_e >> sb->s_blocksize_bits;
1592 main_e += main_s;
1594 /* Locate the reserve sequence */
1595 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1596 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1597 reserve_e = reserve_e >> sb->s_blocksize_bits;
1598 reserve_e += reserve_s;
1600 /* Process the main & reserve sequences */
1601 /* responsible for finding the PartitionDesc(s) */
1602 if (!udf_process_sequence(sb, main_s, main_e, fileset))
1603 return 1;
1604 return !udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1608 * Check whether there is an anchor block in the given block and
1609 * load Volume Descriptor Sequence if so.
1611 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1612 struct kernel_lb_addr *fileset)
1614 struct buffer_head *bh;
1615 uint16_t ident;
1616 int ret;
1618 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1619 udf_fixed_to_variable(block) >=
1620 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1621 return 0;
1623 bh = udf_read_tagged(sb, block, block, &ident);
1624 if (!bh)
1625 return 0;
1626 if (ident != TAG_IDENT_AVDP) {
1627 brelse(bh);
1628 return 0;
1630 ret = udf_load_sequence(sb, bh, fileset);
1631 brelse(bh);
1632 return ret;
1635 /* Search for an anchor volume descriptor pointer */
1636 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1637 struct kernel_lb_addr *fileset)
1639 sector_t last[6];
1640 int i;
1641 struct udf_sb_info *sbi = UDF_SB(sb);
1642 int last_count = 0;
1644 /* First try user provided anchor */
1645 if (sbi->s_anchor) {
1646 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1647 return lastblock;
1650 * according to spec, anchor is in either:
1651 * block 256
1652 * lastblock-256
1653 * lastblock
1654 * however, if the disc isn't closed, it could be 512.
1656 if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1657 return lastblock;
1659 * The trouble is which block is the last one. Drives often misreport
1660 * this so we try various possibilities.
1662 last[last_count++] = lastblock;
1663 if (lastblock >= 1)
1664 last[last_count++] = lastblock - 1;
1665 last[last_count++] = lastblock + 1;
1666 if (lastblock >= 2)
1667 last[last_count++] = lastblock - 2;
1668 if (lastblock >= 150)
1669 last[last_count++] = lastblock - 150;
1670 if (lastblock >= 152)
1671 last[last_count++] = lastblock - 152;
1673 for (i = 0; i < last_count; i++) {
1674 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1675 sb->s_blocksize_bits)
1676 continue;
1677 if (udf_check_anchor_block(sb, last[i], fileset))
1678 return last[i];
1679 if (last[i] < 256)
1680 continue;
1681 if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1682 return last[i];
1685 /* Finally try block 512 in case media is open */
1686 if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1687 return last[0];
1688 return 0;
1692 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1693 * area specified by it. The function expects sbi->s_lastblock to be the last
1694 * block on the media.
1696 * Return 1 if ok, 0 if not found.
1699 static int udf_find_anchor(struct super_block *sb,
1700 struct kernel_lb_addr *fileset)
1702 sector_t lastblock;
1703 struct udf_sb_info *sbi = UDF_SB(sb);
1705 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1706 if (lastblock)
1707 goto out;
1709 /* No anchor found? Try VARCONV conversion of block numbers */
1710 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1711 /* Firstly, we try to not convert number of the last block */
1712 lastblock = udf_scan_anchors(sb,
1713 udf_variable_to_fixed(sbi->s_last_block),
1714 fileset);
1715 if (lastblock)
1716 goto out;
1718 /* Secondly, we try with converted number of the last block */
1719 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1720 if (!lastblock) {
1721 /* VARCONV didn't help. Clear it. */
1722 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1723 return 0;
1725 out:
1726 sbi->s_last_block = lastblock;
1727 return 1;
1731 * Check Volume Structure Descriptor, find Anchor block and load Volume
1732 * Descriptor Sequence
1734 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1735 int silent, struct kernel_lb_addr *fileset)
1737 struct udf_sb_info *sbi = UDF_SB(sb);
1738 loff_t nsr_off;
1740 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1741 if (!silent)
1742 udf_warn(sb, "Bad block size\n");
1743 return 0;
1745 sbi->s_last_block = uopt->lastblock;
1746 if (!uopt->novrs) {
1747 /* Check that it is NSR02 compliant */
1748 nsr_off = udf_check_vsd(sb);
1749 if (!nsr_off) {
1750 if (!silent)
1751 udf_warn(sb, "No VRS found\n");
1752 return 0;
1754 if (nsr_off == -1)
1755 udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n");
1756 if (!sbi->s_last_block)
1757 sbi->s_last_block = udf_get_last_block(sb);
1758 } else {
1759 udf_debug("Validity check skipped because of novrs option\n");
1762 /* Look for anchor block and load Volume Descriptor Sequence */
1763 sbi->s_anchor = uopt->anchor;
1764 if (!udf_find_anchor(sb, fileset)) {
1765 if (!silent)
1766 udf_warn(sb, "No anchor found\n");
1767 return 0;
1769 return 1;
1772 static void udf_open_lvid(struct super_block *sb)
1774 struct udf_sb_info *sbi = UDF_SB(sb);
1775 struct buffer_head *bh = sbi->s_lvid_bh;
1776 struct logicalVolIntegrityDesc *lvid;
1777 struct logicalVolIntegrityDescImpUse *lvidiu;
1779 if (!bh)
1780 return;
1782 mutex_lock(&sbi->s_alloc_mutex);
1783 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1784 lvidiu = udf_sb_lvidiu(sbi);
1786 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1787 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1788 udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1789 CURRENT_TIME);
1790 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1792 lvid->descTag.descCRC = cpu_to_le16(
1793 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1794 le16_to_cpu(lvid->descTag.descCRCLength)));
1796 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1797 mark_buffer_dirty(bh);
1798 sbi->s_lvid_dirty = 0;
1799 mutex_unlock(&sbi->s_alloc_mutex);
1802 static void udf_close_lvid(struct super_block *sb)
1804 struct udf_sb_info *sbi = UDF_SB(sb);
1805 struct buffer_head *bh = sbi->s_lvid_bh;
1806 struct logicalVolIntegrityDesc *lvid;
1807 struct logicalVolIntegrityDescImpUse *lvidiu;
1809 if (!bh)
1810 return;
1812 mutex_lock(&sbi->s_alloc_mutex);
1813 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1814 lvidiu = udf_sb_lvidiu(sbi);
1815 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1816 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1817 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1818 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1819 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1820 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1821 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1822 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1823 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1824 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1826 lvid->descTag.descCRC = cpu_to_le16(
1827 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1828 le16_to_cpu(lvid->descTag.descCRCLength)));
1830 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1832 * We set buffer uptodate unconditionally here to avoid spurious
1833 * warnings from mark_buffer_dirty() when previous EIO has marked
1834 * the buffer as !uptodate
1836 set_buffer_uptodate(bh);
1837 mark_buffer_dirty(bh);
1838 sbi->s_lvid_dirty = 0;
1839 mutex_unlock(&sbi->s_alloc_mutex);
1842 u64 lvid_get_unique_id(struct super_block *sb)
1844 struct buffer_head *bh;
1845 struct udf_sb_info *sbi = UDF_SB(sb);
1846 struct logicalVolIntegrityDesc *lvid;
1847 struct logicalVolHeaderDesc *lvhd;
1848 u64 uniqueID;
1849 u64 ret;
1851 bh = sbi->s_lvid_bh;
1852 if (!bh)
1853 return 0;
1855 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1856 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
1858 mutex_lock(&sbi->s_alloc_mutex);
1859 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
1860 if (!(++uniqueID & 0xFFFFFFFF))
1861 uniqueID += 16;
1862 lvhd->uniqueID = cpu_to_le64(uniqueID);
1863 mutex_unlock(&sbi->s_alloc_mutex);
1864 mark_buffer_dirty(bh);
1866 return ret;
1869 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
1871 int i;
1872 int nr_groups = bitmap->s_nr_groups;
1873 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
1874 nr_groups);
1876 for (i = 0; i < nr_groups; i++)
1877 if (bitmap->s_block_bitmap[i])
1878 brelse(bitmap->s_block_bitmap[i]);
1880 if (size <= PAGE_SIZE)
1881 kfree(bitmap);
1882 else
1883 vfree(bitmap);
1886 static void udf_free_partition(struct udf_part_map *map)
1888 int i;
1889 struct udf_meta_data *mdata;
1891 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
1892 iput(map->s_uspace.s_table);
1893 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
1894 iput(map->s_fspace.s_table);
1895 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
1896 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
1897 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
1898 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
1899 if (map->s_partition_type == UDF_SPARABLE_MAP15)
1900 for (i = 0; i < 4; i++)
1901 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
1902 else if (map->s_partition_type == UDF_METADATA_MAP25) {
1903 mdata = &map->s_type_specific.s_metadata;
1904 iput(mdata->s_metadata_fe);
1905 mdata->s_metadata_fe = NULL;
1907 iput(mdata->s_mirror_fe);
1908 mdata->s_mirror_fe = NULL;
1910 iput(mdata->s_bitmap_fe);
1911 mdata->s_bitmap_fe = NULL;
1915 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1917 int i;
1918 int ret;
1919 struct inode *inode = NULL;
1920 struct udf_options uopt;
1921 struct kernel_lb_addr rootdir, fileset;
1922 struct udf_sb_info *sbi;
1924 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1925 uopt.uid = -1;
1926 uopt.gid = -1;
1927 uopt.umask = 0;
1928 uopt.fmode = UDF_INVALID_MODE;
1929 uopt.dmode = UDF_INVALID_MODE;
1931 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1932 if (!sbi)
1933 return -ENOMEM;
1935 sb->s_fs_info = sbi;
1937 mutex_init(&sbi->s_alloc_mutex);
1939 if (!udf_parse_options((char *)options, &uopt, false))
1940 goto error_out;
1942 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1943 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1944 udf_err(sb, "utf8 cannot be combined with iocharset\n");
1945 goto error_out;
1947 #ifdef CONFIG_UDF_NLS
1948 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1949 uopt.nls_map = load_nls_default();
1950 if (!uopt.nls_map)
1951 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1952 else
1953 udf_debug("Using default NLS map\n");
1955 #endif
1956 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1957 uopt.flags |= (1 << UDF_FLAG_UTF8);
1959 fileset.logicalBlockNum = 0xFFFFFFFF;
1960 fileset.partitionReferenceNum = 0xFFFF;
1962 sbi->s_flags = uopt.flags;
1963 sbi->s_uid = uopt.uid;
1964 sbi->s_gid = uopt.gid;
1965 sbi->s_umask = uopt.umask;
1966 sbi->s_fmode = uopt.fmode;
1967 sbi->s_dmode = uopt.dmode;
1968 sbi->s_nls_map = uopt.nls_map;
1969 rwlock_init(&sbi->s_cred_lock);
1971 if (uopt.session == 0xFFFFFFFF)
1972 sbi->s_session = udf_get_last_session(sb);
1973 else
1974 sbi->s_session = uopt.session;
1976 udf_debug("Multi-session=%d\n", sbi->s_session);
1978 /* Fill in the rest of the superblock */
1979 sb->s_op = &udf_sb_ops;
1980 sb->s_export_op = &udf_export_ops;
1982 sb->s_dirt = 0;
1983 sb->s_magic = UDF_SUPER_MAGIC;
1984 sb->s_time_gran = 1000;
1986 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
1987 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1988 } else {
1989 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
1990 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1991 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
1992 if (!silent)
1993 pr_notice("Rescanning with blocksize %d\n",
1994 UDF_DEFAULT_BLOCKSIZE);
1995 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
1996 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1999 if (!ret) {
2000 udf_warn(sb, "No partition found (1)\n");
2001 goto error_out;
2004 udf_debug("Lastblock=%d\n", sbi->s_last_block);
2006 if (sbi->s_lvid_bh) {
2007 struct logicalVolIntegrityDescImpUse *lvidiu =
2008 udf_sb_lvidiu(sbi);
2009 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2010 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2011 /* uint16_t maxUDFWriteRev =
2012 le16_to_cpu(lvidiu->maxUDFWriteRev); */
2014 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2015 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2016 le16_to_cpu(lvidiu->minUDFReadRev),
2017 UDF_MAX_READ_VERSION);
2018 goto error_out;
2019 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
2020 sb->s_flags |= MS_RDONLY;
2022 sbi->s_udfrev = minUDFWriteRev;
2024 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2025 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2026 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2027 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2030 if (!sbi->s_partitions) {
2031 udf_warn(sb, "No partition found (2)\n");
2032 goto error_out;
2035 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2036 UDF_PART_FLAG_READ_ONLY) {
2037 pr_notice("Partition marked readonly; forcing readonly mount\n");
2038 sb->s_flags |= MS_RDONLY;
2041 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2042 udf_warn(sb, "No fileset found\n");
2043 goto error_out;
2046 if (!silent) {
2047 struct timestamp ts;
2048 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2049 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2050 sbi->s_volume_ident,
2051 le16_to_cpu(ts.year), ts.month, ts.day,
2052 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2054 if (!(sb->s_flags & MS_RDONLY))
2055 udf_open_lvid(sb);
2057 /* Assign the root inode */
2058 /* assign inodes by physical block number */
2059 /* perhaps it's not extensible enough, but for now ... */
2060 inode = udf_iget(sb, &rootdir);
2061 if (!inode) {
2062 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2063 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2064 goto error_out;
2067 /* Allocate a dentry for the root inode */
2068 sb->s_root = d_alloc_root(inode);
2069 if (!sb->s_root) {
2070 udf_err(sb, "Couldn't allocate root dentry\n");
2071 iput(inode);
2072 goto error_out;
2074 sb->s_maxbytes = MAX_LFS_FILESIZE;
2075 return 0;
2077 error_out:
2078 if (sbi->s_vat_inode)
2079 iput(sbi->s_vat_inode);
2080 if (sbi->s_partitions)
2081 for (i = 0; i < sbi->s_partitions; i++)
2082 udf_free_partition(&sbi->s_partmaps[i]);
2083 #ifdef CONFIG_UDF_NLS
2084 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2085 unload_nls(sbi->s_nls_map);
2086 #endif
2087 if (!(sb->s_flags & MS_RDONLY))
2088 udf_close_lvid(sb);
2089 brelse(sbi->s_lvid_bh);
2091 kfree(sbi->s_partmaps);
2092 kfree(sbi);
2093 sb->s_fs_info = NULL;
2095 return -EINVAL;
2098 void _udf_err(struct super_block *sb, const char *function,
2099 const char *fmt, ...)
2101 struct va_format vaf;
2102 va_list args;
2104 /* mark sb error */
2105 if (!(sb->s_flags & MS_RDONLY))
2106 sb->s_dirt = 1;
2108 va_start(args, fmt);
2110 vaf.fmt = fmt;
2111 vaf.va = &args;
2113 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2115 va_end(args);
2118 void _udf_warn(struct super_block *sb, const char *function,
2119 const char *fmt, ...)
2121 struct va_format vaf;
2122 va_list args;
2124 va_start(args, fmt);
2126 vaf.fmt = fmt;
2127 vaf.va = &args;
2129 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2131 va_end(args);
2134 static void udf_put_super(struct super_block *sb)
2136 int i;
2137 struct udf_sb_info *sbi;
2139 sbi = UDF_SB(sb);
2141 if (sbi->s_vat_inode)
2142 iput(sbi->s_vat_inode);
2143 if (sbi->s_partitions)
2144 for (i = 0; i < sbi->s_partitions; i++)
2145 udf_free_partition(&sbi->s_partmaps[i]);
2146 #ifdef CONFIG_UDF_NLS
2147 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2148 unload_nls(sbi->s_nls_map);
2149 #endif
2150 if (!(sb->s_flags & MS_RDONLY))
2151 udf_close_lvid(sb);
2152 brelse(sbi->s_lvid_bh);
2153 kfree(sbi->s_partmaps);
2154 kfree(sb->s_fs_info);
2155 sb->s_fs_info = NULL;
2158 static int udf_sync_fs(struct super_block *sb, int wait)
2160 struct udf_sb_info *sbi = UDF_SB(sb);
2162 mutex_lock(&sbi->s_alloc_mutex);
2163 if (sbi->s_lvid_dirty) {
2165 * Blockdevice will be synced later so we don't have to submit
2166 * the buffer for IO
2168 mark_buffer_dirty(sbi->s_lvid_bh);
2169 sb->s_dirt = 0;
2170 sbi->s_lvid_dirty = 0;
2172 mutex_unlock(&sbi->s_alloc_mutex);
2174 return 0;
2177 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2179 struct super_block *sb = dentry->d_sb;
2180 struct udf_sb_info *sbi = UDF_SB(sb);
2181 struct logicalVolIntegrityDescImpUse *lvidiu;
2182 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2184 if (sbi->s_lvid_bh != NULL)
2185 lvidiu = udf_sb_lvidiu(sbi);
2186 else
2187 lvidiu = NULL;
2189 buf->f_type = UDF_SUPER_MAGIC;
2190 buf->f_bsize = sb->s_blocksize;
2191 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2192 buf->f_bfree = udf_count_free(sb);
2193 buf->f_bavail = buf->f_bfree;
2194 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2195 le32_to_cpu(lvidiu->numDirs)) : 0)
2196 + buf->f_bfree;
2197 buf->f_ffree = buf->f_bfree;
2198 buf->f_namelen = UDF_NAME_LEN - 2;
2199 buf->f_fsid.val[0] = (u32)id;
2200 buf->f_fsid.val[1] = (u32)(id >> 32);
2202 return 0;
2205 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2206 struct udf_bitmap *bitmap)
2208 struct buffer_head *bh = NULL;
2209 unsigned int accum = 0;
2210 int index;
2211 int block = 0, newblock;
2212 struct kernel_lb_addr loc;
2213 uint32_t bytes;
2214 uint8_t *ptr;
2215 uint16_t ident;
2216 struct spaceBitmapDesc *bm;
2218 loc.logicalBlockNum = bitmap->s_extPosition;
2219 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2220 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2222 if (!bh) {
2223 udf_err(sb, "udf_count_free failed\n");
2224 goto out;
2225 } else if (ident != TAG_IDENT_SBD) {
2226 brelse(bh);
2227 udf_err(sb, "udf_count_free failed\n");
2228 goto out;
2231 bm = (struct spaceBitmapDesc *)bh->b_data;
2232 bytes = le32_to_cpu(bm->numOfBytes);
2233 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2234 ptr = (uint8_t *)bh->b_data;
2236 while (bytes > 0) {
2237 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2238 accum += bitmap_weight((const unsigned long *)(ptr + index),
2239 cur_bytes * 8);
2240 bytes -= cur_bytes;
2241 if (bytes) {
2242 brelse(bh);
2243 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2244 bh = udf_tread(sb, newblock);
2245 if (!bh) {
2246 udf_debug("read failed\n");
2247 goto out;
2249 index = 0;
2250 ptr = (uint8_t *)bh->b_data;
2253 brelse(bh);
2254 out:
2255 return accum;
2258 static unsigned int udf_count_free_table(struct super_block *sb,
2259 struct inode *table)
2261 unsigned int accum = 0;
2262 uint32_t elen;
2263 struct kernel_lb_addr eloc;
2264 int8_t etype;
2265 struct extent_position epos;
2267 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2268 epos.block = UDF_I(table)->i_location;
2269 epos.offset = sizeof(struct unallocSpaceEntry);
2270 epos.bh = NULL;
2272 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2273 accum += (elen >> table->i_sb->s_blocksize_bits);
2275 brelse(epos.bh);
2276 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2278 return accum;
2281 static unsigned int udf_count_free(struct super_block *sb)
2283 unsigned int accum = 0;
2284 struct udf_sb_info *sbi;
2285 struct udf_part_map *map;
2287 sbi = UDF_SB(sb);
2288 if (sbi->s_lvid_bh) {
2289 struct logicalVolIntegrityDesc *lvid =
2290 (struct logicalVolIntegrityDesc *)
2291 sbi->s_lvid_bh->b_data;
2292 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2293 accum = le32_to_cpu(
2294 lvid->freeSpaceTable[sbi->s_partition]);
2295 if (accum == 0xFFFFFFFF)
2296 accum = 0;
2300 if (accum)
2301 return accum;
2303 map = &sbi->s_partmaps[sbi->s_partition];
2304 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2305 accum += udf_count_free_bitmap(sb,
2306 map->s_uspace.s_bitmap);
2308 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2309 accum += udf_count_free_bitmap(sb,
2310 map->s_fspace.s_bitmap);
2312 if (accum)
2313 return accum;
2315 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2316 accum += udf_count_free_table(sb,
2317 map->s_uspace.s_table);
2319 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2320 accum += udf_count_free_table(sb,
2321 map->s_fspace.s_table);
2324 return accum;