2 * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
4 * (C) 2001 San Mehat <nettwerk@valinux.com>
5 * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
6 * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
8 * This driver for the Micro Memory PCI Memory Module with Battery Backup
9 * is Copyright Micro Memory Inc 2001-2002. All rights reserved.
11 * This driver is released to the public under the terms of the
12 * GNU GENERAL PUBLIC LICENSE version 2
13 * See the file COPYING for details.
15 * This driver provides a standard block device interface for Micro Memory(tm)
16 * PCI based RAM boards.
17 * 10/05/01: Phap Nguyen - Rebuilt the driver
18 * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
19 * 29oct2001:NeilBrown - Use make_request_fn instead of request_fn
20 * - use stand disk partitioning (so fdisk works).
21 * 08nov2001:NeilBrown - change driver name from "mm" to "umem"
22 * - incorporate into main kernel
23 * 08apr2002:NeilBrown - Move some of interrupt handle to tasklet
24 * - use spin_lock_bh instead of _irq
25 * - Never block on make_request. queue
27 * - unregister umem from devfs at mod unload
28 * - Change version to 2.3
29 * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
30 * 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA
31 * 15May2002:NeilBrown - convert to bio for 2.5
32 * 17May2002:NeilBrown - remove init_mem initialisation. Instead detect
33 * - a sequence of writes that cover the card, and
34 * - set initialised bit then.
37 #undef DEBUG /* #define DEBUG if you want debugging info (pr_debug) */
39 #include <linux/bio.h>
40 #include <linux/kernel.h>
42 #include <linux/mman.h>
43 #include <linux/gfp.h>
44 #include <linux/ioctl.h>
45 #include <linux/module.h>
46 #include <linux/init.h>
47 #include <linux/interrupt.h>
48 #include <linux/timer.h>
49 #include <linux/pci.h>
50 #include <linux/dma-mapping.h>
52 #include <linux/fcntl.h> /* O_ACCMODE */
53 #include <linux/hdreg.h> /* HDIO_GETGEO */
57 #include <asm/uaccess.h>
61 #define MM_RAHEAD 2 /* two sectors */
62 #define MM_BLKSIZE 1024 /* 1k blocks */
63 #define MM_HARDSECT 512 /* 512-byte hardware sectors */
64 #define MM_SHIFT 6 /* max 64 partitions on 4 cards */
70 #define DRIVER_NAME "umem"
71 #define DRIVER_VERSION "v2.3"
72 #define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
73 #define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
76 /* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
79 #define DEBUG_LED_ON_TRANSFER 0x01
80 #define DEBUG_BATTERY_POLLING 0x02
82 module_param(debug
, int, 0644);
83 MODULE_PARM_DESC(debug
, "Debug bitmask");
85 static int pci_read_cmd
= 0x0C; /* Read Multiple */
86 module_param(pci_read_cmd
, int, 0);
87 MODULE_PARM_DESC(pci_read_cmd
, "PCI read command");
89 static int pci_write_cmd
= 0x0F; /* Write and Invalidate */
90 module_param(pci_write_cmd
, int, 0);
91 MODULE_PARM_DESC(pci_write_cmd
, "PCI write command");
97 #include <linux/blkdev.h>
98 #include <linux/blkpg.h>
103 unsigned char __iomem
*csr_remap
;
104 unsigned int mm_size
; /* size in kbytes */
106 unsigned int init_size
; /* initial segment, in sectors,
110 struct bio
*bio
, *currentbio
, **biotail
;
111 struct bvec_iter current_iter
;
113 struct request_queue
*queue
;
117 struct mm_dma_desc
*desc
;
119 struct bio
*bio
, **biotail
;
120 struct bvec_iter iter
;
122 #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
126 struct tasklet_struct tasklet
;
127 unsigned int dma_status
;
132 unsigned long last_change
;
141 static struct cardinfo cards
[MM_MAXCARDS
];
142 static struct timer_list battery_timer
;
144 static int num_cards
;
146 static struct gendisk
*mm_gendisk
[MM_MAXCARDS
];
148 static void check_batteries(struct cardinfo
*card
);
150 static int get_userbit(struct cardinfo
*card
, int bit
)
154 led
= readb(card
->csr_remap
+ MEMCTRLCMD_LEDCTRL
);
158 static int set_userbit(struct cardinfo
*card
, int bit
, unsigned char state
)
162 led
= readb(card
->csr_remap
+ MEMCTRLCMD_LEDCTRL
);
167 writeb(led
, card
->csr_remap
+ MEMCTRLCMD_LEDCTRL
);
173 * NOTE: For the power LED, use the LED_POWER_* macros since they differ
175 static void set_led(struct cardinfo
*card
, int shift
, unsigned char state
)
179 led
= readb(card
->csr_remap
+ MEMCTRLCMD_LEDCTRL
);
180 if (state
== LED_FLIP
)
183 led
&= ~(0x03 << shift
);
184 led
|= (state
<< shift
);
186 writeb(led
, card
->csr_remap
+ MEMCTRLCMD_LEDCTRL
);
191 static void dump_regs(struct cardinfo
*card
)
197 for (i
= 0; i
< 8; i
++) {
198 printk(KERN_DEBUG
"%p ", p
);
200 for (i1
= 0; i1
< 16; i1
++)
201 printk("%02x ", *p
++);
208 static void dump_dmastat(struct cardinfo
*card
, unsigned int dmastat
)
210 dev_printk(KERN_DEBUG
, &card
->dev
->dev
, "DMAstat - ");
211 if (dmastat
& DMASCR_ANY_ERR
)
212 printk(KERN_CONT
"ANY_ERR ");
213 if (dmastat
& DMASCR_MBE_ERR
)
214 printk(KERN_CONT
"MBE_ERR ");
215 if (dmastat
& DMASCR_PARITY_ERR_REP
)
216 printk(KERN_CONT
"PARITY_ERR_REP ");
217 if (dmastat
& DMASCR_PARITY_ERR_DET
)
218 printk(KERN_CONT
"PARITY_ERR_DET ");
219 if (dmastat
& DMASCR_SYSTEM_ERR_SIG
)
220 printk(KERN_CONT
"SYSTEM_ERR_SIG ");
221 if (dmastat
& DMASCR_TARGET_ABT
)
222 printk(KERN_CONT
"TARGET_ABT ");
223 if (dmastat
& DMASCR_MASTER_ABT
)
224 printk(KERN_CONT
"MASTER_ABT ");
225 if (dmastat
& DMASCR_CHAIN_COMPLETE
)
226 printk(KERN_CONT
"CHAIN_COMPLETE ");
227 if (dmastat
& DMASCR_DMA_COMPLETE
)
228 printk(KERN_CONT
"DMA_COMPLETE ");
233 * Theory of request handling
235 * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
236 * We have two pages of mm_dma_desc, holding about 64 descriptors
237 * each. These are allocated at init time.
238 * One page is "Ready" and is either full, or can have request added.
239 * The other page might be "Active", which DMA is happening on it.
241 * Whenever IO on the active page completes, the Ready page is activated
242 * and the ex-Active page is clean out and made Ready.
243 * Otherwise the Ready page is only activated when it becomes full.
245 * If a request arrives while both pages a full, it is queued, and b_rdev is
246 * overloaded to record whether it was a read or a write.
248 * The interrupt handler only polls the device to clear the interrupt.
249 * The processing of the result is done in a tasklet.
252 static void mm_start_io(struct cardinfo
*card
)
254 /* we have the lock, we know there is
255 * no IO active, and we know that card->Active
258 struct mm_dma_desc
*desc
;
259 struct mm_page
*page
;
262 /* make the last descriptor end the chain */
263 page
= &card
->mm_pages
[card
->Active
];
264 pr_debug("start_io: %d %d->%d\n",
265 card
->Active
, page
->headcnt
, page
->cnt
- 1);
266 desc
= &page
->desc
[page
->cnt
-1];
268 desc
->control_bits
|= cpu_to_le32(DMASCR_CHAIN_COMP_EN
);
269 desc
->control_bits
&= ~cpu_to_le32(DMASCR_CHAIN_EN
);
270 desc
->sem_control_bits
= desc
->control_bits
;
273 if (debug
& DEBUG_LED_ON_TRANSFER
)
274 set_led(card
, LED_REMOVE
, LED_ON
);
276 desc
= &page
->desc
[page
->headcnt
];
277 writel(0, card
->csr_remap
+ DMA_PCI_ADDR
);
278 writel(0, card
->csr_remap
+ DMA_PCI_ADDR
+ 4);
280 writel(0, card
->csr_remap
+ DMA_LOCAL_ADDR
);
281 writel(0, card
->csr_remap
+ DMA_LOCAL_ADDR
+ 4);
283 writel(0, card
->csr_remap
+ DMA_TRANSFER_SIZE
);
284 writel(0, card
->csr_remap
+ DMA_TRANSFER_SIZE
+ 4);
286 writel(0, card
->csr_remap
+ DMA_SEMAPHORE_ADDR
);
287 writel(0, card
->csr_remap
+ DMA_SEMAPHORE_ADDR
+ 4);
289 offset
= ((char *)desc
) - ((char *)page
->desc
);
290 writel(cpu_to_le32((page
->page_dma
+offset
) & 0xffffffff),
291 card
->csr_remap
+ DMA_DESCRIPTOR_ADDR
);
292 /* Force the value to u64 before shifting otherwise >> 32 is undefined C
293 * and on some ports will do nothing ! */
294 writel(cpu_to_le32(((u64
)page
->page_dma
)>>32),
295 card
->csr_remap
+ DMA_DESCRIPTOR_ADDR
+ 4);
298 writel(cpu_to_le32(DMASCR_GO
| DMASCR_CHAIN_EN
| pci_cmds
),
299 card
->csr_remap
+ DMA_STATUS_CTRL
);
302 static int add_bio(struct cardinfo
*card
);
304 static void activate(struct cardinfo
*card
)
306 /* if No page is Active, and Ready is
307 * not empty, then switch Ready page
308 * to active and start IO.
309 * Then add any bh's that are available to Ready
313 while (add_bio(card
))
316 if (card
->Active
== -1 &&
317 card
->mm_pages
[card
->Ready
].cnt
> 0) {
318 card
->Active
= card
->Ready
;
319 card
->Ready
= 1-card
->Ready
;
323 } while (card
->Active
== -1 && add_bio(card
));
326 static inline void reset_page(struct mm_page
*page
)
331 page
->biotail
= &page
->bio
;
335 * If there is room on Ready page, take
336 * one bh off list and add it.
337 * return 1 if there was room, else 0.
339 static int add_bio(struct cardinfo
*card
)
342 struct mm_dma_desc
*desc
;
343 dma_addr_t dma_handle
;
349 bio
= card
->currentbio
;
350 if (!bio
&& card
->bio
) {
351 card
->currentbio
= card
->bio
;
352 card
->current_iter
= card
->bio
->bi_iter
;
353 card
->bio
= card
->bio
->bi_next
;
354 if (card
->bio
== NULL
)
355 card
->biotail
= &card
->bio
;
356 card
->currentbio
->bi_next
= NULL
;
363 if (card
->mm_pages
[card
->Ready
].cnt
>= DESC_PER_PAGE
)
366 vec
= bio_iter_iovec(bio
, card
->current_iter
);
368 dma_handle
= pci_map_page(card
->dev
,
373 PCI_DMA_FROMDEVICE
: PCI_DMA_TODEVICE
);
375 p
= &card
->mm_pages
[card
->Ready
];
376 desc
= &p
->desc
[p
->cnt
];
379 p
->iter
= card
->current_iter
;
380 if ((p
->biotail
) != &bio
->bi_next
) {
382 p
->biotail
= &(bio
->bi_next
);
386 desc
->data_dma_handle
= dma_handle
;
388 desc
->pci_addr
= cpu_to_le64((u64
)desc
->data_dma_handle
);
389 desc
->local_addr
= cpu_to_le64(card
->current_iter
.bi_sector
<< 9);
390 desc
->transfer_size
= cpu_to_le32(vec
.bv_len
);
391 offset
= (((char *)&desc
->sem_control_bits
) - ((char *)p
->desc
));
392 desc
->sem_addr
= cpu_to_le64((u64
)(p
->page_dma
+offset
));
393 desc
->zero1
= desc
->zero2
= 0;
394 offset
= (((char *)(desc
+1)) - ((char *)p
->desc
));
395 desc
->next_desc_addr
= cpu_to_le64(p
->page_dma
+offset
);
396 desc
->control_bits
= cpu_to_le32(DMASCR_GO
|DMASCR_ERR_INT_EN
|
397 DMASCR_PARITY_INT_EN
|
402 desc
->control_bits
|= cpu_to_le32(DMASCR_TRANSFER_READ
);
403 desc
->sem_control_bits
= desc
->control_bits
;
406 bio_advance_iter(bio
, &card
->current_iter
, vec
.bv_len
);
407 if (!card
->current_iter
.bi_size
)
408 card
->currentbio
= NULL
;
413 static void process_page(unsigned long data
)
415 /* check if any of the requests in the page are DMA_COMPLETE,
416 * and deal with them appropriately.
417 * If we find a descriptor without DMA_COMPLETE in the semaphore, then
418 * dma must have hit an error on that descriptor, so use dma_status
419 * instead and assume that all following descriptors must be re-tried.
421 struct mm_page
*page
;
422 struct bio
*return_bio
= NULL
;
423 struct cardinfo
*card
= (struct cardinfo
*)data
;
424 unsigned int dma_status
= card
->dma_status
;
426 spin_lock_bh(&card
->lock
);
427 if (card
->Active
< 0)
429 page
= &card
->mm_pages
[card
->Active
];
431 while (page
->headcnt
< page
->cnt
) {
432 struct bio
*bio
= page
->bio
;
433 struct mm_dma_desc
*desc
= &page
->desc
[page
->headcnt
];
434 int control
= le32_to_cpu(desc
->sem_control_bits
);
438 if (!(control
& DMASCR_DMA_COMPLETE
)) {
439 control
= dma_status
;
444 vec
= bio_iter_iovec(bio
, page
->iter
);
445 bio_advance_iter(bio
, &page
->iter
, vec
.bv_len
);
447 if (!page
->iter
.bi_size
) {
448 page
->bio
= bio
->bi_next
;
450 page
->iter
= page
->bio
->bi_iter
;
453 pci_unmap_page(card
->dev
, desc
->data_dma_handle
,
455 (control
& DMASCR_TRANSFER_READ
) ?
456 PCI_DMA_TODEVICE
: PCI_DMA_FROMDEVICE
);
457 if (control
& DMASCR_HARD_ERROR
) {
459 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
460 dev_printk(KERN_WARNING
, &card
->dev
->dev
,
461 "I/O error on sector %d/%d\n",
462 le32_to_cpu(desc
->local_addr
)>>9,
463 le32_to_cpu(desc
->transfer_size
));
464 dump_dmastat(card
, control
);
465 } else if ((bio
->bi_rw
& REQ_WRITE
) &&
466 le32_to_cpu(desc
->local_addr
) >> 9 ==
468 card
->init_size
+= le32_to_cpu(desc
->transfer_size
) >> 9;
469 if (card
->init_size
>> 1 >= card
->mm_size
) {
470 dev_printk(KERN_INFO
, &card
->dev
->dev
,
471 "memory now initialised\n");
472 set_userbit(card
, MEMORY_INITIALIZED
, 1);
475 if (bio
!= page
->bio
) {
476 bio
->bi_next
= return_bio
;
484 if (debug
& DEBUG_LED_ON_TRANSFER
)
485 set_led(card
, LED_REMOVE
, LED_OFF
);
487 if (card
->check_batteries
) {
488 card
->check_batteries
= 0;
489 check_batteries(card
);
491 if (page
->headcnt
>= page
->cnt
) {
496 /* haven't finished with this one yet */
497 pr_debug("do some more\n");
501 spin_unlock_bh(&card
->lock
);
504 struct bio
*bio
= return_bio
;
506 return_bio
= bio
->bi_next
;
512 static void mm_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
514 struct cardinfo
*card
= cb
->data
;
516 spin_lock_irq(&card
->lock
);
518 spin_unlock_irq(&card
->lock
);
522 static int mm_check_plugged(struct cardinfo
*card
)
524 return !!blk_check_plugged(mm_unplug
, card
, sizeof(struct blk_plug_cb
));
527 static void mm_make_request(struct request_queue
*q
, struct bio
*bio
)
529 struct cardinfo
*card
= q
->queuedata
;
530 pr_debug("mm_make_request %llu %u\n",
531 (unsigned long long)bio
->bi_iter
.bi_sector
,
532 bio
->bi_iter
.bi_size
);
534 spin_lock_irq(&card
->lock
);
535 *card
->biotail
= bio
;
537 card
->biotail
= &bio
->bi_next
;
538 if (bio
->bi_rw
& REQ_SYNC
|| !mm_check_plugged(card
))
540 spin_unlock_irq(&card
->lock
);
545 static irqreturn_t
mm_interrupt(int irq
, void *__card
)
547 struct cardinfo
*card
= (struct cardinfo
*) __card
;
548 unsigned int dma_status
;
549 unsigned short cfg_status
;
553 dma_status
= le32_to_cpu(readl(card
->csr_remap
+ DMA_STATUS_CTRL
));
555 if (!(dma_status
& (DMASCR_ERROR_MASK
| DMASCR_CHAIN_COMPLETE
))) {
556 /* interrupt wasn't for me ... */
560 /* clear COMPLETION interrupts */
561 if (card
->flags
& UM_FLAG_NO_BYTE_STATUS
)
562 writel(cpu_to_le32(DMASCR_DMA_COMPLETE
|DMASCR_CHAIN_COMPLETE
),
563 card
->csr_remap
+ DMA_STATUS_CTRL
);
565 writeb((DMASCR_DMA_COMPLETE
|DMASCR_CHAIN_COMPLETE
) >> 16,
566 card
->csr_remap
+ DMA_STATUS_CTRL
+ 2);
568 /* log errors and clear interrupt status */
569 if (dma_status
& DMASCR_ANY_ERR
) {
570 unsigned int data_log1
, data_log2
;
571 unsigned int addr_log1
, addr_log2
;
572 unsigned char stat
, count
, syndrome
, check
;
574 stat
= readb(card
->csr_remap
+ MEMCTRLCMD_ERRSTATUS
);
576 data_log1
= le32_to_cpu(readl(card
->csr_remap
+
578 data_log2
= le32_to_cpu(readl(card
->csr_remap
+
579 ERROR_DATA_LOG
+ 4));
580 addr_log1
= le32_to_cpu(readl(card
->csr_remap
+
582 addr_log2
= readb(card
->csr_remap
+ ERROR_ADDR_LOG
+ 4);
584 count
= readb(card
->csr_remap
+ ERROR_COUNT
);
585 syndrome
= readb(card
->csr_remap
+ ERROR_SYNDROME
);
586 check
= readb(card
->csr_remap
+ ERROR_CHECK
);
588 dump_dmastat(card
, dma_status
);
591 dev_printk(KERN_ERR
, &card
->dev
->dev
,
592 "Memory access error detected (err count %d)\n",
595 dev_printk(KERN_ERR
, &card
->dev
->dev
,
596 "Multi-bit EDC error\n");
598 dev_printk(KERN_ERR
, &card
->dev
->dev
,
599 "Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
600 addr_log2
, addr_log1
, data_log2
, data_log1
);
601 dev_printk(KERN_ERR
, &card
->dev
->dev
,
602 "Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
605 writeb(0, card
->csr_remap
+ ERROR_COUNT
);
608 if (dma_status
& DMASCR_PARITY_ERR_REP
) {
609 dev_printk(KERN_ERR
, &card
->dev
->dev
,
610 "PARITY ERROR REPORTED\n");
611 pci_read_config_word(card
->dev
, PCI_STATUS
, &cfg_status
);
612 pci_write_config_word(card
->dev
, PCI_STATUS
, cfg_status
);
615 if (dma_status
& DMASCR_PARITY_ERR_DET
) {
616 dev_printk(KERN_ERR
, &card
->dev
->dev
,
617 "PARITY ERROR DETECTED\n");
618 pci_read_config_word(card
->dev
, PCI_STATUS
, &cfg_status
);
619 pci_write_config_word(card
->dev
, PCI_STATUS
, cfg_status
);
622 if (dma_status
& DMASCR_SYSTEM_ERR_SIG
) {
623 dev_printk(KERN_ERR
, &card
->dev
->dev
, "SYSTEM ERROR\n");
624 pci_read_config_word(card
->dev
, PCI_STATUS
, &cfg_status
);
625 pci_write_config_word(card
->dev
, PCI_STATUS
, cfg_status
);
628 if (dma_status
& DMASCR_TARGET_ABT
) {
629 dev_printk(KERN_ERR
, &card
->dev
->dev
, "TARGET ABORT\n");
630 pci_read_config_word(card
->dev
, PCI_STATUS
, &cfg_status
);
631 pci_write_config_word(card
->dev
, PCI_STATUS
, cfg_status
);
634 if (dma_status
& DMASCR_MASTER_ABT
) {
635 dev_printk(KERN_ERR
, &card
->dev
->dev
, "MASTER ABORT\n");
636 pci_read_config_word(card
->dev
, PCI_STATUS
, &cfg_status
);
637 pci_write_config_word(card
->dev
, PCI_STATUS
, cfg_status
);
640 /* and process the DMA descriptors */
641 card
->dma_status
= dma_status
;
642 tasklet_schedule(&card
->tasklet
);
650 * If both batteries are good, no LED
651 * If either battery has been warned, solid LED
652 * If both batteries are bad, flash the LED quickly
653 * If either battery is bad, flash the LED semi quickly
655 static void set_fault_to_battery_status(struct cardinfo
*card
)
657 if (card
->battery
[0].good
&& card
->battery
[1].good
)
658 set_led(card
, LED_FAULT
, LED_OFF
);
659 else if (card
->battery
[0].warned
|| card
->battery
[1].warned
)
660 set_led(card
, LED_FAULT
, LED_ON
);
661 else if (!card
->battery
[0].good
&& !card
->battery
[1].good
)
662 set_led(card
, LED_FAULT
, LED_FLASH_7_0
);
664 set_led(card
, LED_FAULT
, LED_FLASH_3_5
);
667 static void init_battery_timer(void);
669 static int check_battery(struct cardinfo
*card
, int battery
, int status
)
671 if (status
!= card
->battery
[battery
].good
) {
672 card
->battery
[battery
].good
= !card
->battery
[battery
].good
;
673 card
->battery
[battery
].last_change
= jiffies
;
675 if (card
->battery
[battery
].good
) {
676 dev_printk(KERN_ERR
, &card
->dev
->dev
,
677 "Battery %d now good\n", battery
+ 1);
678 card
->battery
[battery
].warned
= 0;
680 dev_printk(KERN_ERR
, &card
->dev
->dev
,
681 "Battery %d now FAILED\n", battery
+ 1);
684 } else if (!card
->battery
[battery
].good
&&
685 !card
->battery
[battery
].warned
&&
686 time_after_eq(jiffies
, card
->battery
[battery
].last_change
+
687 (HZ
* 60 * 60 * 5))) {
688 dev_printk(KERN_ERR
, &card
->dev
->dev
,
689 "Battery %d still FAILED after 5 hours\n", battery
+ 1);
690 card
->battery
[battery
].warned
= 1;
698 static void check_batteries(struct cardinfo
*card
)
700 /* NOTE: this must *never* be called while the card
701 * is doing (bus-to-card) DMA, or you will need the
704 unsigned char status
;
707 status
= readb(card
->csr_remap
+ MEMCTRLSTATUS_BATTERY
);
708 if (debug
& DEBUG_BATTERY_POLLING
)
709 dev_printk(KERN_DEBUG
, &card
->dev
->dev
,
710 "checking battery status, 1 = %s, 2 = %s\n",
711 (status
& BATTERY_1_FAILURE
) ? "FAILURE" : "OK",
712 (status
& BATTERY_2_FAILURE
) ? "FAILURE" : "OK");
714 ret1
= check_battery(card
, 0, !(status
& BATTERY_1_FAILURE
));
715 ret2
= check_battery(card
, 1, !(status
& BATTERY_2_FAILURE
));
718 set_fault_to_battery_status(card
);
721 static void check_all_batteries(unsigned long ptr
)
725 for (i
= 0; i
< num_cards
; i
++)
726 if (!(cards
[i
].flags
& UM_FLAG_NO_BATT
)) {
727 struct cardinfo
*card
= &cards
[i
];
728 spin_lock_bh(&card
->lock
);
729 if (card
->Active
>= 0)
730 card
->check_batteries
= 1;
732 check_batteries(card
);
733 spin_unlock_bh(&card
->lock
);
736 init_battery_timer();
739 static void init_battery_timer(void)
741 init_timer(&battery_timer
);
742 battery_timer
.function
= check_all_batteries
;
743 battery_timer
.expires
= jiffies
+ (HZ
* 60);
744 add_timer(&battery_timer
);
747 static void del_battery_timer(void)
749 del_timer(&battery_timer
);
753 * Note no locks taken out here. In a worst case scenario, we could drop
754 * a chunk of system memory. But that should never happen, since validation
755 * happens at open or mount time, when locks are held.
757 * That's crap, since doing that while some partitions are opened
758 * or mounted will give you really nasty results.
760 static int mm_revalidate(struct gendisk
*disk
)
762 struct cardinfo
*card
= disk
->private_data
;
763 set_capacity(disk
, card
->mm_size
<< 1);
767 static int mm_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
769 struct cardinfo
*card
= bdev
->bd_disk
->private_data
;
770 int size
= card
->mm_size
* (1024 / MM_HARDSECT
);
773 * get geometry: we have to fake one... trim the size to a
774 * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
775 * whatever cylinders.
779 geo
->cylinders
= size
/ (geo
->heads
* geo
->sectors
);
783 static const struct block_device_operations mm_fops
= {
784 .owner
= THIS_MODULE
,
786 .revalidate_disk
= mm_revalidate
,
789 static int mm_pci_probe(struct pci_dev
*dev
, const struct pci_device_id
*id
)
792 struct cardinfo
*card
= &cards
[num_cards
];
793 unsigned char mem_present
;
794 unsigned char batt_status
;
795 unsigned int saved_bar
, data
;
796 unsigned long csr_base
;
797 unsigned long csr_len
;
799 static int printed_version
;
801 if (!printed_version
++)
802 printk(KERN_INFO DRIVER_VERSION
" : " DRIVER_DESC
"\n");
804 ret
= pci_enable_device(dev
);
808 pci_write_config_byte(dev
, PCI_LATENCY_TIMER
, 0xF8);
813 csr_base
= pci_resource_start(dev
, 0);
814 csr_len
= pci_resource_len(dev
, 0);
815 if (!csr_base
|| !csr_len
)
818 dev_printk(KERN_INFO
, &dev
->dev
,
819 "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
821 if (pci_set_dma_mask(dev
, DMA_BIT_MASK(64)) &&
822 pci_set_dma_mask(dev
, DMA_BIT_MASK(32))) {
823 dev_printk(KERN_WARNING
, &dev
->dev
, "NO suitable DMA found\n");
827 ret
= pci_request_regions(dev
, DRIVER_NAME
);
829 dev_printk(KERN_ERR
, &card
->dev
->dev
,
830 "Unable to request memory region\n");
834 card
->csr_remap
= ioremap_nocache(csr_base
, csr_len
);
835 if (!card
->csr_remap
) {
836 dev_printk(KERN_ERR
, &card
->dev
->dev
,
837 "Unable to remap memory region\n");
840 goto failed_remap_csr
;
843 dev_printk(KERN_INFO
, &card
->dev
->dev
,
844 "CSR 0x%08lx -> 0x%p (0x%lx)\n",
845 csr_base
, card
->csr_remap
, csr_len
);
847 switch (card
->dev
->device
) {
849 card
->flags
|= UM_FLAG_NO_BYTE_STATUS
| UM_FLAG_NO_BATTREG
;
854 card
->flags
|= UM_FLAG_NO_BYTE_STATUS
;
859 card
->flags
|= UM_FLAG_NO_BYTE_STATUS
|
860 UM_FLAG_NO_BATTREG
| UM_FLAG_NO_BATT
;
865 magic_number
= 0x100;
869 if (readb(card
->csr_remap
+ MEMCTRLSTATUS_MAGIC
) != magic_number
) {
870 dev_printk(KERN_ERR
, &card
->dev
->dev
, "Magic number invalid\n");
875 card
->mm_pages
[0].desc
= pci_alloc_consistent(card
->dev
,
877 &card
->mm_pages
[0].page_dma
);
878 card
->mm_pages
[1].desc
= pci_alloc_consistent(card
->dev
,
880 &card
->mm_pages
[1].page_dma
);
881 if (card
->mm_pages
[0].desc
== NULL
||
882 card
->mm_pages
[1].desc
== NULL
) {
883 dev_printk(KERN_ERR
, &card
->dev
->dev
, "alloc failed\n");
886 reset_page(&card
->mm_pages
[0]);
887 reset_page(&card
->mm_pages
[1]);
888 card
->Ready
= 0; /* page 0 is ready */
889 card
->Active
= -1; /* no page is active */
891 card
->biotail
= &card
->bio
;
893 card
->queue
= blk_alloc_queue(GFP_KERNEL
);
897 blk_queue_make_request(card
->queue
, mm_make_request
);
898 card
->queue
->queue_lock
= &card
->lock
;
899 card
->queue
->queuedata
= card
;
901 tasklet_init(&card
->tasklet
, process_page
, (unsigned long)card
);
903 card
->check_batteries
= 0;
905 mem_present
= readb(card
->csr_remap
+ MEMCTRLSTATUS_MEMORY
);
906 switch (mem_present
) {
908 card
->mm_size
= 1024 * 128;
911 card
->mm_size
= 1024 * 256;
914 card
->mm_size
= 1024 * 512;
917 card
->mm_size
= 1024 * 1024;
920 card
->mm_size
= 1024 * 2048;
927 /* Clear the LED's we control */
928 set_led(card
, LED_REMOVE
, LED_OFF
);
929 set_led(card
, LED_FAULT
, LED_OFF
);
931 batt_status
= readb(card
->csr_remap
+ MEMCTRLSTATUS_BATTERY
);
933 card
->battery
[0].good
= !(batt_status
& BATTERY_1_FAILURE
);
934 card
->battery
[1].good
= !(batt_status
& BATTERY_2_FAILURE
);
935 card
->battery
[0].last_change
= card
->battery
[1].last_change
= jiffies
;
937 if (card
->flags
& UM_FLAG_NO_BATT
)
938 dev_printk(KERN_INFO
, &card
->dev
->dev
,
939 "Size %d KB\n", card
->mm_size
);
941 dev_printk(KERN_INFO
, &card
->dev
->dev
,
942 "Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
944 batt_status
& BATTERY_1_DISABLED
? "Disabled" : "Enabled",
945 card
->battery
[0].good
? "OK" : "FAILURE",
946 batt_status
& BATTERY_2_DISABLED
? "Disabled" : "Enabled",
947 card
->battery
[1].good
? "OK" : "FAILURE");
949 set_fault_to_battery_status(card
);
952 pci_read_config_dword(dev
, PCI_BASE_ADDRESS_1
, &saved_bar
);
954 pci_write_config_dword(dev
, PCI_BASE_ADDRESS_1
, data
);
955 pci_read_config_dword(dev
, PCI_BASE_ADDRESS_1
, &data
);
956 pci_write_config_dword(dev
, PCI_BASE_ADDRESS_1
, saved_bar
);
961 if (request_irq(dev
->irq
, mm_interrupt
, IRQF_SHARED
, DRIVER_NAME
,
963 dev_printk(KERN_ERR
, &card
->dev
->dev
,
964 "Unable to allocate IRQ\n");
969 dev_printk(KERN_INFO
, &card
->dev
->dev
,
970 "Window size %d bytes, IRQ %d\n", data
, dev
->irq
);
972 spin_lock_init(&card
->lock
);
974 pci_set_drvdata(dev
, card
);
976 if (pci_write_cmd
!= 0x0F) /* If not Memory Write & Invalidate */
977 pci_write_cmd
= 0x07; /* then Memory Write command */
979 if (pci_write_cmd
& 0x08) { /* use Memory Write and Invalidate */
980 unsigned short cfg_command
;
981 pci_read_config_word(dev
, PCI_COMMAND
, &cfg_command
);
982 cfg_command
|= 0x10; /* Memory Write & Invalidate Enable */
983 pci_write_config_word(dev
, PCI_COMMAND
, cfg_command
);
985 pci_cmds
= (pci_read_cmd
<< 28) | (pci_write_cmd
<< 24);
989 if (!get_userbit(card
, MEMORY_INITIALIZED
)) {
990 dev_printk(KERN_INFO
, &card
->dev
->dev
,
991 "memory NOT initialized. Consider over-writing whole device.\n");
994 dev_printk(KERN_INFO
, &card
->dev
->dev
,
995 "memory already initialized\n");
996 card
->init_size
= card
->mm_size
;
1000 writeb(EDC_STORE_CORRECT
, card
->csr_remap
+ MEMCTRLCMD_ERRCTRL
);
1006 if (card
->mm_pages
[0].desc
)
1007 pci_free_consistent(card
->dev
, PAGE_SIZE
*2,
1008 card
->mm_pages
[0].desc
,
1009 card
->mm_pages
[0].page_dma
);
1010 if (card
->mm_pages
[1].desc
)
1011 pci_free_consistent(card
->dev
, PAGE_SIZE
*2,
1012 card
->mm_pages
[1].desc
,
1013 card
->mm_pages
[1].page_dma
);
1015 iounmap(card
->csr_remap
);
1017 pci_release_regions(dev
);
1023 static void mm_pci_remove(struct pci_dev
*dev
)
1025 struct cardinfo
*card
= pci_get_drvdata(dev
);
1027 tasklet_kill(&card
->tasklet
);
1028 free_irq(dev
->irq
, card
);
1029 iounmap(card
->csr_remap
);
1031 if (card
->mm_pages
[0].desc
)
1032 pci_free_consistent(card
->dev
, PAGE_SIZE
*2,
1033 card
->mm_pages
[0].desc
,
1034 card
->mm_pages
[0].page_dma
);
1035 if (card
->mm_pages
[1].desc
)
1036 pci_free_consistent(card
->dev
, PAGE_SIZE
*2,
1037 card
->mm_pages
[1].desc
,
1038 card
->mm_pages
[1].page_dma
);
1039 blk_cleanup_queue(card
->queue
);
1041 pci_release_regions(dev
);
1042 pci_disable_device(dev
);
1045 static const struct pci_device_id mm_pci_ids
[] = {
1046 {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY
, PCI_DEVICE_ID_MICRO_MEMORY_5415CN
)},
1047 {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY
, PCI_DEVICE_ID_MICRO_MEMORY_5425CN
)},
1048 {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY
, PCI_DEVICE_ID_MICRO_MEMORY_6155
)},
1052 .subvendor
= 0x1332,
1053 .subdevice
= 0x5460,
1056 }, { /* end: all zeroes */ }
1059 MODULE_DEVICE_TABLE(pci
, mm_pci_ids
);
1061 static struct pci_driver mm_pci_driver
= {
1062 .name
= DRIVER_NAME
,
1063 .id_table
= mm_pci_ids
,
1064 .probe
= mm_pci_probe
,
1065 .remove
= mm_pci_remove
,
1068 static int __init
mm_init(void)
1073 retval
= pci_register_driver(&mm_pci_driver
);
1077 err
= major_nr
= register_blkdev(0, DRIVER_NAME
);
1079 pci_unregister_driver(&mm_pci_driver
);
1083 for (i
= 0; i
< num_cards
; i
++) {
1084 mm_gendisk
[i
] = alloc_disk(1 << MM_SHIFT
);
1089 for (i
= 0; i
< num_cards
; i
++) {
1090 struct gendisk
*disk
= mm_gendisk
[i
];
1091 sprintf(disk
->disk_name
, "umem%c", 'a'+i
);
1092 spin_lock_init(&cards
[i
].lock
);
1093 disk
->major
= major_nr
;
1094 disk
->first_minor
= i
<< MM_SHIFT
;
1095 disk
->fops
= &mm_fops
;
1096 disk
->private_data
= &cards
[i
];
1097 disk
->queue
= cards
[i
].queue
;
1098 set_capacity(disk
, cards
[i
].mm_size
<< 1);
1102 init_battery_timer();
1103 printk(KERN_INFO
"MM: desc_per_page = %ld\n", DESC_PER_PAGE
);
1104 /* printk("mm_init: Done. 10-19-01 9:00\n"); */
1108 pci_unregister_driver(&mm_pci_driver
);
1109 unregister_blkdev(major_nr
, DRIVER_NAME
);
1111 put_disk(mm_gendisk
[i
]);
1115 static void __exit
mm_cleanup(void)
1119 del_battery_timer();
1121 for (i
= 0; i
< num_cards
; i
++) {
1122 del_gendisk(mm_gendisk
[i
]);
1123 put_disk(mm_gendisk
[i
]);
1126 pci_unregister_driver(&mm_pci_driver
);
1128 unregister_blkdev(major_nr
, DRIVER_NAME
);
1131 module_init(mm_init
);
1132 module_exit(mm_cleanup
);
1134 MODULE_AUTHOR(DRIVER_AUTHOR
);
1135 MODULE_DESCRIPTION(DRIVER_DESC
);
1136 MODULE_LICENSE("GPL");