2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/kthread.h>
20 #include <linux/khugepaged.h>
21 #include <linux/freezer.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/migrate.h>
25 #include <linux/hashtable.h>
28 #include <asm/pgalloc.h>
32 * By default transparent hugepage support is disabled in order that avoid
33 * to risk increase the memory footprint of applications without a guaranteed
34 * benefit. When transparent hugepage support is enabled, is for all mappings,
35 * and khugepaged scans all mappings.
36 * Defrag is invoked by khugepaged hugepage allocations and by page faults
37 * for all hugepage allocations.
39 unsigned long transparent_hugepage_flags __read_mostly
=
40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
41 (1<<TRANSPARENT_HUGEPAGE_FLAG
)|
43 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
44 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
)|
46 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG
)|
47 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
)|
48 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
50 /* default scan 8*512 pte (or vmas) every 30 second */
51 static unsigned int khugepaged_pages_to_scan __read_mostly
= HPAGE_PMD_NR
*8;
52 static unsigned int khugepaged_pages_collapsed
;
53 static unsigned int khugepaged_full_scans
;
54 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly
= 10000;
55 /* during fragmentation poll the hugepage allocator once every minute */
56 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly
= 60000;
57 static struct task_struct
*khugepaged_thread __read_mostly
;
58 static DEFINE_MUTEX(khugepaged_mutex
);
59 static DEFINE_SPINLOCK(khugepaged_mm_lock
);
60 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait
);
62 * default collapse hugepages if there is at least one pte mapped like
63 * it would have happened if the vma was large enough during page
66 static unsigned int khugepaged_max_ptes_none __read_mostly
= HPAGE_PMD_NR
-1;
68 static int khugepaged(void *none
);
69 static int khugepaged_slab_init(void);
71 #define MM_SLOTS_HASH_BITS 10
72 static __read_mostly
DEFINE_HASHTABLE(mm_slots_hash
, MM_SLOTS_HASH_BITS
);
74 static struct kmem_cache
*mm_slot_cache __read_mostly
;
77 * struct mm_slot - hash lookup from mm to mm_slot
78 * @hash: hash collision list
79 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
80 * @mm: the mm that this information is valid for
83 struct hlist_node hash
;
84 struct list_head mm_node
;
89 * struct khugepaged_scan - cursor for scanning
90 * @mm_head: the head of the mm list to scan
91 * @mm_slot: the current mm_slot we are scanning
92 * @address: the next address inside that to be scanned
94 * There is only the one khugepaged_scan instance of this cursor structure.
96 struct khugepaged_scan
{
97 struct list_head mm_head
;
98 struct mm_slot
*mm_slot
;
99 unsigned long address
;
101 static struct khugepaged_scan khugepaged_scan
= {
102 .mm_head
= LIST_HEAD_INIT(khugepaged_scan
.mm_head
),
106 static int set_recommended_min_free_kbytes(void)
110 unsigned long recommended_min
;
112 if (!khugepaged_enabled())
115 for_each_populated_zone(zone
)
118 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
119 recommended_min
= pageblock_nr_pages
* nr_zones
* 2;
122 * Make sure that on average at least two pageblocks are almost free
123 * of another type, one for a migratetype to fall back to and a
124 * second to avoid subsequent fallbacks of other types There are 3
125 * MIGRATE_TYPES we care about.
127 recommended_min
+= pageblock_nr_pages
* nr_zones
*
128 MIGRATE_PCPTYPES
* MIGRATE_PCPTYPES
;
130 /* don't ever allow to reserve more than 5% of the lowmem */
131 recommended_min
= min(recommended_min
,
132 (unsigned long) nr_free_buffer_pages() / 20);
133 recommended_min
<<= (PAGE_SHIFT
-10);
135 if (recommended_min
> min_free_kbytes
) {
136 if (user_min_free_kbytes
>= 0)
137 pr_info("raising min_free_kbytes from %d to %lu "
138 "to help transparent hugepage allocations\n",
139 min_free_kbytes
, recommended_min
);
141 min_free_kbytes
= recommended_min
;
143 setup_per_zone_wmarks();
146 late_initcall(set_recommended_min_free_kbytes
);
148 static int start_khugepaged(void)
151 if (khugepaged_enabled()) {
152 if (!khugepaged_thread
)
153 khugepaged_thread
= kthread_run(khugepaged
, NULL
,
155 if (unlikely(IS_ERR(khugepaged_thread
))) {
156 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
157 err
= PTR_ERR(khugepaged_thread
);
158 khugepaged_thread
= NULL
;
161 if (!list_empty(&khugepaged_scan
.mm_head
))
162 wake_up_interruptible(&khugepaged_wait
);
164 set_recommended_min_free_kbytes();
165 } else if (khugepaged_thread
) {
166 kthread_stop(khugepaged_thread
);
167 khugepaged_thread
= NULL
;
173 static atomic_t huge_zero_refcount
;
174 static struct page
*huge_zero_page __read_mostly
;
176 static inline bool is_huge_zero_page(struct page
*page
)
178 return ACCESS_ONCE(huge_zero_page
) == page
;
181 static inline bool is_huge_zero_pmd(pmd_t pmd
)
183 return is_huge_zero_page(pmd_page(pmd
));
186 static struct page
*get_huge_zero_page(void)
188 struct page
*zero_page
;
190 if (likely(atomic_inc_not_zero(&huge_zero_refcount
)))
191 return ACCESS_ONCE(huge_zero_page
);
193 zero_page
= alloc_pages((GFP_TRANSHUGE
| __GFP_ZERO
) & ~__GFP_MOVABLE
,
196 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED
);
199 count_vm_event(THP_ZERO_PAGE_ALLOC
);
201 if (cmpxchg(&huge_zero_page
, NULL
, zero_page
)) {
203 __free_pages(zero_page
, compound_order(zero_page
));
207 /* We take additional reference here. It will be put back by shrinker */
208 atomic_set(&huge_zero_refcount
, 2);
210 return ACCESS_ONCE(huge_zero_page
);
213 static void put_huge_zero_page(void)
216 * Counter should never go to zero here. Only shrinker can put
219 BUG_ON(atomic_dec_and_test(&huge_zero_refcount
));
222 static unsigned long shrink_huge_zero_page_count(struct shrinker
*shrink
,
223 struct shrink_control
*sc
)
225 /* we can free zero page only if last reference remains */
226 return atomic_read(&huge_zero_refcount
) == 1 ? HPAGE_PMD_NR
: 0;
229 static unsigned long shrink_huge_zero_page_scan(struct shrinker
*shrink
,
230 struct shrink_control
*sc
)
232 if (atomic_cmpxchg(&huge_zero_refcount
, 1, 0) == 1) {
233 struct page
*zero_page
= xchg(&huge_zero_page
, NULL
);
234 BUG_ON(zero_page
== NULL
);
235 __free_pages(zero_page
, compound_order(zero_page
));
242 static struct shrinker huge_zero_page_shrinker
= {
243 .count_objects
= shrink_huge_zero_page_count
,
244 .scan_objects
= shrink_huge_zero_page_scan
,
245 .seeks
= DEFAULT_SEEKS
,
250 static ssize_t
double_flag_show(struct kobject
*kobj
,
251 struct kobj_attribute
*attr
, char *buf
,
252 enum transparent_hugepage_flag enabled
,
253 enum transparent_hugepage_flag req_madv
)
255 if (test_bit(enabled
, &transparent_hugepage_flags
)) {
256 VM_BUG_ON(test_bit(req_madv
, &transparent_hugepage_flags
));
257 return sprintf(buf
, "[always] madvise never\n");
258 } else if (test_bit(req_madv
, &transparent_hugepage_flags
))
259 return sprintf(buf
, "always [madvise] never\n");
261 return sprintf(buf
, "always madvise [never]\n");
263 static ssize_t
double_flag_store(struct kobject
*kobj
,
264 struct kobj_attribute
*attr
,
265 const char *buf
, size_t count
,
266 enum transparent_hugepage_flag enabled
,
267 enum transparent_hugepage_flag req_madv
)
269 if (!memcmp("always", buf
,
270 min(sizeof("always")-1, count
))) {
271 set_bit(enabled
, &transparent_hugepage_flags
);
272 clear_bit(req_madv
, &transparent_hugepage_flags
);
273 } else if (!memcmp("madvise", buf
,
274 min(sizeof("madvise")-1, count
))) {
275 clear_bit(enabled
, &transparent_hugepage_flags
);
276 set_bit(req_madv
, &transparent_hugepage_flags
);
277 } else if (!memcmp("never", buf
,
278 min(sizeof("never")-1, count
))) {
279 clear_bit(enabled
, &transparent_hugepage_flags
);
280 clear_bit(req_madv
, &transparent_hugepage_flags
);
287 static ssize_t
enabled_show(struct kobject
*kobj
,
288 struct kobj_attribute
*attr
, char *buf
)
290 return double_flag_show(kobj
, attr
, buf
,
291 TRANSPARENT_HUGEPAGE_FLAG
,
292 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
);
294 static ssize_t
enabled_store(struct kobject
*kobj
,
295 struct kobj_attribute
*attr
,
296 const char *buf
, size_t count
)
300 ret
= double_flag_store(kobj
, attr
, buf
, count
,
301 TRANSPARENT_HUGEPAGE_FLAG
,
302 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
);
307 mutex_lock(&khugepaged_mutex
);
308 err
= start_khugepaged();
309 mutex_unlock(&khugepaged_mutex
);
317 static struct kobj_attribute enabled_attr
=
318 __ATTR(enabled
, 0644, enabled_show
, enabled_store
);
320 static ssize_t
single_flag_show(struct kobject
*kobj
,
321 struct kobj_attribute
*attr
, char *buf
,
322 enum transparent_hugepage_flag flag
)
324 return sprintf(buf
, "%d\n",
325 !!test_bit(flag
, &transparent_hugepage_flags
));
328 static ssize_t
single_flag_store(struct kobject
*kobj
,
329 struct kobj_attribute
*attr
,
330 const char *buf
, size_t count
,
331 enum transparent_hugepage_flag flag
)
336 ret
= kstrtoul(buf
, 10, &value
);
343 set_bit(flag
, &transparent_hugepage_flags
);
345 clear_bit(flag
, &transparent_hugepage_flags
);
351 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
352 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
353 * memory just to allocate one more hugepage.
355 static ssize_t
defrag_show(struct kobject
*kobj
,
356 struct kobj_attribute
*attr
, char *buf
)
358 return double_flag_show(kobj
, attr
, buf
,
359 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG
,
360 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
);
362 static ssize_t
defrag_store(struct kobject
*kobj
,
363 struct kobj_attribute
*attr
,
364 const char *buf
, size_t count
)
366 return double_flag_store(kobj
, attr
, buf
, count
,
367 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG
,
368 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
);
370 static struct kobj_attribute defrag_attr
=
371 __ATTR(defrag
, 0644, defrag_show
, defrag_store
);
373 static ssize_t
use_zero_page_show(struct kobject
*kobj
,
374 struct kobj_attribute
*attr
, char *buf
)
376 return single_flag_show(kobj
, attr
, buf
,
377 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
379 static ssize_t
use_zero_page_store(struct kobject
*kobj
,
380 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
382 return single_flag_store(kobj
, attr
, buf
, count
,
383 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
385 static struct kobj_attribute use_zero_page_attr
=
386 __ATTR(use_zero_page
, 0644, use_zero_page_show
, use_zero_page_store
);
387 #ifdef CONFIG_DEBUG_VM
388 static ssize_t
debug_cow_show(struct kobject
*kobj
,
389 struct kobj_attribute
*attr
, char *buf
)
391 return single_flag_show(kobj
, attr
, buf
,
392 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
394 static ssize_t
debug_cow_store(struct kobject
*kobj
,
395 struct kobj_attribute
*attr
,
396 const char *buf
, size_t count
)
398 return single_flag_store(kobj
, attr
, buf
, count
,
399 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
401 static struct kobj_attribute debug_cow_attr
=
402 __ATTR(debug_cow
, 0644, debug_cow_show
, debug_cow_store
);
403 #endif /* CONFIG_DEBUG_VM */
405 static struct attribute
*hugepage_attr
[] = {
408 &use_zero_page_attr
.attr
,
409 #ifdef CONFIG_DEBUG_VM
410 &debug_cow_attr
.attr
,
415 static struct attribute_group hugepage_attr_group
= {
416 .attrs
= hugepage_attr
,
419 static ssize_t
scan_sleep_millisecs_show(struct kobject
*kobj
,
420 struct kobj_attribute
*attr
,
423 return sprintf(buf
, "%u\n", khugepaged_scan_sleep_millisecs
);
426 static ssize_t
scan_sleep_millisecs_store(struct kobject
*kobj
,
427 struct kobj_attribute
*attr
,
428 const char *buf
, size_t count
)
433 err
= kstrtoul(buf
, 10, &msecs
);
434 if (err
|| msecs
> UINT_MAX
)
437 khugepaged_scan_sleep_millisecs
= msecs
;
438 wake_up_interruptible(&khugepaged_wait
);
442 static struct kobj_attribute scan_sleep_millisecs_attr
=
443 __ATTR(scan_sleep_millisecs
, 0644, scan_sleep_millisecs_show
,
444 scan_sleep_millisecs_store
);
446 static ssize_t
alloc_sleep_millisecs_show(struct kobject
*kobj
,
447 struct kobj_attribute
*attr
,
450 return sprintf(buf
, "%u\n", khugepaged_alloc_sleep_millisecs
);
453 static ssize_t
alloc_sleep_millisecs_store(struct kobject
*kobj
,
454 struct kobj_attribute
*attr
,
455 const char *buf
, size_t count
)
460 err
= kstrtoul(buf
, 10, &msecs
);
461 if (err
|| msecs
> UINT_MAX
)
464 khugepaged_alloc_sleep_millisecs
= msecs
;
465 wake_up_interruptible(&khugepaged_wait
);
469 static struct kobj_attribute alloc_sleep_millisecs_attr
=
470 __ATTR(alloc_sleep_millisecs
, 0644, alloc_sleep_millisecs_show
,
471 alloc_sleep_millisecs_store
);
473 static ssize_t
pages_to_scan_show(struct kobject
*kobj
,
474 struct kobj_attribute
*attr
,
477 return sprintf(buf
, "%u\n", khugepaged_pages_to_scan
);
479 static ssize_t
pages_to_scan_store(struct kobject
*kobj
,
480 struct kobj_attribute
*attr
,
481 const char *buf
, size_t count
)
486 err
= kstrtoul(buf
, 10, &pages
);
487 if (err
|| !pages
|| pages
> UINT_MAX
)
490 khugepaged_pages_to_scan
= pages
;
494 static struct kobj_attribute pages_to_scan_attr
=
495 __ATTR(pages_to_scan
, 0644, pages_to_scan_show
,
496 pages_to_scan_store
);
498 static ssize_t
pages_collapsed_show(struct kobject
*kobj
,
499 struct kobj_attribute
*attr
,
502 return sprintf(buf
, "%u\n", khugepaged_pages_collapsed
);
504 static struct kobj_attribute pages_collapsed_attr
=
505 __ATTR_RO(pages_collapsed
);
507 static ssize_t
full_scans_show(struct kobject
*kobj
,
508 struct kobj_attribute
*attr
,
511 return sprintf(buf
, "%u\n", khugepaged_full_scans
);
513 static struct kobj_attribute full_scans_attr
=
514 __ATTR_RO(full_scans
);
516 static ssize_t
khugepaged_defrag_show(struct kobject
*kobj
,
517 struct kobj_attribute
*attr
, char *buf
)
519 return single_flag_show(kobj
, attr
, buf
,
520 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
522 static ssize_t
khugepaged_defrag_store(struct kobject
*kobj
,
523 struct kobj_attribute
*attr
,
524 const char *buf
, size_t count
)
526 return single_flag_store(kobj
, attr
, buf
, count
,
527 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
529 static struct kobj_attribute khugepaged_defrag_attr
=
530 __ATTR(defrag
, 0644, khugepaged_defrag_show
,
531 khugepaged_defrag_store
);
534 * max_ptes_none controls if khugepaged should collapse hugepages over
535 * any unmapped ptes in turn potentially increasing the memory
536 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
537 * reduce the available free memory in the system as it
538 * runs. Increasing max_ptes_none will instead potentially reduce the
539 * free memory in the system during the khugepaged scan.
541 static ssize_t
khugepaged_max_ptes_none_show(struct kobject
*kobj
,
542 struct kobj_attribute
*attr
,
545 return sprintf(buf
, "%u\n", khugepaged_max_ptes_none
);
547 static ssize_t
khugepaged_max_ptes_none_store(struct kobject
*kobj
,
548 struct kobj_attribute
*attr
,
549 const char *buf
, size_t count
)
552 unsigned long max_ptes_none
;
554 err
= kstrtoul(buf
, 10, &max_ptes_none
);
555 if (err
|| max_ptes_none
> HPAGE_PMD_NR
-1)
558 khugepaged_max_ptes_none
= max_ptes_none
;
562 static struct kobj_attribute khugepaged_max_ptes_none_attr
=
563 __ATTR(max_ptes_none
, 0644, khugepaged_max_ptes_none_show
,
564 khugepaged_max_ptes_none_store
);
566 static struct attribute
*khugepaged_attr
[] = {
567 &khugepaged_defrag_attr
.attr
,
568 &khugepaged_max_ptes_none_attr
.attr
,
569 &pages_to_scan_attr
.attr
,
570 &pages_collapsed_attr
.attr
,
571 &full_scans_attr
.attr
,
572 &scan_sleep_millisecs_attr
.attr
,
573 &alloc_sleep_millisecs_attr
.attr
,
577 static struct attribute_group khugepaged_attr_group
= {
578 .attrs
= khugepaged_attr
,
579 .name
= "khugepaged",
582 static int __init
hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
586 *hugepage_kobj
= kobject_create_and_add("transparent_hugepage", mm_kobj
);
587 if (unlikely(!*hugepage_kobj
)) {
588 pr_err("failed to create transparent hugepage kobject\n");
592 err
= sysfs_create_group(*hugepage_kobj
, &hugepage_attr_group
);
594 pr_err("failed to register transparent hugepage group\n");
598 err
= sysfs_create_group(*hugepage_kobj
, &khugepaged_attr_group
);
600 pr_err("failed to register transparent hugepage group\n");
601 goto remove_hp_group
;
607 sysfs_remove_group(*hugepage_kobj
, &hugepage_attr_group
);
609 kobject_put(*hugepage_kobj
);
613 static void __init
hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
615 sysfs_remove_group(hugepage_kobj
, &khugepaged_attr_group
);
616 sysfs_remove_group(hugepage_kobj
, &hugepage_attr_group
);
617 kobject_put(hugepage_kobj
);
620 static inline int hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
625 static inline void hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
628 #endif /* CONFIG_SYSFS */
630 static int __init
hugepage_init(void)
633 struct kobject
*hugepage_kobj
;
635 if (!has_transparent_hugepage()) {
636 transparent_hugepage_flags
= 0;
640 err
= hugepage_init_sysfs(&hugepage_kobj
);
644 err
= khugepaged_slab_init();
648 register_shrinker(&huge_zero_page_shrinker
);
651 * By default disable transparent hugepages on smaller systems,
652 * where the extra memory used could hurt more than TLB overhead
653 * is likely to save. The admin can still enable it through /sys.
655 if (totalram_pages
< (512 << (20 - PAGE_SHIFT
)))
656 transparent_hugepage_flags
= 0;
662 hugepage_exit_sysfs(hugepage_kobj
);
665 subsys_initcall(hugepage_init
);
667 static int __init
setup_transparent_hugepage(char *str
)
672 if (!strcmp(str
, "always")) {
673 set_bit(TRANSPARENT_HUGEPAGE_FLAG
,
674 &transparent_hugepage_flags
);
675 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
676 &transparent_hugepage_flags
);
678 } else if (!strcmp(str
, "madvise")) {
679 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
680 &transparent_hugepage_flags
);
681 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
682 &transparent_hugepage_flags
);
684 } else if (!strcmp(str
, "never")) {
685 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
686 &transparent_hugepage_flags
);
687 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
688 &transparent_hugepage_flags
);
693 pr_warn("transparent_hugepage= cannot parse, ignored\n");
696 __setup("transparent_hugepage=", setup_transparent_hugepage
);
698 pmd_t
maybe_pmd_mkwrite(pmd_t pmd
, struct vm_area_struct
*vma
)
700 if (likely(vma
->vm_flags
& VM_WRITE
))
701 pmd
= pmd_mkwrite(pmd
);
705 static inline pmd_t
mk_huge_pmd(struct page
*page
, pgprot_t prot
)
708 entry
= mk_pmd(page
, prot
);
709 entry
= pmd_mkhuge(entry
);
713 static int __do_huge_pmd_anonymous_page(struct mm_struct
*mm
,
714 struct vm_area_struct
*vma
,
715 unsigned long haddr
, pmd_t
*pmd
,
718 struct mem_cgroup
*memcg
;
722 VM_BUG_ON_PAGE(!PageCompound(page
), page
);
724 if (mem_cgroup_try_charge(page
, mm
, GFP_TRANSHUGE
, &memcg
))
727 pgtable
= pte_alloc_one(mm
, haddr
);
728 if (unlikely(!pgtable
)) {
729 mem_cgroup_cancel_charge(page
, memcg
);
733 clear_huge_page(page
, haddr
, HPAGE_PMD_NR
);
735 * The memory barrier inside __SetPageUptodate makes sure that
736 * clear_huge_page writes become visible before the set_pmd_at()
739 __SetPageUptodate(page
);
741 ptl
= pmd_lock(mm
, pmd
);
742 if (unlikely(!pmd_none(*pmd
))) {
744 mem_cgroup_cancel_charge(page
, memcg
);
746 pte_free(mm
, pgtable
);
749 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
750 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
751 page_add_new_anon_rmap(page
, vma
, haddr
);
752 mem_cgroup_commit_charge(page
, memcg
, false);
753 lru_cache_add_active_or_unevictable(page
, vma
);
754 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
755 set_pmd_at(mm
, haddr
, pmd
, entry
);
756 add_mm_counter(mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
757 atomic_long_inc(&mm
->nr_ptes
);
764 static inline gfp_t
alloc_hugepage_gfpmask(int defrag
, gfp_t extra_gfp
)
766 return (GFP_TRANSHUGE
& ~(defrag
? 0 : __GFP_WAIT
)) | extra_gfp
;
769 static inline struct page
*alloc_hugepage_vma(int defrag
,
770 struct vm_area_struct
*vma
,
771 unsigned long haddr
, int nd
,
774 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag
, extra_gfp
),
775 HPAGE_PMD_ORDER
, vma
, haddr
, nd
);
778 /* Caller must hold page table lock. */
779 static bool set_huge_zero_page(pgtable_t pgtable
, struct mm_struct
*mm
,
780 struct vm_area_struct
*vma
, unsigned long haddr
, pmd_t
*pmd
,
781 struct page
*zero_page
)
786 entry
= mk_pmd(zero_page
, vma
->vm_page_prot
);
787 entry
= pmd_mkhuge(entry
);
788 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
789 set_pmd_at(mm
, haddr
, pmd
, entry
);
790 atomic_long_inc(&mm
->nr_ptes
);
794 int do_huge_pmd_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
795 unsigned long address
, pmd_t
*pmd
,
799 unsigned long haddr
= address
& HPAGE_PMD_MASK
;
801 if (haddr
< vma
->vm_start
|| haddr
+ HPAGE_PMD_SIZE
> vma
->vm_end
)
802 return VM_FAULT_FALLBACK
;
803 if (unlikely(anon_vma_prepare(vma
)))
805 if (unlikely(khugepaged_enter(vma
, vma
->vm_flags
)))
807 if (!(flags
& FAULT_FLAG_WRITE
) && !mm_forbids_zeropage(mm
) &&
808 transparent_hugepage_use_zero_page()) {
811 struct page
*zero_page
;
813 pgtable
= pte_alloc_one(mm
, haddr
);
814 if (unlikely(!pgtable
))
816 zero_page
= get_huge_zero_page();
817 if (unlikely(!zero_page
)) {
818 pte_free(mm
, pgtable
);
819 count_vm_event(THP_FAULT_FALLBACK
);
820 return VM_FAULT_FALLBACK
;
822 ptl
= pmd_lock(mm
, pmd
);
823 set
= set_huge_zero_page(pgtable
, mm
, vma
, haddr
, pmd
,
827 pte_free(mm
, pgtable
);
828 put_huge_zero_page();
832 page
= alloc_hugepage_vma(transparent_hugepage_defrag(vma
),
833 vma
, haddr
, numa_node_id(), 0);
834 if (unlikely(!page
)) {
835 count_vm_event(THP_FAULT_FALLBACK
);
836 return VM_FAULT_FALLBACK
;
838 if (unlikely(__do_huge_pmd_anonymous_page(mm
, vma
, haddr
, pmd
, page
))) {
840 count_vm_event(THP_FAULT_FALLBACK
);
841 return VM_FAULT_FALLBACK
;
844 count_vm_event(THP_FAULT_ALLOC
);
848 int copy_huge_pmd(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
849 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, unsigned long addr
,
850 struct vm_area_struct
*vma
)
852 spinlock_t
*dst_ptl
, *src_ptl
;
853 struct page
*src_page
;
859 pgtable
= pte_alloc_one(dst_mm
, addr
);
860 if (unlikely(!pgtable
))
863 dst_ptl
= pmd_lock(dst_mm
, dst_pmd
);
864 src_ptl
= pmd_lockptr(src_mm
, src_pmd
);
865 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
869 if (unlikely(!pmd_trans_huge(pmd
))) {
870 pte_free(dst_mm
, pgtable
);
874 * When page table lock is held, the huge zero pmd should not be
875 * under splitting since we don't split the page itself, only pmd to
878 if (is_huge_zero_pmd(pmd
)) {
879 struct page
*zero_page
;
882 * get_huge_zero_page() will never allocate a new page here,
883 * since we already have a zero page to copy. It just takes a
886 zero_page
= get_huge_zero_page();
887 set
= set_huge_zero_page(pgtable
, dst_mm
, vma
, addr
, dst_pmd
,
889 BUG_ON(!set
); /* unexpected !pmd_none(dst_pmd) */
894 if (unlikely(pmd_trans_splitting(pmd
))) {
895 /* split huge page running from under us */
896 spin_unlock(src_ptl
);
897 spin_unlock(dst_ptl
);
898 pte_free(dst_mm
, pgtable
);
900 wait_split_huge_page(vma
->anon_vma
, src_pmd
); /* src_vma */
903 src_page
= pmd_page(pmd
);
904 VM_BUG_ON_PAGE(!PageHead(src_page
), src_page
);
906 page_dup_rmap(src_page
);
907 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
909 pmdp_set_wrprotect(src_mm
, addr
, src_pmd
);
910 pmd
= pmd_mkold(pmd_wrprotect(pmd
));
911 pgtable_trans_huge_deposit(dst_mm
, dst_pmd
, pgtable
);
912 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
913 atomic_long_inc(&dst_mm
->nr_ptes
);
917 spin_unlock(src_ptl
);
918 spin_unlock(dst_ptl
);
923 void huge_pmd_set_accessed(struct mm_struct
*mm
,
924 struct vm_area_struct
*vma
,
925 unsigned long address
,
926 pmd_t
*pmd
, pmd_t orig_pmd
,
933 ptl
= pmd_lock(mm
, pmd
);
934 if (unlikely(!pmd_same(*pmd
, orig_pmd
)))
937 entry
= pmd_mkyoung(orig_pmd
);
938 haddr
= address
& HPAGE_PMD_MASK
;
939 if (pmdp_set_access_flags(vma
, haddr
, pmd
, entry
, dirty
))
940 update_mmu_cache_pmd(vma
, address
, pmd
);
947 * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
948 * during copy_user_huge_page()'s copy_page_rep(): in the case when
949 * the source page gets split and a tail freed before copy completes.
950 * Called under pmd_lock of checked pmd, so safe from splitting itself.
952 static void get_user_huge_page(struct page
*page
)
954 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC
)) {
955 struct page
*endpage
= page
+ HPAGE_PMD_NR
;
957 atomic_add(HPAGE_PMD_NR
, &page
->_count
);
958 while (++page
< endpage
)
959 get_huge_page_tail(page
);
965 static void put_user_huge_page(struct page
*page
)
967 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC
)) {
968 struct page
*endpage
= page
+ HPAGE_PMD_NR
;
970 while (page
< endpage
)
977 static int do_huge_pmd_wp_page_fallback(struct mm_struct
*mm
,
978 struct vm_area_struct
*vma
,
979 unsigned long address
,
980 pmd_t
*pmd
, pmd_t orig_pmd
,
984 struct mem_cgroup
*memcg
;
990 unsigned long mmun_start
; /* For mmu_notifiers */
991 unsigned long mmun_end
; /* For mmu_notifiers */
993 pages
= kmalloc(sizeof(struct page
*) * HPAGE_PMD_NR
,
995 if (unlikely(!pages
)) {
1000 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1001 pages
[i
] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE
|
1003 vma
, address
, page_to_nid(page
));
1004 if (unlikely(!pages
[i
] ||
1005 mem_cgroup_try_charge(pages
[i
], mm
, GFP_KERNEL
,
1010 memcg
= (void *)page_private(pages
[i
]);
1011 set_page_private(pages
[i
], 0);
1012 mem_cgroup_cancel_charge(pages
[i
], memcg
);
1016 ret
|= VM_FAULT_OOM
;
1019 set_page_private(pages
[i
], (unsigned long)memcg
);
1022 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1023 copy_user_highpage(pages
[i
], page
+ i
,
1024 haddr
+ PAGE_SIZE
* i
, vma
);
1025 __SetPageUptodate(pages
[i
]);
1030 mmun_end
= haddr
+ HPAGE_PMD_SIZE
;
1031 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1033 ptl
= pmd_lock(mm
, pmd
);
1034 if (unlikely(!pmd_same(*pmd
, orig_pmd
)))
1035 goto out_free_pages
;
1036 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1038 pmdp_clear_flush_notify(vma
, haddr
, pmd
);
1039 /* leave pmd empty until pte is filled */
1041 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
1042 pmd_populate(mm
, &_pmd
, pgtable
);
1044 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
1046 entry
= mk_pte(pages
[i
], vma
->vm_page_prot
);
1047 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1048 memcg
= (void *)page_private(pages
[i
]);
1049 set_page_private(pages
[i
], 0);
1050 page_add_new_anon_rmap(pages
[i
], vma
, haddr
);
1051 mem_cgroup_commit_charge(pages
[i
], memcg
, false);
1052 lru_cache_add_active_or_unevictable(pages
[i
], vma
);
1053 pte
= pte_offset_map(&_pmd
, haddr
);
1054 VM_BUG_ON(!pte_none(*pte
));
1055 set_pte_at(mm
, haddr
, pte
, entry
);
1060 smp_wmb(); /* make pte visible before pmd */
1061 pmd_populate(mm
, pmd
, pgtable
);
1062 page_remove_rmap(page
);
1065 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1067 ret
|= VM_FAULT_WRITE
;
1075 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1076 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1077 memcg
= (void *)page_private(pages
[i
]);
1078 set_page_private(pages
[i
], 0);
1079 mem_cgroup_cancel_charge(pages
[i
], memcg
);
1086 int do_huge_pmd_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1087 unsigned long address
, pmd_t
*pmd
, pmd_t orig_pmd
)
1091 struct page
*page
= NULL
, *new_page
;
1092 struct mem_cgroup
*memcg
;
1093 unsigned long haddr
;
1094 unsigned long mmun_start
; /* For mmu_notifiers */
1095 unsigned long mmun_end
; /* For mmu_notifiers */
1097 ptl
= pmd_lockptr(mm
, pmd
);
1098 VM_BUG_ON_VMA(!vma
->anon_vma
, vma
);
1099 haddr
= address
& HPAGE_PMD_MASK
;
1100 if (is_huge_zero_pmd(orig_pmd
))
1103 if (unlikely(!pmd_same(*pmd
, orig_pmd
)))
1106 page
= pmd_page(orig_pmd
);
1107 VM_BUG_ON_PAGE(!PageCompound(page
) || !PageHead(page
), page
);
1108 if (page_mapcount(page
) == 1) {
1110 entry
= pmd_mkyoung(orig_pmd
);
1111 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1112 if (pmdp_set_access_flags(vma
, haddr
, pmd
, entry
, 1))
1113 update_mmu_cache_pmd(vma
, address
, pmd
);
1114 ret
|= VM_FAULT_WRITE
;
1117 get_user_huge_page(page
);
1120 if (transparent_hugepage_enabled(vma
) &&
1121 !transparent_hugepage_debug_cow())
1122 new_page
= alloc_hugepage_vma(transparent_hugepage_defrag(vma
),
1123 vma
, haddr
, numa_node_id(), 0);
1127 if (unlikely(!new_page
)) {
1129 split_huge_page_pmd(vma
, address
, pmd
);
1130 ret
|= VM_FAULT_FALLBACK
;
1132 ret
= do_huge_pmd_wp_page_fallback(mm
, vma
, address
,
1133 pmd
, orig_pmd
, page
, haddr
);
1134 if (ret
& VM_FAULT_OOM
) {
1135 split_huge_page(page
);
1136 ret
|= VM_FAULT_FALLBACK
;
1138 put_user_huge_page(page
);
1140 count_vm_event(THP_FAULT_FALLBACK
);
1144 if (unlikely(mem_cgroup_try_charge(new_page
, mm
,
1145 GFP_TRANSHUGE
, &memcg
))) {
1148 split_huge_page(page
);
1149 put_user_huge_page(page
);
1151 split_huge_page_pmd(vma
, address
, pmd
);
1152 ret
|= VM_FAULT_FALLBACK
;
1153 count_vm_event(THP_FAULT_FALLBACK
);
1157 count_vm_event(THP_FAULT_ALLOC
);
1160 clear_huge_page(new_page
, haddr
, HPAGE_PMD_NR
);
1162 copy_user_huge_page(new_page
, page
, haddr
, vma
, HPAGE_PMD_NR
);
1163 __SetPageUptodate(new_page
);
1166 mmun_end
= haddr
+ HPAGE_PMD_SIZE
;
1167 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1171 put_user_huge_page(page
);
1172 if (unlikely(!pmd_same(*pmd
, orig_pmd
))) {
1174 mem_cgroup_cancel_charge(new_page
, memcg
);
1179 entry
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
1180 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1181 pmdp_clear_flush_notify(vma
, haddr
, pmd
);
1182 page_add_new_anon_rmap(new_page
, vma
, haddr
);
1183 mem_cgroup_commit_charge(new_page
, memcg
, false);
1184 lru_cache_add_active_or_unevictable(new_page
, vma
);
1185 set_pmd_at(mm
, haddr
, pmd
, entry
);
1186 update_mmu_cache_pmd(vma
, address
, pmd
);
1188 add_mm_counter(mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
1189 put_huge_zero_page();
1191 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1192 page_remove_rmap(page
);
1195 ret
|= VM_FAULT_WRITE
;
1199 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1207 struct page
*follow_trans_huge_pmd(struct vm_area_struct
*vma
,
1212 struct mm_struct
*mm
= vma
->vm_mm
;
1213 struct page
*page
= NULL
;
1215 assert_spin_locked(pmd_lockptr(mm
, pmd
));
1217 if (flags
& FOLL_WRITE
&& !pmd_write(*pmd
))
1220 /* Avoid dumping huge zero page */
1221 if ((flags
& FOLL_DUMP
) && is_huge_zero_pmd(*pmd
))
1222 return ERR_PTR(-EFAULT
);
1224 /* Full NUMA hinting faults to serialise migration in fault paths */
1225 if ((flags
& FOLL_NUMA
) && pmd_numa(*pmd
))
1228 page
= pmd_page(*pmd
);
1229 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1230 if (flags
& FOLL_TOUCH
) {
1233 * We should set the dirty bit only for FOLL_WRITE but
1234 * for now the dirty bit in the pmd is meaningless.
1235 * And if the dirty bit will become meaningful and
1236 * we'll only set it with FOLL_WRITE, an atomic
1237 * set_bit will be required on the pmd to set the
1238 * young bit, instead of the current set_pmd_at.
1240 _pmd
= pmd_mkyoung(pmd_mkdirty(*pmd
));
1241 if (pmdp_set_access_flags(vma
, addr
& HPAGE_PMD_MASK
,
1243 update_mmu_cache_pmd(vma
, addr
, pmd
);
1245 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
1246 if (page
->mapping
&& trylock_page(page
)) {
1249 mlock_vma_page(page
);
1253 page
+= (addr
& ~HPAGE_PMD_MASK
) >> PAGE_SHIFT
;
1254 VM_BUG_ON_PAGE(!PageCompound(page
), page
);
1255 if (flags
& FOLL_GET
)
1256 get_page_foll(page
);
1262 /* NUMA hinting page fault entry point for trans huge pmds */
1263 int do_huge_pmd_numa_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1264 unsigned long addr
, pmd_t pmd
, pmd_t
*pmdp
)
1267 struct anon_vma
*anon_vma
= NULL
;
1269 unsigned long haddr
= addr
& HPAGE_PMD_MASK
;
1270 int page_nid
= -1, this_nid
= numa_node_id();
1271 int target_nid
, last_cpupid
= -1;
1273 bool migrated
= false;
1276 ptl
= pmd_lock(mm
, pmdp
);
1277 if (unlikely(!pmd_same(pmd
, *pmdp
)))
1281 * If there are potential migrations, wait for completion and retry
1282 * without disrupting NUMA hinting information. Do not relock and
1283 * check_same as the page may no longer be mapped.
1285 if (unlikely(pmd_trans_migrating(*pmdp
))) {
1287 wait_migrate_huge_page(vma
->anon_vma
, pmdp
);
1291 page
= pmd_page(pmd
);
1292 BUG_ON(is_huge_zero_page(page
));
1293 page_nid
= page_to_nid(page
);
1294 last_cpupid
= page_cpupid_last(page
);
1295 count_vm_numa_event(NUMA_HINT_FAULTS
);
1296 if (page_nid
== this_nid
) {
1297 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
1298 flags
|= TNF_FAULT_LOCAL
;
1302 * Avoid grouping on DSO/COW pages in specific and RO pages
1303 * in general, RO pages shouldn't hurt as much anyway since
1304 * they can be in shared cache state.
1306 if (!pmd_write(pmd
))
1307 flags
|= TNF_NO_GROUP
;
1310 * Acquire the page lock to serialise THP migrations but avoid dropping
1311 * page_table_lock if at all possible
1313 page_locked
= trylock_page(page
);
1314 target_nid
= mpol_misplaced(page
, vma
, haddr
);
1315 if (target_nid
== -1) {
1316 /* If the page was locked, there are no parallel migrations */
1321 /* Migration could have started since the pmd_trans_migrating check */
1324 wait_on_page_locked(page
);
1330 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1331 * to serialises splits
1335 anon_vma
= page_lock_anon_vma_read(page
);
1337 /* Confirm the PMD did not change while page_table_lock was released */
1339 if (unlikely(!pmd_same(pmd
, *pmdp
))) {
1346 /* Bail if we fail to protect against THP splits for any reason */
1347 if (unlikely(!anon_vma
)) {
1354 * Migrate the THP to the requested node, returns with page unlocked
1355 * and pmd_numa cleared.
1358 migrated
= migrate_misplaced_transhuge_page(mm
, vma
,
1359 pmdp
, pmd
, addr
, page
, target_nid
);
1361 flags
|= TNF_MIGRATED
;
1362 page_nid
= target_nid
;
1367 BUG_ON(!PageLocked(page
));
1368 pmd
= pmd_mknonnuma(pmd
);
1369 set_pmd_at(mm
, haddr
, pmdp
, pmd
);
1370 VM_BUG_ON(pmd_numa(*pmdp
));
1371 update_mmu_cache_pmd(vma
, addr
, pmdp
);
1378 page_unlock_anon_vma_read(anon_vma
);
1381 task_numa_fault(last_cpupid
, page_nid
, HPAGE_PMD_NR
, flags
);
1386 int zap_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1387 pmd_t
*pmd
, unsigned long addr
)
1392 if (__pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
1397 * For architectures like ppc64 we look at deposited pgtable
1398 * when calling pmdp_get_and_clear. So do the
1399 * pgtable_trans_huge_withdraw after finishing pmdp related
1402 orig_pmd
= pmdp_get_and_clear_full(tlb
->mm
, addr
, pmd
,
1404 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1405 pgtable
= pgtable_trans_huge_withdraw(tlb
->mm
, pmd
);
1406 if (is_huge_zero_pmd(orig_pmd
)) {
1407 atomic_long_dec(&tlb
->mm
->nr_ptes
);
1409 put_huge_zero_page();
1411 page
= pmd_page(orig_pmd
);
1412 page_remove_rmap(page
);
1413 VM_BUG_ON_PAGE(page_mapcount(page
) < 0, page
);
1414 add_mm_counter(tlb
->mm
, MM_ANONPAGES
, -HPAGE_PMD_NR
);
1415 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1416 atomic_long_dec(&tlb
->mm
->nr_ptes
);
1418 tlb_remove_page(tlb
, page
);
1420 pte_free(tlb
->mm
, pgtable
);
1426 int mincore_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1427 unsigned long addr
, unsigned long end
,
1433 if (__pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
1435 * All logical pages in the range are present
1436 * if backed by a huge page.
1439 memset(vec
, 1, (end
- addr
) >> PAGE_SHIFT
);
1446 int move_huge_pmd(struct vm_area_struct
*vma
, struct vm_area_struct
*new_vma
,
1447 unsigned long old_addr
,
1448 unsigned long new_addr
, unsigned long old_end
,
1449 pmd_t
*old_pmd
, pmd_t
*new_pmd
)
1451 spinlock_t
*old_ptl
, *new_ptl
;
1455 struct mm_struct
*mm
= vma
->vm_mm
;
1457 if ((old_addr
& ~HPAGE_PMD_MASK
) ||
1458 (new_addr
& ~HPAGE_PMD_MASK
) ||
1459 old_end
- old_addr
< HPAGE_PMD_SIZE
||
1460 (new_vma
->vm_flags
& VM_NOHUGEPAGE
))
1464 * The destination pmd shouldn't be established, free_pgtables()
1465 * should have release it.
1467 if (WARN_ON(!pmd_none(*new_pmd
))) {
1468 VM_BUG_ON(pmd_trans_huge(*new_pmd
));
1473 * We don't have to worry about the ordering of src and dst
1474 * ptlocks because exclusive mmap_sem prevents deadlock.
1476 ret
= __pmd_trans_huge_lock(old_pmd
, vma
, &old_ptl
);
1478 new_ptl
= pmd_lockptr(mm
, new_pmd
);
1479 if (new_ptl
!= old_ptl
)
1480 spin_lock_nested(new_ptl
, SINGLE_DEPTH_NESTING
);
1481 pmd
= pmdp_get_and_clear(mm
, old_addr
, old_pmd
);
1482 VM_BUG_ON(!pmd_none(*new_pmd
));
1484 if (pmd_move_must_withdraw(new_ptl
, old_ptl
)) {
1486 pgtable
= pgtable_trans_huge_withdraw(mm
, old_pmd
);
1487 pgtable_trans_huge_deposit(mm
, new_pmd
, pgtable
);
1489 set_pmd_at(mm
, new_addr
, new_pmd
, pmd_mksoft_dirty(pmd
));
1490 if (new_ptl
!= old_ptl
)
1491 spin_unlock(new_ptl
);
1492 spin_unlock(old_ptl
);
1500 * - 0 if PMD could not be locked
1501 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1502 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1504 int change_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1505 unsigned long addr
, pgprot_t newprot
, int prot_numa
)
1507 struct mm_struct
*mm
= vma
->vm_mm
;
1511 if (__pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
1515 entry
= pmdp_get_and_clear_notify(mm
, addr
, pmd
);
1516 if (pmd_numa(entry
))
1517 entry
= pmd_mknonnuma(entry
);
1518 entry
= pmd_modify(entry
, newprot
);
1520 set_pmd_at(mm
, addr
, pmd
, entry
);
1521 BUG_ON(pmd_write(entry
));
1523 struct page
*page
= pmd_page(*pmd
);
1526 * Do not trap faults against the zero page. The
1527 * read-only data is likely to be read-cached on the
1528 * local CPU cache and it is less useful to know about
1529 * local vs remote hits on the zero page.
1531 if (!is_huge_zero_page(page
) &&
1533 pmdp_set_numa(mm
, addr
, pmd
);
1544 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1545 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1547 * Note that if it returns 1, this routine returns without unlocking page
1548 * table locks. So callers must unlock them.
1550 int __pmd_trans_huge_lock(pmd_t
*pmd
, struct vm_area_struct
*vma
,
1553 *ptl
= pmd_lock(vma
->vm_mm
, pmd
);
1554 if (likely(pmd_trans_huge(*pmd
))) {
1555 if (unlikely(pmd_trans_splitting(*pmd
))) {
1557 wait_split_huge_page(vma
->anon_vma
, pmd
);
1560 /* Thp mapped by 'pmd' is stable, so we can
1561 * handle it as it is. */
1570 * This function returns whether a given @page is mapped onto the @address
1571 * in the virtual space of @mm.
1573 * When it's true, this function returns *pmd with holding the page table lock
1574 * and passing it back to the caller via @ptl.
1575 * If it's false, returns NULL without holding the page table lock.
1577 pmd_t
*page_check_address_pmd(struct page
*page
,
1578 struct mm_struct
*mm
,
1579 unsigned long address
,
1580 enum page_check_address_pmd_flag flag
,
1587 if (address
& ~HPAGE_PMD_MASK
)
1590 pgd
= pgd_offset(mm
, address
);
1591 if (!pgd_present(*pgd
))
1593 pud
= pud_offset(pgd
, address
);
1594 if (!pud_present(*pud
))
1596 pmd
= pmd_offset(pud
, address
);
1598 *ptl
= pmd_lock(mm
, pmd
);
1599 if (!pmd_present(*pmd
))
1601 if (pmd_page(*pmd
) != page
)
1604 * split_vma() may create temporary aliased mappings. There is
1605 * no risk as long as all huge pmd are found and have their
1606 * splitting bit set before __split_huge_page_refcount
1607 * runs. Finding the same huge pmd more than once during the
1608 * same rmap walk is not a problem.
1610 if (flag
== PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG
&&
1611 pmd_trans_splitting(*pmd
))
1613 if (pmd_trans_huge(*pmd
)) {
1614 VM_BUG_ON(flag
== PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG
&&
1615 !pmd_trans_splitting(*pmd
));
1623 static int __split_huge_page_splitting(struct page
*page
,
1624 struct vm_area_struct
*vma
,
1625 unsigned long address
)
1627 struct mm_struct
*mm
= vma
->vm_mm
;
1631 /* For mmu_notifiers */
1632 const unsigned long mmun_start
= address
;
1633 const unsigned long mmun_end
= address
+ HPAGE_PMD_SIZE
;
1635 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1636 pmd
= page_check_address_pmd(page
, mm
, address
,
1637 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG
, &ptl
);
1640 * We can't temporarily set the pmd to null in order
1641 * to split it, the pmd must remain marked huge at all
1642 * times or the VM won't take the pmd_trans_huge paths
1643 * and it won't wait on the anon_vma->root->rwsem to
1644 * serialize against split_huge_page*.
1646 pmdp_splitting_flush(vma
, address
, pmd
);
1651 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1656 static void __split_huge_page_refcount(struct page
*page
,
1657 struct list_head
*list
)
1660 struct zone
*zone
= page_zone(page
);
1661 struct lruvec
*lruvec
;
1664 /* prevent PageLRU to go away from under us, and freeze lru stats */
1665 spin_lock_irq(&zone
->lru_lock
);
1666 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
1668 compound_lock(page
);
1669 /* complete memcg works before add pages to LRU */
1670 mem_cgroup_split_huge_fixup(page
);
1672 for (i
= HPAGE_PMD_NR
- 1; i
>= 1; i
--) {
1673 struct page
*page_tail
= page
+ i
;
1675 /* tail_page->_mapcount cannot change */
1676 BUG_ON(page_mapcount(page_tail
) < 0);
1677 tail_count
+= page_mapcount(page_tail
);
1678 /* check for overflow */
1679 BUG_ON(tail_count
< 0);
1680 BUG_ON(atomic_read(&page_tail
->_count
) != 0);
1682 * tail_page->_count is zero and not changing from
1683 * under us. But get_page_unless_zero() may be running
1684 * from under us on the tail_page. If we used
1685 * atomic_set() below instead of atomic_add(), we
1686 * would then run atomic_set() concurrently with
1687 * get_page_unless_zero(), and atomic_set() is
1688 * implemented in C not using locked ops. spin_unlock
1689 * on x86 sometime uses locked ops because of PPro
1690 * errata 66, 92, so unless somebody can guarantee
1691 * atomic_set() here would be safe on all archs (and
1692 * not only on x86), it's safer to use atomic_add().
1694 atomic_add(page_mapcount(page
) + page_mapcount(page_tail
) + 1,
1695 &page_tail
->_count
);
1697 /* after clearing PageTail the gup refcount can be released */
1698 smp_mb__after_atomic();
1701 * retain hwpoison flag of the poisoned tail page:
1702 * fix for the unsuitable process killed on Guest Machine(KVM)
1703 * by the memory-failure.
1705 page_tail
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
| __PG_HWPOISON
;
1706 page_tail
->flags
|= (page
->flags
&
1707 ((1L << PG_referenced
) |
1708 (1L << PG_swapbacked
) |
1709 (1L << PG_mlocked
) |
1710 (1L << PG_uptodate
) |
1712 (1L << PG_unevictable
)));
1713 page_tail
->flags
|= (1L << PG_dirty
);
1715 /* clear PageTail before overwriting first_page */
1719 * __split_huge_page_splitting() already set the
1720 * splitting bit in all pmd that could map this
1721 * hugepage, that will ensure no CPU can alter the
1722 * mapcount on the head page. The mapcount is only
1723 * accounted in the head page and it has to be
1724 * transferred to all tail pages in the below code. So
1725 * for this code to be safe, the split the mapcount
1726 * can't change. But that doesn't mean userland can't
1727 * keep changing and reading the page contents while
1728 * we transfer the mapcount, so the pmd splitting
1729 * status is achieved setting a reserved bit in the
1730 * pmd, not by clearing the present bit.
1732 page_tail
->_mapcount
= page
->_mapcount
;
1734 BUG_ON(page_tail
->mapping
);
1735 page_tail
->mapping
= page
->mapping
;
1737 page_tail
->index
= page
->index
+ i
;
1738 page_cpupid_xchg_last(page_tail
, page_cpupid_last(page
));
1740 BUG_ON(!PageAnon(page_tail
));
1741 BUG_ON(!PageUptodate(page_tail
));
1742 BUG_ON(!PageDirty(page_tail
));
1743 BUG_ON(!PageSwapBacked(page_tail
));
1745 lru_add_page_tail(page
, page_tail
, lruvec
, list
);
1747 atomic_sub(tail_count
, &page
->_count
);
1748 BUG_ON(atomic_read(&page
->_count
) <= 0);
1750 __mod_zone_page_state(zone
, NR_ANON_TRANSPARENT_HUGEPAGES
, -1);
1752 ClearPageCompound(page
);
1753 compound_unlock(page
);
1754 spin_unlock_irq(&zone
->lru_lock
);
1756 for (i
= 1; i
< HPAGE_PMD_NR
; i
++) {
1757 struct page
*page_tail
= page
+ i
;
1758 BUG_ON(page_count(page_tail
) <= 0);
1760 * Tail pages may be freed if there wasn't any mapping
1761 * like if add_to_swap() is running on a lru page that
1762 * had its mapping zapped. And freeing these pages
1763 * requires taking the lru_lock so we do the put_page
1764 * of the tail pages after the split is complete.
1766 put_page(page_tail
);
1770 * Only the head page (now become a regular page) is required
1771 * to be pinned by the caller.
1773 BUG_ON(page_count(page
) <= 0);
1776 static int __split_huge_page_map(struct page
*page
,
1777 struct vm_area_struct
*vma
,
1778 unsigned long address
)
1780 struct mm_struct
*mm
= vma
->vm_mm
;
1785 unsigned long haddr
;
1787 pmd
= page_check_address_pmd(page
, mm
, address
,
1788 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG
, &ptl
);
1790 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
1791 pmd_populate(mm
, &_pmd
, pgtable
);
1792 if (pmd_write(*pmd
))
1793 BUG_ON(page_mapcount(page
) != 1);
1796 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
1798 BUG_ON(PageCompound(page
+i
));
1800 * Note that pmd_numa is not transferred deliberately
1801 * to avoid any possibility that pte_numa leaks to
1802 * a PROT_NONE VMA by accident.
1804 entry
= mk_pte(page
+ i
, vma
->vm_page_prot
);
1805 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1806 if (!pmd_write(*pmd
))
1807 entry
= pte_wrprotect(entry
);
1808 if (!pmd_young(*pmd
))
1809 entry
= pte_mkold(entry
);
1810 pte
= pte_offset_map(&_pmd
, haddr
);
1811 BUG_ON(!pte_none(*pte
));
1812 set_pte_at(mm
, haddr
, pte
, entry
);
1816 smp_wmb(); /* make pte visible before pmd */
1818 * Up to this point the pmd is present and huge and
1819 * userland has the whole access to the hugepage
1820 * during the split (which happens in place). If we
1821 * overwrite the pmd with the not-huge version
1822 * pointing to the pte here (which of course we could
1823 * if all CPUs were bug free), userland could trigger
1824 * a small page size TLB miss on the small sized TLB
1825 * while the hugepage TLB entry is still established
1826 * in the huge TLB. Some CPU doesn't like that. See
1827 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1828 * Erratum 383 on page 93. Intel should be safe but is
1829 * also warns that it's only safe if the permission
1830 * and cache attributes of the two entries loaded in
1831 * the two TLB is identical (which should be the case
1832 * here). But it is generally safer to never allow
1833 * small and huge TLB entries for the same virtual
1834 * address to be loaded simultaneously. So instead of
1835 * doing "pmd_populate(); flush_tlb_range();" we first
1836 * mark the current pmd notpresent (atomically because
1837 * here the pmd_trans_huge and pmd_trans_splitting
1838 * must remain set at all times on the pmd until the
1839 * split is complete for this pmd), then we flush the
1840 * SMP TLB and finally we write the non-huge version
1841 * of the pmd entry with pmd_populate.
1843 pmdp_invalidate(vma
, address
, pmd
);
1844 pmd_populate(mm
, pmd
, pgtable
);
1852 /* must be called with anon_vma->root->rwsem held */
1853 static void __split_huge_page(struct page
*page
,
1854 struct anon_vma
*anon_vma
,
1855 struct list_head
*list
)
1857 int mapcount
, mapcount2
;
1858 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1859 struct anon_vma_chain
*avc
;
1861 BUG_ON(!PageHead(page
));
1862 BUG_ON(PageTail(page
));
1865 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
1866 struct vm_area_struct
*vma
= avc
->vma
;
1867 unsigned long addr
= vma_address(page
, vma
);
1868 BUG_ON(is_vma_temporary_stack(vma
));
1869 mapcount
+= __split_huge_page_splitting(page
, vma
, addr
);
1872 * It is critical that new vmas are added to the tail of the
1873 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1874 * and establishes a child pmd before
1875 * __split_huge_page_splitting() freezes the parent pmd (so if
1876 * we fail to prevent copy_huge_pmd() from running until the
1877 * whole __split_huge_page() is complete), we will still see
1878 * the newly established pmd of the child later during the
1879 * walk, to be able to set it as pmd_trans_splitting too.
1881 if (mapcount
!= page_mapcount(page
)) {
1882 pr_err("mapcount %d page_mapcount %d\n",
1883 mapcount
, page_mapcount(page
));
1887 __split_huge_page_refcount(page
, list
);
1890 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
1891 struct vm_area_struct
*vma
= avc
->vma
;
1892 unsigned long addr
= vma_address(page
, vma
);
1893 BUG_ON(is_vma_temporary_stack(vma
));
1894 mapcount2
+= __split_huge_page_map(page
, vma
, addr
);
1896 if (mapcount
!= mapcount2
) {
1897 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1898 mapcount
, mapcount2
, page_mapcount(page
));
1904 * Split a hugepage into normal pages. This doesn't change the position of head
1905 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1906 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1907 * from the hugepage.
1908 * Return 0 if the hugepage is split successfully otherwise return 1.
1910 int split_huge_page_to_list(struct page
*page
, struct list_head
*list
)
1912 struct anon_vma
*anon_vma
;
1915 BUG_ON(is_huge_zero_page(page
));
1916 BUG_ON(!PageAnon(page
));
1919 * The caller does not necessarily hold an mmap_sem that would prevent
1920 * the anon_vma disappearing so we first we take a reference to it
1921 * and then lock the anon_vma for write. This is similar to
1922 * page_lock_anon_vma_read except the write lock is taken to serialise
1923 * against parallel split or collapse operations.
1925 anon_vma
= page_get_anon_vma(page
);
1928 anon_vma_lock_write(anon_vma
);
1931 if (!PageCompound(page
))
1934 BUG_ON(!PageSwapBacked(page
));
1935 __split_huge_page(page
, anon_vma
, list
);
1936 count_vm_event(THP_SPLIT
);
1938 BUG_ON(PageCompound(page
));
1940 anon_vma_unlock_write(anon_vma
);
1941 put_anon_vma(anon_vma
);
1946 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1948 int hugepage_madvise(struct vm_area_struct
*vma
,
1949 unsigned long *vm_flags
, int advice
)
1955 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1956 * can't handle this properly after s390_enable_sie, so we simply
1957 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1959 if (mm_has_pgste(vma
->vm_mm
))
1963 * Be somewhat over-protective like KSM for now!
1965 if (*vm_flags
& (VM_HUGEPAGE
| VM_NO_THP
))
1967 *vm_flags
&= ~VM_NOHUGEPAGE
;
1968 *vm_flags
|= VM_HUGEPAGE
;
1970 * If the vma become good for khugepaged to scan,
1971 * register it here without waiting a page fault that
1972 * may not happen any time soon.
1974 if (unlikely(khugepaged_enter_vma_merge(vma
, *vm_flags
)))
1977 case MADV_NOHUGEPAGE
:
1979 * Be somewhat over-protective like KSM for now!
1981 if (*vm_flags
& (VM_NOHUGEPAGE
| VM_NO_THP
))
1983 *vm_flags
&= ~VM_HUGEPAGE
;
1984 *vm_flags
|= VM_NOHUGEPAGE
;
1986 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1987 * this vma even if we leave the mm registered in khugepaged if
1988 * it got registered before VM_NOHUGEPAGE was set.
1996 static int __init
khugepaged_slab_init(void)
1998 mm_slot_cache
= kmem_cache_create("khugepaged_mm_slot",
1999 sizeof(struct mm_slot
),
2000 __alignof__(struct mm_slot
), 0, NULL
);
2007 static inline struct mm_slot
*alloc_mm_slot(void)
2009 if (!mm_slot_cache
) /* initialization failed */
2011 return kmem_cache_zalloc(mm_slot_cache
, GFP_KERNEL
);
2014 static inline void free_mm_slot(struct mm_slot
*mm_slot
)
2016 kmem_cache_free(mm_slot_cache
, mm_slot
);
2019 static struct mm_slot
*get_mm_slot(struct mm_struct
*mm
)
2021 struct mm_slot
*mm_slot
;
2023 hash_for_each_possible(mm_slots_hash
, mm_slot
, hash
, (unsigned long)mm
)
2024 if (mm
== mm_slot
->mm
)
2030 static void insert_to_mm_slots_hash(struct mm_struct
*mm
,
2031 struct mm_slot
*mm_slot
)
2034 hash_add(mm_slots_hash
, &mm_slot
->hash
, (long)mm
);
2037 static inline int khugepaged_test_exit(struct mm_struct
*mm
)
2039 return atomic_read(&mm
->mm_users
) == 0;
2042 int __khugepaged_enter(struct mm_struct
*mm
)
2044 struct mm_slot
*mm_slot
;
2047 mm_slot
= alloc_mm_slot();
2051 /* __khugepaged_exit() must not run from under us */
2052 VM_BUG_ON_MM(khugepaged_test_exit(mm
), mm
);
2053 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE
, &mm
->flags
))) {
2054 free_mm_slot(mm_slot
);
2058 spin_lock(&khugepaged_mm_lock
);
2059 insert_to_mm_slots_hash(mm
, mm_slot
);
2061 * Insert just behind the scanning cursor, to let the area settle
2064 wakeup
= list_empty(&khugepaged_scan
.mm_head
);
2065 list_add_tail(&mm_slot
->mm_node
, &khugepaged_scan
.mm_head
);
2066 spin_unlock(&khugepaged_mm_lock
);
2068 atomic_inc(&mm
->mm_count
);
2070 wake_up_interruptible(&khugepaged_wait
);
2075 int khugepaged_enter_vma_merge(struct vm_area_struct
*vma
,
2076 unsigned long vm_flags
)
2078 unsigned long hstart
, hend
;
2081 * Not yet faulted in so we will register later in the
2082 * page fault if needed.
2086 /* khugepaged not yet working on file or special mappings */
2088 VM_BUG_ON_VMA(vm_flags
& VM_NO_THP
, vma
);
2089 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
2090 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
2092 return khugepaged_enter(vma
, vm_flags
);
2096 void __khugepaged_exit(struct mm_struct
*mm
)
2098 struct mm_slot
*mm_slot
;
2101 spin_lock(&khugepaged_mm_lock
);
2102 mm_slot
= get_mm_slot(mm
);
2103 if (mm_slot
&& khugepaged_scan
.mm_slot
!= mm_slot
) {
2104 hash_del(&mm_slot
->hash
);
2105 list_del(&mm_slot
->mm_node
);
2108 spin_unlock(&khugepaged_mm_lock
);
2111 clear_bit(MMF_VM_HUGEPAGE
, &mm
->flags
);
2112 free_mm_slot(mm_slot
);
2114 } else if (mm_slot
) {
2116 * This is required to serialize against
2117 * khugepaged_test_exit() (which is guaranteed to run
2118 * under mmap sem read mode). Stop here (after we
2119 * return all pagetables will be destroyed) until
2120 * khugepaged has finished working on the pagetables
2121 * under the mmap_sem.
2123 down_write(&mm
->mmap_sem
);
2124 up_write(&mm
->mmap_sem
);
2128 static void release_pte_page(struct page
*page
)
2130 /* 0 stands for page_is_file_cache(page) == false */
2131 dec_zone_page_state(page
, NR_ISOLATED_ANON
+ 0);
2133 putback_lru_page(page
);
2136 static void release_pte_pages(pte_t
*pte
, pte_t
*_pte
)
2138 while (--_pte
>= pte
) {
2139 pte_t pteval
= *_pte
;
2140 if (!pte_none(pteval
))
2141 release_pte_page(pte_page(pteval
));
2145 static int __collapse_huge_page_isolate(struct vm_area_struct
*vma
,
2146 unsigned long address
,
2151 int referenced
= 0, none
= 0;
2152 for (_pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
2153 _pte
++, address
+= PAGE_SIZE
) {
2154 pte_t pteval
= *_pte
;
2155 if (pte_none(pteval
)) {
2156 if (++none
<= khugepaged_max_ptes_none
)
2161 if (!pte_present(pteval
) || !pte_write(pteval
))
2163 page
= vm_normal_page(vma
, address
, pteval
);
2164 if (unlikely(!page
))
2167 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2168 VM_BUG_ON_PAGE(!PageAnon(page
), page
);
2169 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
2171 /* cannot use mapcount: can't collapse if there's a gup pin */
2172 if (page_count(page
) != 1)
2175 * We can do it before isolate_lru_page because the
2176 * page can't be freed from under us. NOTE: PG_lock
2177 * is needed to serialize against split_huge_page
2178 * when invoked from the VM.
2180 if (!trylock_page(page
))
2183 * Isolate the page to avoid collapsing an hugepage
2184 * currently in use by the VM.
2186 if (isolate_lru_page(page
)) {
2190 /* 0 stands for page_is_file_cache(page) == false */
2191 inc_zone_page_state(page
, NR_ISOLATED_ANON
+ 0);
2192 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2193 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2195 /* If there is no mapped pte young don't collapse the page */
2196 if (pte_young(pteval
) || PageReferenced(page
) ||
2197 mmu_notifier_test_young(vma
->vm_mm
, address
))
2200 if (likely(referenced
))
2203 release_pte_pages(pte
, _pte
);
2207 static void __collapse_huge_page_copy(pte_t
*pte
, struct page
*page
,
2208 struct vm_area_struct
*vma
,
2209 unsigned long address
,
2213 for (_pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
; _pte
++) {
2214 pte_t pteval
= *_pte
;
2215 struct page
*src_page
;
2217 if (pte_none(pteval
)) {
2218 clear_user_highpage(page
, address
);
2219 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, 1);
2221 src_page
= pte_page(pteval
);
2222 copy_user_highpage(page
, src_page
, address
, vma
);
2223 VM_BUG_ON_PAGE(page_mapcount(src_page
) != 1, src_page
);
2224 release_pte_page(src_page
);
2226 * ptl mostly unnecessary, but preempt has to
2227 * be disabled to update the per-cpu stats
2228 * inside page_remove_rmap().
2232 * paravirt calls inside pte_clear here are
2235 pte_clear(vma
->vm_mm
, address
, _pte
);
2236 page_remove_rmap(src_page
);
2238 free_page_and_swap_cache(src_page
);
2241 address
+= PAGE_SIZE
;
2246 static void khugepaged_alloc_sleep(void)
2248 wait_event_freezable_timeout(khugepaged_wait
, false,
2249 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs
));
2252 static int khugepaged_node_load
[MAX_NUMNODES
];
2254 static bool khugepaged_scan_abort(int nid
)
2259 * If zone_reclaim_mode is disabled, then no extra effort is made to
2260 * allocate memory locally.
2262 if (!zone_reclaim_mode
)
2265 /* If there is a count for this node already, it must be acceptable */
2266 if (khugepaged_node_load
[nid
])
2269 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
2270 if (!khugepaged_node_load
[i
])
2272 if (node_distance(nid
, i
) > RECLAIM_DISTANCE
)
2279 static int khugepaged_find_target_node(void)
2281 static int last_khugepaged_target_node
= NUMA_NO_NODE
;
2282 int nid
, target_node
= 0, max_value
= 0;
2284 /* find first node with max normal pages hit */
2285 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
2286 if (khugepaged_node_load
[nid
] > max_value
) {
2287 max_value
= khugepaged_node_load
[nid
];
2291 /* do some balance if several nodes have the same hit record */
2292 if (target_node
<= last_khugepaged_target_node
)
2293 for (nid
= last_khugepaged_target_node
+ 1; nid
< MAX_NUMNODES
;
2295 if (max_value
== khugepaged_node_load
[nid
]) {
2300 last_khugepaged_target_node
= target_node
;
2304 static bool khugepaged_prealloc_page(struct page
**hpage
, bool *wait
)
2306 if (IS_ERR(*hpage
)) {
2312 khugepaged_alloc_sleep();
2313 } else if (*hpage
) {
2322 *khugepaged_alloc_page(struct page
**hpage
, struct mm_struct
*mm
,
2323 struct vm_area_struct
*vma
, unsigned long address
,
2326 VM_BUG_ON_PAGE(*hpage
, *hpage
);
2329 * Before allocating the hugepage, release the mmap_sem read lock.
2330 * The allocation can take potentially a long time if it involves
2331 * sync compaction, and we do not need to hold the mmap_sem during
2332 * that. We will recheck the vma after taking it again in write mode.
2334 up_read(&mm
->mmap_sem
);
2336 *hpage
= alloc_pages_exact_node(node
, alloc_hugepage_gfpmask(
2337 khugepaged_defrag(), __GFP_OTHER_NODE
), HPAGE_PMD_ORDER
);
2338 if (unlikely(!*hpage
)) {
2339 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
2340 *hpage
= ERR_PTR(-ENOMEM
);
2344 count_vm_event(THP_COLLAPSE_ALLOC
);
2348 static int khugepaged_find_target_node(void)
2353 static inline struct page
*alloc_hugepage(int defrag
)
2355 return alloc_pages(alloc_hugepage_gfpmask(defrag
, 0),
2359 static struct page
*khugepaged_alloc_hugepage(bool *wait
)
2364 hpage
= alloc_hugepage(khugepaged_defrag());
2366 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
2371 khugepaged_alloc_sleep();
2373 count_vm_event(THP_COLLAPSE_ALLOC
);
2374 } while (unlikely(!hpage
) && likely(khugepaged_enabled()));
2379 static bool khugepaged_prealloc_page(struct page
**hpage
, bool *wait
)
2382 *hpage
= khugepaged_alloc_hugepage(wait
);
2384 if (unlikely(!*hpage
))
2391 *khugepaged_alloc_page(struct page
**hpage
, struct mm_struct
*mm
,
2392 struct vm_area_struct
*vma
, unsigned long address
,
2395 up_read(&mm
->mmap_sem
);
2401 static bool hugepage_vma_check(struct vm_area_struct
*vma
)
2403 if ((!(vma
->vm_flags
& VM_HUGEPAGE
) && !khugepaged_always()) ||
2404 (vma
->vm_flags
& VM_NOHUGEPAGE
))
2407 if (!vma
->anon_vma
|| vma
->vm_ops
)
2409 if (is_vma_temporary_stack(vma
))
2411 VM_BUG_ON_VMA(vma
->vm_flags
& VM_NO_THP
, vma
);
2415 static void collapse_huge_page(struct mm_struct
*mm
,
2416 unsigned long address
,
2417 struct page
**hpage
,
2418 struct vm_area_struct
*vma
,
2424 struct page
*new_page
;
2425 spinlock_t
*pmd_ptl
, *pte_ptl
;
2427 unsigned long hstart
, hend
;
2428 struct mem_cgroup
*memcg
;
2429 unsigned long mmun_start
; /* For mmu_notifiers */
2430 unsigned long mmun_end
; /* For mmu_notifiers */
2432 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
2434 /* release the mmap_sem read lock. */
2435 new_page
= khugepaged_alloc_page(hpage
, mm
, vma
, address
, node
);
2439 if (unlikely(mem_cgroup_try_charge(new_page
, mm
,
2440 GFP_TRANSHUGE
, &memcg
)))
2444 * Prevent all access to pagetables with the exception of
2445 * gup_fast later hanlded by the ptep_clear_flush and the VM
2446 * handled by the anon_vma lock + PG_lock.
2448 down_write(&mm
->mmap_sem
);
2449 if (unlikely(khugepaged_test_exit(mm
)))
2452 vma
= find_vma(mm
, address
);
2455 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
2456 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
2457 if (address
< hstart
|| address
+ HPAGE_PMD_SIZE
> hend
)
2459 if (!hugepage_vma_check(vma
))
2461 pmd
= mm_find_pmd(mm
, address
);
2465 anon_vma_lock_write(vma
->anon_vma
);
2467 pte
= pte_offset_map(pmd
, address
);
2468 pte_ptl
= pte_lockptr(mm
, pmd
);
2470 mmun_start
= address
;
2471 mmun_end
= address
+ HPAGE_PMD_SIZE
;
2472 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2473 pmd_ptl
= pmd_lock(mm
, pmd
); /* probably unnecessary */
2475 * After this gup_fast can't run anymore. This also removes
2476 * any huge TLB entry from the CPU so we won't allow
2477 * huge and small TLB entries for the same virtual address
2478 * to avoid the risk of CPU bugs in that area.
2480 _pmd
= pmdp_clear_flush(vma
, address
, pmd
);
2481 spin_unlock(pmd_ptl
);
2482 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2485 isolated
= __collapse_huge_page_isolate(vma
, address
, pte
);
2486 spin_unlock(pte_ptl
);
2488 if (unlikely(!isolated
)) {
2491 BUG_ON(!pmd_none(*pmd
));
2493 * We can only use set_pmd_at when establishing
2494 * hugepmds and never for establishing regular pmds that
2495 * points to regular pagetables. Use pmd_populate for that
2497 pmd_populate(mm
, pmd
, pmd_pgtable(_pmd
));
2498 spin_unlock(pmd_ptl
);
2499 anon_vma_unlock_write(vma
->anon_vma
);
2504 * All pages are isolated and locked so anon_vma rmap
2505 * can't run anymore.
2507 anon_vma_unlock_write(vma
->anon_vma
);
2509 __collapse_huge_page_copy(pte
, new_page
, vma
, address
, pte_ptl
);
2511 __SetPageUptodate(new_page
);
2512 pgtable
= pmd_pgtable(_pmd
);
2514 _pmd
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
2515 _pmd
= maybe_pmd_mkwrite(pmd_mkdirty(_pmd
), vma
);
2518 * spin_lock() below is not the equivalent of smp_wmb(), so
2519 * this is needed to avoid the copy_huge_page writes to become
2520 * visible after the set_pmd_at() write.
2525 BUG_ON(!pmd_none(*pmd
));
2526 page_add_new_anon_rmap(new_page
, vma
, address
);
2527 mem_cgroup_commit_charge(new_page
, memcg
, false);
2528 lru_cache_add_active_or_unevictable(new_page
, vma
);
2529 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
2530 set_pmd_at(mm
, address
, pmd
, _pmd
);
2531 update_mmu_cache_pmd(vma
, address
, pmd
);
2532 spin_unlock(pmd_ptl
);
2536 khugepaged_pages_collapsed
++;
2538 up_write(&mm
->mmap_sem
);
2542 mem_cgroup_cancel_charge(new_page
, memcg
);
2546 static int khugepaged_scan_pmd(struct mm_struct
*mm
,
2547 struct vm_area_struct
*vma
,
2548 unsigned long address
,
2549 struct page
**hpage
)
2553 int ret
= 0, referenced
= 0, none
= 0;
2555 unsigned long _address
;
2557 int node
= NUMA_NO_NODE
;
2559 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
2561 pmd
= mm_find_pmd(mm
, address
);
2565 memset(khugepaged_node_load
, 0, sizeof(khugepaged_node_load
));
2566 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2567 for (_address
= address
, _pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
2568 _pte
++, _address
+= PAGE_SIZE
) {
2569 pte_t pteval
= *_pte
;
2570 if (pte_none(pteval
)) {
2571 if (++none
<= khugepaged_max_ptes_none
)
2576 if (!pte_present(pteval
) || !pte_write(pteval
))
2578 page
= vm_normal_page(vma
, _address
, pteval
);
2579 if (unlikely(!page
))
2582 * Record which node the original page is from and save this
2583 * information to khugepaged_node_load[].
2584 * Khupaged will allocate hugepage from the node has the max
2587 node
= page_to_nid(page
);
2588 if (khugepaged_scan_abort(node
))
2590 khugepaged_node_load
[node
]++;
2591 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2592 if (!PageLRU(page
) || PageLocked(page
) || !PageAnon(page
))
2594 /* cannot use mapcount: can't collapse if there's a gup pin */
2595 if (page_count(page
) != 1)
2597 if (pte_young(pteval
) || PageReferenced(page
) ||
2598 mmu_notifier_test_young(vma
->vm_mm
, address
))
2604 pte_unmap_unlock(pte
, ptl
);
2606 node
= khugepaged_find_target_node();
2607 /* collapse_huge_page will return with the mmap_sem released */
2608 collapse_huge_page(mm
, address
, hpage
, vma
, node
);
2614 static void collect_mm_slot(struct mm_slot
*mm_slot
)
2616 struct mm_struct
*mm
= mm_slot
->mm
;
2618 VM_BUG_ON(NR_CPUS
!= 1 && !spin_is_locked(&khugepaged_mm_lock
));
2620 if (khugepaged_test_exit(mm
)) {
2622 hash_del(&mm_slot
->hash
);
2623 list_del(&mm_slot
->mm_node
);
2626 * Not strictly needed because the mm exited already.
2628 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2631 /* khugepaged_mm_lock actually not necessary for the below */
2632 free_mm_slot(mm_slot
);
2637 static unsigned int khugepaged_scan_mm_slot(unsigned int pages
,
2638 struct page
**hpage
)
2639 __releases(&khugepaged_mm_lock
)
2640 __acquires(&khugepaged_mm_lock
)
2642 struct mm_slot
*mm_slot
;
2643 struct mm_struct
*mm
;
2644 struct vm_area_struct
*vma
;
2648 VM_BUG_ON(NR_CPUS
!= 1 && !spin_is_locked(&khugepaged_mm_lock
));
2650 if (khugepaged_scan
.mm_slot
)
2651 mm_slot
= khugepaged_scan
.mm_slot
;
2653 mm_slot
= list_entry(khugepaged_scan
.mm_head
.next
,
2654 struct mm_slot
, mm_node
);
2655 khugepaged_scan
.address
= 0;
2656 khugepaged_scan
.mm_slot
= mm_slot
;
2658 spin_unlock(&khugepaged_mm_lock
);
2661 down_read(&mm
->mmap_sem
);
2662 if (unlikely(khugepaged_test_exit(mm
)))
2665 vma
= find_vma(mm
, khugepaged_scan
.address
);
2668 for (; vma
; vma
= vma
->vm_next
) {
2669 unsigned long hstart
, hend
;
2672 if (unlikely(khugepaged_test_exit(mm
))) {
2676 if (!hugepage_vma_check(vma
)) {
2681 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
2682 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
2685 if (khugepaged_scan
.address
> hend
)
2687 if (khugepaged_scan
.address
< hstart
)
2688 khugepaged_scan
.address
= hstart
;
2689 VM_BUG_ON(khugepaged_scan
.address
& ~HPAGE_PMD_MASK
);
2691 while (khugepaged_scan
.address
< hend
) {
2694 if (unlikely(khugepaged_test_exit(mm
)))
2695 goto breakouterloop
;
2697 VM_BUG_ON(khugepaged_scan
.address
< hstart
||
2698 khugepaged_scan
.address
+ HPAGE_PMD_SIZE
>
2700 ret
= khugepaged_scan_pmd(mm
, vma
,
2701 khugepaged_scan
.address
,
2703 /* move to next address */
2704 khugepaged_scan
.address
+= HPAGE_PMD_SIZE
;
2705 progress
+= HPAGE_PMD_NR
;
2707 /* we released mmap_sem so break loop */
2708 goto breakouterloop_mmap_sem
;
2709 if (progress
>= pages
)
2710 goto breakouterloop
;
2714 up_read(&mm
->mmap_sem
); /* exit_mmap will destroy ptes after this */
2715 breakouterloop_mmap_sem
:
2717 spin_lock(&khugepaged_mm_lock
);
2718 VM_BUG_ON(khugepaged_scan
.mm_slot
!= mm_slot
);
2720 * Release the current mm_slot if this mm is about to die, or
2721 * if we scanned all vmas of this mm.
2723 if (khugepaged_test_exit(mm
) || !vma
) {
2725 * Make sure that if mm_users is reaching zero while
2726 * khugepaged runs here, khugepaged_exit will find
2727 * mm_slot not pointing to the exiting mm.
2729 if (mm_slot
->mm_node
.next
!= &khugepaged_scan
.mm_head
) {
2730 khugepaged_scan
.mm_slot
= list_entry(
2731 mm_slot
->mm_node
.next
,
2732 struct mm_slot
, mm_node
);
2733 khugepaged_scan
.address
= 0;
2735 khugepaged_scan
.mm_slot
= NULL
;
2736 khugepaged_full_scans
++;
2739 collect_mm_slot(mm_slot
);
2745 static int khugepaged_has_work(void)
2747 return !list_empty(&khugepaged_scan
.mm_head
) &&
2748 khugepaged_enabled();
2751 static int khugepaged_wait_event(void)
2753 return !list_empty(&khugepaged_scan
.mm_head
) ||
2754 kthread_should_stop();
2757 static void khugepaged_do_scan(void)
2759 struct page
*hpage
= NULL
;
2760 unsigned int progress
= 0, pass_through_head
= 0;
2761 unsigned int pages
= khugepaged_pages_to_scan
;
2764 barrier(); /* write khugepaged_pages_to_scan to local stack */
2766 while (progress
< pages
) {
2767 if (!khugepaged_prealloc_page(&hpage
, &wait
))
2772 if (unlikely(kthread_should_stop() || freezing(current
)))
2775 spin_lock(&khugepaged_mm_lock
);
2776 if (!khugepaged_scan
.mm_slot
)
2777 pass_through_head
++;
2778 if (khugepaged_has_work() &&
2779 pass_through_head
< 2)
2780 progress
+= khugepaged_scan_mm_slot(pages
- progress
,
2784 spin_unlock(&khugepaged_mm_lock
);
2787 if (!IS_ERR_OR_NULL(hpage
))
2791 static void khugepaged_wait_work(void)
2795 if (khugepaged_has_work()) {
2796 if (!khugepaged_scan_sleep_millisecs
)
2799 wait_event_freezable_timeout(khugepaged_wait
,
2800 kthread_should_stop(),
2801 msecs_to_jiffies(khugepaged_scan_sleep_millisecs
));
2805 if (khugepaged_enabled())
2806 wait_event_freezable(khugepaged_wait
, khugepaged_wait_event());
2809 static int khugepaged(void *none
)
2811 struct mm_slot
*mm_slot
;
2814 set_user_nice(current
, MAX_NICE
);
2816 while (!kthread_should_stop()) {
2817 khugepaged_do_scan();
2818 khugepaged_wait_work();
2821 spin_lock(&khugepaged_mm_lock
);
2822 mm_slot
= khugepaged_scan
.mm_slot
;
2823 khugepaged_scan
.mm_slot
= NULL
;
2825 collect_mm_slot(mm_slot
);
2826 spin_unlock(&khugepaged_mm_lock
);
2830 static void __split_huge_zero_page_pmd(struct vm_area_struct
*vma
,
2831 unsigned long haddr
, pmd_t
*pmd
)
2833 struct mm_struct
*mm
= vma
->vm_mm
;
2838 pmdp_clear_flush_notify(vma
, haddr
, pmd
);
2839 /* leave pmd empty until pte is filled */
2841 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
2842 pmd_populate(mm
, &_pmd
, pgtable
);
2844 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
2846 entry
= pfn_pte(my_zero_pfn(haddr
), vma
->vm_page_prot
);
2847 entry
= pte_mkspecial(entry
);
2848 pte
= pte_offset_map(&_pmd
, haddr
);
2849 VM_BUG_ON(!pte_none(*pte
));
2850 set_pte_at(mm
, haddr
, pte
, entry
);
2853 smp_wmb(); /* make pte visible before pmd */
2854 pmd_populate(mm
, pmd
, pgtable
);
2855 put_huge_zero_page();
2858 void __split_huge_page_pmd(struct vm_area_struct
*vma
, unsigned long address
,
2863 struct mm_struct
*mm
= vma
->vm_mm
;
2864 unsigned long haddr
= address
& HPAGE_PMD_MASK
;
2865 unsigned long mmun_start
; /* For mmu_notifiers */
2866 unsigned long mmun_end
; /* For mmu_notifiers */
2868 BUG_ON(vma
->vm_start
> haddr
|| vma
->vm_end
< haddr
+ HPAGE_PMD_SIZE
);
2871 mmun_end
= haddr
+ HPAGE_PMD_SIZE
;
2873 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2874 ptl
= pmd_lock(mm
, pmd
);
2875 if (unlikely(!pmd_trans_huge(*pmd
))) {
2877 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2880 if (is_huge_zero_pmd(*pmd
)) {
2881 __split_huge_zero_page_pmd(vma
, haddr
, pmd
);
2883 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2886 page
= pmd_page(*pmd
);
2887 VM_BUG_ON_PAGE(!page_count(page
), page
);
2890 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2892 split_huge_page(page
);
2897 * We don't always have down_write of mmap_sem here: a racing
2898 * do_huge_pmd_wp_page() might have copied-on-write to another
2899 * huge page before our split_huge_page() got the anon_vma lock.
2901 if (unlikely(pmd_trans_huge(*pmd
)))
2905 void split_huge_page_pmd_mm(struct mm_struct
*mm
, unsigned long address
,
2908 struct vm_area_struct
*vma
;
2910 vma
= find_vma(mm
, address
);
2911 BUG_ON(vma
== NULL
);
2912 split_huge_page_pmd(vma
, address
, pmd
);
2915 static void split_huge_page_address(struct mm_struct
*mm
,
2916 unsigned long address
)
2922 VM_BUG_ON(!(address
& ~HPAGE_PMD_MASK
));
2924 pgd
= pgd_offset(mm
, address
);
2925 if (!pgd_present(*pgd
))
2928 pud
= pud_offset(pgd
, address
);
2929 if (!pud_present(*pud
))
2932 pmd
= pmd_offset(pud
, address
);
2933 if (!pmd_present(*pmd
))
2936 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2937 * materialize from under us.
2939 split_huge_page_pmd_mm(mm
, address
, pmd
);
2942 void __vma_adjust_trans_huge(struct vm_area_struct
*vma
,
2943 unsigned long start
,
2948 * If the new start address isn't hpage aligned and it could
2949 * previously contain an hugepage: check if we need to split
2952 if (start
& ~HPAGE_PMD_MASK
&&
2953 (start
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2954 (start
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2955 split_huge_page_address(vma
->vm_mm
, start
);
2958 * If the new end address isn't hpage aligned and it could
2959 * previously contain an hugepage: check if we need to split
2962 if (end
& ~HPAGE_PMD_MASK
&&
2963 (end
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2964 (end
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2965 split_huge_page_address(vma
->vm_mm
, end
);
2968 * If we're also updating the vma->vm_next->vm_start, if the new
2969 * vm_next->vm_start isn't page aligned and it could previously
2970 * contain an hugepage: check if we need to split an huge pmd.
2972 if (adjust_next
> 0) {
2973 struct vm_area_struct
*next
= vma
->vm_next
;
2974 unsigned long nstart
= next
->vm_start
;
2975 nstart
+= adjust_next
<< PAGE_SHIFT
;
2976 if (nstart
& ~HPAGE_PMD_MASK
&&
2977 (nstart
& HPAGE_PMD_MASK
) >= next
->vm_start
&&
2978 (nstart
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= next
->vm_end
)
2979 split_huge_page_address(next
->vm_mm
, nstart
);