4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 * Copyright (C) 2008-2014 Christoph Lameter
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/sched.h>
21 #include <linux/math64.h>
22 #include <linux/writeback.h>
23 #include <linux/compaction.h>
24 #include <linux/mm_inline.h>
25 #include <linux/page_ext.h>
26 #include <linux/page_owner.h>
30 #ifdef CONFIG_VM_EVENT_COUNTERS
31 DEFINE_PER_CPU(struct vm_event_state
, vm_event_states
) = {{0}};
32 EXPORT_PER_CPU_SYMBOL(vm_event_states
);
34 static void sum_vm_events(unsigned long *ret
)
39 memset(ret
, 0, NR_VM_EVENT_ITEMS
* sizeof(unsigned long));
41 for_each_online_cpu(cpu
) {
42 struct vm_event_state
*this = &per_cpu(vm_event_states
, cpu
);
44 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++)
45 ret
[i
] += this->event
[i
];
50 * Accumulate the vm event counters across all CPUs.
51 * The result is unavoidably approximate - it can change
52 * during and after execution of this function.
54 void all_vm_events(unsigned long *ret
)
60 EXPORT_SYMBOL_GPL(all_vm_events
);
63 * Fold the foreign cpu events into our own.
65 * This is adding to the events on one processor
66 * but keeps the global counts constant.
68 void vm_events_fold_cpu(int cpu
)
70 struct vm_event_state
*fold_state
= &per_cpu(vm_event_states
, cpu
);
73 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++) {
74 count_vm_events(i
, fold_state
->event
[i
]);
75 fold_state
->event
[i
] = 0;
79 #endif /* CONFIG_VM_EVENT_COUNTERS */
82 * Manage combined zone based / global counters
84 * vm_stat contains the global counters
86 atomic_long_t vm_stat
[NR_VM_ZONE_STAT_ITEMS
] __cacheline_aligned_in_smp
;
87 EXPORT_SYMBOL(vm_stat
);
91 int calculate_pressure_threshold(struct zone
*zone
)
94 int watermark_distance
;
97 * As vmstats are not up to date, there is drift between the estimated
98 * and real values. For high thresholds and a high number of CPUs, it
99 * is possible for the min watermark to be breached while the estimated
100 * value looks fine. The pressure threshold is a reduced value such
101 * that even the maximum amount of drift will not accidentally breach
104 watermark_distance
= low_wmark_pages(zone
) - min_wmark_pages(zone
);
105 threshold
= max(1, (int)(watermark_distance
/ num_online_cpus()));
108 * Maximum threshold is 125
110 threshold
= min(125, threshold
);
115 int calculate_normal_threshold(struct zone
*zone
)
118 int mem
; /* memory in 128 MB units */
121 * The threshold scales with the number of processors and the amount
122 * of memory per zone. More memory means that we can defer updates for
123 * longer, more processors could lead to more contention.
124 * fls() is used to have a cheap way of logarithmic scaling.
126 * Some sample thresholds:
128 * Threshold Processors (fls) Zonesize fls(mem+1)
129 * ------------------------------------------------------------------
146 * 125 1024 10 8-16 GB 8
147 * 125 1024 10 16-32 GB 9
150 mem
= zone
->managed_pages
>> (27 - PAGE_SHIFT
);
152 threshold
= 2 * fls(num_online_cpus()) * (1 + fls(mem
));
155 * Maximum threshold is 125
157 threshold
= min(125, threshold
);
163 * Refresh the thresholds for each zone.
165 void refresh_zone_stat_thresholds(void)
171 for_each_populated_zone(zone
) {
172 unsigned long max_drift
, tolerate_drift
;
174 threshold
= calculate_normal_threshold(zone
);
176 for_each_online_cpu(cpu
)
177 per_cpu_ptr(zone
->pageset
, cpu
)->stat_threshold
181 * Only set percpu_drift_mark if there is a danger that
182 * NR_FREE_PAGES reports the low watermark is ok when in fact
183 * the min watermark could be breached by an allocation
185 tolerate_drift
= low_wmark_pages(zone
) - min_wmark_pages(zone
);
186 max_drift
= num_online_cpus() * threshold
;
187 if (max_drift
> tolerate_drift
)
188 zone
->percpu_drift_mark
= high_wmark_pages(zone
) +
193 void set_pgdat_percpu_threshold(pg_data_t
*pgdat
,
194 int (*calculate_pressure
)(struct zone
*))
201 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
202 zone
= &pgdat
->node_zones
[i
];
203 if (!zone
->percpu_drift_mark
)
206 threshold
= (*calculate_pressure
)(zone
);
207 for_each_online_cpu(cpu
)
208 per_cpu_ptr(zone
->pageset
, cpu
)->stat_threshold
214 * For use when we know that interrupts are disabled,
215 * or when we know that preemption is disabled and that
216 * particular counter cannot be updated from interrupt context.
218 void __mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
221 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
222 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
226 x
= delta
+ __this_cpu_read(*p
);
228 t
= __this_cpu_read(pcp
->stat_threshold
);
230 if (unlikely(x
> t
|| x
< -t
)) {
231 zone_page_state_add(x
, zone
, item
);
234 __this_cpu_write(*p
, x
);
236 EXPORT_SYMBOL(__mod_zone_page_state
);
239 * Optimized increment and decrement functions.
241 * These are only for a single page and therefore can take a struct page *
242 * argument instead of struct zone *. This allows the inclusion of the code
243 * generated for page_zone(page) into the optimized functions.
245 * No overflow check is necessary and therefore the differential can be
246 * incremented or decremented in place which may allow the compilers to
247 * generate better code.
248 * The increment or decrement is known and therefore one boundary check can
251 * NOTE: These functions are very performance sensitive. Change only
254 * Some processors have inc/dec instructions that are atomic vs an interrupt.
255 * However, the code must first determine the differential location in a zone
256 * based on the processor number and then inc/dec the counter. There is no
257 * guarantee without disabling preemption that the processor will not change
258 * in between and therefore the atomicity vs. interrupt cannot be exploited
259 * in a useful way here.
261 void __inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
263 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
264 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
267 v
= __this_cpu_inc_return(*p
);
268 t
= __this_cpu_read(pcp
->stat_threshold
);
269 if (unlikely(v
> t
)) {
270 s8 overstep
= t
>> 1;
272 zone_page_state_add(v
+ overstep
, zone
, item
);
273 __this_cpu_write(*p
, -overstep
);
277 void __inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
279 __inc_zone_state(page_zone(page
), item
);
281 EXPORT_SYMBOL(__inc_zone_page_state
);
283 void __dec_zone_state(struct zone
*zone
, enum zone_stat_item item
)
285 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
286 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
289 v
= __this_cpu_dec_return(*p
);
290 t
= __this_cpu_read(pcp
->stat_threshold
);
291 if (unlikely(v
< - t
)) {
292 s8 overstep
= t
>> 1;
294 zone_page_state_add(v
- overstep
, zone
, item
);
295 __this_cpu_write(*p
, overstep
);
299 void __dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
301 __dec_zone_state(page_zone(page
), item
);
303 EXPORT_SYMBOL(__dec_zone_page_state
);
305 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
307 * If we have cmpxchg_local support then we do not need to incur the overhead
308 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
310 * mod_state() modifies the zone counter state through atomic per cpu
313 * Overstep mode specifies how overstep should handled:
315 * 1 Overstepping half of threshold
316 * -1 Overstepping minus half of threshold
318 static inline void mod_state(struct zone
*zone
,
319 enum zone_stat_item item
, int delta
, int overstep_mode
)
321 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
322 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
326 z
= 0; /* overflow to zone counters */
329 * The fetching of the stat_threshold is racy. We may apply
330 * a counter threshold to the wrong the cpu if we get
331 * rescheduled while executing here. However, the next
332 * counter update will apply the threshold again and
333 * therefore bring the counter under the threshold again.
335 * Most of the time the thresholds are the same anyways
336 * for all cpus in a zone.
338 t
= this_cpu_read(pcp
->stat_threshold
);
340 o
= this_cpu_read(*p
);
343 if (n
> t
|| n
< -t
) {
344 int os
= overstep_mode
* (t
>> 1) ;
346 /* Overflow must be added to zone counters */
350 } while (this_cpu_cmpxchg(*p
, o
, n
) != o
);
353 zone_page_state_add(z
, zone
, item
);
356 void mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
359 mod_state(zone
, item
, delta
, 0);
361 EXPORT_SYMBOL(mod_zone_page_state
);
363 void inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
365 mod_state(zone
, item
, 1, 1);
368 void inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
370 mod_state(page_zone(page
), item
, 1, 1);
372 EXPORT_SYMBOL(inc_zone_page_state
);
374 void dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
376 mod_state(page_zone(page
), item
, -1, -1);
378 EXPORT_SYMBOL(dec_zone_page_state
);
381 * Use interrupt disable to serialize counter updates
383 void mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
388 local_irq_save(flags
);
389 __mod_zone_page_state(zone
, item
, delta
);
390 local_irq_restore(flags
);
392 EXPORT_SYMBOL(mod_zone_page_state
);
394 void inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
398 local_irq_save(flags
);
399 __inc_zone_state(zone
, item
);
400 local_irq_restore(flags
);
403 void inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
408 zone
= page_zone(page
);
409 local_irq_save(flags
);
410 __inc_zone_state(zone
, item
);
411 local_irq_restore(flags
);
413 EXPORT_SYMBOL(inc_zone_page_state
);
415 void dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
419 local_irq_save(flags
);
420 __dec_zone_page_state(page
, item
);
421 local_irq_restore(flags
);
423 EXPORT_SYMBOL(dec_zone_page_state
);
428 * Fold a differential into the global counters.
429 * Returns the number of counters updated.
431 static int fold_diff(int *diff
)
436 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
438 atomic_long_add(diff
[i
], &vm_stat
[i
]);
445 * Update the zone counters for the current cpu.
447 * Note that refresh_cpu_vm_stats strives to only access
448 * node local memory. The per cpu pagesets on remote zones are placed
449 * in the memory local to the processor using that pageset. So the
450 * loop over all zones will access a series of cachelines local to
453 * The call to zone_page_state_add updates the cachelines with the
454 * statistics in the remote zone struct as well as the global cachelines
455 * with the global counters. These could cause remote node cache line
456 * bouncing and will have to be only done when necessary.
458 * The function returns the number of global counters updated.
460 static int refresh_cpu_vm_stats(void)
464 int global_diff
[NR_VM_ZONE_STAT_ITEMS
] = { 0, };
467 for_each_populated_zone(zone
) {
468 struct per_cpu_pageset __percpu
*p
= zone
->pageset
;
470 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++) {
473 v
= this_cpu_xchg(p
->vm_stat_diff
[i
], 0);
476 atomic_long_add(v
, &zone
->vm_stat
[i
]);
479 /* 3 seconds idle till flush */
480 __this_cpu_write(p
->expire
, 3);
487 * Deal with draining the remote pageset of this
490 * Check if there are pages remaining in this pageset
491 * if not then there is nothing to expire.
493 if (!__this_cpu_read(p
->expire
) ||
494 !__this_cpu_read(p
->pcp
.count
))
498 * We never drain zones local to this processor.
500 if (zone_to_nid(zone
) == numa_node_id()) {
501 __this_cpu_write(p
->expire
, 0);
505 if (__this_cpu_dec_return(p
->expire
))
508 if (__this_cpu_read(p
->pcp
.count
)) {
509 drain_zone_pages(zone
, this_cpu_ptr(&p
->pcp
));
514 changes
+= fold_diff(global_diff
);
519 * Fold the data for an offline cpu into the global array.
520 * There cannot be any access by the offline cpu and therefore
521 * synchronization is simplified.
523 void cpu_vm_stats_fold(int cpu
)
527 int global_diff
[NR_VM_ZONE_STAT_ITEMS
] = { 0, };
529 for_each_populated_zone(zone
) {
530 struct per_cpu_pageset
*p
;
532 p
= per_cpu_ptr(zone
->pageset
, cpu
);
534 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
535 if (p
->vm_stat_diff
[i
]) {
538 v
= p
->vm_stat_diff
[i
];
539 p
->vm_stat_diff
[i
] = 0;
540 atomic_long_add(v
, &zone
->vm_stat
[i
]);
545 fold_diff(global_diff
);
549 * this is only called if !populated_zone(zone), which implies no other users of
550 * pset->vm_stat_diff[] exsist.
552 void drain_zonestat(struct zone
*zone
, struct per_cpu_pageset
*pset
)
556 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
557 if (pset
->vm_stat_diff
[i
]) {
558 int v
= pset
->vm_stat_diff
[i
];
559 pset
->vm_stat_diff
[i
] = 0;
560 atomic_long_add(v
, &zone
->vm_stat
[i
]);
561 atomic_long_add(v
, &vm_stat
[i
]);
568 * zonelist = the list of zones passed to the allocator
569 * z = the zone from which the allocation occurred.
571 * Must be called with interrupts disabled.
573 * When __GFP_OTHER_NODE is set assume the node of the preferred
574 * zone is the local node. This is useful for daemons who allocate
575 * memory on behalf of other processes.
577 void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
, gfp_t flags
)
579 if (z
->zone_pgdat
== preferred_zone
->zone_pgdat
) {
580 __inc_zone_state(z
, NUMA_HIT
);
582 __inc_zone_state(z
, NUMA_MISS
);
583 __inc_zone_state(preferred_zone
, NUMA_FOREIGN
);
585 if (z
->node
== ((flags
& __GFP_OTHER_NODE
) ?
586 preferred_zone
->node
: numa_node_id()))
587 __inc_zone_state(z
, NUMA_LOCAL
);
589 __inc_zone_state(z
, NUMA_OTHER
);
593 #ifdef CONFIG_COMPACTION
595 struct contig_page_info
{
596 unsigned long free_pages
;
597 unsigned long free_blocks_total
;
598 unsigned long free_blocks_suitable
;
602 * Calculate the number of free pages in a zone, how many contiguous
603 * pages are free and how many are large enough to satisfy an allocation of
604 * the target size. Note that this function makes no attempt to estimate
605 * how many suitable free blocks there *might* be if MOVABLE pages were
606 * migrated. Calculating that is possible, but expensive and can be
607 * figured out from userspace
609 static void fill_contig_page_info(struct zone
*zone
,
610 unsigned int suitable_order
,
611 struct contig_page_info
*info
)
615 info
->free_pages
= 0;
616 info
->free_blocks_total
= 0;
617 info
->free_blocks_suitable
= 0;
619 for (order
= 0; order
< MAX_ORDER
; order
++) {
620 unsigned long blocks
;
622 /* Count number of free blocks */
623 blocks
= zone
->free_area
[order
].nr_free
;
624 info
->free_blocks_total
+= blocks
;
626 /* Count free base pages */
627 info
->free_pages
+= blocks
<< order
;
629 /* Count the suitable free blocks */
630 if (order
>= suitable_order
)
631 info
->free_blocks_suitable
+= blocks
<<
632 (order
- suitable_order
);
637 * A fragmentation index only makes sense if an allocation of a requested
638 * size would fail. If that is true, the fragmentation index indicates
639 * whether external fragmentation or a lack of memory was the problem.
640 * The value can be used to determine if page reclaim or compaction
643 static int __fragmentation_index(unsigned int order
, struct contig_page_info
*info
)
645 unsigned long requested
= 1UL << order
;
647 if (!info
->free_blocks_total
)
650 /* Fragmentation index only makes sense when a request would fail */
651 if (info
->free_blocks_suitable
)
655 * Index is between 0 and 1 so return within 3 decimal places
657 * 0 => allocation would fail due to lack of memory
658 * 1 => allocation would fail due to fragmentation
660 return 1000 - div_u64( (1000+(div_u64(info
->free_pages
* 1000ULL, requested
))), info
->free_blocks_total
);
663 /* Same as __fragmentation index but allocs contig_page_info on stack */
664 int fragmentation_index(struct zone
*zone
, unsigned int order
)
666 struct contig_page_info info
;
668 fill_contig_page_info(zone
, order
, &info
);
669 return __fragmentation_index(order
, &info
);
673 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
674 #include <linux/proc_fs.h>
675 #include <linux/seq_file.h>
677 static char * const migratetype_names
[MIGRATE_TYPES
] = {
685 #ifdef CONFIG_MEMORY_ISOLATION
690 static void *frag_start(struct seq_file
*m
, loff_t
*pos
)
694 for (pgdat
= first_online_pgdat();
696 pgdat
= next_online_pgdat(pgdat
))
702 static void *frag_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
704 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
707 return next_online_pgdat(pgdat
);
710 static void frag_stop(struct seq_file
*m
, void *arg
)
714 /* Walk all the zones in a node and print using a callback */
715 static void walk_zones_in_node(struct seq_file
*m
, pg_data_t
*pgdat
,
716 void (*print
)(struct seq_file
*m
, pg_data_t
*, struct zone
*))
719 struct zone
*node_zones
= pgdat
->node_zones
;
722 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
723 if (!populated_zone(zone
))
726 spin_lock_irqsave(&zone
->lock
, flags
);
727 print(m
, pgdat
, zone
);
728 spin_unlock_irqrestore(&zone
->lock
, flags
);
733 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
734 #ifdef CONFIG_ZONE_DMA
735 #define TEXT_FOR_DMA(xx) xx "_dma",
737 #define TEXT_FOR_DMA(xx)
740 #ifdef CONFIG_ZONE_DMA32
741 #define TEXT_FOR_DMA32(xx) xx "_dma32",
743 #define TEXT_FOR_DMA32(xx)
746 #ifdef CONFIG_HIGHMEM
747 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
749 #define TEXT_FOR_HIGHMEM(xx)
752 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
753 TEXT_FOR_HIGHMEM(xx) xx "_movable",
755 const char * const vmstat_text
[] = {
756 /* enum zone_stat_item countes */
770 "nr_slab_reclaimable",
771 "nr_slab_unreclaimable",
772 "nr_page_table_pages",
777 "nr_vmscan_immediate_reclaim",
794 "workingset_refault",
795 "workingset_activate",
796 "workingset_nodereclaim",
797 "nr_anon_transparent_hugepages",
800 /* enum writeback_stat_item counters */
801 "nr_dirty_threshold",
802 "nr_dirty_background_threshold",
804 #ifdef CONFIG_VM_EVENT_COUNTERS
805 /* enum vm_event_item counters */
811 TEXTS_FOR_ZONES("pgalloc")
820 TEXTS_FOR_ZONES("pgrefill")
821 TEXTS_FOR_ZONES("pgsteal_kswapd")
822 TEXTS_FOR_ZONES("pgsteal_direct")
823 TEXTS_FOR_ZONES("pgscan_kswapd")
824 TEXTS_FOR_ZONES("pgscan_direct")
825 "pgscan_direct_throttle",
828 "zone_reclaim_failed",
833 "kswapd_low_wmark_hit_quickly",
834 "kswapd_high_wmark_hit_quickly",
843 #ifdef CONFIG_NUMA_BALANCING
845 "numa_huge_pte_updates",
847 "numa_hint_faults_local",
848 "numa_pages_migrated",
850 #ifdef CONFIG_MIGRATION
854 #ifdef CONFIG_COMPACTION
855 "compact_migrate_scanned",
856 "compact_free_scanned",
863 #ifdef CONFIG_HUGETLB_PAGE
864 "htlb_buddy_alloc_success",
865 "htlb_buddy_alloc_fail",
867 "unevictable_pgs_culled",
868 "unevictable_pgs_scanned",
869 "unevictable_pgs_rescued",
870 "unevictable_pgs_mlocked",
871 "unevictable_pgs_munlocked",
872 "unevictable_pgs_cleared",
873 "unevictable_pgs_stranded",
875 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
877 "thp_fault_fallback",
878 "thp_collapse_alloc",
879 "thp_collapse_alloc_failed",
881 "thp_zero_page_alloc",
882 "thp_zero_page_alloc_failed",
884 #ifdef CONFIG_MEMORY_BALLOON
887 #ifdef CONFIG_BALLOON_COMPACTION
890 #endif /* CONFIG_MEMORY_BALLOON */
891 #ifdef CONFIG_DEBUG_TLBFLUSH
893 "nr_tlb_remote_flush",
894 "nr_tlb_remote_flush_received",
895 #endif /* CONFIG_SMP */
896 "nr_tlb_local_flush_all",
897 "nr_tlb_local_flush_one",
898 #endif /* CONFIG_DEBUG_TLBFLUSH */
900 #ifdef CONFIG_DEBUG_VM_VMACACHE
901 "vmacache_find_calls",
902 "vmacache_find_hits",
903 "vmacache_full_flushes",
905 #endif /* CONFIG_VM_EVENTS_COUNTERS */
907 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
910 #ifdef CONFIG_PROC_FS
911 static void frag_show_print(struct seq_file
*m
, pg_data_t
*pgdat
,
916 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
917 for (order
= 0; order
< MAX_ORDER
; ++order
)
918 seq_printf(m
, "%6lu ", zone
->free_area
[order
].nr_free
);
923 * This walks the free areas for each zone.
925 static int frag_show(struct seq_file
*m
, void *arg
)
927 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
928 walk_zones_in_node(m
, pgdat
, frag_show_print
);
932 static void pagetypeinfo_showfree_print(struct seq_file
*m
,
933 pg_data_t
*pgdat
, struct zone
*zone
)
937 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++) {
938 seq_printf(m
, "Node %4d, zone %8s, type %12s ",
941 migratetype_names
[mtype
]);
942 for (order
= 0; order
< MAX_ORDER
; ++order
) {
943 unsigned long freecount
= 0;
944 struct free_area
*area
;
945 struct list_head
*curr
;
947 area
= &(zone
->free_area
[order
]);
949 list_for_each(curr
, &area
->free_list
[mtype
])
951 seq_printf(m
, "%6lu ", freecount
);
957 /* Print out the free pages at each order for each migatetype */
958 static int pagetypeinfo_showfree(struct seq_file
*m
, void *arg
)
961 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
964 seq_printf(m
, "%-43s ", "Free pages count per migrate type at order");
965 for (order
= 0; order
< MAX_ORDER
; ++order
)
966 seq_printf(m
, "%6d ", order
);
969 walk_zones_in_node(m
, pgdat
, pagetypeinfo_showfree_print
);
974 static void pagetypeinfo_showblockcount_print(struct seq_file
*m
,
975 pg_data_t
*pgdat
, struct zone
*zone
)
979 unsigned long start_pfn
= zone
->zone_start_pfn
;
980 unsigned long end_pfn
= zone_end_pfn(zone
);
981 unsigned long count
[MIGRATE_TYPES
] = { 0, };
983 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
989 page
= pfn_to_page(pfn
);
991 /* Watch for unexpected holes punched in the memmap */
992 if (!memmap_valid_within(pfn
, page
, zone
))
995 mtype
= get_pageblock_migratetype(page
);
997 if (mtype
< MIGRATE_TYPES
)
1002 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
1003 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++)
1004 seq_printf(m
, "%12lu ", count
[mtype
]);
1008 /* Print out the free pages at each order for each migratetype */
1009 static int pagetypeinfo_showblockcount(struct seq_file
*m
, void *arg
)
1012 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1014 seq_printf(m
, "\n%-23s", "Number of blocks type ");
1015 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++)
1016 seq_printf(m
, "%12s ", migratetype_names
[mtype
]);
1018 walk_zones_in_node(m
, pgdat
, pagetypeinfo_showblockcount_print
);
1023 #ifdef CONFIG_PAGE_OWNER
1024 static void pagetypeinfo_showmixedcount_print(struct seq_file
*m
,
1029 struct page_ext
*page_ext
;
1030 unsigned long pfn
= zone
->zone_start_pfn
, block_end_pfn
;
1031 unsigned long end_pfn
= pfn
+ zone
->spanned_pages
;
1032 unsigned long count
[MIGRATE_TYPES
] = { 0, };
1033 int pageblock_mt
, page_mt
;
1036 /* Scan block by block. First and last block may be incomplete */
1037 pfn
= zone
->zone_start_pfn
;
1040 * Walk the zone in pageblock_nr_pages steps. If a page block spans
1041 * a zone boundary, it will be double counted between zones. This does
1042 * not matter as the mixed block count will still be correct
1044 for (; pfn
< end_pfn
; ) {
1045 if (!pfn_valid(pfn
)) {
1046 pfn
= ALIGN(pfn
+ 1, MAX_ORDER_NR_PAGES
);
1050 block_end_pfn
= ALIGN(pfn
+ 1, pageblock_nr_pages
);
1051 block_end_pfn
= min(block_end_pfn
, end_pfn
);
1053 page
= pfn_to_page(pfn
);
1054 pageblock_mt
= get_pfnblock_migratetype(page
, pfn
);
1056 for (; pfn
< block_end_pfn
; pfn
++) {
1057 if (!pfn_valid_within(pfn
))
1060 page
= pfn_to_page(pfn
);
1061 if (PageBuddy(page
)) {
1062 pfn
+= (1UL << page_order(page
)) - 1;
1066 if (PageReserved(page
))
1069 page_ext
= lookup_page_ext(page
);
1071 if (!test_bit(PAGE_EXT_OWNER
, &page_ext
->flags
))
1074 page_mt
= gfpflags_to_migratetype(page_ext
->gfp_mask
);
1075 if (pageblock_mt
!= page_mt
) {
1076 if (is_migrate_cma(pageblock_mt
))
1077 count
[MIGRATE_MOVABLE
]++;
1079 count
[pageblock_mt
]++;
1081 pfn
= block_end_pfn
;
1084 pfn
+= (1UL << page_ext
->order
) - 1;
1089 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
1090 for (i
= 0; i
< MIGRATE_TYPES
; i
++)
1091 seq_printf(m
, "%12lu ", count
[i
]);
1094 #endif /* CONFIG_PAGE_OWNER */
1097 * Print out the number of pageblocks for each migratetype that contain pages
1098 * of other types. This gives an indication of how well fallbacks are being
1099 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1100 * to determine what is going on
1102 static void pagetypeinfo_showmixedcount(struct seq_file
*m
, pg_data_t
*pgdat
)
1104 #ifdef CONFIG_PAGE_OWNER
1107 if (!page_owner_inited
)
1110 drain_all_pages(NULL
);
1112 seq_printf(m
, "\n%-23s", "Number of mixed blocks ");
1113 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++)
1114 seq_printf(m
, "%12s ", migratetype_names
[mtype
]);
1117 walk_zones_in_node(m
, pgdat
, pagetypeinfo_showmixedcount_print
);
1118 #endif /* CONFIG_PAGE_OWNER */
1122 * This prints out statistics in relation to grouping pages by mobility.
1123 * It is expensive to collect so do not constantly read the file.
1125 static int pagetypeinfo_show(struct seq_file
*m
, void *arg
)
1127 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1129 /* check memoryless node */
1130 if (!node_state(pgdat
->node_id
, N_MEMORY
))
1133 seq_printf(m
, "Page block order: %d\n", pageblock_order
);
1134 seq_printf(m
, "Pages per block: %lu\n", pageblock_nr_pages
);
1136 pagetypeinfo_showfree(m
, pgdat
);
1137 pagetypeinfo_showblockcount(m
, pgdat
);
1138 pagetypeinfo_showmixedcount(m
, pgdat
);
1143 static const struct seq_operations fragmentation_op
= {
1144 .start
= frag_start
,
1150 static int fragmentation_open(struct inode
*inode
, struct file
*file
)
1152 return seq_open(file
, &fragmentation_op
);
1155 static const struct file_operations fragmentation_file_operations
= {
1156 .open
= fragmentation_open
,
1158 .llseek
= seq_lseek
,
1159 .release
= seq_release
,
1162 static const struct seq_operations pagetypeinfo_op
= {
1163 .start
= frag_start
,
1166 .show
= pagetypeinfo_show
,
1169 static int pagetypeinfo_open(struct inode
*inode
, struct file
*file
)
1171 return seq_open(file
, &pagetypeinfo_op
);
1174 static const struct file_operations pagetypeinfo_file_ops
= {
1175 .open
= pagetypeinfo_open
,
1177 .llseek
= seq_lseek
,
1178 .release
= seq_release
,
1181 static void zoneinfo_show_print(struct seq_file
*m
, pg_data_t
*pgdat
,
1185 seq_printf(m
, "Node %d, zone %8s", pgdat
->node_id
, zone
->name
);
1195 zone_page_state(zone
, NR_FREE_PAGES
),
1196 min_wmark_pages(zone
),
1197 low_wmark_pages(zone
),
1198 high_wmark_pages(zone
),
1199 zone_page_state(zone
, NR_PAGES_SCANNED
),
1200 zone
->spanned_pages
,
1201 zone
->present_pages
,
1202 zone
->managed_pages
);
1204 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
1205 seq_printf(m
, "\n %-12s %lu", vmstat_text
[i
],
1206 zone_page_state(zone
, i
));
1209 "\n protection: (%ld",
1210 zone
->lowmem_reserve
[0]);
1211 for (i
= 1; i
< ARRAY_SIZE(zone
->lowmem_reserve
); i
++)
1212 seq_printf(m
, ", %ld", zone
->lowmem_reserve
[i
]);
1216 for_each_online_cpu(i
) {
1217 struct per_cpu_pageset
*pageset
;
1219 pageset
= per_cpu_ptr(zone
->pageset
, i
);
1228 pageset
->pcp
.batch
);
1230 seq_printf(m
, "\n vm stats threshold: %d",
1231 pageset
->stat_threshold
);
1235 "\n all_unreclaimable: %u"
1237 "\n inactive_ratio: %u",
1238 !zone_reclaimable(zone
),
1239 zone
->zone_start_pfn
,
1240 zone
->inactive_ratio
);
1245 * Output information about zones in @pgdat.
1247 static int zoneinfo_show(struct seq_file
*m
, void *arg
)
1249 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1250 walk_zones_in_node(m
, pgdat
, zoneinfo_show_print
);
1254 static const struct seq_operations zoneinfo_op
= {
1255 .start
= frag_start
, /* iterate over all zones. The same as in
1259 .show
= zoneinfo_show
,
1262 static int zoneinfo_open(struct inode
*inode
, struct file
*file
)
1264 return seq_open(file
, &zoneinfo_op
);
1267 static const struct file_operations proc_zoneinfo_file_operations
= {
1268 .open
= zoneinfo_open
,
1270 .llseek
= seq_lseek
,
1271 .release
= seq_release
,
1274 enum writeback_stat_item
{
1276 NR_DIRTY_BG_THRESHOLD
,
1277 NR_VM_WRITEBACK_STAT_ITEMS
,
1280 static void *vmstat_start(struct seq_file
*m
, loff_t
*pos
)
1283 int i
, stat_items_size
;
1285 if (*pos
>= ARRAY_SIZE(vmstat_text
))
1287 stat_items_size
= NR_VM_ZONE_STAT_ITEMS
* sizeof(unsigned long) +
1288 NR_VM_WRITEBACK_STAT_ITEMS
* sizeof(unsigned long);
1290 #ifdef CONFIG_VM_EVENT_COUNTERS
1291 stat_items_size
+= sizeof(struct vm_event_state
);
1294 v
= kmalloc(stat_items_size
, GFP_KERNEL
);
1297 return ERR_PTR(-ENOMEM
);
1298 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
1299 v
[i
] = global_page_state(i
);
1300 v
+= NR_VM_ZONE_STAT_ITEMS
;
1302 global_dirty_limits(v
+ NR_DIRTY_BG_THRESHOLD
,
1303 v
+ NR_DIRTY_THRESHOLD
);
1304 v
+= NR_VM_WRITEBACK_STAT_ITEMS
;
1306 #ifdef CONFIG_VM_EVENT_COUNTERS
1308 v
[PGPGIN
] /= 2; /* sectors -> kbytes */
1311 return (unsigned long *)m
->private + *pos
;
1314 static void *vmstat_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
1317 if (*pos
>= ARRAY_SIZE(vmstat_text
))
1319 return (unsigned long *)m
->private + *pos
;
1322 static int vmstat_show(struct seq_file
*m
, void *arg
)
1324 unsigned long *l
= arg
;
1325 unsigned long off
= l
- (unsigned long *)m
->private;
1327 seq_printf(m
, "%s %lu\n", vmstat_text
[off
], *l
);
1331 static void vmstat_stop(struct seq_file
*m
, void *arg
)
1337 static const struct seq_operations vmstat_op
= {
1338 .start
= vmstat_start
,
1339 .next
= vmstat_next
,
1340 .stop
= vmstat_stop
,
1341 .show
= vmstat_show
,
1344 static int vmstat_open(struct inode
*inode
, struct file
*file
)
1346 return seq_open(file
, &vmstat_op
);
1349 static const struct file_operations proc_vmstat_file_operations
= {
1350 .open
= vmstat_open
,
1352 .llseek
= seq_lseek
,
1353 .release
= seq_release
,
1355 #endif /* CONFIG_PROC_FS */
1358 static DEFINE_PER_CPU(struct delayed_work
, vmstat_work
);
1359 int sysctl_stat_interval __read_mostly
= HZ
;
1360 static cpumask_var_t cpu_stat_off
;
1362 static void vmstat_update(struct work_struct
*w
)
1364 if (refresh_cpu_vm_stats())
1366 * Counters were updated so we expect more updates
1367 * to occur in the future. Keep on running the
1368 * update worker thread.
1370 schedule_delayed_work(this_cpu_ptr(&vmstat_work
),
1371 round_jiffies_relative(sysctl_stat_interval
));
1374 * We did not update any counters so the app may be in
1375 * a mode where it does not cause counter updates.
1376 * We may be uselessly running vmstat_update.
1377 * Defer the checking for differentials to the
1378 * shepherd thread on a different processor.
1382 * Shepherd work thread does not race since it never
1383 * changes the bit if its zero but the cpu
1384 * online / off line code may race if
1385 * worker threads are still allowed during
1386 * shutdown / startup.
1388 r
= cpumask_test_and_set_cpu(smp_processor_id(),
1395 * Check if the diffs for a certain cpu indicate that
1396 * an update is needed.
1398 static bool need_update(int cpu
)
1402 for_each_populated_zone(zone
) {
1403 struct per_cpu_pageset
*p
= per_cpu_ptr(zone
->pageset
, cpu
);
1405 BUILD_BUG_ON(sizeof(p
->vm_stat_diff
[0]) != 1);
1407 * The fast way of checking if there are any vmstat diffs.
1408 * This works because the diffs are byte sized items.
1410 if (memchr_inv(p
->vm_stat_diff
, 0, NR_VM_ZONE_STAT_ITEMS
))
1419 * Shepherd worker thread that checks the
1420 * differentials of processors that have their worker
1421 * threads for vm statistics updates disabled because of
1424 static void vmstat_shepherd(struct work_struct
*w
);
1426 static DECLARE_DELAYED_WORK(shepherd
, vmstat_shepherd
);
1428 static void vmstat_shepherd(struct work_struct
*w
)
1433 /* Check processors whose vmstat worker threads have been disabled */
1434 for_each_cpu(cpu
, cpu_stat_off
)
1435 if (need_update(cpu
) &&
1436 cpumask_test_and_clear_cpu(cpu
, cpu_stat_off
))
1438 schedule_delayed_work_on(cpu
, &per_cpu(vmstat_work
, cpu
),
1439 __round_jiffies_relative(sysctl_stat_interval
, cpu
));
1443 schedule_delayed_work(&shepherd
,
1444 round_jiffies_relative(sysctl_stat_interval
));
1448 static void __init
start_shepherd_timer(void)
1452 for_each_possible_cpu(cpu
)
1453 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work
, cpu
),
1456 if (!alloc_cpumask_var(&cpu_stat_off
, GFP_KERNEL
))
1458 cpumask_copy(cpu_stat_off
, cpu_online_mask
);
1460 schedule_delayed_work(&shepherd
,
1461 round_jiffies_relative(sysctl_stat_interval
));
1464 static void vmstat_cpu_dead(int node
)
1469 for_each_online_cpu(cpu
)
1470 if (cpu_to_node(cpu
) == node
)
1473 node_clear_state(node
, N_CPU
);
1479 * Use the cpu notifier to insure that the thresholds are recalculated
1482 static int vmstat_cpuup_callback(struct notifier_block
*nfb
,
1483 unsigned long action
,
1486 long cpu
= (long)hcpu
;
1490 case CPU_ONLINE_FROZEN
:
1491 refresh_zone_stat_thresholds();
1492 node_set_state(cpu_to_node(cpu
), N_CPU
);
1493 cpumask_set_cpu(cpu
, cpu_stat_off
);
1495 case CPU_DOWN_PREPARE
:
1496 case CPU_DOWN_PREPARE_FROZEN
:
1497 cancel_delayed_work_sync(&per_cpu(vmstat_work
, cpu
));
1498 cpumask_clear_cpu(cpu
, cpu_stat_off
);
1500 case CPU_DOWN_FAILED
:
1501 case CPU_DOWN_FAILED_FROZEN
:
1502 cpumask_set_cpu(cpu
, cpu_stat_off
);
1505 case CPU_DEAD_FROZEN
:
1506 refresh_zone_stat_thresholds();
1507 vmstat_cpu_dead(cpu_to_node(cpu
));
1515 static struct notifier_block vmstat_notifier
=
1516 { &vmstat_cpuup_callback
, NULL
, 0 };
1519 static int __init
setup_vmstat(void)
1522 cpu_notifier_register_begin();
1523 __register_cpu_notifier(&vmstat_notifier
);
1525 start_shepherd_timer();
1526 cpu_notifier_register_done();
1528 #ifdef CONFIG_PROC_FS
1529 proc_create("buddyinfo", S_IRUGO
, NULL
, &fragmentation_file_operations
);
1530 proc_create("pagetypeinfo", S_IRUGO
, NULL
, &pagetypeinfo_file_ops
);
1531 proc_create("vmstat", S_IRUGO
, NULL
, &proc_vmstat_file_operations
);
1532 proc_create("zoneinfo", S_IRUGO
, NULL
, &proc_zoneinfo_file_operations
);
1536 module_init(setup_vmstat
)
1538 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1539 #include <linux/debugfs.h>
1543 * Return an index indicating how much of the available free memory is
1544 * unusable for an allocation of the requested size.
1546 static int unusable_free_index(unsigned int order
,
1547 struct contig_page_info
*info
)
1549 /* No free memory is interpreted as all free memory is unusable */
1550 if (info
->free_pages
== 0)
1554 * Index should be a value between 0 and 1. Return a value to 3
1557 * 0 => no fragmentation
1558 * 1 => high fragmentation
1560 return div_u64((info
->free_pages
- (info
->free_blocks_suitable
<< order
)) * 1000ULL, info
->free_pages
);
1564 static void unusable_show_print(struct seq_file
*m
,
1565 pg_data_t
*pgdat
, struct zone
*zone
)
1569 struct contig_page_info info
;
1571 seq_printf(m
, "Node %d, zone %8s ",
1574 for (order
= 0; order
< MAX_ORDER
; ++order
) {
1575 fill_contig_page_info(zone
, order
, &info
);
1576 index
= unusable_free_index(order
, &info
);
1577 seq_printf(m
, "%d.%03d ", index
/ 1000, index
% 1000);
1584 * Display unusable free space index
1586 * The unusable free space index measures how much of the available free
1587 * memory cannot be used to satisfy an allocation of a given size and is a
1588 * value between 0 and 1. The higher the value, the more of free memory is
1589 * unusable and by implication, the worse the external fragmentation is. This
1590 * can be expressed as a percentage by multiplying by 100.
1592 static int unusable_show(struct seq_file
*m
, void *arg
)
1594 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1596 /* check memoryless node */
1597 if (!node_state(pgdat
->node_id
, N_MEMORY
))
1600 walk_zones_in_node(m
, pgdat
, unusable_show_print
);
1605 static const struct seq_operations unusable_op
= {
1606 .start
= frag_start
,
1609 .show
= unusable_show
,
1612 static int unusable_open(struct inode
*inode
, struct file
*file
)
1614 return seq_open(file
, &unusable_op
);
1617 static const struct file_operations unusable_file_ops
= {
1618 .open
= unusable_open
,
1620 .llseek
= seq_lseek
,
1621 .release
= seq_release
,
1624 static void extfrag_show_print(struct seq_file
*m
,
1625 pg_data_t
*pgdat
, struct zone
*zone
)
1630 /* Alloc on stack as interrupts are disabled for zone walk */
1631 struct contig_page_info info
;
1633 seq_printf(m
, "Node %d, zone %8s ",
1636 for (order
= 0; order
< MAX_ORDER
; ++order
) {
1637 fill_contig_page_info(zone
, order
, &info
);
1638 index
= __fragmentation_index(order
, &info
);
1639 seq_printf(m
, "%d.%03d ", index
/ 1000, index
% 1000);
1646 * Display fragmentation index for orders that allocations would fail for
1648 static int extfrag_show(struct seq_file
*m
, void *arg
)
1650 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1652 walk_zones_in_node(m
, pgdat
, extfrag_show_print
);
1657 static const struct seq_operations extfrag_op
= {
1658 .start
= frag_start
,
1661 .show
= extfrag_show
,
1664 static int extfrag_open(struct inode
*inode
, struct file
*file
)
1666 return seq_open(file
, &extfrag_op
);
1669 static const struct file_operations extfrag_file_ops
= {
1670 .open
= extfrag_open
,
1672 .llseek
= seq_lseek
,
1673 .release
= seq_release
,
1676 static int __init
extfrag_debug_init(void)
1678 struct dentry
*extfrag_debug_root
;
1680 extfrag_debug_root
= debugfs_create_dir("extfrag", NULL
);
1681 if (!extfrag_debug_root
)
1684 if (!debugfs_create_file("unusable_index", 0444,
1685 extfrag_debug_root
, NULL
, &unusable_file_ops
))
1688 if (!debugfs_create_file("extfrag_index", 0444,
1689 extfrag_debug_root
, NULL
, &extfrag_file_ops
))
1694 debugfs_remove_recursive(extfrag_debug_root
);
1698 module_init(extfrag_debug_init
);