ARM: shmobile: r8a7740 dtsi: Add memory-controller node
[linux/fpc-iii.git] / mm / swap_state.c
blob9711342987a05f383687b3a6175bee052c10ef42
1 /*
2 * linux/mm/swap_state.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
9 #include <linux/mm.h>
10 #include <linux/gfp.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
21 #include <asm/pgtable.h>
24 * swapper_space is a fiction, retained to simplify the path through
25 * vmscan's shrink_page_list.
27 static const struct address_space_operations swap_aops = {
28 .writepage = swap_writepage,
29 .set_page_dirty = swap_set_page_dirty,
30 #ifdef CONFIG_MIGRATION
31 .migratepage = migrate_page,
32 #endif
35 static struct backing_dev_info swap_backing_dev_info = {
36 .name = "swap",
37 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
40 struct address_space swapper_spaces[MAX_SWAPFILES] = {
41 [0 ... MAX_SWAPFILES - 1] = {
42 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
43 .i_mmap_writable = ATOMIC_INIT(0),
44 .a_ops = &swap_aops,
45 .backing_dev_info = &swap_backing_dev_info,
49 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
51 static struct {
52 unsigned long add_total;
53 unsigned long del_total;
54 unsigned long find_success;
55 unsigned long find_total;
56 } swap_cache_info;
58 unsigned long total_swapcache_pages(void)
60 int i;
61 unsigned long ret = 0;
63 for (i = 0; i < MAX_SWAPFILES; i++)
64 ret += swapper_spaces[i].nrpages;
65 return ret;
68 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
70 void show_swap_cache_info(void)
72 printk("%lu pages in swap cache\n", total_swapcache_pages());
73 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
74 swap_cache_info.add_total, swap_cache_info.del_total,
75 swap_cache_info.find_success, swap_cache_info.find_total);
76 printk("Free swap = %ldkB\n",
77 get_nr_swap_pages() << (PAGE_SHIFT - 10));
78 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
82 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
83 * but sets SwapCache flag and private instead of mapping and index.
85 int __add_to_swap_cache(struct page *page, swp_entry_t entry)
87 int error;
88 struct address_space *address_space;
90 VM_BUG_ON_PAGE(!PageLocked(page), page);
91 VM_BUG_ON_PAGE(PageSwapCache(page), page);
92 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
94 page_cache_get(page);
95 SetPageSwapCache(page);
96 set_page_private(page, entry.val);
98 address_space = swap_address_space(entry);
99 spin_lock_irq(&address_space->tree_lock);
100 error = radix_tree_insert(&address_space->page_tree,
101 entry.val, page);
102 if (likely(!error)) {
103 address_space->nrpages++;
104 __inc_zone_page_state(page, NR_FILE_PAGES);
105 INC_CACHE_INFO(add_total);
107 spin_unlock_irq(&address_space->tree_lock);
109 if (unlikely(error)) {
111 * Only the context which have set SWAP_HAS_CACHE flag
112 * would call add_to_swap_cache().
113 * So add_to_swap_cache() doesn't returns -EEXIST.
115 VM_BUG_ON(error == -EEXIST);
116 set_page_private(page, 0UL);
117 ClearPageSwapCache(page);
118 page_cache_release(page);
121 return error;
125 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
127 int error;
129 error = radix_tree_maybe_preload(gfp_mask);
130 if (!error) {
131 error = __add_to_swap_cache(page, entry);
132 radix_tree_preload_end();
134 return error;
138 * This must be called only on pages that have
139 * been verified to be in the swap cache.
141 void __delete_from_swap_cache(struct page *page)
143 swp_entry_t entry;
144 struct address_space *address_space;
146 VM_BUG_ON_PAGE(!PageLocked(page), page);
147 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
148 VM_BUG_ON_PAGE(PageWriteback(page), page);
150 entry.val = page_private(page);
151 address_space = swap_address_space(entry);
152 radix_tree_delete(&address_space->page_tree, page_private(page));
153 set_page_private(page, 0);
154 ClearPageSwapCache(page);
155 address_space->nrpages--;
156 __dec_zone_page_state(page, NR_FILE_PAGES);
157 INC_CACHE_INFO(del_total);
161 * add_to_swap - allocate swap space for a page
162 * @page: page we want to move to swap
164 * Allocate swap space for the page and add the page to the
165 * swap cache. Caller needs to hold the page lock.
167 int add_to_swap(struct page *page, struct list_head *list)
169 swp_entry_t entry;
170 int err;
172 VM_BUG_ON_PAGE(!PageLocked(page), page);
173 VM_BUG_ON_PAGE(!PageUptodate(page), page);
175 entry = get_swap_page();
176 if (!entry.val)
177 return 0;
179 if (unlikely(PageTransHuge(page)))
180 if (unlikely(split_huge_page_to_list(page, list))) {
181 swapcache_free(entry);
182 return 0;
186 * Radix-tree node allocations from PF_MEMALLOC contexts could
187 * completely exhaust the page allocator. __GFP_NOMEMALLOC
188 * stops emergency reserves from being allocated.
190 * TODO: this could cause a theoretical memory reclaim
191 * deadlock in the swap out path.
194 * Add it to the swap cache and mark it dirty
196 err = add_to_swap_cache(page, entry,
197 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
199 if (!err) { /* Success */
200 SetPageDirty(page);
201 return 1;
202 } else { /* -ENOMEM radix-tree allocation failure */
204 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
205 * clear SWAP_HAS_CACHE flag.
207 swapcache_free(entry);
208 return 0;
213 * This must be called only on pages that have
214 * been verified to be in the swap cache and locked.
215 * It will never put the page into the free list,
216 * the caller has a reference on the page.
218 void delete_from_swap_cache(struct page *page)
220 swp_entry_t entry;
221 struct address_space *address_space;
223 entry.val = page_private(page);
225 address_space = swap_address_space(entry);
226 spin_lock_irq(&address_space->tree_lock);
227 __delete_from_swap_cache(page);
228 spin_unlock_irq(&address_space->tree_lock);
230 swapcache_free(entry);
231 page_cache_release(page);
235 * If we are the only user, then try to free up the swap cache.
237 * Its ok to check for PageSwapCache without the page lock
238 * here because we are going to recheck again inside
239 * try_to_free_swap() _with_ the lock.
240 * - Marcelo
242 static inline void free_swap_cache(struct page *page)
244 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
245 try_to_free_swap(page);
246 unlock_page(page);
251 * Perform a free_page(), also freeing any swap cache associated with
252 * this page if it is the last user of the page.
254 void free_page_and_swap_cache(struct page *page)
256 free_swap_cache(page);
257 page_cache_release(page);
261 * Passed an array of pages, drop them all from swapcache and then release
262 * them. They are removed from the LRU and freed if this is their last use.
264 void free_pages_and_swap_cache(struct page **pages, int nr)
266 struct page **pagep = pages;
267 int i;
269 lru_add_drain();
270 for (i = 0; i < nr; i++)
271 free_swap_cache(pagep[i]);
272 release_pages(pagep, nr, false);
276 * Lookup a swap entry in the swap cache. A found page will be returned
277 * unlocked and with its refcount incremented - we rely on the kernel
278 * lock getting page table operations atomic even if we drop the page
279 * lock before returning.
281 struct page * lookup_swap_cache(swp_entry_t entry)
283 struct page *page;
285 page = find_get_page(swap_address_space(entry), entry.val);
287 if (page) {
288 INC_CACHE_INFO(find_success);
289 if (TestClearPageReadahead(page))
290 atomic_inc(&swapin_readahead_hits);
293 INC_CACHE_INFO(find_total);
294 return page;
298 * Locate a page of swap in physical memory, reserving swap cache space
299 * and reading the disk if it is not already cached.
300 * A failure return means that either the page allocation failed or that
301 * the swap entry is no longer in use.
303 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
304 struct vm_area_struct *vma, unsigned long addr)
306 struct page *found_page, *new_page = NULL;
307 int err;
309 do {
311 * First check the swap cache. Since this is normally
312 * called after lookup_swap_cache() failed, re-calling
313 * that would confuse statistics.
315 found_page = find_get_page(swap_address_space(entry),
316 entry.val);
317 if (found_page)
318 break;
321 * Get a new page to read into from swap.
323 if (!new_page) {
324 new_page = alloc_page_vma(gfp_mask, vma, addr);
325 if (!new_page)
326 break; /* Out of memory */
330 * call radix_tree_preload() while we can wait.
332 err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
333 if (err)
334 break;
337 * Swap entry may have been freed since our caller observed it.
339 err = swapcache_prepare(entry);
340 if (err == -EEXIST) {
341 radix_tree_preload_end();
343 * We might race against get_swap_page() and stumble
344 * across a SWAP_HAS_CACHE swap_map entry whose page
345 * has not been brought into the swapcache yet, while
346 * the other end is scheduled away waiting on discard
347 * I/O completion at scan_swap_map().
349 * In order to avoid turning this transitory state
350 * into a permanent loop around this -EEXIST case
351 * if !CONFIG_PREEMPT and the I/O completion happens
352 * to be waiting on the CPU waitqueue where we are now
353 * busy looping, we just conditionally invoke the
354 * scheduler here, if there are some more important
355 * tasks to run.
357 cond_resched();
358 continue;
360 if (err) { /* swp entry is obsolete ? */
361 radix_tree_preload_end();
362 break;
365 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
366 __set_page_locked(new_page);
367 SetPageSwapBacked(new_page);
368 err = __add_to_swap_cache(new_page, entry);
369 if (likely(!err)) {
370 radix_tree_preload_end();
372 * Initiate read into locked page and return.
374 lru_cache_add_anon(new_page);
375 swap_readpage(new_page);
376 return new_page;
378 radix_tree_preload_end();
379 ClearPageSwapBacked(new_page);
380 __clear_page_locked(new_page);
382 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
383 * clear SWAP_HAS_CACHE flag.
385 swapcache_free(entry);
386 } while (err != -ENOMEM);
388 if (new_page)
389 page_cache_release(new_page);
390 return found_page;
393 static unsigned long swapin_nr_pages(unsigned long offset)
395 static unsigned long prev_offset;
396 unsigned int pages, max_pages, last_ra;
397 static atomic_t last_readahead_pages;
399 max_pages = 1 << ACCESS_ONCE(page_cluster);
400 if (max_pages <= 1)
401 return 1;
404 * This heuristic has been found to work well on both sequential and
405 * random loads, swapping to hard disk or to SSD: please don't ask
406 * what the "+ 2" means, it just happens to work well, that's all.
408 pages = atomic_xchg(&swapin_readahead_hits, 0) + 2;
409 if (pages == 2) {
411 * We can have no readahead hits to judge by: but must not get
412 * stuck here forever, so check for an adjacent offset instead
413 * (and don't even bother to check whether swap type is same).
415 if (offset != prev_offset + 1 && offset != prev_offset - 1)
416 pages = 1;
417 prev_offset = offset;
418 } else {
419 unsigned int roundup = 4;
420 while (roundup < pages)
421 roundup <<= 1;
422 pages = roundup;
425 if (pages > max_pages)
426 pages = max_pages;
428 /* Don't shrink readahead too fast */
429 last_ra = atomic_read(&last_readahead_pages) / 2;
430 if (pages < last_ra)
431 pages = last_ra;
432 atomic_set(&last_readahead_pages, pages);
434 return pages;
438 * swapin_readahead - swap in pages in hope we need them soon
439 * @entry: swap entry of this memory
440 * @gfp_mask: memory allocation flags
441 * @vma: user vma this address belongs to
442 * @addr: target address for mempolicy
444 * Returns the struct page for entry and addr, after queueing swapin.
446 * Primitive swap readahead code. We simply read an aligned block of
447 * (1 << page_cluster) entries in the swap area. This method is chosen
448 * because it doesn't cost us any seek time. We also make sure to queue
449 * the 'original' request together with the readahead ones...
451 * This has been extended to use the NUMA policies from the mm triggering
452 * the readahead.
454 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
456 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
457 struct vm_area_struct *vma, unsigned long addr)
459 struct page *page;
460 unsigned long entry_offset = swp_offset(entry);
461 unsigned long offset = entry_offset;
462 unsigned long start_offset, end_offset;
463 unsigned long mask;
464 struct blk_plug plug;
466 mask = swapin_nr_pages(offset) - 1;
467 if (!mask)
468 goto skip;
470 /* Read a page_cluster sized and aligned cluster around offset. */
471 start_offset = offset & ~mask;
472 end_offset = offset | mask;
473 if (!start_offset) /* First page is swap header. */
474 start_offset++;
476 blk_start_plug(&plug);
477 for (offset = start_offset; offset <= end_offset ; offset++) {
478 /* Ok, do the async read-ahead now */
479 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
480 gfp_mask, vma, addr);
481 if (!page)
482 continue;
483 if (offset != entry_offset)
484 SetPageReadahead(page);
485 page_cache_release(page);
487 blk_finish_plug(&plug);
489 lru_add_drain(); /* Push any new pages onto the LRU now */
490 skip:
491 return read_swap_cache_async(entry, gfp_mask, vma, addr);