serial: 8250: fix null-ptr-deref in serial8250_start_tx()
[linux/fpc-iii.git] / drivers / tty / serial / ifx6x60.c
blob7d16fe41932f2526c5fbbdd7377410c723ab62eb
1 // SPDX-License-Identifier: GPL-2.0
2 /****************************************************************************
4 * Driver for the IFX 6x60 spi modem.
6 * Copyright (C) 2008 Option International
7 * Copyright (C) 2008 Filip Aben <f.aben@option.com>
8 * Denis Joseph Barrow <d.barow@option.com>
9 * Jan Dumon <j.dumon@option.com>
11 * Copyright (C) 2009, 2010 Intel Corp
12 * Russ Gorby <russ.gorby@intel.com>
14 * Driver modified by Intel from Option gtm501l_spi.c
16 * Notes
17 * o The driver currently assumes a single device only. If you need to
18 * change this then look for saved_ifx_dev and add a device lookup
19 * o The driver is intended to be big-endian safe but has never been
20 * tested that way (no suitable hardware). There are a couple of FIXME
21 * notes by areas that may need addressing
22 * o Some of the GPIO naming/setup assumptions may need revisiting if
23 * you need to use this driver for another platform.
25 *****************************************************************************/
26 #include <linux/dma-mapping.h>
27 #include <linux/module.h>
28 #include <linux/termios.h>
29 #include <linux/tty.h>
30 #include <linux/device.h>
31 #include <linux/spi/spi.h>
32 #include <linux/kfifo.h>
33 #include <linux/tty_flip.h>
34 #include <linux/timer.h>
35 #include <linux/serial.h>
36 #include <linux/interrupt.h>
37 #include <linux/irq.h>
38 #include <linux/rfkill.h>
39 #include <linux/fs.h>
40 #include <linux/ip.h>
41 #include <linux/dmapool.h>
42 #include <linux/gpio/consumer.h>
43 #include <linux/sched.h>
44 #include <linux/time.h>
45 #include <linux/wait.h>
46 #include <linux/pm.h>
47 #include <linux/pm_runtime.h>
48 #include <linux/spi/ifx_modem.h>
49 #include <linux/delay.h>
50 #include <linux/reboot.h>
52 #include "ifx6x60.h"
54 #define IFX_SPI_MORE_MASK 0x10
55 #define IFX_SPI_MORE_BIT 4 /* bit position in u8 */
56 #define IFX_SPI_CTS_BIT 6 /* bit position in u8 */
57 #define IFX_SPI_MODE SPI_MODE_1
58 #define IFX_SPI_TTY_ID 0
59 #define IFX_SPI_TIMEOUT_SEC 2
60 #define IFX_SPI_HEADER_0 (-1)
61 #define IFX_SPI_HEADER_F (-2)
63 #define PO_POST_DELAY 200
65 /* forward reference */
66 static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
67 static int ifx_modem_reboot_callback(struct notifier_block *nfb,
68 unsigned long event, void *data);
69 static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev);
71 /* local variables */
72 static int spi_bpw = 16; /* 8, 16 or 32 bit word length */
73 static struct tty_driver *tty_drv;
74 static struct ifx_spi_device *saved_ifx_dev;
75 static struct lock_class_key ifx_spi_key;
77 static struct notifier_block ifx_modem_reboot_notifier_block = {
78 .notifier_call = ifx_modem_reboot_callback,
81 static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev)
83 gpiod_set_value(ifx_dev->gpio.pmu_reset, 1);
84 msleep(PO_POST_DELAY);
86 return 0;
89 static int ifx_modem_reboot_callback(struct notifier_block *nfb,
90 unsigned long event, void *data)
92 if (saved_ifx_dev)
93 ifx_modem_power_off(saved_ifx_dev);
94 else
95 pr_warn("no ifx modem active;\n");
97 return NOTIFY_OK;
100 /* GPIO/GPE settings */
103 * mrdy_set_high - set MRDY GPIO
104 * @ifx: device we are controlling
107 static inline void mrdy_set_high(struct ifx_spi_device *ifx)
109 gpiod_set_value(ifx->gpio.mrdy, 1);
113 * mrdy_set_low - clear MRDY GPIO
114 * @ifx: device we are controlling
117 static inline void mrdy_set_low(struct ifx_spi_device *ifx)
119 gpiod_set_value(ifx->gpio.mrdy, 0);
123 * ifx_spi_power_state_set
124 * @ifx_dev: our SPI device
125 * @val: bits to set
127 * Set bit in power status and signal power system if status becomes non-0
129 static void
130 ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
132 unsigned long flags;
134 spin_lock_irqsave(&ifx_dev->power_lock, flags);
137 * if power status is already non-0, just update, else
138 * tell power system
140 if (!ifx_dev->power_status)
141 pm_runtime_get(&ifx_dev->spi_dev->dev);
142 ifx_dev->power_status |= val;
144 spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
148 * ifx_spi_power_state_clear - clear power bit
149 * @ifx_dev: our SPI device
150 * @val: bits to clear
152 * clear bit in power status and signal power system if status becomes 0
154 static void
155 ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
157 unsigned long flags;
159 spin_lock_irqsave(&ifx_dev->power_lock, flags);
161 if (ifx_dev->power_status) {
162 ifx_dev->power_status &= ~val;
163 if (!ifx_dev->power_status)
164 pm_runtime_put(&ifx_dev->spi_dev->dev);
167 spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
171 * swap_buf_8
172 * @buf: our buffer
173 * @len : number of bytes (not words) in the buffer
174 * @end: end of buffer
176 * Swap the contents of a buffer into big endian format
178 static inline void swap_buf_8(unsigned char *buf, int len, void *end)
180 /* don't swap buffer if SPI word width is 8 bits */
181 return;
185 * swap_buf_16
186 * @buf: our buffer
187 * @len : number of bytes (not words) in the buffer
188 * @end: end of buffer
190 * Swap the contents of a buffer into big endian format
192 static inline void swap_buf_16(unsigned char *buf, int len, void *end)
194 int n;
196 u16 *buf_16 = (u16 *)buf;
197 len = ((len + 1) >> 1);
198 if ((void *)&buf_16[len] > end) {
199 pr_err("swap_buf_16: swap exceeds boundary (%p > %p)!",
200 &buf_16[len], end);
201 return;
203 for (n = 0; n < len; n++) {
204 *buf_16 = cpu_to_be16(*buf_16);
205 buf_16++;
210 * swap_buf_32
211 * @buf: our buffer
212 * @len : number of bytes (not words) in the buffer
213 * @end: end of buffer
215 * Swap the contents of a buffer into big endian format
217 static inline void swap_buf_32(unsigned char *buf, int len, void *end)
219 int n;
221 u32 *buf_32 = (u32 *)buf;
222 len = (len + 3) >> 2;
224 if ((void *)&buf_32[len] > end) {
225 pr_err("swap_buf_32: swap exceeds boundary (%p > %p)!\n",
226 &buf_32[len], end);
227 return;
229 for (n = 0; n < len; n++) {
230 *buf_32 = cpu_to_be32(*buf_32);
231 buf_32++;
236 * mrdy_assert - assert MRDY line
237 * @ifx_dev: our SPI device
239 * Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
240 * now.
242 * FIXME: Can SRDY even go high as we are running this code ?
244 static void mrdy_assert(struct ifx_spi_device *ifx_dev)
246 int val = gpiod_get_value(ifx_dev->gpio.srdy);
247 if (!val) {
248 if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
249 &ifx_dev->flags)) {
250 mod_timer(&ifx_dev->spi_timer,jiffies + IFX_SPI_TIMEOUT_SEC*HZ);
254 ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
255 mrdy_set_high(ifx_dev);
259 * ifx_spi_timeout - SPI timeout
260 * @arg: our SPI device
262 * The SPI has timed out: hang up the tty. Users will then see a hangup
263 * and error events.
265 static void ifx_spi_timeout(struct timer_list *t)
267 struct ifx_spi_device *ifx_dev = from_timer(ifx_dev, t, spi_timer);
269 dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
270 tty_port_tty_hangup(&ifx_dev->tty_port, false);
271 mrdy_set_low(ifx_dev);
272 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
275 /* char/tty operations */
278 * ifx_spi_tiocmget - get modem lines
279 * @tty: our tty device
280 * @filp: file handle issuing the request
282 * Map the signal state into Linux modem flags and report the value
283 * in Linux terms
285 static int ifx_spi_tiocmget(struct tty_struct *tty)
287 unsigned int value;
288 struct ifx_spi_device *ifx_dev = tty->driver_data;
290 value =
291 (test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
292 (test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
293 (test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
294 (test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
295 (test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
296 (test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
297 return value;
301 * ifx_spi_tiocmset - set modem bits
302 * @tty: the tty structure
303 * @set: bits to set
304 * @clear: bits to clear
306 * The IFX6x60 only supports DTR and RTS. Set them accordingly
307 * and flag that an update to the modem is needed.
309 * FIXME: do we need to kick the tranfers when we do this ?
311 static int ifx_spi_tiocmset(struct tty_struct *tty,
312 unsigned int set, unsigned int clear)
314 struct ifx_spi_device *ifx_dev = tty->driver_data;
316 if (set & TIOCM_RTS)
317 set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
318 if (set & TIOCM_DTR)
319 set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
320 if (clear & TIOCM_RTS)
321 clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
322 if (clear & TIOCM_DTR)
323 clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
325 set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
326 return 0;
330 * ifx_spi_open - called on tty open
331 * @tty: our tty device
332 * @filp: file handle being associated with the tty
334 * Open the tty interface. We let the tty_port layer do all the work
335 * for us.
337 * FIXME: Remove single device assumption and saved_ifx_dev
339 static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
341 return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
345 * ifx_spi_close - called when our tty closes
346 * @tty: the tty being closed
347 * @filp: the file handle being closed
349 * Perform the close of the tty. We use the tty_port layer to do all
350 * our hard work.
352 static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
354 struct ifx_spi_device *ifx_dev = tty->driver_data;
355 tty_port_close(&ifx_dev->tty_port, tty, filp);
356 /* FIXME: should we do an ifx_spi_reset here ? */
360 * ifx_decode_spi_header - decode received header
361 * @buffer: the received data
362 * @length: decoded length
363 * @more: decoded more flag
364 * @received_cts: status of cts we received
366 * Note how received_cts is handled -- if header is all F it is left
367 * the same as it was, if header is all 0 it is set to 0 otherwise it is
368 * taken from the incoming header.
370 * FIXME: endianness
372 static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
373 unsigned char *more, unsigned char *received_cts)
375 u16 h1;
376 u16 h2;
377 u16 *in_buffer = (u16 *)buffer;
379 h1 = *in_buffer;
380 h2 = *(in_buffer+1);
382 if (h1 == 0 && h2 == 0) {
383 *received_cts = 0;
384 *more = 0;
385 return IFX_SPI_HEADER_0;
386 } else if (h1 == 0xffff && h2 == 0xffff) {
387 *more = 0;
388 /* spi_slave_cts remains as it was */
389 return IFX_SPI_HEADER_F;
392 *length = h1 & 0xfff; /* upper bits of byte are flags */
393 *more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
394 *received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
395 return 0;
399 * ifx_setup_spi_header - set header fields
400 * @txbuffer: pointer to start of SPI buffer
401 * @tx_count: bytes
402 * @more: indicate if more to follow
404 * Format up an SPI header for a transfer
406 * FIXME: endianness?
408 static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
409 unsigned char more)
411 *(u16 *)(txbuffer) = tx_count;
412 *(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
413 txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
417 * ifx_spi_prepare_tx_buffer - prepare transmit frame
418 * @ifx_dev: our SPI device
420 * The transmit buffr needs a header and various other bits of
421 * information followed by as much data as we can pull from the FIFO
422 * and transfer. This function formats up a suitable buffer in the
423 * ifx_dev->tx_buffer
425 * FIXME: performance - should we wake the tty when the queue is half
426 * empty ?
428 static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
430 int temp_count;
431 int queue_length;
432 int tx_count;
433 unsigned char *tx_buffer;
435 tx_buffer = ifx_dev->tx_buffer;
437 /* make room for required SPI header */
438 tx_buffer += IFX_SPI_HEADER_OVERHEAD;
439 tx_count = IFX_SPI_HEADER_OVERHEAD;
441 /* clear to signal no more data if this turns out to be the
442 * last buffer sent in a sequence */
443 ifx_dev->spi_more = 0;
445 /* if modem cts is set, just send empty buffer */
446 if (!ifx_dev->spi_slave_cts) {
447 /* see if there's tx data */
448 queue_length = kfifo_len(&ifx_dev->tx_fifo);
449 if (queue_length != 0) {
450 /* data to mux -- see if there's room for it */
451 temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
452 temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
453 tx_buffer, temp_count,
454 &ifx_dev->fifo_lock);
456 /* update buffer pointer and data count in message */
457 tx_buffer += temp_count;
458 tx_count += temp_count;
459 if (temp_count == queue_length)
460 /* poke port to get more data */
461 tty_port_tty_wakeup(&ifx_dev->tty_port);
462 else /* more data in port, use next SPI message */
463 ifx_dev->spi_more = 1;
466 /* have data and info for header -- set up SPI header in buffer */
467 /* spi header needs payload size, not entire buffer size */
468 ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
469 tx_count-IFX_SPI_HEADER_OVERHEAD,
470 ifx_dev->spi_more);
471 /* swap actual data in the buffer */
472 ifx_dev->swap_buf((ifx_dev->tx_buffer), tx_count,
473 &ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
474 return tx_count;
478 * ifx_spi_write - line discipline write
479 * @tty: our tty device
480 * @buf: pointer to buffer to write (kernel space)
481 * @count: size of buffer
483 * Write the characters we have been given into the FIFO. If the device
484 * is not active then activate it, when the SRDY line is asserted back
485 * this will commence I/O
487 static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
488 int count)
490 struct ifx_spi_device *ifx_dev = tty->driver_data;
491 unsigned char *tmp_buf = (unsigned char *)buf;
492 unsigned long flags;
493 bool is_fifo_empty;
494 int tx_count;
496 spin_lock_irqsave(&ifx_dev->fifo_lock, flags);
497 is_fifo_empty = kfifo_is_empty(&ifx_dev->tx_fifo);
498 tx_count = kfifo_in(&ifx_dev->tx_fifo, tmp_buf, count);
499 spin_unlock_irqrestore(&ifx_dev->fifo_lock, flags);
500 if (is_fifo_empty)
501 mrdy_assert(ifx_dev);
503 return tx_count;
507 * ifx_spi_chars_in_buffer - line discipline helper
508 * @tty: our tty device
510 * Report how much data we can accept before we drop bytes. As we use
511 * a simple FIFO this is nice and easy.
513 static int ifx_spi_write_room(struct tty_struct *tty)
515 struct ifx_spi_device *ifx_dev = tty->driver_data;
516 return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
520 * ifx_spi_chars_in_buffer - line discipline helper
521 * @tty: our tty device
523 * Report how many characters we have buffered. In our case this is the
524 * number of bytes sitting in our transmit FIFO.
526 static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
528 struct ifx_spi_device *ifx_dev = tty->driver_data;
529 return kfifo_len(&ifx_dev->tx_fifo);
533 * ifx_port_hangup
534 * @port: our tty port
536 * tty port hang up. Called when tty_hangup processing is invoked either
537 * by loss of carrier, or by software (eg vhangup). Serialized against
538 * activate/shutdown by the tty layer.
540 static void ifx_spi_hangup(struct tty_struct *tty)
542 struct ifx_spi_device *ifx_dev = tty->driver_data;
543 tty_port_hangup(&ifx_dev->tty_port);
547 * ifx_port_activate
548 * @port: our tty port
550 * tty port activate method - called for first open. Serialized
551 * with hangup and shutdown by the tty layer.
553 static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
555 struct ifx_spi_device *ifx_dev =
556 container_of(port, struct ifx_spi_device, tty_port);
558 /* clear any old data; can't do this in 'close' */
559 kfifo_reset(&ifx_dev->tx_fifo);
561 /* clear any flag which may be set in port shutdown procedure */
562 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
563 clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
565 /* put port data into this tty */
566 tty->driver_data = ifx_dev;
568 /* allows flip string push from int context */
569 port->low_latency = 1;
571 /* set flag to allows data transfer */
572 set_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
574 return 0;
578 * ifx_port_shutdown
579 * @port: our tty port
581 * tty port shutdown method - called for last port close. Serialized
582 * with hangup and activate by the tty layer.
584 static void ifx_port_shutdown(struct tty_port *port)
586 struct ifx_spi_device *ifx_dev =
587 container_of(port, struct ifx_spi_device, tty_port);
589 clear_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
590 mrdy_set_low(ifx_dev);
591 del_timer(&ifx_dev->spi_timer);
592 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
593 tasklet_kill(&ifx_dev->io_work_tasklet);
596 static const struct tty_port_operations ifx_tty_port_ops = {
597 .activate = ifx_port_activate,
598 .shutdown = ifx_port_shutdown,
601 static const struct tty_operations ifx_spi_serial_ops = {
602 .open = ifx_spi_open,
603 .close = ifx_spi_close,
604 .write = ifx_spi_write,
605 .hangup = ifx_spi_hangup,
606 .write_room = ifx_spi_write_room,
607 .chars_in_buffer = ifx_spi_chars_in_buffer,
608 .tiocmget = ifx_spi_tiocmget,
609 .tiocmset = ifx_spi_tiocmset,
613 * ifx_spi_insert_fip_string - queue received data
614 * @ifx_ser: our SPI device
615 * @chars: buffer we have received
616 * @size: number of chars reeived
618 * Queue bytes to the tty assuming the tty side is currently open. If
619 * not the discard the data.
621 static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
622 unsigned char *chars, size_t size)
624 tty_insert_flip_string(&ifx_dev->tty_port, chars, size);
625 tty_flip_buffer_push(&ifx_dev->tty_port);
629 * ifx_spi_complete - SPI transfer completed
630 * @ctx: our SPI device
632 * An SPI transfer has completed. Process any received data and kick off
633 * any further transmits we can commence.
635 static void ifx_spi_complete(void *ctx)
637 struct ifx_spi_device *ifx_dev = ctx;
638 int length;
639 int actual_length;
640 unsigned char more = 0;
641 unsigned char cts;
642 int local_write_pending = 0;
643 int queue_length;
644 int srdy;
645 int decode_result;
647 mrdy_set_low(ifx_dev);
649 if (!ifx_dev->spi_msg.status) {
650 /* check header validity, get comm flags */
651 ifx_dev->swap_buf(ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
652 &ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
653 decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
654 &length, &more, &cts);
655 if (decode_result == IFX_SPI_HEADER_0) {
656 dev_dbg(&ifx_dev->spi_dev->dev,
657 "ignore input: invalid header 0");
658 ifx_dev->spi_slave_cts = 0;
659 goto complete_exit;
660 } else if (decode_result == IFX_SPI_HEADER_F) {
661 dev_dbg(&ifx_dev->spi_dev->dev,
662 "ignore input: invalid header F");
663 goto complete_exit;
666 ifx_dev->spi_slave_cts = cts;
668 actual_length = min((unsigned int)length,
669 ifx_dev->spi_msg.actual_length);
670 ifx_dev->swap_buf(
671 (ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
672 actual_length,
673 &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
674 ifx_spi_insert_flip_string(
675 ifx_dev,
676 ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
677 (size_t)actual_length);
678 } else {
679 more = 0;
680 dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
681 ifx_dev->spi_msg.status);
684 complete_exit:
685 if (ifx_dev->write_pending) {
686 ifx_dev->write_pending = 0;
687 local_write_pending = 1;
690 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
692 queue_length = kfifo_len(&ifx_dev->tx_fifo);
693 srdy = gpiod_get_value(ifx_dev->gpio.srdy);
694 if (!srdy)
695 ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
697 /* schedule output if there is more to do */
698 if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
699 tasklet_schedule(&ifx_dev->io_work_tasklet);
700 else {
701 if (more || ifx_dev->spi_more || queue_length > 0 ||
702 local_write_pending) {
703 if (ifx_dev->spi_slave_cts) {
704 if (more)
705 mrdy_assert(ifx_dev);
706 } else
707 mrdy_assert(ifx_dev);
708 } else {
710 * poke line discipline driver if any for more data
711 * may or may not get more data to write
712 * for now, say not busy
714 ifx_spi_power_state_clear(ifx_dev,
715 IFX_SPI_POWER_DATA_PENDING);
716 tty_port_tty_wakeup(&ifx_dev->tty_port);
722 * ifx_spio_io - I/O tasklet
723 * @data: our SPI device
725 * Queue data for transmission if possible and then kick off the
726 * transfer.
728 static void ifx_spi_io(unsigned long data)
730 int retval;
731 struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *) data;
733 if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags) &&
734 test_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags)) {
735 if (ifx_dev->gpio.unack_srdy_int_nb > 0)
736 ifx_dev->gpio.unack_srdy_int_nb--;
738 ifx_spi_prepare_tx_buffer(ifx_dev);
740 spi_message_init(&ifx_dev->spi_msg);
741 INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
743 ifx_dev->spi_msg.context = ifx_dev;
744 ifx_dev->spi_msg.complete = ifx_spi_complete;
746 /* set up our spi transfer */
747 /* note len is BYTES, not transfers */
748 ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
749 ifx_dev->spi_xfer.cs_change = 0;
750 ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz;
751 /* ifx_dev->spi_xfer.speed_hz = 390625; */
752 ifx_dev->spi_xfer.bits_per_word =
753 ifx_dev->spi_dev->bits_per_word;
755 ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
756 ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
759 * setup dma pointers
761 if (ifx_dev->use_dma) {
762 ifx_dev->spi_msg.is_dma_mapped = 1;
763 ifx_dev->tx_dma = ifx_dev->tx_bus;
764 ifx_dev->rx_dma = ifx_dev->rx_bus;
765 ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
766 ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
767 } else {
768 ifx_dev->spi_msg.is_dma_mapped = 0;
769 ifx_dev->tx_dma = (dma_addr_t)0;
770 ifx_dev->rx_dma = (dma_addr_t)0;
771 ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
772 ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
775 spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
777 /* Assert MRDY. This may have already been done by the write
778 * routine.
780 mrdy_assert(ifx_dev);
782 retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
783 if (retval) {
784 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
785 &ifx_dev->flags);
786 tasklet_schedule(&ifx_dev->io_work_tasklet);
787 return;
789 } else
790 ifx_dev->write_pending = 1;
794 * ifx_spi_free_port - free up the tty side
795 * @ifx_dev: IFX device going away
797 * Unregister and free up a port when the device goes away
799 static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
801 if (ifx_dev->tty_dev)
802 tty_unregister_device(tty_drv, ifx_dev->minor);
803 tty_port_destroy(&ifx_dev->tty_port);
804 kfifo_free(&ifx_dev->tx_fifo);
808 * ifx_spi_create_port - create a new port
809 * @ifx_dev: our spi device
811 * Allocate and initialise the tty port that goes with this interface
812 * and add it to the tty layer so that it can be opened.
814 static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
816 int ret = 0;
817 struct tty_port *pport = &ifx_dev->tty_port;
819 spin_lock_init(&ifx_dev->fifo_lock);
820 lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
821 &ifx_spi_key, 0);
823 if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
824 ret = -ENOMEM;
825 goto error_ret;
828 tty_port_init(pport);
829 pport->ops = &ifx_tty_port_ops;
830 ifx_dev->minor = IFX_SPI_TTY_ID;
831 ifx_dev->tty_dev = tty_port_register_device(pport, tty_drv,
832 ifx_dev->minor, &ifx_dev->spi_dev->dev);
833 if (IS_ERR(ifx_dev->tty_dev)) {
834 dev_dbg(&ifx_dev->spi_dev->dev,
835 "%s: registering tty device failed", __func__);
836 ret = PTR_ERR(ifx_dev->tty_dev);
837 goto error_port;
839 return 0;
841 error_port:
842 tty_port_destroy(pport);
843 error_ret:
844 ifx_spi_free_port(ifx_dev);
845 return ret;
849 * ifx_spi_handle_srdy - handle SRDY
850 * @ifx_dev: device asserting SRDY
852 * Check our device state and see what we need to kick off when SRDY
853 * is asserted. This usually means killing the timer and firing off the
854 * I/O processing.
856 static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
858 if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
859 del_timer(&ifx_dev->spi_timer);
860 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
863 ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
865 if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
866 tasklet_schedule(&ifx_dev->io_work_tasklet);
867 else
868 set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
872 * ifx_spi_srdy_interrupt - SRDY asserted
873 * @irq: our IRQ number
874 * @dev: our ifx device
876 * The modem asserted SRDY. Handle the srdy event
878 static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
880 struct ifx_spi_device *ifx_dev = dev;
881 ifx_dev->gpio.unack_srdy_int_nb++;
882 ifx_spi_handle_srdy(ifx_dev);
883 return IRQ_HANDLED;
887 * ifx_spi_reset_interrupt - Modem has changed reset state
888 * @irq: interrupt number
889 * @dev: our device pointer
891 * The modem has either entered or left reset state. Check the GPIO
892 * line to see which.
894 * FIXME: review locking on MR_INPROGRESS versus
895 * parallel unsolicited reset/solicited reset
897 static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
899 struct ifx_spi_device *ifx_dev = dev;
900 int val = gpiod_get_value(ifx_dev->gpio.reset_out);
901 int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
903 if (val == 0) {
904 /* entered reset */
905 set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
906 if (!solreset) {
907 /* unsolicited reset */
908 tty_port_tty_hangup(&ifx_dev->tty_port, false);
910 } else {
911 /* exited reset */
912 clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
913 if (solreset) {
914 set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
915 wake_up(&ifx_dev->mdm_reset_wait);
918 return IRQ_HANDLED;
922 * ifx_spi_free_device - free device
923 * @ifx_dev: device to free
925 * Free the IFX device
927 static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
929 ifx_spi_free_port(ifx_dev);
930 dma_free_coherent(&ifx_dev->spi_dev->dev,
931 IFX_SPI_TRANSFER_SIZE,
932 ifx_dev->tx_buffer,
933 ifx_dev->tx_bus);
934 dma_free_coherent(&ifx_dev->spi_dev->dev,
935 IFX_SPI_TRANSFER_SIZE,
936 ifx_dev->rx_buffer,
937 ifx_dev->rx_bus);
941 * ifx_spi_reset - reset modem
942 * @ifx_dev: modem to reset
944 * Perform a reset on the modem
946 static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
948 int ret;
950 * set up modem power, reset
952 * delays are required on some platforms for the modem
953 * to reset properly
955 set_bit(MR_START, &ifx_dev->mdm_reset_state);
956 gpiod_set_value(ifx_dev->gpio.po, 0);
957 gpiod_set_value(ifx_dev->gpio.reset, 0);
958 msleep(25);
959 gpiod_set_value(ifx_dev->gpio.reset, 1);
960 msleep(1);
961 gpiod_set_value(ifx_dev->gpio.po, 1);
962 msleep(1);
963 gpiod_set_value(ifx_dev->gpio.po, 0);
964 ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
965 test_bit(MR_COMPLETE,
966 &ifx_dev->mdm_reset_state),
967 IFX_RESET_TIMEOUT);
968 if (!ret)
969 dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
970 ifx_dev->mdm_reset_state);
972 ifx_dev->mdm_reset_state = 0;
973 return ret;
977 * ifx_spi_spi_probe - probe callback
978 * @spi: our possible matching SPI device
980 * Probe for a 6x60 modem on SPI bus. Perform any needed device and
981 * GPIO setup.
983 * FIXME:
984 * - Support for multiple devices
985 * - Split out MID specific GPIO handling eventually
988 static int ifx_spi_spi_probe(struct spi_device *spi)
990 int ret;
991 int srdy;
992 struct ifx_modem_platform_data *pl_data;
993 struct ifx_spi_device *ifx_dev;
994 struct device *dev = &spi->dev;
996 if (saved_ifx_dev) {
997 dev_dbg(dev, "ignoring subsequent detection");
998 return -ENODEV;
1001 pl_data = dev_get_platdata(dev);
1002 if (!pl_data) {
1003 dev_err(dev, "missing platform data!");
1004 return -ENODEV;
1007 /* initialize structure to hold our device variables */
1008 ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
1009 if (!ifx_dev) {
1010 dev_err(dev, "spi device allocation failed");
1011 return -ENOMEM;
1013 saved_ifx_dev = ifx_dev;
1014 ifx_dev->spi_dev = spi;
1015 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
1016 spin_lock_init(&ifx_dev->write_lock);
1017 spin_lock_init(&ifx_dev->power_lock);
1018 ifx_dev->power_status = 0;
1019 timer_setup(&ifx_dev->spi_timer, ifx_spi_timeout, 0);
1020 ifx_dev->modem = pl_data->modem_type;
1021 ifx_dev->use_dma = pl_data->use_dma;
1022 ifx_dev->max_hz = pl_data->max_hz;
1023 /* initialize spi mode, etc */
1024 spi->max_speed_hz = ifx_dev->max_hz;
1025 spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode);
1026 spi->bits_per_word = spi_bpw;
1027 ret = spi_setup(spi);
1028 if (ret) {
1029 dev_err(dev, "SPI setup wasn't successful %d", ret);
1030 kfree(ifx_dev);
1031 return -ENODEV;
1034 /* init swap_buf function according to word width configuration */
1035 if (spi->bits_per_word == 32)
1036 ifx_dev->swap_buf = swap_buf_32;
1037 else if (spi->bits_per_word == 16)
1038 ifx_dev->swap_buf = swap_buf_16;
1039 else
1040 ifx_dev->swap_buf = swap_buf_8;
1042 /* ensure SPI protocol flags are initialized to enable transfer */
1043 ifx_dev->spi_more = 0;
1044 ifx_dev->spi_slave_cts = 0;
1046 /*initialize transfer and dma buffers */
1047 ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1048 IFX_SPI_TRANSFER_SIZE,
1049 &ifx_dev->tx_bus,
1050 GFP_KERNEL);
1051 if (!ifx_dev->tx_buffer) {
1052 dev_err(dev, "DMA-TX buffer allocation failed");
1053 ret = -ENOMEM;
1054 goto error_ret;
1056 ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1057 IFX_SPI_TRANSFER_SIZE,
1058 &ifx_dev->rx_bus,
1059 GFP_KERNEL);
1060 if (!ifx_dev->rx_buffer) {
1061 dev_err(dev, "DMA-RX buffer allocation failed");
1062 ret = -ENOMEM;
1063 goto error_ret;
1066 /* initialize waitq for modem reset */
1067 init_waitqueue_head(&ifx_dev->mdm_reset_wait);
1069 spi_set_drvdata(spi, ifx_dev);
1070 tasklet_init(&ifx_dev->io_work_tasklet, ifx_spi_io,
1071 (unsigned long)ifx_dev);
1073 set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
1075 /* create our tty port */
1076 ret = ifx_spi_create_port(ifx_dev);
1077 if (ret != 0) {
1078 dev_err(dev, "create default tty port failed");
1079 goto error_ret;
1082 ifx_dev->gpio.reset = devm_gpiod_get(dev, "reset", GPIOD_OUT_LOW);
1083 if (IS_ERR(ifx_dev->gpio.reset)) {
1084 dev_err(dev, "could not obtain reset GPIO\n");
1085 ret = PTR_ERR(ifx_dev->gpio.reset);
1086 goto error_ret;
1088 gpiod_set_consumer_name(ifx_dev->gpio.reset, "ifxModem reset");
1089 ifx_dev->gpio.po = devm_gpiod_get(dev, "power", GPIOD_OUT_LOW);
1090 if (IS_ERR(ifx_dev->gpio.po)) {
1091 dev_err(dev, "could not obtain power GPIO\n");
1092 ret = PTR_ERR(ifx_dev->gpio.po);
1093 goto error_ret;
1095 gpiod_set_consumer_name(ifx_dev->gpio.po, "ifxModem power");
1096 ifx_dev->gpio.mrdy = devm_gpiod_get(dev, "mrdy", GPIOD_OUT_LOW);
1097 if (IS_ERR(ifx_dev->gpio.mrdy)) {
1098 dev_err(dev, "could not obtain mrdy GPIO\n");
1099 ret = PTR_ERR(ifx_dev->gpio.mrdy);
1100 goto error_ret;
1102 gpiod_set_consumer_name(ifx_dev->gpio.mrdy, "ifxModem mrdy");
1103 ifx_dev->gpio.srdy = devm_gpiod_get(dev, "srdy", GPIOD_IN);
1104 if (IS_ERR(ifx_dev->gpio.srdy)) {
1105 dev_err(dev, "could not obtain srdy GPIO\n");
1106 ret = PTR_ERR(ifx_dev->gpio.srdy);
1107 goto error_ret;
1109 gpiod_set_consumer_name(ifx_dev->gpio.srdy, "ifxModem srdy");
1110 ifx_dev->gpio.reset_out = devm_gpiod_get(dev, "rst_out", GPIOD_IN);
1111 if (IS_ERR(ifx_dev->gpio.reset_out)) {
1112 dev_err(dev, "could not obtain rst_out GPIO\n");
1113 ret = PTR_ERR(ifx_dev->gpio.reset_out);
1114 goto error_ret;
1116 gpiod_set_consumer_name(ifx_dev->gpio.reset_out, "ifxModem reset out");
1117 ifx_dev->gpio.pmu_reset = devm_gpiod_get(dev, "pmu_reset", GPIOD_ASIS);
1118 if (IS_ERR(ifx_dev->gpio.pmu_reset)) {
1119 dev_err(dev, "could not obtain pmu_reset GPIO\n");
1120 ret = PTR_ERR(ifx_dev->gpio.pmu_reset);
1121 goto error_ret;
1123 gpiod_set_consumer_name(ifx_dev->gpio.pmu_reset, "ifxModem PMU reset");
1125 ret = request_irq(gpiod_to_irq(ifx_dev->gpio.reset_out),
1126 ifx_spi_reset_interrupt,
1127 IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
1128 ifx_dev);
1129 if (ret) {
1130 dev_err(dev, "Unable to get irq %x\n",
1131 gpiod_to_irq(ifx_dev->gpio.reset_out));
1132 goto error_ret;
1135 ret = ifx_spi_reset(ifx_dev);
1137 ret = request_irq(gpiod_to_irq(ifx_dev->gpio.srdy),
1138 ifx_spi_srdy_interrupt, IRQF_TRIGGER_RISING, DRVNAME,
1139 ifx_dev);
1140 if (ret) {
1141 dev_err(dev, "Unable to get irq %x",
1142 gpiod_to_irq(ifx_dev->gpio.srdy));
1143 goto error_ret2;
1146 /* set pm runtime power state and register with power system */
1147 pm_runtime_set_active(dev);
1148 pm_runtime_enable(dev);
1150 /* handle case that modem is already signaling SRDY */
1151 /* no outgoing tty open at this point, this just satisfies the
1152 * modem's read and should reset communication properly
1154 srdy = gpiod_get_value(ifx_dev->gpio.srdy);
1156 if (srdy) {
1157 mrdy_assert(ifx_dev);
1158 ifx_spi_handle_srdy(ifx_dev);
1159 } else
1160 mrdy_set_low(ifx_dev);
1161 return 0;
1163 error_ret2:
1164 free_irq(gpiod_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
1165 error_ret:
1166 ifx_spi_free_device(ifx_dev);
1167 saved_ifx_dev = NULL;
1168 return ret;
1172 * ifx_spi_spi_remove - SPI device was removed
1173 * @spi: SPI device
1175 * FIXME: We should be shutting the device down here not in
1176 * the module unload path.
1179 static int ifx_spi_spi_remove(struct spi_device *spi)
1181 struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1182 /* stop activity */
1183 tasklet_kill(&ifx_dev->io_work_tasklet);
1185 pm_runtime_disable(&spi->dev);
1187 /* free irq */
1188 free_irq(gpiod_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
1189 free_irq(gpiod_to_irq(ifx_dev->gpio.srdy), ifx_dev);
1191 /* free allocations */
1192 ifx_spi_free_device(ifx_dev);
1194 saved_ifx_dev = NULL;
1195 return 0;
1199 * ifx_spi_spi_shutdown - called on SPI shutdown
1200 * @spi: SPI device
1202 * No action needs to be taken here
1205 static void ifx_spi_spi_shutdown(struct spi_device *spi)
1207 struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1209 ifx_modem_power_off(ifx_dev);
1213 * various suspends and resumes have nothing to do
1214 * no hardware to save state for
1218 * ifx_spi_pm_suspend - suspend modem on system suspend
1219 * @dev: device being suspended
1221 * Suspend the modem. No action needed on Intel MID platforms, may
1222 * need extending for other systems.
1224 static int ifx_spi_pm_suspend(struct device *dev)
1226 return 0;
1230 * ifx_spi_pm_resume - resume modem on system resume
1231 * @dev: device being suspended
1233 * Allow the modem to resume. No action needed.
1235 * FIXME: do we need to reset anything here ?
1237 static int ifx_spi_pm_resume(struct device *dev)
1239 return 0;
1243 * ifx_spi_pm_runtime_resume - suspend modem
1244 * @dev: device being suspended
1246 * Allow the modem to resume. No action needed.
1248 static int ifx_spi_pm_runtime_resume(struct device *dev)
1250 return 0;
1254 * ifx_spi_pm_runtime_suspend - suspend modem
1255 * @dev: device being suspended
1257 * Allow the modem to suspend and thus suspend to continue up the
1258 * device tree.
1260 static int ifx_spi_pm_runtime_suspend(struct device *dev)
1262 return 0;
1266 * ifx_spi_pm_runtime_idle - check if modem idle
1267 * @dev: our device
1269 * Check conditions and queue runtime suspend if idle.
1271 static int ifx_spi_pm_runtime_idle(struct device *dev)
1273 struct spi_device *spi = to_spi_device(dev);
1274 struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1276 if (!ifx_dev->power_status)
1277 pm_runtime_suspend(dev);
1279 return 0;
1282 static const struct dev_pm_ops ifx_spi_pm = {
1283 .resume = ifx_spi_pm_resume,
1284 .suspend = ifx_spi_pm_suspend,
1285 .runtime_resume = ifx_spi_pm_runtime_resume,
1286 .runtime_suspend = ifx_spi_pm_runtime_suspend,
1287 .runtime_idle = ifx_spi_pm_runtime_idle
1290 static const struct spi_device_id ifx_id_table[] = {
1291 {"ifx6160", 0},
1292 {"ifx6260", 0},
1295 MODULE_DEVICE_TABLE(spi, ifx_id_table);
1297 /* spi operations */
1298 static struct spi_driver ifx_spi_driver = {
1299 .driver = {
1300 .name = DRVNAME,
1301 .pm = &ifx_spi_pm,
1303 .probe = ifx_spi_spi_probe,
1304 .shutdown = ifx_spi_spi_shutdown,
1305 .remove = ifx_spi_spi_remove,
1306 .id_table = ifx_id_table
1310 * ifx_spi_exit - module exit
1312 * Unload the module.
1315 static void __exit ifx_spi_exit(void)
1317 /* unregister */
1318 spi_unregister_driver(&ifx_spi_driver);
1319 tty_unregister_driver(tty_drv);
1320 put_tty_driver(tty_drv);
1321 unregister_reboot_notifier(&ifx_modem_reboot_notifier_block);
1325 * ifx_spi_init - module entry point
1327 * Initialise the SPI and tty interfaces for the IFX SPI driver
1328 * We need to initialize upper-edge spi driver after the tty
1329 * driver because otherwise the spi probe will race
1332 static int __init ifx_spi_init(void)
1334 int result;
1336 tty_drv = alloc_tty_driver(1);
1337 if (!tty_drv) {
1338 pr_err("%s: alloc_tty_driver failed", DRVNAME);
1339 return -ENOMEM;
1342 tty_drv->driver_name = DRVNAME;
1343 tty_drv->name = TTYNAME;
1344 tty_drv->minor_start = IFX_SPI_TTY_ID;
1345 tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
1346 tty_drv->subtype = SERIAL_TYPE_NORMAL;
1347 tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1348 tty_drv->init_termios = tty_std_termios;
1350 tty_set_operations(tty_drv, &ifx_spi_serial_ops);
1352 result = tty_register_driver(tty_drv);
1353 if (result) {
1354 pr_err("%s: tty_register_driver failed(%d)",
1355 DRVNAME, result);
1356 goto err_free_tty;
1359 result = spi_register_driver(&ifx_spi_driver);
1360 if (result) {
1361 pr_err("%s: spi_register_driver failed(%d)",
1362 DRVNAME, result);
1363 goto err_unreg_tty;
1366 result = register_reboot_notifier(&ifx_modem_reboot_notifier_block);
1367 if (result) {
1368 pr_err("%s: register ifx modem reboot notifier failed(%d)",
1369 DRVNAME, result);
1370 goto err_unreg_spi;
1373 return 0;
1374 err_unreg_spi:
1375 spi_unregister_driver(&ifx_spi_driver);
1376 err_unreg_tty:
1377 tty_unregister_driver(tty_drv);
1378 err_free_tty:
1379 put_tty_driver(tty_drv);
1381 return result;
1384 module_init(ifx_spi_init);
1385 module_exit(ifx_spi_exit);
1387 MODULE_AUTHOR("Intel");
1388 MODULE_DESCRIPTION("IFX6x60 spi driver");
1389 MODULE_LICENSE("GPL");
1390 MODULE_INFO(Version, "0.1-IFX6x60");