Linux 4.2.1
[linux/fpc-iii.git] / drivers / dma / mic_x100_dma.c
blob74d9db05a5ad24beac7fb48b319d73240f5842b6
1 /*
2 * Intel MIC Platform Software Stack (MPSS)
4 * Copyright(c) 2014 Intel Corporation.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License for more details.
15 * The full GNU General Public License is included in this distribution in
16 * the file called "COPYING".
18 * Intel MIC X100 DMA Driver.
20 * Adapted from IOAT dma driver.
22 #include <linux/module.h>
23 #include <linux/io.h>
24 #include <linux/seq_file.h>
25 #include <linux/vmalloc.h>
27 #include "mic_x100_dma.h"
29 #define MIC_DMA_MAX_XFER_SIZE_CARD (1 * 1024 * 1024 -\
30 MIC_DMA_ALIGN_BYTES)
31 #define MIC_DMA_MAX_XFER_SIZE_HOST (1 * 1024 * 1024 >> 1)
32 #define MIC_DMA_DESC_TYPE_SHIFT 60
33 #define MIC_DMA_MEMCPY_LEN_SHIFT 46
34 #define MIC_DMA_STAT_INTR_SHIFT 59
36 /* high-water mark for pushing dma descriptors */
37 static int mic_dma_pending_level = 4;
39 /* Status descriptor is used to write a 64 bit value to a memory location */
40 enum mic_dma_desc_format_type {
41 MIC_DMA_MEMCPY = 1,
42 MIC_DMA_STATUS,
45 static inline u32 mic_dma_hw_ring_inc(u32 val)
47 return (val + 1) % MIC_DMA_DESC_RX_SIZE;
50 static inline u32 mic_dma_hw_ring_dec(u32 val)
52 return val ? val - 1 : MIC_DMA_DESC_RX_SIZE - 1;
55 static inline void mic_dma_hw_ring_inc_head(struct mic_dma_chan *ch)
57 ch->head = mic_dma_hw_ring_inc(ch->head);
60 /* Prepare a memcpy desc */
61 static inline void mic_dma_memcpy_desc(struct mic_dma_desc *desc,
62 dma_addr_t src_phys, dma_addr_t dst_phys, u64 size)
64 u64 qw0, qw1;
66 qw0 = src_phys;
67 qw0 |= (size >> MIC_DMA_ALIGN_SHIFT) << MIC_DMA_MEMCPY_LEN_SHIFT;
68 qw1 = MIC_DMA_MEMCPY;
69 qw1 <<= MIC_DMA_DESC_TYPE_SHIFT;
70 qw1 |= dst_phys;
71 desc->qw0 = qw0;
72 desc->qw1 = qw1;
75 /* Prepare a status desc. with @data to be written at @dst_phys */
76 static inline void mic_dma_prep_status_desc(struct mic_dma_desc *desc, u64 data,
77 dma_addr_t dst_phys, bool generate_intr)
79 u64 qw0, qw1;
81 qw0 = data;
82 qw1 = (u64) MIC_DMA_STATUS << MIC_DMA_DESC_TYPE_SHIFT | dst_phys;
83 if (generate_intr)
84 qw1 |= (1ULL << MIC_DMA_STAT_INTR_SHIFT);
85 desc->qw0 = qw0;
86 desc->qw1 = qw1;
89 static void mic_dma_cleanup(struct mic_dma_chan *ch)
91 struct dma_async_tx_descriptor *tx;
92 u32 tail;
93 u32 last_tail;
95 spin_lock(&ch->cleanup_lock);
96 tail = mic_dma_read_cmp_cnt(ch);
98 * This is the barrier pair for smp_wmb() in fn.
99 * mic_dma_tx_submit_unlock. It's required so that we read the
100 * updated cookie value from tx->cookie.
102 smp_rmb();
103 for (last_tail = ch->last_tail; tail != last_tail;) {
104 tx = &ch->tx_array[last_tail];
105 if (tx->cookie) {
106 dma_cookie_complete(tx);
107 if (tx->callback) {
108 tx->callback(tx->callback_param);
109 tx->callback = NULL;
112 last_tail = mic_dma_hw_ring_inc(last_tail);
114 /* finish all completion callbacks before incrementing tail */
115 smp_mb();
116 ch->last_tail = last_tail;
117 spin_unlock(&ch->cleanup_lock);
120 static u32 mic_dma_ring_count(u32 head, u32 tail)
122 u32 count;
124 if (head >= tail)
125 count = (tail - 0) + (MIC_DMA_DESC_RX_SIZE - head);
126 else
127 count = tail - head;
128 return count - 1;
131 /* Returns the num. of free descriptors on success, -ENOMEM on failure */
132 static int mic_dma_avail_desc_ring_space(struct mic_dma_chan *ch, int required)
134 struct device *dev = mic_dma_ch_to_device(ch);
135 u32 count;
137 count = mic_dma_ring_count(ch->head, ch->last_tail);
138 if (count < required) {
139 mic_dma_cleanup(ch);
140 count = mic_dma_ring_count(ch->head, ch->last_tail);
143 if (count < required) {
144 dev_dbg(dev, "Not enough desc space");
145 dev_dbg(dev, "%s %d required=%u, avail=%u\n",
146 __func__, __LINE__, required, count);
147 return -ENOMEM;
148 } else {
149 return count;
153 /* Program memcpy descriptors into the descriptor ring and update s/w head ptr*/
154 static int mic_dma_prog_memcpy_desc(struct mic_dma_chan *ch, dma_addr_t src,
155 dma_addr_t dst, size_t len)
157 size_t current_transfer_len;
158 size_t max_xfer_size = to_mic_dma_dev(ch)->max_xfer_size;
159 /* 3 is added to make sure we have enough space for status desc */
160 int num_desc = len / max_xfer_size + 3;
161 int ret;
163 if (len % max_xfer_size)
164 num_desc++;
166 ret = mic_dma_avail_desc_ring_space(ch, num_desc);
167 if (ret < 0)
168 return ret;
169 do {
170 current_transfer_len = min(len, max_xfer_size);
171 mic_dma_memcpy_desc(&ch->desc_ring[ch->head],
172 src, dst, current_transfer_len);
173 mic_dma_hw_ring_inc_head(ch);
174 len -= current_transfer_len;
175 dst = dst + current_transfer_len;
176 src = src + current_transfer_len;
177 } while (len > 0);
178 return 0;
181 /* It's a h/w quirk and h/w needs 2 status descriptors for every status desc */
182 static void mic_dma_prog_intr(struct mic_dma_chan *ch)
184 mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0,
185 ch->status_dest_micpa, false);
186 mic_dma_hw_ring_inc_head(ch);
187 mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0,
188 ch->status_dest_micpa, true);
189 mic_dma_hw_ring_inc_head(ch);
192 /* Wrapper function to program memcpy descriptors/status descriptors */
193 static int mic_dma_do_dma(struct mic_dma_chan *ch, int flags, dma_addr_t src,
194 dma_addr_t dst, size_t len)
196 if (-ENOMEM == mic_dma_prog_memcpy_desc(ch, src, dst, len))
197 return -ENOMEM;
198 /* Above mic_dma_prog_memcpy_desc() makes sure we have enough space */
199 if (flags & DMA_PREP_FENCE) {
200 mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0,
201 ch->status_dest_micpa, false);
202 mic_dma_hw_ring_inc_head(ch);
205 if (flags & DMA_PREP_INTERRUPT)
206 mic_dma_prog_intr(ch);
208 return 0;
211 static inline void mic_dma_issue_pending(struct dma_chan *ch)
213 struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
215 spin_lock(&mic_ch->issue_lock);
217 * Write to head triggers h/w to act on the descriptors.
218 * On MIC, writing the same head value twice causes
219 * a h/w error. On second write, h/w assumes we filled
220 * the entire ring & overwrote some of the descriptors.
222 if (mic_ch->issued == mic_ch->submitted)
223 goto out;
224 mic_ch->issued = mic_ch->submitted;
226 * make descriptor updates visible before advancing head,
227 * this is purposefully not smp_wmb() since we are also
228 * publishing the descriptor updates to a dma device
230 wmb();
231 mic_dma_write_reg(mic_ch, MIC_DMA_REG_DHPR, mic_ch->issued);
232 out:
233 spin_unlock(&mic_ch->issue_lock);
236 static inline void mic_dma_update_pending(struct mic_dma_chan *ch)
238 if (mic_dma_ring_count(ch->issued, ch->submitted)
239 > mic_dma_pending_level)
240 mic_dma_issue_pending(&ch->api_ch);
243 static dma_cookie_t mic_dma_tx_submit_unlock(struct dma_async_tx_descriptor *tx)
245 struct mic_dma_chan *mic_ch = to_mic_dma_chan(tx->chan);
246 dma_cookie_t cookie;
248 dma_cookie_assign(tx);
249 cookie = tx->cookie;
251 * We need an smp write barrier here because another CPU might see
252 * an update to submitted and update h/w head even before we
253 * assigned a cookie to this tx.
255 smp_wmb();
256 mic_ch->submitted = mic_ch->head;
257 spin_unlock(&mic_ch->prep_lock);
258 mic_dma_update_pending(mic_ch);
259 return cookie;
262 static inline struct dma_async_tx_descriptor *
263 allocate_tx(struct mic_dma_chan *ch)
265 u32 idx = mic_dma_hw_ring_dec(ch->head);
266 struct dma_async_tx_descriptor *tx = &ch->tx_array[idx];
268 dma_async_tx_descriptor_init(tx, &ch->api_ch);
269 tx->tx_submit = mic_dma_tx_submit_unlock;
270 return tx;
274 * Prepare a memcpy descriptor to be added to the ring.
275 * Note that the temporary descriptor adds an extra overhead of copying the
276 * descriptor to ring. So, we copy directly to the descriptor ring
278 static struct dma_async_tx_descriptor *
279 mic_dma_prep_memcpy_lock(struct dma_chan *ch, dma_addr_t dma_dest,
280 dma_addr_t dma_src, size_t len, unsigned long flags)
282 struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
283 struct device *dev = mic_dma_ch_to_device(mic_ch);
284 int result;
286 if (!len && !flags)
287 return NULL;
289 spin_lock(&mic_ch->prep_lock);
290 result = mic_dma_do_dma(mic_ch, flags, dma_src, dma_dest, len);
291 if (result >= 0)
292 return allocate_tx(mic_ch);
293 dev_err(dev, "Error enqueueing dma, error=%d\n", result);
294 spin_unlock(&mic_ch->prep_lock);
295 return NULL;
298 static struct dma_async_tx_descriptor *
299 mic_dma_prep_interrupt_lock(struct dma_chan *ch, unsigned long flags)
301 struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
302 int ret;
304 spin_lock(&mic_ch->prep_lock);
305 ret = mic_dma_do_dma(mic_ch, flags, 0, 0, 0);
306 if (!ret)
307 return allocate_tx(mic_ch);
308 spin_unlock(&mic_ch->prep_lock);
309 return NULL;
312 /* Return the status of the transaction */
313 static enum dma_status
314 mic_dma_tx_status(struct dma_chan *ch, dma_cookie_t cookie,
315 struct dma_tx_state *txstate)
317 struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
319 if (DMA_COMPLETE != dma_cookie_status(ch, cookie, txstate))
320 mic_dma_cleanup(mic_ch);
322 return dma_cookie_status(ch, cookie, txstate);
325 static irqreturn_t mic_dma_thread_fn(int irq, void *data)
327 mic_dma_cleanup((struct mic_dma_chan *)data);
328 return IRQ_HANDLED;
331 static irqreturn_t mic_dma_intr_handler(int irq, void *data)
333 struct mic_dma_chan *ch = ((struct mic_dma_chan *)data);
335 mic_dma_ack_interrupt(ch);
336 return IRQ_WAKE_THREAD;
339 static int mic_dma_alloc_desc_ring(struct mic_dma_chan *ch)
341 u64 desc_ring_size = MIC_DMA_DESC_RX_SIZE * sizeof(*ch->desc_ring);
342 struct device *dev = &to_mbus_device(ch)->dev;
344 desc_ring_size = ALIGN(desc_ring_size, MIC_DMA_ALIGN_BYTES);
345 ch->desc_ring = kzalloc(desc_ring_size, GFP_KERNEL);
347 if (!ch->desc_ring)
348 return -ENOMEM;
350 ch->desc_ring_micpa = dma_map_single(dev, ch->desc_ring,
351 desc_ring_size, DMA_BIDIRECTIONAL);
352 if (dma_mapping_error(dev, ch->desc_ring_micpa))
353 goto map_error;
355 ch->tx_array = vzalloc(MIC_DMA_DESC_RX_SIZE * sizeof(*ch->tx_array));
356 if (!ch->tx_array)
357 goto tx_error;
358 return 0;
359 tx_error:
360 dma_unmap_single(dev, ch->desc_ring_micpa, desc_ring_size,
361 DMA_BIDIRECTIONAL);
362 map_error:
363 kfree(ch->desc_ring);
364 return -ENOMEM;
367 static void mic_dma_free_desc_ring(struct mic_dma_chan *ch)
369 u64 desc_ring_size = MIC_DMA_DESC_RX_SIZE * sizeof(*ch->desc_ring);
371 vfree(ch->tx_array);
372 desc_ring_size = ALIGN(desc_ring_size, MIC_DMA_ALIGN_BYTES);
373 dma_unmap_single(&to_mbus_device(ch)->dev, ch->desc_ring_micpa,
374 desc_ring_size, DMA_BIDIRECTIONAL);
375 kfree(ch->desc_ring);
376 ch->desc_ring = NULL;
379 static void mic_dma_free_status_dest(struct mic_dma_chan *ch)
381 dma_unmap_single(&to_mbus_device(ch)->dev, ch->status_dest_micpa,
382 L1_CACHE_BYTES, DMA_BIDIRECTIONAL);
383 kfree(ch->status_dest);
386 static int mic_dma_alloc_status_dest(struct mic_dma_chan *ch)
388 struct device *dev = &to_mbus_device(ch)->dev;
390 ch->status_dest = kzalloc(L1_CACHE_BYTES, GFP_KERNEL);
391 if (!ch->status_dest)
392 return -ENOMEM;
393 ch->status_dest_micpa = dma_map_single(dev, ch->status_dest,
394 L1_CACHE_BYTES, DMA_BIDIRECTIONAL);
395 if (dma_mapping_error(dev, ch->status_dest_micpa)) {
396 kfree(ch->status_dest);
397 ch->status_dest = NULL;
398 return -ENOMEM;
400 return 0;
403 static int mic_dma_check_chan(struct mic_dma_chan *ch)
405 if (mic_dma_read_reg(ch, MIC_DMA_REG_DCHERR) ||
406 mic_dma_read_reg(ch, MIC_DMA_REG_DSTAT) & MIC_DMA_CHAN_QUIESCE) {
407 mic_dma_disable_chan(ch);
408 mic_dma_chan_mask_intr(ch);
409 dev_err(mic_dma_ch_to_device(ch),
410 "%s %d error setting up mic dma chan %d\n",
411 __func__, __LINE__, ch->ch_num);
412 return -EBUSY;
414 return 0;
417 static int mic_dma_chan_setup(struct mic_dma_chan *ch)
419 if (MIC_DMA_CHAN_MIC == ch->owner)
420 mic_dma_chan_set_owner(ch);
421 mic_dma_disable_chan(ch);
422 mic_dma_chan_mask_intr(ch);
423 mic_dma_write_reg(ch, MIC_DMA_REG_DCHERRMSK, 0);
424 mic_dma_chan_set_desc_ring(ch);
425 ch->last_tail = mic_dma_read_reg(ch, MIC_DMA_REG_DTPR);
426 ch->head = ch->last_tail;
427 ch->issued = 0;
428 mic_dma_chan_unmask_intr(ch);
429 mic_dma_enable_chan(ch);
430 return mic_dma_check_chan(ch);
433 static void mic_dma_chan_destroy(struct mic_dma_chan *ch)
435 mic_dma_disable_chan(ch);
436 mic_dma_chan_mask_intr(ch);
439 static void mic_dma_unregister_dma_device(struct mic_dma_device *mic_dma_dev)
441 dma_async_device_unregister(&mic_dma_dev->dma_dev);
444 static int mic_dma_setup_irq(struct mic_dma_chan *ch)
446 ch->cookie =
447 to_mbus_hw_ops(ch)->request_threaded_irq(to_mbus_device(ch),
448 mic_dma_intr_handler, mic_dma_thread_fn,
449 "mic dma_channel", ch, ch->ch_num);
450 if (IS_ERR(ch->cookie))
451 return IS_ERR(ch->cookie);
452 return 0;
455 static inline void mic_dma_free_irq(struct mic_dma_chan *ch)
457 to_mbus_hw_ops(ch)->free_irq(to_mbus_device(ch), ch->cookie, ch);
460 static int mic_dma_chan_init(struct mic_dma_chan *ch)
462 int ret = mic_dma_alloc_desc_ring(ch);
464 if (ret)
465 goto ring_error;
466 ret = mic_dma_alloc_status_dest(ch);
467 if (ret)
468 goto status_error;
469 ret = mic_dma_chan_setup(ch);
470 if (ret)
471 goto chan_error;
472 return ret;
473 chan_error:
474 mic_dma_free_status_dest(ch);
475 status_error:
476 mic_dma_free_desc_ring(ch);
477 ring_error:
478 return ret;
481 static int mic_dma_drain_chan(struct mic_dma_chan *ch)
483 struct dma_async_tx_descriptor *tx;
484 int err = 0;
485 dma_cookie_t cookie;
487 tx = mic_dma_prep_memcpy_lock(&ch->api_ch, 0, 0, 0, DMA_PREP_FENCE);
488 if (!tx) {
489 err = -ENOMEM;
490 goto error;
493 cookie = tx->tx_submit(tx);
494 if (dma_submit_error(cookie))
495 err = -ENOMEM;
496 else
497 err = dma_sync_wait(&ch->api_ch, cookie);
498 if (err) {
499 dev_err(mic_dma_ch_to_device(ch), "%s %d TO chan 0x%x\n",
500 __func__, __LINE__, ch->ch_num);
501 err = -EIO;
503 error:
504 mic_dma_cleanup(ch);
505 return err;
508 static inline void mic_dma_chan_uninit(struct mic_dma_chan *ch)
510 mic_dma_chan_destroy(ch);
511 mic_dma_cleanup(ch);
512 mic_dma_free_status_dest(ch);
513 mic_dma_free_desc_ring(ch);
516 static int mic_dma_init(struct mic_dma_device *mic_dma_dev,
517 enum mic_dma_chan_owner owner)
519 int i, first_chan = mic_dma_dev->start_ch;
520 struct mic_dma_chan *ch;
521 int ret;
523 for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
524 unsigned long data;
525 ch = &mic_dma_dev->mic_ch[i];
526 data = (unsigned long)ch;
527 ch->ch_num = i;
528 ch->owner = owner;
529 spin_lock_init(&ch->cleanup_lock);
530 spin_lock_init(&ch->prep_lock);
531 spin_lock_init(&ch->issue_lock);
532 ret = mic_dma_setup_irq(ch);
533 if (ret)
534 goto error;
536 return 0;
537 error:
538 for (i = i - 1; i >= first_chan; i--)
539 mic_dma_free_irq(ch);
540 return ret;
543 static void mic_dma_uninit(struct mic_dma_device *mic_dma_dev)
545 int i, first_chan = mic_dma_dev->start_ch;
546 struct mic_dma_chan *ch;
548 for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
549 ch = &mic_dma_dev->mic_ch[i];
550 mic_dma_free_irq(ch);
554 static int mic_dma_alloc_chan_resources(struct dma_chan *ch)
556 int ret = mic_dma_chan_init(to_mic_dma_chan(ch));
557 if (ret)
558 return ret;
559 return MIC_DMA_DESC_RX_SIZE;
562 static void mic_dma_free_chan_resources(struct dma_chan *ch)
564 struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
565 mic_dma_drain_chan(mic_ch);
566 mic_dma_chan_uninit(mic_ch);
569 /* Set the fn. handlers and register the dma device with dma api */
570 static int mic_dma_register_dma_device(struct mic_dma_device *mic_dma_dev,
571 enum mic_dma_chan_owner owner)
573 int i, first_chan = mic_dma_dev->start_ch;
575 dma_cap_zero(mic_dma_dev->dma_dev.cap_mask);
577 * This dma engine is not capable of host memory to host memory
578 * transfers
580 dma_cap_set(DMA_MEMCPY, mic_dma_dev->dma_dev.cap_mask);
582 if (MIC_DMA_CHAN_HOST == owner)
583 dma_cap_set(DMA_PRIVATE, mic_dma_dev->dma_dev.cap_mask);
584 mic_dma_dev->dma_dev.device_alloc_chan_resources =
585 mic_dma_alloc_chan_resources;
586 mic_dma_dev->dma_dev.device_free_chan_resources =
587 mic_dma_free_chan_resources;
588 mic_dma_dev->dma_dev.device_tx_status = mic_dma_tx_status;
589 mic_dma_dev->dma_dev.device_prep_dma_memcpy = mic_dma_prep_memcpy_lock;
590 mic_dma_dev->dma_dev.device_prep_dma_interrupt =
591 mic_dma_prep_interrupt_lock;
592 mic_dma_dev->dma_dev.device_issue_pending = mic_dma_issue_pending;
593 mic_dma_dev->dma_dev.copy_align = MIC_DMA_ALIGN_SHIFT;
594 INIT_LIST_HEAD(&mic_dma_dev->dma_dev.channels);
595 for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
596 mic_dma_dev->mic_ch[i].api_ch.device = &mic_dma_dev->dma_dev;
597 dma_cookie_init(&mic_dma_dev->mic_ch[i].api_ch);
598 list_add_tail(&mic_dma_dev->mic_ch[i].api_ch.device_node,
599 &mic_dma_dev->dma_dev.channels);
601 return dma_async_device_register(&mic_dma_dev->dma_dev);
605 * Initializes dma channels and registers the dma device with the
606 * dma engine api.
608 static struct mic_dma_device *mic_dma_dev_reg(struct mbus_device *mbdev,
609 enum mic_dma_chan_owner owner)
611 struct mic_dma_device *mic_dma_dev;
612 int ret;
613 struct device *dev = &mbdev->dev;
615 mic_dma_dev = kzalloc(sizeof(*mic_dma_dev), GFP_KERNEL);
616 if (!mic_dma_dev) {
617 ret = -ENOMEM;
618 goto alloc_error;
620 mic_dma_dev->mbdev = mbdev;
621 mic_dma_dev->dma_dev.dev = dev;
622 mic_dma_dev->mmio = mbdev->mmio_va;
623 if (MIC_DMA_CHAN_HOST == owner) {
624 mic_dma_dev->start_ch = 0;
625 mic_dma_dev->max_xfer_size = MIC_DMA_MAX_XFER_SIZE_HOST;
626 } else {
627 mic_dma_dev->start_ch = 4;
628 mic_dma_dev->max_xfer_size = MIC_DMA_MAX_XFER_SIZE_CARD;
630 ret = mic_dma_init(mic_dma_dev, owner);
631 if (ret)
632 goto init_error;
633 ret = mic_dma_register_dma_device(mic_dma_dev, owner);
634 if (ret)
635 goto reg_error;
636 return mic_dma_dev;
637 reg_error:
638 mic_dma_uninit(mic_dma_dev);
639 init_error:
640 kfree(mic_dma_dev);
641 mic_dma_dev = NULL;
642 alloc_error:
643 dev_err(dev, "Error at %s %d ret=%d\n", __func__, __LINE__, ret);
644 return mic_dma_dev;
647 static void mic_dma_dev_unreg(struct mic_dma_device *mic_dma_dev)
649 mic_dma_unregister_dma_device(mic_dma_dev);
650 mic_dma_uninit(mic_dma_dev);
651 kfree(mic_dma_dev);
654 /* DEBUGFS CODE */
655 static int mic_dma_reg_seq_show(struct seq_file *s, void *pos)
657 struct mic_dma_device *mic_dma_dev = s->private;
658 int i, chan_num, first_chan = mic_dma_dev->start_ch;
659 struct mic_dma_chan *ch;
661 seq_printf(s, "SBOX_DCR: %#x\n",
662 mic_dma_mmio_read(&mic_dma_dev->mic_ch[first_chan],
663 MIC_DMA_SBOX_BASE + MIC_DMA_SBOX_DCR));
664 seq_puts(s, "DMA Channel Registers\n");
665 seq_printf(s, "%-10s| %-10s %-10s %-10s %-10s %-10s",
666 "Channel", "DCAR", "DTPR", "DHPR", "DRAR_HI", "DRAR_LO");
667 seq_printf(s, " %-11s %-14s %-10s\n", "DCHERR", "DCHERRMSK", "DSTAT");
668 for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
669 ch = &mic_dma_dev->mic_ch[i];
670 chan_num = ch->ch_num;
671 seq_printf(s, "%-10i| %-#10x %-#10x %-#10x %-#10x",
672 chan_num,
673 mic_dma_read_reg(ch, MIC_DMA_REG_DCAR),
674 mic_dma_read_reg(ch, MIC_DMA_REG_DTPR),
675 mic_dma_read_reg(ch, MIC_DMA_REG_DHPR),
676 mic_dma_read_reg(ch, MIC_DMA_REG_DRAR_HI));
677 seq_printf(s, " %-#10x %-#10x %-#14x %-#10x\n",
678 mic_dma_read_reg(ch, MIC_DMA_REG_DRAR_LO),
679 mic_dma_read_reg(ch, MIC_DMA_REG_DCHERR),
680 mic_dma_read_reg(ch, MIC_DMA_REG_DCHERRMSK),
681 mic_dma_read_reg(ch, MIC_DMA_REG_DSTAT));
683 return 0;
686 static int mic_dma_reg_debug_open(struct inode *inode, struct file *file)
688 return single_open(file, mic_dma_reg_seq_show, inode->i_private);
691 static int mic_dma_reg_debug_release(struct inode *inode, struct file *file)
693 return single_release(inode, file);
696 static const struct file_operations mic_dma_reg_ops = {
697 .owner = THIS_MODULE,
698 .open = mic_dma_reg_debug_open,
699 .read = seq_read,
700 .llseek = seq_lseek,
701 .release = mic_dma_reg_debug_release
704 /* Debugfs parent dir */
705 static struct dentry *mic_dma_dbg;
707 static int mic_dma_driver_probe(struct mbus_device *mbdev)
709 struct mic_dma_device *mic_dma_dev;
710 enum mic_dma_chan_owner owner;
712 if (MBUS_DEV_DMA_MIC == mbdev->id.device)
713 owner = MIC_DMA_CHAN_MIC;
714 else
715 owner = MIC_DMA_CHAN_HOST;
717 mic_dma_dev = mic_dma_dev_reg(mbdev, owner);
718 dev_set_drvdata(&mbdev->dev, mic_dma_dev);
720 if (mic_dma_dbg) {
721 mic_dma_dev->dbg_dir = debugfs_create_dir(dev_name(&mbdev->dev),
722 mic_dma_dbg);
723 if (mic_dma_dev->dbg_dir)
724 debugfs_create_file("mic_dma_reg", 0444,
725 mic_dma_dev->dbg_dir, mic_dma_dev,
726 &mic_dma_reg_ops);
728 return 0;
731 static void mic_dma_driver_remove(struct mbus_device *mbdev)
733 struct mic_dma_device *mic_dma_dev;
735 mic_dma_dev = dev_get_drvdata(&mbdev->dev);
736 debugfs_remove_recursive(mic_dma_dev->dbg_dir);
737 mic_dma_dev_unreg(mic_dma_dev);
740 static struct mbus_device_id id_table[] = {
741 {MBUS_DEV_DMA_MIC, MBUS_DEV_ANY_ID},
742 {MBUS_DEV_DMA_HOST, MBUS_DEV_ANY_ID},
743 {0},
746 static struct mbus_driver mic_dma_driver = {
747 .driver.name = KBUILD_MODNAME,
748 .driver.owner = THIS_MODULE,
749 .id_table = id_table,
750 .probe = mic_dma_driver_probe,
751 .remove = mic_dma_driver_remove,
754 static int __init mic_x100_dma_init(void)
756 int rc = mbus_register_driver(&mic_dma_driver);
757 if (rc)
758 return rc;
759 mic_dma_dbg = debugfs_create_dir(KBUILD_MODNAME, NULL);
760 return 0;
763 static void __exit mic_x100_dma_exit(void)
765 debugfs_remove_recursive(mic_dma_dbg);
766 mbus_unregister_driver(&mic_dma_driver);
769 module_init(mic_x100_dma_init);
770 module_exit(mic_x100_dma_exit);
772 MODULE_DEVICE_TABLE(mbus, id_table);
773 MODULE_AUTHOR("Intel Corporation");
774 MODULE_DESCRIPTION("Intel(R) MIC X100 DMA Driver");
775 MODULE_LICENSE("GPL v2");