Linux 4.2.1
[linux/fpc-iii.git] / drivers / cpufreq / cpufreq_conservative.c
blobc86a10c309123c682a571b2ae93c6c2bda6f5394
1 /*
2 * drivers/cpufreq/cpufreq_conservative.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/slab.h>
15 #include "cpufreq_governor.h"
17 /* Conservative governor macros */
18 #define DEF_FREQUENCY_UP_THRESHOLD (80)
19 #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
20 #define DEF_FREQUENCY_STEP (5)
21 #define DEF_SAMPLING_DOWN_FACTOR (1)
22 #define MAX_SAMPLING_DOWN_FACTOR (10)
24 static DEFINE_PER_CPU(struct cs_cpu_dbs_info_s, cs_cpu_dbs_info);
26 static inline unsigned int get_freq_target(struct cs_dbs_tuners *cs_tuners,
27 struct cpufreq_policy *policy)
29 unsigned int freq_target = (cs_tuners->freq_step * policy->max) / 100;
31 /* max freq cannot be less than 100. But who knows... */
32 if (unlikely(freq_target == 0))
33 freq_target = DEF_FREQUENCY_STEP;
35 return freq_target;
39 * Every sampling_rate, we check, if current idle time is less than 20%
40 * (default), then we try to increase frequency. Every sampling_rate *
41 * sampling_down_factor, we check, if current idle time is more than 80%
42 * (default), then we try to decrease frequency
44 * Any frequency increase takes it to the maximum frequency. Frequency reduction
45 * happens at minimum steps of 5% (default) of maximum frequency
47 static void cs_check_cpu(int cpu, unsigned int load)
49 struct cs_cpu_dbs_info_s *dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
50 struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
51 struct dbs_data *dbs_data = policy->governor_data;
52 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
55 * break out if we 'cannot' reduce the speed as the user might
56 * want freq_step to be zero
58 if (cs_tuners->freq_step == 0)
59 return;
61 /* Check for frequency increase */
62 if (load > cs_tuners->up_threshold) {
63 dbs_info->down_skip = 0;
65 /* if we are already at full speed then break out early */
66 if (dbs_info->requested_freq == policy->max)
67 return;
69 dbs_info->requested_freq += get_freq_target(cs_tuners, policy);
71 if (dbs_info->requested_freq > policy->max)
72 dbs_info->requested_freq = policy->max;
74 __cpufreq_driver_target(policy, dbs_info->requested_freq,
75 CPUFREQ_RELATION_H);
76 return;
79 /* if sampling_down_factor is active break out early */
80 if (++dbs_info->down_skip < cs_tuners->sampling_down_factor)
81 return;
82 dbs_info->down_skip = 0;
84 /* Check for frequency decrease */
85 if (load < cs_tuners->down_threshold) {
86 unsigned int freq_target;
88 * if we cannot reduce the frequency anymore, break out early
90 if (policy->cur == policy->min)
91 return;
93 freq_target = get_freq_target(cs_tuners, policy);
94 if (dbs_info->requested_freq > freq_target)
95 dbs_info->requested_freq -= freq_target;
96 else
97 dbs_info->requested_freq = policy->min;
99 __cpufreq_driver_target(policy, dbs_info->requested_freq,
100 CPUFREQ_RELATION_L);
101 return;
105 static void cs_dbs_timer(struct work_struct *work)
107 struct cs_cpu_dbs_info_s *dbs_info = container_of(work,
108 struct cs_cpu_dbs_info_s, cdbs.work.work);
109 unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
110 struct cs_cpu_dbs_info_s *core_dbs_info = &per_cpu(cs_cpu_dbs_info,
111 cpu);
112 struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
113 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
114 int delay = delay_for_sampling_rate(cs_tuners->sampling_rate);
115 bool modify_all = true;
117 mutex_lock(&core_dbs_info->cdbs.timer_mutex);
118 if (!need_load_eval(&core_dbs_info->cdbs, cs_tuners->sampling_rate))
119 modify_all = false;
120 else
121 dbs_check_cpu(dbs_data, cpu);
123 gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
124 mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
127 static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
128 void *data)
130 struct cpufreq_freqs *freq = data;
131 struct cs_cpu_dbs_info_s *dbs_info =
132 &per_cpu(cs_cpu_dbs_info, freq->cpu);
133 struct cpufreq_policy *policy;
135 if (!dbs_info->enable)
136 return 0;
138 policy = dbs_info->cdbs.cur_policy;
141 * we only care if our internally tracked freq moves outside the 'valid'
142 * ranges of frequency available to us otherwise we do not change it
144 if (dbs_info->requested_freq > policy->max
145 || dbs_info->requested_freq < policy->min)
146 dbs_info->requested_freq = freq->new;
148 return 0;
151 static struct notifier_block cs_cpufreq_notifier_block = {
152 .notifier_call = dbs_cpufreq_notifier,
155 /************************** sysfs interface ************************/
156 static struct common_dbs_data cs_dbs_cdata;
158 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
159 const char *buf, size_t count)
161 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
162 unsigned int input;
163 int ret;
164 ret = sscanf(buf, "%u", &input);
166 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
167 return -EINVAL;
169 cs_tuners->sampling_down_factor = input;
170 return count;
173 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
174 size_t count)
176 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
177 unsigned int input;
178 int ret;
179 ret = sscanf(buf, "%u", &input);
181 if (ret != 1)
182 return -EINVAL;
184 cs_tuners->sampling_rate = max(input, dbs_data->min_sampling_rate);
185 return count;
188 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
189 size_t count)
191 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
192 unsigned int input;
193 int ret;
194 ret = sscanf(buf, "%u", &input);
196 if (ret != 1 || input > 100 || input <= cs_tuners->down_threshold)
197 return -EINVAL;
199 cs_tuners->up_threshold = input;
200 return count;
203 static ssize_t store_down_threshold(struct dbs_data *dbs_data, const char *buf,
204 size_t count)
206 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
207 unsigned int input;
208 int ret;
209 ret = sscanf(buf, "%u", &input);
211 /* cannot be lower than 11 otherwise freq will not fall */
212 if (ret != 1 || input < 11 || input > 100 ||
213 input >= cs_tuners->up_threshold)
214 return -EINVAL;
216 cs_tuners->down_threshold = input;
217 return count;
220 static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
221 const char *buf, size_t count)
223 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
224 unsigned int input, j;
225 int ret;
227 ret = sscanf(buf, "%u", &input);
228 if (ret != 1)
229 return -EINVAL;
231 if (input > 1)
232 input = 1;
234 if (input == cs_tuners->ignore_nice_load) /* nothing to do */
235 return count;
237 cs_tuners->ignore_nice_load = input;
239 /* we need to re-evaluate prev_cpu_idle */
240 for_each_online_cpu(j) {
241 struct cs_cpu_dbs_info_s *dbs_info;
242 dbs_info = &per_cpu(cs_cpu_dbs_info, j);
243 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
244 &dbs_info->cdbs.prev_cpu_wall, 0);
245 if (cs_tuners->ignore_nice_load)
246 dbs_info->cdbs.prev_cpu_nice =
247 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
249 return count;
252 static ssize_t store_freq_step(struct dbs_data *dbs_data, const char *buf,
253 size_t count)
255 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
256 unsigned int input;
257 int ret;
258 ret = sscanf(buf, "%u", &input);
260 if (ret != 1)
261 return -EINVAL;
263 if (input > 100)
264 input = 100;
267 * no need to test here if freq_step is zero as the user might actually
268 * want this, they would be crazy though :)
270 cs_tuners->freq_step = input;
271 return count;
274 show_store_one(cs, sampling_rate);
275 show_store_one(cs, sampling_down_factor);
276 show_store_one(cs, up_threshold);
277 show_store_one(cs, down_threshold);
278 show_store_one(cs, ignore_nice_load);
279 show_store_one(cs, freq_step);
280 declare_show_sampling_rate_min(cs);
282 gov_sys_pol_attr_rw(sampling_rate);
283 gov_sys_pol_attr_rw(sampling_down_factor);
284 gov_sys_pol_attr_rw(up_threshold);
285 gov_sys_pol_attr_rw(down_threshold);
286 gov_sys_pol_attr_rw(ignore_nice_load);
287 gov_sys_pol_attr_rw(freq_step);
288 gov_sys_pol_attr_ro(sampling_rate_min);
290 static struct attribute *dbs_attributes_gov_sys[] = {
291 &sampling_rate_min_gov_sys.attr,
292 &sampling_rate_gov_sys.attr,
293 &sampling_down_factor_gov_sys.attr,
294 &up_threshold_gov_sys.attr,
295 &down_threshold_gov_sys.attr,
296 &ignore_nice_load_gov_sys.attr,
297 &freq_step_gov_sys.attr,
298 NULL
301 static struct attribute_group cs_attr_group_gov_sys = {
302 .attrs = dbs_attributes_gov_sys,
303 .name = "conservative",
306 static struct attribute *dbs_attributes_gov_pol[] = {
307 &sampling_rate_min_gov_pol.attr,
308 &sampling_rate_gov_pol.attr,
309 &sampling_down_factor_gov_pol.attr,
310 &up_threshold_gov_pol.attr,
311 &down_threshold_gov_pol.attr,
312 &ignore_nice_load_gov_pol.attr,
313 &freq_step_gov_pol.attr,
314 NULL
317 static struct attribute_group cs_attr_group_gov_pol = {
318 .attrs = dbs_attributes_gov_pol,
319 .name = "conservative",
322 /************************** sysfs end ************************/
324 static int cs_init(struct dbs_data *dbs_data, bool notify)
326 struct cs_dbs_tuners *tuners;
328 tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
329 if (!tuners) {
330 pr_err("%s: kzalloc failed\n", __func__);
331 return -ENOMEM;
334 tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
335 tuners->down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD;
336 tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
337 tuners->ignore_nice_load = 0;
338 tuners->freq_step = DEF_FREQUENCY_STEP;
340 dbs_data->tuners = tuners;
341 dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
342 jiffies_to_usecs(10);
344 if (notify)
345 cpufreq_register_notifier(&cs_cpufreq_notifier_block,
346 CPUFREQ_TRANSITION_NOTIFIER);
348 return 0;
351 static void cs_exit(struct dbs_data *dbs_data, bool notify)
353 if (notify)
354 cpufreq_unregister_notifier(&cs_cpufreq_notifier_block,
355 CPUFREQ_TRANSITION_NOTIFIER);
357 kfree(dbs_data->tuners);
360 define_get_cpu_dbs_routines(cs_cpu_dbs_info);
362 static struct common_dbs_data cs_dbs_cdata = {
363 .governor = GOV_CONSERVATIVE,
364 .attr_group_gov_sys = &cs_attr_group_gov_sys,
365 .attr_group_gov_pol = &cs_attr_group_gov_pol,
366 .get_cpu_cdbs = get_cpu_cdbs,
367 .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
368 .gov_dbs_timer = cs_dbs_timer,
369 .gov_check_cpu = cs_check_cpu,
370 .init = cs_init,
371 .exit = cs_exit,
372 .mutex = __MUTEX_INITIALIZER(cs_dbs_cdata.mutex),
375 static int cs_cpufreq_governor_dbs(struct cpufreq_policy *policy,
376 unsigned int event)
378 return cpufreq_governor_dbs(policy, &cs_dbs_cdata, event);
381 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
382 static
383 #endif
384 struct cpufreq_governor cpufreq_gov_conservative = {
385 .name = "conservative",
386 .governor = cs_cpufreq_governor_dbs,
387 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
388 .owner = THIS_MODULE,
391 static int __init cpufreq_gov_dbs_init(void)
393 return cpufreq_register_governor(&cpufreq_gov_conservative);
396 static void __exit cpufreq_gov_dbs_exit(void)
398 cpufreq_unregister_governor(&cpufreq_gov_conservative);
401 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
402 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
403 "Low Latency Frequency Transition capable processors "
404 "optimised for use in a battery environment");
405 MODULE_LICENSE("GPL");
407 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
408 fs_initcall(cpufreq_gov_dbs_init);
409 #else
410 module_init(cpufreq_gov_dbs_init);
411 #endif
412 module_exit(cpufreq_gov_dbs_exit);