2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * The full GNU General Public License is included in this distribution in the
15 * file called COPYING.
19 * This code implements the DMA subsystem. It provides a HW-neutral interface
20 * for other kernel code to use asynchronous memory copy capabilities,
21 * if present, and allows different HW DMA drivers to register as providing
24 * Due to the fact we are accelerating what is already a relatively fast
25 * operation, the code goes to great lengths to avoid additional overhead,
30 * The subsystem keeps a global list of dma_device structs it is protected by a
31 * mutex, dma_list_mutex.
33 * A subsystem can get access to a channel by calling dmaengine_get() followed
34 * by dma_find_channel(), or if it has need for an exclusive channel it can call
35 * dma_request_channel(). Once a channel is allocated a reference is taken
36 * against its corresponding driver to disable removal.
38 * Each device has a channels list, which runs unlocked but is never modified
39 * once the device is registered, it's just setup by the driver.
41 * See Documentation/dmaengine.txt for more details
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 #include <linux/dma-mapping.h>
47 #include <linux/init.h>
48 #include <linux/module.h>
50 #include <linux/device.h>
51 #include <linux/dmaengine.h>
52 #include <linux/hardirq.h>
53 #include <linux/spinlock.h>
54 #include <linux/percpu.h>
55 #include <linux/rcupdate.h>
56 #include <linux/mutex.h>
57 #include <linux/jiffies.h>
58 #include <linux/rculist.h>
59 #include <linux/idr.h>
60 #include <linux/slab.h>
61 #include <linux/acpi.h>
62 #include <linux/acpi_dma.h>
63 #include <linux/of_dma.h>
64 #include <linux/mempool.h>
66 static DEFINE_MUTEX(dma_list_mutex
);
67 static DEFINE_IDR(dma_idr
);
68 static LIST_HEAD(dma_device_list
);
69 static long dmaengine_ref_count
;
71 /* --- sysfs implementation --- */
74 * dev_to_dma_chan - convert a device pointer to the its sysfs container object
77 * Must be called under dma_list_mutex
79 static struct dma_chan
*dev_to_dma_chan(struct device
*dev
)
81 struct dma_chan_dev
*chan_dev
;
83 chan_dev
= container_of(dev
, typeof(*chan_dev
), device
);
84 return chan_dev
->chan
;
87 static ssize_t
memcpy_count_show(struct device
*dev
,
88 struct device_attribute
*attr
, char *buf
)
90 struct dma_chan
*chan
;
91 unsigned long count
= 0;
95 mutex_lock(&dma_list_mutex
);
96 chan
= dev_to_dma_chan(dev
);
98 for_each_possible_cpu(i
)
99 count
+= per_cpu_ptr(chan
->local
, i
)->memcpy_count
;
100 err
= sprintf(buf
, "%lu\n", count
);
103 mutex_unlock(&dma_list_mutex
);
107 static DEVICE_ATTR_RO(memcpy_count
);
109 static ssize_t
bytes_transferred_show(struct device
*dev
,
110 struct device_attribute
*attr
, char *buf
)
112 struct dma_chan
*chan
;
113 unsigned long count
= 0;
117 mutex_lock(&dma_list_mutex
);
118 chan
= dev_to_dma_chan(dev
);
120 for_each_possible_cpu(i
)
121 count
+= per_cpu_ptr(chan
->local
, i
)->bytes_transferred
;
122 err
= sprintf(buf
, "%lu\n", count
);
125 mutex_unlock(&dma_list_mutex
);
129 static DEVICE_ATTR_RO(bytes_transferred
);
131 static ssize_t
in_use_show(struct device
*dev
, struct device_attribute
*attr
,
134 struct dma_chan
*chan
;
137 mutex_lock(&dma_list_mutex
);
138 chan
= dev_to_dma_chan(dev
);
140 err
= sprintf(buf
, "%d\n", chan
->client_count
);
143 mutex_unlock(&dma_list_mutex
);
147 static DEVICE_ATTR_RO(in_use
);
149 static struct attribute
*dma_dev_attrs
[] = {
150 &dev_attr_memcpy_count
.attr
,
151 &dev_attr_bytes_transferred
.attr
,
152 &dev_attr_in_use
.attr
,
155 ATTRIBUTE_GROUPS(dma_dev
);
157 static void chan_dev_release(struct device
*dev
)
159 struct dma_chan_dev
*chan_dev
;
161 chan_dev
= container_of(dev
, typeof(*chan_dev
), device
);
162 if (atomic_dec_and_test(chan_dev
->idr_ref
)) {
163 mutex_lock(&dma_list_mutex
);
164 idr_remove(&dma_idr
, chan_dev
->dev_id
);
165 mutex_unlock(&dma_list_mutex
);
166 kfree(chan_dev
->idr_ref
);
171 static struct class dma_devclass
= {
173 .dev_groups
= dma_dev_groups
,
174 .dev_release
= chan_dev_release
,
177 /* --- client and device registration --- */
179 #define dma_device_satisfies_mask(device, mask) \
180 __dma_device_satisfies_mask((device), &(mask))
182 __dma_device_satisfies_mask(struct dma_device
*device
,
183 const dma_cap_mask_t
*want
)
187 bitmap_and(has
.bits
, want
->bits
, device
->cap_mask
.bits
,
189 return bitmap_equal(want
->bits
, has
.bits
, DMA_TX_TYPE_END
);
192 static struct module
*dma_chan_to_owner(struct dma_chan
*chan
)
194 return chan
->device
->dev
->driver
->owner
;
198 * balance_ref_count - catch up the channel reference count
199 * @chan - channel to balance ->client_count versus dmaengine_ref_count
201 * balance_ref_count must be called under dma_list_mutex
203 static void balance_ref_count(struct dma_chan
*chan
)
205 struct module
*owner
= dma_chan_to_owner(chan
);
207 while (chan
->client_count
< dmaengine_ref_count
) {
209 chan
->client_count
++;
214 * dma_chan_get - try to grab a dma channel's parent driver module
215 * @chan - channel to grab
217 * Must be called under dma_list_mutex
219 static int dma_chan_get(struct dma_chan
*chan
)
221 struct module
*owner
= dma_chan_to_owner(chan
);
224 /* The channel is already in use, update client count */
225 if (chan
->client_count
) {
230 if (!try_module_get(owner
))
233 /* allocate upon first client reference */
234 if (chan
->device
->device_alloc_chan_resources
) {
235 ret
= chan
->device
->device_alloc_chan_resources(chan
);
240 if (!dma_has_cap(DMA_PRIVATE
, chan
->device
->cap_mask
))
241 balance_ref_count(chan
);
244 chan
->client_count
++;
253 * dma_chan_put - drop a reference to a dma channel's parent driver module
254 * @chan - channel to release
256 * Must be called under dma_list_mutex
258 static void dma_chan_put(struct dma_chan
*chan
)
260 /* This channel is not in use, bail out */
261 if (!chan
->client_count
)
264 chan
->client_count
--;
265 module_put(dma_chan_to_owner(chan
));
267 /* This channel is not in use anymore, free it */
268 if (!chan
->client_count
&& chan
->device
->device_free_chan_resources
)
269 chan
->device
->device_free_chan_resources(chan
);
271 /* If the channel is used via a DMA request router, free the mapping */
272 if (chan
->router
&& chan
->router
->route_free
) {
273 chan
->router
->route_free(chan
->router
->dev
, chan
->route_data
);
275 chan
->route_data
= NULL
;
279 enum dma_status
dma_sync_wait(struct dma_chan
*chan
, dma_cookie_t cookie
)
281 enum dma_status status
;
282 unsigned long dma_sync_wait_timeout
= jiffies
+ msecs_to_jiffies(5000);
284 dma_async_issue_pending(chan
);
286 status
= dma_async_is_tx_complete(chan
, cookie
, NULL
, NULL
);
287 if (time_after_eq(jiffies
, dma_sync_wait_timeout
)) {
288 pr_err("%s: timeout!\n", __func__
);
291 if (status
!= DMA_IN_PROGRESS
)
298 EXPORT_SYMBOL(dma_sync_wait
);
301 * dma_cap_mask_all - enable iteration over all operation types
303 static dma_cap_mask_t dma_cap_mask_all
;
306 * dma_chan_tbl_ent - tracks channel allocations per core/operation
307 * @chan - associated channel for this entry
309 struct dma_chan_tbl_ent
{
310 struct dma_chan
*chan
;
314 * channel_table - percpu lookup table for memory-to-memory offload providers
316 static struct dma_chan_tbl_ent __percpu
*channel_table
[DMA_TX_TYPE_END
];
318 static int __init
dma_channel_table_init(void)
320 enum dma_transaction_type cap
;
323 bitmap_fill(dma_cap_mask_all
.bits
, DMA_TX_TYPE_END
);
325 /* 'interrupt', 'private', and 'slave' are channel capabilities,
326 * but are not associated with an operation so they do not need
327 * an entry in the channel_table
329 clear_bit(DMA_INTERRUPT
, dma_cap_mask_all
.bits
);
330 clear_bit(DMA_PRIVATE
, dma_cap_mask_all
.bits
);
331 clear_bit(DMA_SLAVE
, dma_cap_mask_all
.bits
);
333 for_each_dma_cap_mask(cap
, dma_cap_mask_all
) {
334 channel_table
[cap
] = alloc_percpu(struct dma_chan_tbl_ent
);
335 if (!channel_table
[cap
]) {
342 pr_err("initialization failure\n");
343 for_each_dma_cap_mask(cap
, dma_cap_mask_all
)
344 free_percpu(channel_table
[cap
]);
349 arch_initcall(dma_channel_table_init
);
352 * dma_find_channel - find a channel to carry out the operation
353 * @tx_type: transaction type
355 struct dma_chan
*dma_find_channel(enum dma_transaction_type tx_type
)
357 return this_cpu_read(channel_table
[tx_type
]->chan
);
359 EXPORT_SYMBOL(dma_find_channel
);
362 * dma_issue_pending_all - flush all pending operations across all channels
364 void dma_issue_pending_all(void)
366 struct dma_device
*device
;
367 struct dma_chan
*chan
;
370 list_for_each_entry_rcu(device
, &dma_device_list
, global_node
) {
371 if (dma_has_cap(DMA_PRIVATE
, device
->cap_mask
))
373 list_for_each_entry(chan
, &device
->channels
, device_node
)
374 if (chan
->client_count
)
375 device
->device_issue_pending(chan
);
379 EXPORT_SYMBOL(dma_issue_pending_all
);
382 * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu
384 static bool dma_chan_is_local(struct dma_chan
*chan
, int cpu
)
386 int node
= dev_to_node(chan
->device
->dev
);
387 return node
== -1 || cpumask_test_cpu(cpu
, cpumask_of_node(node
));
391 * min_chan - returns the channel with min count and in the same numa-node as the cpu
392 * @cap: capability to match
393 * @cpu: cpu index which the channel should be close to
395 * If some channels are close to the given cpu, the one with the lowest
396 * reference count is returned. Otherwise, cpu is ignored and only the
397 * reference count is taken into account.
398 * Must be called under dma_list_mutex.
400 static struct dma_chan
*min_chan(enum dma_transaction_type cap
, int cpu
)
402 struct dma_device
*device
;
403 struct dma_chan
*chan
;
404 struct dma_chan
*min
= NULL
;
405 struct dma_chan
*localmin
= NULL
;
407 list_for_each_entry(device
, &dma_device_list
, global_node
) {
408 if (!dma_has_cap(cap
, device
->cap_mask
) ||
409 dma_has_cap(DMA_PRIVATE
, device
->cap_mask
))
411 list_for_each_entry(chan
, &device
->channels
, device_node
) {
412 if (!chan
->client_count
)
414 if (!min
|| chan
->table_count
< min
->table_count
)
417 if (dma_chan_is_local(chan
, cpu
))
419 chan
->table_count
< localmin
->table_count
)
424 chan
= localmin
? localmin
: min
;
433 * dma_channel_rebalance - redistribute the available channels
435 * Optimize for cpu isolation (each cpu gets a dedicated channel for an
436 * operation type) in the SMP case, and operation isolation (avoid
437 * multi-tasking channels) in the non-SMP case. Must be called under
440 static void dma_channel_rebalance(void)
442 struct dma_chan
*chan
;
443 struct dma_device
*device
;
447 /* undo the last distribution */
448 for_each_dma_cap_mask(cap
, dma_cap_mask_all
)
449 for_each_possible_cpu(cpu
)
450 per_cpu_ptr(channel_table
[cap
], cpu
)->chan
= NULL
;
452 list_for_each_entry(device
, &dma_device_list
, global_node
) {
453 if (dma_has_cap(DMA_PRIVATE
, device
->cap_mask
))
455 list_for_each_entry(chan
, &device
->channels
, device_node
)
456 chan
->table_count
= 0;
459 /* don't populate the channel_table if no clients are available */
460 if (!dmaengine_ref_count
)
463 /* redistribute available channels */
464 for_each_dma_cap_mask(cap
, dma_cap_mask_all
)
465 for_each_online_cpu(cpu
) {
466 chan
= min_chan(cap
, cpu
);
467 per_cpu_ptr(channel_table
[cap
], cpu
)->chan
= chan
;
471 int dma_get_slave_caps(struct dma_chan
*chan
, struct dma_slave_caps
*caps
)
473 struct dma_device
*device
;
478 device
= chan
->device
;
480 /* check if the channel supports slave transactions */
481 if (!test_bit(DMA_SLAVE
, device
->cap_mask
.bits
))
485 * Check whether it reports it uses the generic slave
486 * capabilities, if not, that means it doesn't support any
487 * kind of slave capabilities reporting.
489 if (!device
->directions
)
492 caps
->src_addr_widths
= device
->src_addr_widths
;
493 caps
->dst_addr_widths
= device
->dst_addr_widths
;
494 caps
->directions
= device
->directions
;
495 caps
->residue_granularity
= device
->residue_granularity
;
498 * Some devices implement only pause (e.g. to get residuum) but no
499 * resume. However cmd_pause is advertised as pause AND resume.
501 caps
->cmd_pause
= !!(device
->device_pause
&& device
->device_resume
);
502 caps
->cmd_terminate
= !!device
->device_terminate_all
;
506 EXPORT_SYMBOL_GPL(dma_get_slave_caps
);
508 static struct dma_chan
*private_candidate(const dma_cap_mask_t
*mask
,
509 struct dma_device
*dev
,
510 dma_filter_fn fn
, void *fn_param
)
512 struct dma_chan
*chan
;
514 if (!__dma_device_satisfies_mask(dev
, mask
)) {
515 pr_debug("%s: wrong capabilities\n", __func__
);
518 /* devices with multiple channels need special handling as we need to
519 * ensure that all channels are either private or public.
521 if (dev
->chancnt
> 1 && !dma_has_cap(DMA_PRIVATE
, dev
->cap_mask
))
522 list_for_each_entry(chan
, &dev
->channels
, device_node
) {
523 /* some channels are already publicly allocated */
524 if (chan
->client_count
)
528 list_for_each_entry(chan
, &dev
->channels
, device_node
) {
529 if (chan
->client_count
) {
530 pr_debug("%s: %s busy\n",
531 __func__
, dma_chan_name(chan
));
534 if (fn
&& !fn(chan
, fn_param
)) {
535 pr_debug("%s: %s filter said false\n",
536 __func__
, dma_chan_name(chan
));
546 * dma_get_slave_channel - try to get specific channel exclusively
547 * @chan: target channel
549 struct dma_chan
*dma_get_slave_channel(struct dma_chan
*chan
)
553 /* lock against __dma_request_channel */
554 mutex_lock(&dma_list_mutex
);
556 if (chan
->client_count
== 0) {
557 err
= dma_chan_get(chan
);
559 pr_debug("%s: failed to get %s: (%d)\n",
560 __func__
, dma_chan_name(chan
), err
);
564 mutex_unlock(&dma_list_mutex
);
569 EXPORT_SYMBOL_GPL(dma_get_slave_channel
);
571 struct dma_chan
*dma_get_any_slave_channel(struct dma_device
*device
)
574 struct dma_chan
*chan
;
578 dma_cap_set(DMA_SLAVE
, mask
);
580 /* lock against __dma_request_channel */
581 mutex_lock(&dma_list_mutex
);
583 chan
= private_candidate(&mask
, device
, NULL
, NULL
);
585 dma_cap_set(DMA_PRIVATE
, device
->cap_mask
);
586 device
->privatecnt
++;
587 err
= dma_chan_get(chan
);
589 pr_debug("%s: failed to get %s: (%d)\n",
590 __func__
, dma_chan_name(chan
), err
);
592 if (--device
->privatecnt
== 0)
593 dma_cap_clear(DMA_PRIVATE
, device
->cap_mask
);
597 mutex_unlock(&dma_list_mutex
);
601 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel
);
604 * __dma_request_channel - try to allocate an exclusive channel
605 * @mask: capabilities that the channel must satisfy
606 * @fn: optional callback to disposition available channels
607 * @fn_param: opaque parameter to pass to dma_filter_fn
609 * Returns pointer to appropriate DMA channel on success or NULL.
611 struct dma_chan
*__dma_request_channel(const dma_cap_mask_t
*mask
,
612 dma_filter_fn fn
, void *fn_param
)
614 struct dma_device
*device
, *_d
;
615 struct dma_chan
*chan
= NULL
;
619 mutex_lock(&dma_list_mutex
);
620 list_for_each_entry_safe(device
, _d
, &dma_device_list
, global_node
) {
621 chan
= private_candidate(mask
, device
, fn
, fn_param
);
623 /* Found a suitable channel, try to grab, prep, and
624 * return it. We first set DMA_PRIVATE to disable
625 * balance_ref_count as this channel will not be
626 * published in the general-purpose allocator
628 dma_cap_set(DMA_PRIVATE
, device
->cap_mask
);
629 device
->privatecnt
++;
630 err
= dma_chan_get(chan
);
632 if (err
== -ENODEV
) {
633 pr_debug("%s: %s module removed\n",
634 __func__
, dma_chan_name(chan
));
635 list_del_rcu(&device
->global_node
);
637 pr_debug("%s: failed to get %s: (%d)\n",
638 __func__
, dma_chan_name(chan
), err
);
641 if (--device
->privatecnt
== 0)
642 dma_cap_clear(DMA_PRIVATE
, device
->cap_mask
);
646 mutex_unlock(&dma_list_mutex
);
648 pr_debug("%s: %s (%s)\n",
650 chan
? "success" : "fail",
651 chan
? dma_chan_name(chan
) : NULL
);
655 EXPORT_SYMBOL_GPL(__dma_request_channel
);
658 * dma_request_slave_channel_reason - try to allocate an exclusive slave channel
659 * @dev: pointer to client device structure
660 * @name: slave channel name
662 * Returns pointer to appropriate DMA channel on success or an error pointer.
664 struct dma_chan
*dma_request_slave_channel_reason(struct device
*dev
,
667 /* If device-tree is present get slave info from here */
669 return of_dma_request_slave_channel(dev
->of_node
, name
);
671 /* If device was enumerated by ACPI get slave info from here */
672 if (ACPI_HANDLE(dev
))
673 return acpi_dma_request_slave_chan_by_name(dev
, name
);
675 return ERR_PTR(-ENODEV
);
677 EXPORT_SYMBOL_GPL(dma_request_slave_channel_reason
);
680 * dma_request_slave_channel - try to allocate an exclusive slave channel
681 * @dev: pointer to client device structure
682 * @name: slave channel name
684 * Returns pointer to appropriate DMA channel on success or NULL.
686 struct dma_chan
*dma_request_slave_channel(struct device
*dev
,
689 struct dma_chan
*ch
= dma_request_slave_channel_reason(dev
, name
);
693 dma_cap_set(DMA_PRIVATE
, ch
->device
->cap_mask
);
694 ch
->device
->privatecnt
++;
698 EXPORT_SYMBOL_GPL(dma_request_slave_channel
);
700 void dma_release_channel(struct dma_chan
*chan
)
702 mutex_lock(&dma_list_mutex
);
703 WARN_ONCE(chan
->client_count
!= 1,
704 "chan reference count %d != 1\n", chan
->client_count
);
706 /* drop PRIVATE cap enabled by __dma_request_channel() */
707 if (--chan
->device
->privatecnt
== 0)
708 dma_cap_clear(DMA_PRIVATE
, chan
->device
->cap_mask
);
709 mutex_unlock(&dma_list_mutex
);
711 EXPORT_SYMBOL_GPL(dma_release_channel
);
714 * dmaengine_get - register interest in dma_channels
716 void dmaengine_get(void)
718 struct dma_device
*device
, *_d
;
719 struct dma_chan
*chan
;
722 mutex_lock(&dma_list_mutex
);
723 dmaengine_ref_count
++;
725 /* try to grab channels */
726 list_for_each_entry_safe(device
, _d
, &dma_device_list
, global_node
) {
727 if (dma_has_cap(DMA_PRIVATE
, device
->cap_mask
))
729 list_for_each_entry(chan
, &device
->channels
, device_node
) {
730 err
= dma_chan_get(chan
);
731 if (err
== -ENODEV
) {
732 /* module removed before we could use it */
733 list_del_rcu(&device
->global_node
);
736 pr_debug("%s: failed to get %s: (%d)\n",
737 __func__
, dma_chan_name(chan
), err
);
741 /* if this is the first reference and there were channels
742 * waiting we need to rebalance to get those channels
743 * incorporated into the channel table
745 if (dmaengine_ref_count
== 1)
746 dma_channel_rebalance();
747 mutex_unlock(&dma_list_mutex
);
749 EXPORT_SYMBOL(dmaengine_get
);
752 * dmaengine_put - let dma drivers be removed when ref_count == 0
754 void dmaengine_put(void)
756 struct dma_device
*device
;
757 struct dma_chan
*chan
;
759 mutex_lock(&dma_list_mutex
);
760 dmaengine_ref_count
--;
761 BUG_ON(dmaengine_ref_count
< 0);
762 /* drop channel references */
763 list_for_each_entry(device
, &dma_device_list
, global_node
) {
764 if (dma_has_cap(DMA_PRIVATE
, device
->cap_mask
))
766 list_for_each_entry(chan
, &device
->channels
, device_node
)
769 mutex_unlock(&dma_list_mutex
);
771 EXPORT_SYMBOL(dmaengine_put
);
773 static bool device_has_all_tx_types(struct dma_device
*device
)
775 /* A device that satisfies this test has channels that will never cause
776 * an async_tx channel switch event as all possible operation types can
779 #ifdef CONFIG_ASYNC_TX_DMA
780 if (!dma_has_cap(DMA_INTERRUPT
, device
->cap_mask
))
784 #if defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_MEMCPY_MODULE)
785 if (!dma_has_cap(DMA_MEMCPY
, device
->cap_mask
))
789 #if defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE)
790 if (!dma_has_cap(DMA_XOR
, device
->cap_mask
))
793 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
794 if (!dma_has_cap(DMA_XOR_VAL
, device
->cap_mask
))
799 #if defined(CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_PQ_MODULE)
800 if (!dma_has_cap(DMA_PQ
, device
->cap_mask
))
803 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
804 if (!dma_has_cap(DMA_PQ_VAL
, device
->cap_mask
))
812 static int get_dma_id(struct dma_device
*device
)
816 mutex_lock(&dma_list_mutex
);
818 rc
= idr_alloc(&dma_idr
, NULL
, 0, 0, GFP_KERNEL
);
822 mutex_unlock(&dma_list_mutex
);
823 return rc
< 0 ? rc
: 0;
827 * dma_async_device_register - registers DMA devices found
828 * @device: &dma_device
830 int dma_async_device_register(struct dma_device
*device
)
833 struct dma_chan
* chan
;
839 /* validate device routines */
840 BUG_ON(dma_has_cap(DMA_MEMCPY
, device
->cap_mask
) &&
841 !device
->device_prep_dma_memcpy
);
842 BUG_ON(dma_has_cap(DMA_XOR
, device
->cap_mask
) &&
843 !device
->device_prep_dma_xor
);
844 BUG_ON(dma_has_cap(DMA_XOR_VAL
, device
->cap_mask
) &&
845 !device
->device_prep_dma_xor_val
);
846 BUG_ON(dma_has_cap(DMA_PQ
, device
->cap_mask
) &&
847 !device
->device_prep_dma_pq
);
848 BUG_ON(dma_has_cap(DMA_PQ_VAL
, device
->cap_mask
) &&
849 !device
->device_prep_dma_pq_val
);
850 BUG_ON(dma_has_cap(DMA_MEMSET
, device
->cap_mask
) &&
851 !device
->device_prep_dma_memset
);
852 BUG_ON(dma_has_cap(DMA_INTERRUPT
, device
->cap_mask
) &&
853 !device
->device_prep_dma_interrupt
);
854 BUG_ON(dma_has_cap(DMA_SG
, device
->cap_mask
) &&
855 !device
->device_prep_dma_sg
);
856 BUG_ON(dma_has_cap(DMA_CYCLIC
, device
->cap_mask
) &&
857 !device
->device_prep_dma_cyclic
);
858 BUG_ON(dma_has_cap(DMA_INTERLEAVE
, device
->cap_mask
) &&
859 !device
->device_prep_interleaved_dma
);
861 BUG_ON(!device
->device_tx_status
);
862 BUG_ON(!device
->device_issue_pending
);
863 BUG_ON(!device
->dev
);
865 /* note: this only matters in the
866 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
868 if (device_has_all_tx_types(device
))
869 dma_cap_set(DMA_ASYNC_TX
, device
->cap_mask
);
871 idr_ref
= kmalloc(sizeof(*idr_ref
), GFP_KERNEL
);
874 rc
= get_dma_id(device
);
880 atomic_set(idr_ref
, 0);
882 /* represent channels in sysfs. Probably want devs too */
883 list_for_each_entry(chan
, &device
->channels
, device_node
) {
885 chan
->local
= alloc_percpu(typeof(*chan
->local
));
886 if (chan
->local
== NULL
)
888 chan
->dev
= kzalloc(sizeof(*chan
->dev
), GFP_KERNEL
);
889 if (chan
->dev
== NULL
) {
890 free_percpu(chan
->local
);
895 chan
->chan_id
= chancnt
++;
896 chan
->dev
->device
.class = &dma_devclass
;
897 chan
->dev
->device
.parent
= device
->dev
;
898 chan
->dev
->chan
= chan
;
899 chan
->dev
->idr_ref
= idr_ref
;
900 chan
->dev
->dev_id
= device
->dev_id
;
902 dev_set_name(&chan
->dev
->device
, "dma%dchan%d",
903 device
->dev_id
, chan
->chan_id
);
905 rc
= device_register(&chan
->dev
->device
);
907 free_percpu(chan
->local
);
913 chan
->client_count
= 0;
915 device
->chancnt
= chancnt
;
917 mutex_lock(&dma_list_mutex
);
918 /* take references on public channels */
919 if (dmaengine_ref_count
&& !dma_has_cap(DMA_PRIVATE
, device
->cap_mask
))
920 list_for_each_entry(chan
, &device
->channels
, device_node
) {
921 /* if clients are already waiting for channels we need
922 * to take references on their behalf
924 if (dma_chan_get(chan
) == -ENODEV
) {
925 /* note we can only get here for the first
926 * channel as the remaining channels are
927 * guaranteed to get a reference
930 mutex_unlock(&dma_list_mutex
);
934 list_add_tail_rcu(&device
->global_node
, &dma_device_list
);
935 if (dma_has_cap(DMA_PRIVATE
, device
->cap_mask
))
936 device
->privatecnt
++; /* Always private */
937 dma_channel_rebalance();
938 mutex_unlock(&dma_list_mutex
);
943 /* if we never registered a channel just release the idr */
944 if (atomic_read(idr_ref
) == 0) {
945 mutex_lock(&dma_list_mutex
);
946 idr_remove(&dma_idr
, device
->dev_id
);
947 mutex_unlock(&dma_list_mutex
);
952 list_for_each_entry(chan
, &device
->channels
, device_node
) {
953 if (chan
->local
== NULL
)
955 mutex_lock(&dma_list_mutex
);
956 chan
->dev
->chan
= NULL
;
957 mutex_unlock(&dma_list_mutex
);
958 device_unregister(&chan
->dev
->device
);
959 free_percpu(chan
->local
);
963 EXPORT_SYMBOL(dma_async_device_register
);
966 * dma_async_device_unregister - unregister a DMA device
967 * @device: &dma_device
969 * This routine is called by dma driver exit routines, dmaengine holds module
970 * references to prevent it being called while channels are in use.
972 void dma_async_device_unregister(struct dma_device
*device
)
974 struct dma_chan
*chan
;
976 mutex_lock(&dma_list_mutex
);
977 list_del_rcu(&device
->global_node
);
978 dma_channel_rebalance();
979 mutex_unlock(&dma_list_mutex
);
981 list_for_each_entry(chan
, &device
->channels
, device_node
) {
982 WARN_ONCE(chan
->client_count
,
983 "%s called while %d clients hold a reference\n",
984 __func__
, chan
->client_count
);
985 mutex_lock(&dma_list_mutex
);
986 chan
->dev
->chan
= NULL
;
987 mutex_unlock(&dma_list_mutex
);
988 device_unregister(&chan
->dev
->device
);
989 free_percpu(chan
->local
);
992 EXPORT_SYMBOL(dma_async_device_unregister
);
994 struct dmaengine_unmap_pool
{
995 struct kmem_cache
*cache
;
1001 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
1002 static struct dmaengine_unmap_pool unmap_pool
[] = {
1004 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1011 static struct dmaengine_unmap_pool
*__get_unmap_pool(int nr
)
1013 int order
= get_count_order(nr
);
1017 return &unmap_pool
[0];
1019 return &unmap_pool
[1];
1021 return &unmap_pool
[2];
1023 return &unmap_pool
[3];
1030 static void dmaengine_unmap(struct kref
*kref
)
1032 struct dmaengine_unmap_data
*unmap
= container_of(kref
, typeof(*unmap
), kref
);
1033 struct device
*dev
= unmap
->dev
;
1036 cnt
= unmap
->to_cnt
;
1037 for (i
= 0; i
< cnt
; i
++)
1038 dma_unmap_page(dev
, unmap
->addr
[i
], unmap
->len
,
1040 cnt
+= unmap
->from_cnt
;
1041 for (; i
< cnt
; i
++)
1042 dma_unmap_page(dev
, unmap
->addr
[i
], unmap
->len
,
1044 cnt
+= unmap
->bidi_cnt
;
1045 for (; i
< cnt
; i
++) {
1046 if (unmap
->addr
[i
] == 0)
1048 dma_unmap_page(dev
, unmap
->addr
[i
], unmap
->len
,
1051 cnt
= unmap
->map_cnt
;
1052 mempool_free(unmap
, __get_unmap_pool(cnt
)->pool
);
1055 void dmaengine_unmap_put(struct dmaengine_unmap_data
*unmap
)
1058 kref_put(&unmap
->kref
, dmaengine_unmap
);
1060 EXPORT_SYMBOL_GPL(dmaengine_unmap_put
);
1062 static void dmaengine_destroy_unmap_pool(void)
1066 for (i
= 0; i
< ARRAY_SIZE(unmap_pool
); i
++) {
1067 struct dmaengine_unmap_pool
*p
= &unmap_pool
[i
];
1070 mempool_destroy(p
->pool
);
1073 kmem_cache_destroy(p
->cache
);
1078 static int __init
dmaengine_init_unmap_pool(void)
1082 for (i
= 0; i
< ARRAY_SIZE(unmap_pool
); i
++) {
1083 struct dmaengine_unmap_pool
*p
= &unmap_pool
[i
];
1086 size
= sizeof(struct dmaengine_unmap_data
) +
1087 sizeof(dma_addr_t
) * p
->size
;
1089 p
->cache
= kmem_cache_create(p
->name
, size
, 0,
1090 SLAB_HWCACHE_ALIGN
, NULL
);
1093 p
->pool
= mempool_create_slab_pool(1, p
->cache
);
1098 if (i
== ARRAY_SIZE(unmap_pool
))
1101 dmaengine_destroy_unmap_pool();
1105 struct dmaengine_unmap_data
*
1106 dmaengine_get_unmap_data(struct device
*dev
, int nr
, gfp_t flags
)
1108 struct dmaengine_unmap_data
*unmap
;
1110 unmap
= mempool_alloc(__get_unmap_pool(nr
)->pool
, flags
);
1114 memset(unmap
, 0, sizeof(*unmap
));
1115 kref_init(&unmap
->kref
);
1117 unmap
->map_cnt
= nr
;
1121 EXPORT_SYMBOL(dmaengine_get_unmap_data
);
1123 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor
*tx
,
1124 struct dma_chan
*chan
)
1127 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1128 spin_lock_init(&tx
->lock
);
1131 EXPORT_SYMBOL(dma_async_tx_descriptor_init
);
1133 /* dma_wait_for_async_tx - spin wait for a transaction to complete
1134 * @tx: in-flight transaction to wait on
1137 dma_wait_for_async_tx(struct dma_async_tx_descriptor
*tx
)
1139 unsigned long dma_sync_wait_timeout
= jiffies
+ msecs_to_jiffies(5000);
1142 return DMA_COMPLETE
;
1144 while (tx
->cookie
== -EBUSY
) {
1145 if (time_after_eq(jiffies
, dma_sync_wait_timeout
)) {
1146 pr_err("%s timeout waiting for descriptor submission\n",
1152 return dma_sync_wait(tx
->chan
, tx
->cookie
);
1154 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx
);
1156 /* dma_run_dependencies - helper routine for dma drivers to process
1157 * (start) dependent operations on their target channel
1158 * @tx: transaction with dependencies
1160 void dma_run_dependencies(struct dma_async_tx_descriptor
*tx
)
1162 struct dma_async_tx_descriptor
*dep
= txd_next(tx
);
1163 struct dma_async_tx_descriptor
*dep_next
;
1164 struct dma_chan
*chan
;
1169 /* we'll submit tx->next now, so clear the link */
1173 /* keep submitting up until a channel switch is detected
1174 * in that case we will be called again as a result of
1175 * processing the interrupt from async_tx_channel_switch
1177 for (; dep
; dep
= dep_next
) {
1179 txd_clear_parent(dep
);
1180 dep_next
= txd_next(dep
);
1181 if (dep_next
&& dep_next
->chan
== chan
)
1182 txd_clear_next(dep
); /* ->next will be submitted */
1184 dep_next
= NULL
; /* submit current dep and terminate */
1187 dep
->tx_submit(dep
);
1190 chan
->device
->device_issue_pending(chan
);
1192 EXPORT_SYMBOL_GPL(dma_run_dependencies
);
1194 static int __init
dma_bus_init(void)
1196 int err
= dmaengine_init_unmap_pool();
1200 return class_register(&dma_devclass
);
1202 arch_initcall(dma_bus_init
);