2 * TI EDMA DMA engine driver
4 * Copyright 2012 Texas Instruments
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/edma.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
29 #include <linux/platform_data/edma.h>
31 #include "dmaengine.h"
35 * This will go away when the private EDMA API is folded
36 * into this driver and the platform device(s) are
37 * instantiated in the arch code. We can only get away
38 * with this simplification because DA8XX may not be built
39 * in the same kernel image with other DaVinci parts. This
40 * avoids having to sprinkle dmaengine driver platform devices
41 * and data throughout all the existing board files.
43 #ifdef CONFIG_ARCH_DAVINCI_DA8XX
49 #endif /* CONFIG_ARCH_DAVINCI_DA8XX */
52 * Max of 20 segments per channel to conserve PaRAM slots
53 * Also note that MAX_NR_SG should be atleast the no.of periods
54 * that are required for ASoC, otherwise DMA prep calls will
55 * fail. Today davinci-pcm is the only user of this driver and
56 * requires atleast 17 slots, so we setup the default to 20.
59 #define EDMA_MAX_SLOTS MAX_NR_SG
60 #define EDMA_DESCRIPTORS 16
65 struct edmacc_param param
;
69 struct virt_dma_desc vdesc
;
70 struct list_head node
;
71 enum dma_transfer_direction direction
;
75 struct edma_chan
*echan
;
79 * The following 4 elements are used for residue accounting.
81 * - processed_stat: the number of SG elements we have traversed
82 * so far to cover accounting. This is updated directly to processed
83 * during edma_callback and is always <= processed, because processed
84 * refers to the number of pending transfer (programmed to EDMA
85 * controller), where as processed_stat tracks number of transfers
86 * accounted for so far.
88 * - residue: The amount of bytes we have left to transfer for this desc
90 * - residue_stat: The residue in bytes of data we have covered
91 * so far for accounting. This is updated directly to residue
92 * during callbacks to keep it current.
94 * - sg_len: Tracks the length of the current intermediate transfer,
95 * this is required to update the residue during intermediate transfer
96 * completion callback.
103 struct edma_pset pset
[0];
109 struct virt_dma_chan vchan
;
110 struct list_head node
;
111 struct edma_desc
*edesc
;
115 int slot
[EDMA_MAX_SLOTS
];
117 struct dma_slave_config cfg
;
122 struct dma_device dma_slave
;
123 struct edma_chan slave_chans
[EDMA_CHANS
];
128 static inline struct edma_cc
*to_edma_cc(struct dma_device
*d
)
130 return container_of(d
, struct edma_cc
, dma_slave
);
133 static inline struct edma_chan
*to_edma_chan(struct dma_chan
*c
)
135 return container_of(c
, struct edma_chan
, vchan
.chan
);
138 static inline struct edma_desc
139 *to_edma_desc(struct dma_async_tx_descriptor
*tx
)
141 return container_of(tx
, struct edma_desc
, vdesc
.tx
);
144 static void edma_desc_free(struct virt_dma_desc
*vdesc
)
146 kfree(container_of(vdesc
, struct edma_desc
, vdesc
));
149 /* Dispatch a queued descriptor to the controller (caller holds lock) */
150 static void edma_execute(struct edma_chan
*echan
)
152 struct virt_dma_desc
*vdesc
;
153 struct edma_desc
*edesc
;
154 struct device
*dev
= echan
->vchan
.chan
.device
->dev
;
155 int i
, j
, left
, nslots
;
157 /* If either we processed all psets or we're still not started */
159 echan
->edesc
->pset_nr
== echan
->edesc
->processed
) {
161 vdesc
= vchan_next_desc(&echan
->vchan
);
166 list_del(&vdesc
->node
);
167 echan
->edesc
= to_edma_desc(&vdesc
->tx
);
170 edesc
= echan
->edesc
;
172 /* Find out how many left */
173 left
= edesc
->pset_nr
- edesc
->processed
;
174 nslots
= min(MAX_NR_SG
, left
);
177 /* Write descriptor PaRAM set(s) */
178 for (i
= 0; i
< nslots
; i
++) {
179 j
= i
+ edesc
->processed
;
180 edma_write_slot(echan
->slot
[i
], &edesc
->pset
[j
].param
);
181 edesc
->sg_len
+= edesc
->pset
[j
].len
;
182 dev_vdbg(echan
->vchan
.chan
.device
->dev
,
194 j
, echan
->ch_num
, echan
->slot
[i
],
195 edesc
->pset
[j
].param
.opt
,
196 edesc
->pset
[j
].param
.src
,
197 edesc
->pset
[j
].param
.dst
,
198 edesc
->pset
[j
].param
.a_b_cnt
,
199 edesc
->pset
[j
].param
.ccnt
,
200 edesc
->pset
[j
].param
.src_dst_bidx
,
201 edesc
->pset
[j
].param
.src_dst_cidx
,
202 edesc
->pset
[j
].param
.link_bcntrld
);
203 /* Link to the previous slot if not the last set */
204 if (i
!= (nslots
- 1))
205 edma_link(echan
->slot
[i
], echan
->slot
[i
+1]);
208 edesc
->processed
+= nslots
;
211 * If this is either the last set in a set of SG-list transactions
212 * then setup a link to the dummy slot, this results in all future
213 * events being absorbed and that's OK because we're done
215 if (edesc
->processed
== edesc
->pset_nr
) {
217 edma_link(echan
->slot
[nslots
-1], echan
->slot
[1]);
219 edma_link(echan
->slot
[nslots
-1],
220 echan
->ecc
->dummy_slot
);
223 if (edesc
->processed
<= MAX_NR_SG
) {
224 dev_dbg(dev
, "first transfer starting on channel %d\n",
226 edma_start(echan
->ch_num
);
228 dev_dbg(dev
, "chan: %d: completed %d elements, resuming\n",
229 echan
->ch_num
, edesc
->processed
);
230 edma_resume(echan
->ch_num
);
234 * This happens due to setup times between intermediate transfers
235 * in long SG lists which have to be broken up into transfers of
239 dev_dbg(dev
, "missed event on channel %d\n", echan
->ch_num
);
240 edma_clean_channel(echan
->ch_num
);
241 edma_stop(echan
->ch_num
);
242 edma_start(echan
->ch_num
);
243 edma_trigger_channel(echan
->ch_num
);
248 static int edma_terminate_all(struct dma_chan
*chan
)
250 struct edma_chan
*echan
= to_edma_chan(chan
);
254 spin_lock_irqsave(&echan
->vchan
.lock
, flags
);
257 * Stop DMA activity: we assume the callback will not be called
258 * after edma_dma() returns (even if it does, it will see
259 * echan->edesc is NULL and exit.)
262 int cyclic
= echan
->edesc
->cyclic
;
265 * free the running request descriptor
266 * since it is not in any of the vdesc lists
268 edma_desc_free(&echan
->edesc
->vdesc
);
271 edma_stop(echan
->ch_num
);
272 /* Move the cyclic channel back to default queue */
274 edma_assign_channel_eventq(echan
->ch_num
,
278 vchan_get_all_descriptors(&echan
->vchan
, &head
);
279 spin_unlock_irqrestore(&echan
->vchan
.lock
, flags
);
280 vchan_dma_desc_free_list(&echan
->vchan
, &head
);
285 static int edma_slave_config(struct dma_chan
*chan
,
286 struct dma_slave_config
*cfg
)
288 struct edma_chan
*echan
= to_edma_chan(chan
);
290 if (cfg
->src_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
||
291 cfg
->dst_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
)
294 memcpy(&echan
->cfg
, cfg
, sizeof(echan
->cfg
));
299 static int edma_dma_pause(struct dma_chan
*chan
)
301 struct edma_chan
*echan
= to_edma_chan(chan
);
306 edma_pause(echan
->ch_num
);
310 static int edma_dma_resume(struct dma_chan
*chan
)
312 struct edma_chan
*echan
= to_edma_chan(chan
);
314 edma_resume(echan
->ch_num
);
319 * A PaRAM set configuration abstraction used by other modes
320 * @chan: Channel who's PaRAM set we're configuring
321 * @pset: PaRAM set to initialize and setup.
322 * @src_addr: Source address of the DMA
323 * @dst_addr: Destination address of the DMA
324 * @burst: In units of dev_width, how much to send
325 * @dev_width: How much is the dev_width
326 * @dma_length: Total length of the DMA transfer
327 * @direction: Direction of the transfer
329 static int edma_config_pset(struct dma_chan
*chan
, struct edma_pset
*epset
,
330 dma_addr_t src_addr
, dma_addr_t dst_addr
, u32 burst
,
331 enum dma_slave_buswidth dev_width
, unsigned int dma_length
,
332 enum dma_transfer_direction direction
)
334 struct edma_chan
*echan
= to_edma_chan(chan
);
335 struct device
*dev
= chan
->device
->dev
;
336 struct edmacc_param
*param
= &epset
->param
;
337 int acnt
, bcnt
, ccnt
, cidx
;
338 int src_bidx
, dst_bidx
, src_cidx
, dst_cidx
;
343 /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
347 * If the maxburst is equal to the fifo width, use
348 * A-synced transfers. This allows for large contiguous
349 * buffer transfers using only one PaRAM set.
353 * For the A-sync case, bcnt and ccnt are the remainder
354 * and quotient respectively of the division of:
355 * (dma_length / acnt) by (SZ_64K -1). This is so
356 * that in case bcnt over flows, we have ccnt to use.
357 * Note: In A-sync tranfer only, bcntrld is used, but it
358 * only applies for sg_dma_len(sg) >= SZ_64K.
359 * In this case, the best way adopted is- bccnt for the
360 * first frame will be the remainder below. Then for
361 * every successive frame, bcnt will be SZ_64K-1. This
362 * is assured as bcntrld = 0xffff in end of function.
365 ccnt
= dma_length
/ acnt
/ (SZ_64K
- 1);
366 bcnt
= dma_length
/ acnt
- ccnt
* (SZ_64K
- 1);
368 * If bcnt is non-zero, we have a remainder and hence an
369 * extra frame to transfer, so increment ccnt.
378 * If maxburst is greater than the fifo address_width,
379 * use AB-synced transfers where A count is the fifo
380 * address_width and B count is the maxburst. In this
381 * case, we are limited to transfers of C count frames
382 * of (address_width * maxburst) where C count is limited
383 * to SZ_64K-1. This places an upper bound on the length
384 * of an SG segment that can be handled.
388 ccnt
= dma_length
/ (acnt
* bcnt
);
389 if (ccnt
> (SZ_64K
- 1)) {
390 dev_err(dev
, "Exceeded max SG segment size\n");
396 epset
->len
= dma_length
;
398 if (direction
== DMA_MEM_TO_DEV
) {
403 epset
->addr
= src_addr
;
404 } else if (direction
== DMA_DEV_TO_MEM
) {
409 epset
->addr
= dst_addr
;
410 } else if (direction
== DMA_MEM_TO_MEM
) {
416 dev_err(dev
, "%s: direction not implemented yet\n", __func__
);
420 param
->opt
= EDMA_TCC(EDMA_CHAN_SLOT(echan
->ch_num
));
421 /* Configure A or AB synchronized transfers */
423 param
->opt
|= SYNCDIM
;
425 param
->src
= src_addr
;
426 param
->dst
= dst_addr
;
428 param
->src_dst_bidx
= (dst_bidx
<< 16) | src_bidx
;
429 param
->src_dst_cidx
= (dst_cidx
<< 16) | src_cidx
;
431 param
->a_b_cnt
= bcnt
<< 16 | acnt
;
434 * Only time when (bcntrld) auto reload is required is for
435 * A-sync case, and in this case, a requirement of reload value
436 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
437 * and then later will be populated by edma_execute.
439 param
->link_bcntrld
= 0xffffffff;
443 static struct dma_async_tx_descriptor
*edma_prep_slave_sg(
444 struct dma_chan
*chan
, struct scatterlist
*sgl
,
445 unsigned int sg_len
, enum dma_transfer_direction direction
,
446 unsigned long tx_flags
, void *context
)
448 struct edma_chan
*echan
= to_edma_chan(chan
);
449 struct device
*dev
= chan
->device
->dev
;
450 struct edma_desc
*edesc
;
451 dma_addr_t src_addr
= 0, dst_addr
= 0;
452 enum dma_slave_buswidth dev_width
;
454 struct scatterlist
*sg
;
457 if (unlikely(!echan
|| !sgl
|| !sg_len
))
460 if (direction
== DMA_DEV_TO_MEM
) {
461 src_addr
= echan
->cfg
.src_addr
;
462 dev_width
= echan
->cfg
.src_addr_width
;
463 burst
= echan
->cfg
.src_maxburst
;
464 } else if (direction
== DMA_MEM_TO_DEV
) {
465 dst_addr
= echan
->cfg
.dst_addr
;
466 dev_width
= echan
->cfg
.dst_addr_width
;
467 burst
= echan
->cfg
.dst_maxburst
;
469 dev_err(dev
, "%s: bad direction: %d\n", __func__
, direction
);
473 if (dev_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
) {
474 dev_err(dev
, "%s: Undefined slave buswidth\n", __func__
);
478 edesc
= kzalloc(sizeof(*edesc
) + sg_len
*
479 sizeof(edesc
->pset
[0]), GFP_ATOMIC
);
481 dev_err(dev
, "%s: Failed to allocate a descriptor\n", __func__
);
485 edesc
->pset_nr
= sg_len
;
487 edesc
->direction
= direction
;
488 edesc
->echan
= echan
;
490 /* Allocate a PaRAM slot, if needed */
491 nslots
= min_t(unsigned, MAX_NR_SG
, sg_len
);
493 for (i
= 0; i
< nslots
; i
++) {
494 if (echan
->slot
[i
] < 0) {
496 edma_alloc_slot(EDMA_CTLR(echan
->ch_num
),
498 if (echan
->slot
[i
] < 0) {
500 dev_err(dev
, "%s: Failed to allocate slot\n",
507 /* Configure PaRAM sets for each SG */
508 for_each_sg(sgl
, sg
, sg_len
, i
) {
509 /* Get address for each SG */
510 if (direction
== DMA_DEV_TO_MEM
)
511 dst_addr
= sg_dma_address(sg
);
513 src_addr
= sg_dma_address(sg
);
515 ret
= edma_config_pset(chan
, &edesc
->pset
[i
], src_addr
,
516 dst_addr
, burst
, dev_width
,
517 sg_dma_len(sg
), direction
);
524 edesc
->residue
+= sg_dma_len(sg
);
526 /* If this is the last in a current SG set of transactions,
527 enable interrupts so that next set is processed */
528 if (!((i
+1) % MAX_NR_SG
))
529 edesc
->pset
[i
].param
.opt
|= TCINTEN
;
531 /* If this is the last set, enable completion interrupt flag */
533 edesc
->pset
[i
].param
.opt
|= TCINTEN
;
535 edesc
->residue_stat
= edesc
->residue
;
537 return vchan_tx_prep(&echan
->vchan
, &edesc
->vdesc
, tx_flags
);
540 static struct dma_async_tx_descriptor
*edma_prep_dma_memcpy(
541 struct dma_chan
*chan
, dma_addr_t dest
, dma_addr_t src
,
542 size_t len
, unsigned long tx_flags
)
545 struct edma_desc
*edesc
;
546 struct device
*dev
= chan
->device
->dev
;
547 struct edma_chan
*echan
= to_edma_chan(chan
);
549 if (unlikely(!echan
|| !len
))
552 edesc
= kzalloc(sizeof(*edesc
) + sizeof(edesc
->pset
[0]), GFP_ATOMIC
);
554 dev_dbg(dev
, "Failed to allocate a descriptor\n");
560 ret
= edma_config_pset(chan
, &edesc
->pset
[0], src
, dest
, 1,
561 DMA_SLAVE_BUSWIDTH_4_BYTES
, len
, DMA_MEM_TO_MEM
);
568 * Enable intermediate transfer chaining to re-trigger channel
569 * on completion of every TR, and enable transfer-completion
570 * interrupt on completion of the whole transfer.
572 edesc
->pset
[0].param
.opt
|= ITCCHEN
;
573 edesc
->pset
[0].param
.opt
|= TCINTEN
;
575 return vchan_tx_prep(&echan
->vchan
, &edesc
->vdesc
, tx_flags
);
578 static struct dma_async_tx_descriptor
*edma_prep_dma_cyclic(
579 struct dma_chan
*chan
, dma_addr_t buf_addr
, size_t buf_len
,
580 size_t period_len
, enum dma_transfer_direction direction
,
581 unsigned long tx_flags
)
583 struct edma_chan
*echan
= to_edma_chan(chan
);
584 struct device
*dev
= chan
->device
->dev
;
585 struct edma_desc
*edesc
;
586 dma_addr_t src_addr
, dst_addr
;
587 enum dma_slave_buswidth dev_width
;
591 if (unlikely(!echan
|| !buf_len
|| !period_len
))
594 if (direction
== DMA_DEV_TO_MEM
) {
595 src_addr
= echan
->cfg
.src_addr
;
597 dev_width
= echan
->cfg
.src_addr_width
;
598 burst
= echan
->cfg
.src_maxburst
;
599 } else if (direction
== DMA_MEM_TO_DEV
) {
601 dst_addr
= echan
->cfg
.dst_addr
;
602 dev_width
= echan
->cfg
.dst_addr_width
;
603 burst
= echan
->cfg
.dst_maxburst
;
605 dev_err(dev
, "%s: bad direction: %d\n", __func__
, direction
);
609 if (dev_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
) {
610 dev_err(dev
, "%s: Undefined slave buswidth\n", __func__
);
614 if (unlikely(buf_len
% period_len
)) {
615 dev_err(dev
, "Period should be multiple of Buffer length\n");
619 nslots
= (buf_len
/ period_len
) + 1;
622 * Cyclic DMA users such as audio cannot tolerate delays introduced
623 * by cases where the number of periods is more than the maximum
624 * number of SGs the EDMA driver can handle at a time. For DMA types
625 * such as Slave SGs, such delays are tolerable and synchronized,
626 * but the synchronization is difficult to achieve with Cyclic and
627 * cannot be guaranteed, so we error out early.
629 if (nslots
> MAX_NR_SG
)
632 edesc
= kzalloc(sizeof(*edesc
) + nslots
*
633 sizeof(edesc
->pset
[0]), GFP_ATOMIC
);
635 dev_err(dev
, "%s: Failed to allocate a descriptor\n", __func__
);
640 edesc
->pset_nr
= nslots
;
641 edesc
->residue
= edesc
->residue_stat
= buf_len
;
642 edesc
->direction
= direction
;
643 edesc
->echan
= echan
;
645 dev_dbg(dev
, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
646 __func__
, echan
->ch_num
, nslots
, period_len
, buf_len
);
648 for (i
= 0; i
< nslots
; i
++) {
649 /* Allocate a PaRAM slot, if needed */
650 if (echan
->slot
[i
] < 0) {
652 edma_alloc_slot(EDMA_CTLR(echan
->ch_num
),
654 if (echan
->slot
[i
] < 0) {
656 dev_err(dev
, "%s: Failed to allocate slot\n",
662 if (i
== nslots
- 1) {
663 memcpy(&edesc
->pset
[i
], &edesc
->pset
[0],
664 sizeof(edesc
->pset
[0]));
668 ret
= edma_config_pset(chan
, &edesc
->pset
[i
], src_addr
,
669 dst_addr
, burst
, dev_width
, period_len
,
676 if (direction
== DMA_DEV_TO_MEM
)
677 dst_addr
+= period_len
;
679 src_addr
+= period_len
;
681 dev_vdbg(dev
, "%s: Configure period %d of buf:\n", __func__
, i
);
694 i
, echan
->ch_num
, echan
->slot
[i
],
695 edesc
->pset
[i
].param
.opt
,
696 edesc
->pset
[i
].param
.src
,
697 edesc
->pset
[i
].param
.dst
,
698 edesc
->pset
[i
].param
.a_b_cnt
,
699 edesc
->pset
[i
].param
.ccnt
,
700 edesc
->pset
[i
].param
.src_dst_bidx
,
701 edesc
->pset
[i
].param
.src_dst_cidx
,
702 edesc
->pset
[i
].param
.link_bcntrld
);
707 * Enable period interrupt only if it is requested
709 if (tx_flags
& DMA_PREP_INTERRUPT
)
710 edesc
->pset
[i
].param
.opt
|= TCINTEN
;
713 /* Place the cyclic channel to highest priority queue */
714 edma_assign_channel_eventq(echan
->ch_num
, EVENTQ_0
);
716 return vchan_tx_prep(&echan
->vchan
, &edesc
->vdesc
, tx_flags
);
719 static void edma_callback(unsigned ch_num
, u16 ch_status
, void *data
)
721 struct edma_chan
*echan
= data
;
722 struct device
*dev
= echan
->vchan
.chan
.device
->dev
;
723 struct edma_desc
*edesc
;
724 struct edmacc_param p
;
726 edesc
= echan
->edesc
;
728 /* Pause the channel for non-cyclic */
729 if (!edesc
|| (edesc
&& !edesc
->cyclic
))
730 edma_pause(echan
->ch_num
);
733 case EDMA_DMA_COMPLETE
:
734 spin_lock(&echan
->vchan
.lock
);
738 vchan_cyclic_callback(&edesc
->vdesc
);
739 } else if (edesc
->processed
== edesc
->pset_nr
) {
740 dev_dbg(dev
, "Transfer complete, stopping channel %d\n", ch_num
);
742 edma_stop(echan
->ch_num
);
743 vchan_cookie_complete(&edesc
->vdesc
);
746 dev_dbg(dev
, "Intermediate transfer complete on channel %d\n", ch_num
);
748 /* Update statistics for tx_status */
749 edesc
->residue
-= edesc
->sg_len
;
750 edesc
->residue_stat
= edesc
->residue
;
751 edesc
->processed_stat
= edesc
->processed
;
757 spin_unlock(&echan
->vchan
.lock
);
760 case EDMA_DMA_CC_ERROR
:
761 spin_lock(&echan
->vchan
.lock
);
763 edma_read_slot(EDMA_CHAN_SLOT(echan
->slot
[0]), &p
);
766 * Issue later based on missed flag which will be sure
768 * (1) we finished transmitting an intermediate slot and
769 * edma_execute is coming up.
770 * (2) or we finished current transfer and issue will
773 * Important note: issuing can be dangerous here and
774 * lead to some nasty recursion when we are in a NULL
775 * slot. So we avoid doing so and set the missed flag.
777 if (p
.a_b_cnt
== 0 && p
.ccnt
== 0) {
778 dev_dbg(dev
, "Error occurred, looks like slot is null, just setting miss\n");
782 * The slot is already programmed but the event got
783 * missed, so its safe to issue it here.
785 dev_dbg(dev
, "Error occurred but slot is non-null, TRIGGERING\n");
786 edma_clean_channel(echan
->ch_num
);
787 edma_stop(echan
->ch_num
);
788 edma_start(echan
->ch_num
);
789 edma_trigger_channel(echan
->ch_num
);
792 spin_unlock(&echan
->vchan
.lock
);
800 /* Alloc channel resources */
801 static int edma_alloc_chan_resources(struct dma_chan
*chan
)
803 struct edma_chan
*echan
= to_edma_chan(chan
);
804 struct device
*dev
= chan
->device
->dev
;
809 a_ch_num
= edma_alloc_channel(echan
->ch_num
, edma_callback
,
810 echan
, EVENTQ_DEFAULT
);
817 if (a_ch_num
!= echan
->ch_num
) {
818 dev_err(dev
, "failed to allocate requested channel %u:%u\n",
819 EDMA_CTLR(echan
->ch_num
),
820 EDMA_CHAN_SLOT(echan
->ch_num
));
825 echan
->alloced
= true;
826 echan
->slot
[0] = echan
->ch_num
;
828 dev_dbg(dev
, "allocated channel %d for %u:%u\n", echan
->ch_num
,
829 EDMA_CTLR(echan
->ch_num
), EDMA_CHAN_SLOT(echan
->ch_num
));
834 edma_free_channel(a_ch_num
);
839 /* Free channel resources */
840 static void edma_free_chan_resources(struct dma_chan
*chan
)
842 struct edma_chan
*echan
= to_edma_chan(chan
);
843 struct device
*dev
= chan
->device
->dev
;
846 /* Terminate transfers */
847 edma_stop(echan
->ch_num
);
849 vchan_free_chan_resources(&echan
->vchan
);
851 /* Free EDMA PaRAM slots */
852 for (i
= 1; i
< EDMA_MAX_SLOTS
; i
++) {
853 if (echan
->slot
[i
] >= 0) {
854 edma_free_slot(echan
->slot
[i
]);
859 /* Free EDMA channel */
860 if (echan
->alloced
) {
861 edma_free_channel(echan
->ch_num
);
862 echan
->alloced
= false;
865 dev_dbg(dev
, "freeing channel for %u\n", echan
->ch_num
);
868 /* Send pending descriptor to hardware */
869 static void edma_issue_pending(struct dma_chan
*chan
)
871 struct edma_chan
*echan
= to_edma_chan(chan
);
874 spin_lock_irqsave(&echan
->vchan
.lock
, flags
);
875 if (vchan_issue_pending(&echan
->vchan
) && !echan
->edesc
)
877 spin_unlock_irqrestore(&echan
->vchan
.lock
, flags
);
880 static u32
edma_residue(struct edma_desc
*edesc
)
882 bool dst
= edesc
->direction
== DMA_DEV_TO_MEM
;
883 struct edma_pset
*pset
= edesc
->pset
;
884 dma_addr_t done
, pos
;
888 * We always read the dst/src position from the first RamPar
889 * pset. That's the one which is active now.
891 pos
= edma_get_position(edesc
->echan
->slot
[0], dst
);
894 * Cyclic is simple. Just subtract pset[0].addr from pos.
896 * We never update edesc->residue in the cyclic case, so we
897 * can tell the remaining room to the end of the circular
901 done
= pos
- pset
->addr
;
902 edesc
->residue_stat
= edesc
->residue
- done
;
903 return edesc
->residue_stat
;
907 * For SG operation we catch up with the last processed
910 pset
+= edesc
->processed_stat
;
912 for (i
= edesc
->processed_stat
; i
< edesc
->processed
; i
++, pset
++) {
914 * If we are inside this pset address range, we know
915 * this is the active one. Get the current delta and
916 * stop walking the psets.
918 if (pos
>= pset
->addr
&& pos
< pset
->addr
+ pset
->len
)
919 return edesc
->residue_stat
- (pos
- pset
->addr
);
921 /* Otherwise mark it done and update residue_stat. */
922 edesc
->processed_stat
++;
923 edesc
->residue_stat
-= pset
->len
;
925 return edesc
->residue_stat
;
928 /* Check request completion status */
929 static enum dma_status
edma_tx_status(struct dma_chan
*chan
,
931 struct dma_tx_state
*txstate
)
933 struct edma_chan
*echan
= to_edma_chan(chan
);
934 struct virt_dma_desc
*vdesc
;
938 ret
= dma_cookie_status(chan
, cookie
, txstate
);
939 if (ret
== DMA_COMPLETE
|| !txstate
)
942 spin_lock_irqsave(&echan
->vchan
.lock
, flags
);
943 if (echan
->edesc
&& echan
->edesc
->vdesc
.tx
.cookie
== cookie
)
944 txstate
->residue
= edma_residue(echan
->edesc
);
945 else if ((vdesc
= vchan_find_desc(&echan
->vchan
, cookie
)))
946 txstate
->residue
= to_edma_desc(&vdesc
->tx
)->residue
;
947 spin_unlock_irqrestore(&echan
->vchan
.lock
, flags
);
952 static void __init
edma_chan_init(struct edma_cc
*ecc
,
953 struct dma_device
*dma
,
954 struct edma_chan
*echans
)
958 for (i
= 0; i
< EDMA_CHANS
; i
++) {
959 struct edma_chan
*echan
= &echans
[i
];
960 echan
->ch_num
= EDMA_CTLR_CHAN(ecc
->ctlr
, i
);
962 echan
->vchan
.desc_free
= edma_desc_free
;
964 vchan_init(&echan
->vchan
, dma
);
966 INIT_LIST_HEAD(&echan
->node
);
967 for (j
= 0; j
< EDMA_MAX_SLOTS
; j
++)
972 #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
973 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
974 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
975 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
977 static void edma_dma_init(struct edma_cc
*ecc
, struct dma_device
*dma
,
980 dma
->device_prep_slave_sg
= edma_prep_slave_sg
;
981 dma
->device_prep_dma_cyclic
= edma_prep_dma_cyclic
;
982 dma
->device_prep_dma_memcpy
= edma_prep_dma_memcpy
;
983 dma
->device_alloc_chan_resources
= edma_alloc_chan_resources
;
984 dma
->device_free_chan_resources
= edma_free_chan_resources
;
985 dma
->device_issue_pending
= edma_issue_pending
;
986 dma
->device_tx_status
= edma_tx_status
;
987 dma
->device_config
= edma_slave_config
;
988 dma
->device_pause
= edma_dma_pause
;
989 dma
->device_resume
= edma_dma_resume
;
990 dma
->device_terminate_all
= edma_terminate_all
;
992 dma
->src_addr_widths
= EDMA_DMA_BUSWIDTHS
;
993 dma
->dst_addr_widths
= EDMA_DMA_BUSWIDTHS
;
994 dma
->directions
= BIT(DMA_DEV_TO_MEM
) | BIT(DMA_MEM_TO_DEV
);
995 dma
->residue_granularity
= DMA_RESIDUE_GRANULARITY_BURST
;
1000 * code using dma memcpy must make sure alignment of
1001 * length is at dma->copy_align boundary.
1003 dma
->copy_align
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1005 INIT_LIST_HEAD(&dma
->channels
);
1008 static int edma_probe(struct platform_device
*pdev
)
1010 struct edma_cc
*ecc
;
1013 ret
= dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(32));
1017 ecc
= devm_kzalloc(&pdev
->dev
, sizeof(*ecc
), GFP_KERNEL
);
1019 dev_err(&pdev
->dev
, "Can't allocate controller\n");
1023 ecc
->ctlr
= pdev
->id
;
1024 ecc
->dummy_slot
= edma_alloc_slot(ecc
->ctlr
, EDMA_SLOT_ANY
);
1025 if (ecc
->dummy_slot
< 0) {
1026 dev_err(&pdev
->dev
, "Can't allocate PaRAM dummy slot\n");
1027 return ecc
->dummy_slot
;
1030 dma_cap_zero(ecc
->dma_slave
.cap_mask
);
1031 dma_cap_set(DMA_SLAVE
, ecc
->dma_slave
.cap_mask
);
1032 dma_cap_set(DMA_CYCLIC
, ecc
->dma_slave
.cap_mask
);
1033 dma_cap_set(DMA_MEMCPY
, ecc
->dma_slave
.cap_mask
);
1035 edma_dma_init(ecc
, &ecc
->dma_slave
, &pdev
->dev
);
1037 edma_chan_init(ecc
, &ecc
->dma_slave
, ecc
->slave_chans
);
1039 ret
= dma_async_device_register(&ecc
->dma_slave
);
1043 platform_set_drvdata(pdev
, ecc
);
1045 dev_info(&pdev
->dev
, "TI EDMA DMA engine driver\n");
1050 edma_free_slot(ecc
->dummy_slot
);
1054 static int edma_remove(struct platform_device
*pdev
)
1056 struct device
*dev
= &pdev
->dev
;
1057 struct edma_cc
*ecc
= dev_get_drvdata(dev
);
1059 dma_async_device_unregister(&ecc
->dma_slave
);
1060 edma_free_slot(ecc
->dummy_slot
);
1065 static struct platform_driver edma_driver
= {
1066 .probe
= edma_probe
,
1067 .remove
= edma_remove
,
1069 .name
= "edma-dma-engine",
1073 bool edma_filter_fn(struct dma_chan
*chan
, void *param
)
1075 if (chan
->device
->dev
->driver
== &edma_driver
.driver
) {
1076 struct edma_chan
*echan
= to_edma_chan(chan
);
1077 unsigned ch_req
= *(unsigned *)param
;
1078 return ch_req
== echan
->ch_num
;
1082 EXPORT_SYMBOL(edma_filter_fn
);
1084 static int edma_init(void)
1086 return platform_driver_register(&edma_driver
);
1088 subsys_initcall(edma_init
);
1090 static void __exit
edma_exit(void)
1092 platform_driver_unregister(&edma_driver
);
1094 module_exit(edma_exit
);
1096 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
1097 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
1098 MODULE_LICENSE("GPL v2");