2 * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd.
3 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
10 #include <linux/bitmap.h>
11 #include <linux/bitops.h>
12 #include <linux/clk.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
18 #include <linux/log2.h>
19 #include <linux/module.h>
21 #include <linux/of_device.h>
22 #include <linux/of_dma.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
26 #include <dt-bindings/dma/nbpfaxi.h>
28 #include "dmaengine.h"
30 #define NBPF_REG_CHAN_OFFSET 0
31 #define NBPF_REG_CHAN_SIZE 0x40
33 /* Channel Current Transaction Byte register */
34 #define NBPF_CHAN_CUR_TR_BYTE 0x20
36 /* Channel Status register */
37 #define NBPF_CHAN_STAT 0x24
38 #define NBPF_CHAN_STAT_EN 1
39 #define NBPF_CHAN_STAT_TACT 4
40 #define NBPF_CHAN_STAT_ERR 0x10
41 #define NBPF_CHAN_STAT_END 0x20
42 #define NBPF_CHAN_STAT_TC 0x40
43 #define NBPF_CHAN_STAT_DER 0x400
45 /* Channel Control register */
46 #define NBPF_CHAN_CTRL 0x28
47 #define NBPF_CHAN_CTRL_SETEN 1
48 #define NBPF_CHAN_CTRL_CLREN 2
49 #define NBPF_CHAN_CTRL_STG 4
50 #define NBPF_CHAN_CTRL_SWRST 8
51 #define NBPF_CHAN_CTRL_CLRRQ 0x10
52 #define NBPF_CHAN_CTRL_CLREND 0x20
53 #define NBPF_CHAN_CTRL_CLRTC 0x40
54 #define NBPF_CHAN_CTRL_SETSUS 0x100
55 #define NBPF_CHAN_CTRL_CLRSUS 0x200
57 /* Channel Configuration register */
58 #define NBPF_CHAN_CFG 0x2c
59 #define NBPF_CHAN_CFG_SEL 7 /* terminal SELect: 0..7 */
60 #define NBPF_CHAN_CFG_REQD 8 /* REQuest Direction: DMAREQ is 0: input, 1: output */
61 #define NBPF_CHAN_CFG_LOEN 0x10 /* LOw ENable: low DMA request line is: 0: inactive, 1: active */
62 #define NBPF_CHAN_CFG_HIEN 0x20 /* HIgh ENable: high DMA request line is: 0: inactive, 1: active */
63 #define NBPF_CHAN_CFG_LVL 0x40 /* LeVeL: DMA request line is sensed as 0: edge, 1: level */
64 #define NBPF_CHAN_CFG_AM 0x700 /* ACK Mode: 0: Pulse mode, 1: Level mode, b'1x: Bus Cycle */
65 #define NBPF_CHAN_CFG_SDS 0xf000 /* Source Data Size: 0: 8 bits,... , 7: 1024 bits */
66 #define NBPF_CHAN_CFG_DDS 0xf0000 /* Destination Data Size: as above */
67 #define NBPF_CHAN_CFG_SAD 0x100000 /* Source ADdress counting: 0: increment, 1: fixed */
68 #define NBPF_CHAN_CFG_DAD 0x200000 /* Destination ADdress counting: 0: increment, 1: fixed */
69 #define NBPF_CHAN_CFG_TM 0x400000 /* Transfer Mode: 0: single, 1: block TM */
70 #define NBPF_CHAN_CFG_DEM 0x1000000 /* DMAEND interrupt Mask */
71 #define NBPF_CHAN_CFG_TCM 0x2000000 /* DMATCO interrupt Mask */
72 #define NBPF_CHAN_CFG_SBE 0x8000000 /* Sweep Buffer Enable */
73 #define NBPF_CHAN_CFG_RSEL 0x10000000 /* RM: Register Set sELect */
74 #define NBPF_CHAN_CFG_RSW 0x20000000 /* RM: Register Select sWitch */
75 #define NBPF_CHAN_CFG_REN 0x40000000 /* RM: Register Set Enable */
76 #define NBPF_CHAN_CFG_DMS 0x80000000 /* 0: register mode (RM), 1: link mode (LM) */
78 #define NBPF_CHAN_NXLA 0x38
79 #define NBPF_CHAN_CRLA 0x3c
81 /* Link Header field */
82 #define NBPF_HEADER_LV 1
83 #define NBPF_HEADER_LE 2
84 #define NBPF_HEADER_WBD 4
85 #define NBPF_HEADER_DIM 8
87 #define NBPF_CTRL 0x300
88 #define NBPF_CTRL_PR 1 /* 0: fixed priority, 1: round robin */
89 #define NBPF_CTRL_LVINT 2 /* DMAEND and DMAERR signalling: 0: pulse, 1: level */
91 #define NBPF_DSTAT_ER 0x314
92 #define NBPF_DSTAT_END 0x318
94 #define NBPF_DMA_BUSWIDTHS \
95 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
96 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
97 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
98 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
99 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
107 * We've got 3 types of objects, used to describe DMA transfers:
108 * 1. high-level descriptor, containing a struct dma_async_tx_descriptor object
109 * in it, used to communicate with the user
110 * 2. hardware DMA link descriptors, that we pass to DMAC for DMA transfer
111 * queuing, these must be DMAable, using either the streaming DMA API or
112 * allocated from coherent memory - one per SG segment
113 * 3. one per SG segment descriptors, used to manage HW link descriptors from
114 * (2). They do not have to be DMAable. They can either be (a) allocated
115 * together with link descriptors as mixed (DMA / CPU) objects, or (b)
116 * separately. Even if allocated separately it would be best to link them
117 * to link descriptors once during channel resource allocation and always
118 * use them as a single object.
119 * Therefore for both cases (a) and (b) at run-time objects (2) and (3) shall be
120 * treated as a single SG segment descriptor.
123 struct nbpf_link_reg
{
127 u32 transaction_size
;
138 struct nbpf_link_desc
{
139 struct nbpf_link_reg
*hwdesc
;
140 dma_addr_t hwdesc_dma_addr
;
141 struct nbpf_desc
*desc
;
142 struct list_head node
;
146 * struct nbpf_desc - DMA transfer descriptor
147 * @async_tx: dmaengine object
148 * @user_wait: waiting for a user ack
149 * @length: total transfer length
150 * @sg: list of hardware descriptors, represented by struct nbpf_link_desc
151 * @node: member in channel descriptor lists
154 struct dma_async_tx_descriptor async_tx
;
157 struct nbpf_channel
*chan
;
159 struct list_head node
;
162 /* Take a wild guess: allocate 4 segments per descriptor */
163 #define NBPF_SEGMENTS_PER_DESC 4
164 #define NBPF_DESCS_PER_PAGE ((PAGE_SIZE - sizeof(struct list_head)) / \
165 (sizeof(struct nbpf_desc) + \
166 NBPF_SEGMENTS_PER_DESC * \
167 (sizeof(struct nbpf_link_desc) + sizeof(struct nbpf_link_reg))))
168 #define NBPF_SEGMENTS_PER_PAGE (NBPF_SEGMENTS_PER_DESC * NBPF_DESCS_PER_PAGE)
170 struct nbpf_desc_page
{
171 struct list_head node
;
172 struct nbpf_desc desc
[NBPF_DESCS_PER_PAGE
];
173 struct nbpf_link_desc ldesc
[NBPF_SEGMENTS_PER_PAGE
];
174 struct nbpf_link_reg hwdesc
[NBPF_SEGMENTS_PER_PAGE
];
178 * struct nbpf_channel - one DMAC channel
179 * @dma_chan: standard dmaengine channel object
180 * @base: register address base
184 * @slave_addr: address for slave DMA
185 * @slave_width:slave data size in bytes
186 * @slave_burst:maximum slave burst size in bytes
187 * @terminal: DMA terminal, assigned to this channel
188 * @dmarq_cfg: DMA request line configuration - high / low, edge / level for NBPF_CHAN_CFG
189 * @flags: configuration flags from DT
190 * @lock: protect descriptor lists
191 * @free_links: list of free link descriptors
192 * @free: list of free descriptors
193 * @queued: list of queued descriptors
194 * @active: list of descriptors, scheduled for processing
195 * @done: list of completed descriptors, waiting post-processing
196 * @desc_page: list of additionally allocated descriptor pages - if any
198 struct nbpf_channel
{
199 struct dma_chan dma_chan
;
200 struct tasklet_struct tasklet
;
202 struct nbpf_device
*nbpf
;
205 dma_addr_t slave_src_addr
;
206 size_t slave_src_width
;
207 size_t slave_src_burst
;
208 dma_addr_t slave_dst_addr
;
209 size_t slave_dst_width
;
210 size_t slave_dst_burst
;
211 unsigned int terminal
;
215 struct list_head free_links
;
216 struct list_head free
;
217 struct list_head queued
;
218 struct list_head active
;
219 struct list_head done
;
220 struct list_head desc_page
;
221 struct nbpf_desc
*running
;
226 struct dma_device dma_dev
;
229 const struct nbpf_config
*config
;
230 struct nbpf_channel chan
[];
245 static struct nbpf_config nbpf_cfg
[] = {
284 #define nbpf_to_chan(d) container_of(d, struct nbpf_channel, dma_chan)
287 * dmaengine drivers seem to have a lot in common and instead of sharing more
288 * code, they reimplement those common algorithms independently. In this driver
289 * we try to separate the hardware-specific part from the (largely) generic
290 * part. This improves code readability and makes it possible in the future to
291 * reuse the generic code in form of a helper library. That generic code should
292 * be suitable for various DMA controllers, using transfer descriptors in RAM
293 * and pushing one SG list at a time to the DMA controller.
296 /* Hardware-specific part */
298 static inline u32
nbpf_chan_read(struct nbpf_channel
*chan
,
301 u32 data
= ioread32(chan
->base
+ offset
);
302 dev_dbg(chan
->dma_chan
.device
->dev
, "%s(0x%p + 0x%x) = 0x%x\n",
303 __func__
, chan
->base
, offset
, data
);
307 static inline void nbpf_chan_write(struct nbpf_channel
*chan
,
308 unsigned int offset
, u32 data
)
310 iowrite32(data
, chan
->base
+ offset
);
311 dev_dbg(chan
->dma_chan
.device
->dev
, "%s(0x%p + 0x%x) = 0x%x\n",
312 __func__
, chan
->base
, offset
, data
);
315 static inline u32
nbpf_read(struct nbpf_device
*nbpf
,
318 u32 data
= ioread32(nbpf
->base
+ offset
);
319 dev_dbg(nbpf
->dma_dev
.dev
, "%s(0x%p + 0x%x) = 0x%x\n",
320 __func__
, nbpf
->base
, offset
, data
);
324 static inline void nbpf_write(struct nbpf_device
*nbpf
,
325 unsigned int offset
, u32 data
)
327 iowrite32(data
, nbpf
->base
+ offset
);
328 dev_dbg(nbpf
->dma_dev
.dev
, "%s(0x%p + 0x%x) = 0x%x\n",
329 __func__
, nbpf
->base
, offset
, data
);
332 static void nbpf_chan_halt(struct nbpf_channel
*chan
)
334 nbpf_chan_write(chan
, NBPF_CHAN_CTRL
, NBPF_CHAN_CTRL_CLREN
);
337 static bool nbpf_status_get(struct nbpf_channel
*chan
)
339 u32 status
= nbpf_read(chan
->nbpf
, NBPF_DSTAT_END
);
341 return status
& BIT(chan
- chan
->nbpf
->chan
);
344 static void nbpf_status_ack(struct nbpf_channel
*chan
)
346 nbpf_chan_write(chan
, NBPF_CHAN_CTRL
, NBPF_CHAN_CTRL_CLREND
);
349 static u32
nbpf_error_get(struct nbpf_device
*nbpf
)
351 return nbpf_read(nbpf
, NBPF_DSTAT_ER
);
354 static struct nbpf_channel
*nbpf_error_get_channel(struct nbpf_device
*nbpf
, u32 error
)
356 return nbpf
->chan
+ __ffs(error
);
359 static void nbpf_error_clear(struct nbpf_channel
*chan
)
364 /* Stop the channel, make sure DMA has been aborted */
365 nbpf_chan_halt(chan
);
367 for (i
= 1000; i
; i
--) {
368 status
= nbpf_chan_read(chan
, NBPF_CHAN_STAT
);
369 if (!(status
& NBPF_CHAN_STAT_TACT
))
375 dev_err(chan
->dma_chan
.device
->dev
,
376 "%s(): abort timeout, channel status 0x%x\n", __func__
, status
);
378 nbpf_chan_write(chan
, NBPF_CHAN_CTRL
, NBPF_CHAN_CTRL_SWRST
);
381 static int nbpf_start(struct nbpf_desc
*desc
)
383 struct nbpf_channel
*chan
= desc
->chan
;
384 struct nbpf_link_desc
*ldesc
= list_first_entry(&desc
->sg
, struct nbpf_link_desc
, node
);
386 nbpf_chan_write(chan
, NBPF_CHAN_NXLA
, (u32
)ldesc
->hwdesc_dma_addr
);
387 nbpf_chan_write(chan
, NBPF_CHAN_CTRL
, NBPF_CHAN_CTRL_SETEN
| NBPF_CHAN_CTRL_CLRSUS
);
388 chan
->paused
= false;
390 /* Software trigger MEMCPY - only MEMCPY uses the block mode */
391 if (ldesc
->hwdesc
->config
& NBPF_CHAN_CFG_TM
)
392 nbpf_chan_write(chan
, NBPF_CHAN_CTRL
, NBPF_CHAN_CTRL_STG
);
394 dev_dbg(chan
->nbpf
->dma_dev
.dev
, "%s(): next 0x%x, cur 0x%x\n", __func__
,
395 nbpf_chan_read(chan
, NBPF_CHAN_NXLA
), nbpf_chan_read(chan
, NBPF_CHAN_CRLA
));
400 static void nbpf_chan_prepare(struct nbpf_channel
*chan
)
402 chan
->dmarq_cfg
= (chan
->flags
& NBPF_SLAVE_RQ_HIGH
? NBPF_CHAN_CFG_HIEN
: 0) |
403 (chan
->flags
& NBPF_SLAVE_RQ_LOW
? NBPF_CHAN_CFG_LOEN
: 0) |
404 (chan
->flags
& NBPF_SLAVE_RQ_LEVEL
?
405 NBPF_CHAN_CFG_LVL
| (NBPF_CHAN_CFG_AM
& 0x200) : 0) |
409 static void nbpf_chan_prepare_default(struct nbpf_channel
*chan
)
411 /* Don't output DMAACK */
412 chan
->dmarq_cfg
= NBPF_CHAN_CFG_AM
& 0x400;
417 static void nbpf_chan_configure(struct nbpf_channel
*chan
)
420 * We assume, that only the link mode and DMA request line configuration
421 * have to be set in the configuration register manually. Dynamic
422 * per-transfer configuration will be loaded from transfer descriptors.
424 nbpf_chan_write(chan
, NBPF_CHAN_CFG
, NBPF_CHAN_CFG_DMS
| chan
->dmarq_cfg
);
427 static u32
nbpf_xfer_ds(struct nbpf_device
*nbpf
, size_t size
)
429 /* Maximum supported bursts depend on the buffer size */
430 return min_t(int, __ffs(size
), ilog2(nbpf
->config
->buffer_size
* 8));
433 static size_t nbpf_xfer_size(struct nbpf_device
*nbpf
,
434 enum dma_slave_buswidth width
, u32 burst
)
442 case DMA_SLAVE_BUSWIDTH_8_BYTES
:
446 case DMA_SLAVE_BUSWIDTH_4_BYTES
:
450 case DMA_SLAVE_BUSWIDTH_2_BYTES
:
455 pr_warn("%s(): invalid bus width %u\n", __func__
, width
);
456 case DMA_SLAVE_BUSWIDTH_1_BYTE
:
460 return nbpf_xfer_ds(nbpf
, size
);
464 * We need a way to recognise slaves, whose data is sent "raw" over the bus,
465 * i.e. it isn't known in advance how many bytes will be received. Therefore
466 * the slave driver has to provide a "large enough" buffer and either read the
467 * buffer, when it is full, or detect, that some data has arrived, then wait for
468 * a timeout, if no more data arrives - receive what's already there. We want to
469 * handle such slaves in a special way to allow an optimised mode for other
470 * users, for whom the amount of data is known in advance. So far there's no way
471 * to recognise such slaves. We use a data-width check to distinguish between
472 * the SD host and the PL011 UART.
475 static int nbpf_prep_one(struct nbpf_link_desc
*ldesc
,
476 enum dma_transfer_direction direction
,
477 dma_addr_t src
, dma_addr_t dst
, size_t size
, bool last
)
479 struct nbpf_link_reg
*hwdesc
= ldesc
->hwdesc
;
480 struct nbpf_desc
*desc
= ldesc
->desc
;
481 struct nbpf_channel
*chan
= desc
->chan
;
482 struct device
*dev
= chan
->dma_chan
.device
->dev
;
483 size_t mem_xfer
, slave_xfer
;
486 hwdesc
->header
= NBPF_HEADER_WBD
| NBPF_HEADER_LV
|
487 (last
? NBPF_HEADER_LE
: 0);
489 hwdesc
->src_addr
= src
;
490 hwdesc
->dst_addr
= dst
;
491 hwdesc
->transaction_size
= size
;
494 * set config: SAD, DAD, DDS, SDS, etc.
495 * Note on transfer sizes: the DMAC can perform unaligned DMA transfers,
496 * but it is important to have transaction size a multiple of both
497 * receiver and transmitter transfer sizes. It is also possible to use
498 * different RAM and device transfer sizes, and it does work well with
499 * some devices, e.g. with V08R07S01E SD host controllers, which can use
500 * 128 byte transfers. But this doesn't work with other devices,
501 * especially when the transaction size is unknown. This is the case,
502 * e.g. with serial drivers like amba-pl011.c. For reception it sets up
503 * the transaction size of 4K and if fewer bytes are received, it
504 * pauses DMA and reads out data received via DMA as well as those left
505 * in the Rx FIFO. For this to work with the RAM side using burst
506 * transfers we enable the SBE bit and terminate the transfer in our
507 * .device_pause handler.
509 mem_xfer
= nbpf_xfer_ds(chan
->nbpf
, size
);
513 can_burst
= chan
->slave_src_width
>= 3;
514 slave_xfer
= min(mem_xfer
, can_burst
?
515 chan
->slave_src_burst
: chan
->slave_src_width
);
517 * Is the slave narrower than 64 bits, i.e. isn't using the full
518 * bus width and cannot use bursts?
520 if (mem_xfer
> chan
->slave_src_burst
&& !can_burst
)
521 mem_xfer
= chan
->slave_src_burst
;
522 /* Device-to-RAM DMA is unreliable without REQD set */
523 hwdesc
->config
= NBPF_CHAN_CFG_SAD
| (NBPF_CHAN_CFG_DDS
& (mem_xfer
<< 16)) |
524 (NBPF_CHAN_CFG_SDS
& (slave_xfer
<< 12)) | NBPF_CHAN_CFG_REQD
|
529 slave_xfer
= min(mem_xfer
, chan
->slave_dst_width
>= 3 ?
530 chan
->slave_dst_burst
: chan
->slave_dst_width
);
531 hwdesc
->config
= NBPF_CHAN_CFG_DAD
| (NBPF_CHAN_CFG_SDS
& (mem_xfer
<< 12)) |
532 (NBPF_CHAN_CFG_DDS
& (slave_xfer
<< 16)) | NBPF_CHAN_CFG_REQD
;
536 hwdesc
->config
= NBPF_CHAN_CFG_TCM
| NBPF_CHAN_CFG_TM
|
537 (NBPF_CHAN_CFG_SDS
& (mem_xfer
<< 12)) |
538 (NBPF_CHAN_CFG_DDS
& (mem_xfer
<< 16));
545 hwdesc
->config
|= chan
->dmarq_cfg
| (last
? 0 : NBPF_CHAN_CFG_DEM
) |
548 dev_dbg(dev
, "%s(): desc @ %pad: hdr 0x%x, cfg 0x%x, %zu @ %pad -> %pad\n",
549 __func__
, &ldesc
->hwdesc_dma_addr
, hwdesc
->header
,
550 hwdesc
->config
, size
, &src
, &dst
);
552 dma_sync_single_for_device(dev
, ldesc
->hwdesc_dma_addr
, sizeof(*hwdesc
),
558 static size_t nbpf_bytes_left(struct nbpf_channel
*chan
)
560 return nbpf_chan_read(chan
, NBPF_CHAN_CUR_TR_BYTE
);
563 static void nbpf_configure(struct nbpf_device
*nbpf
)
565 nbpf_write(nbpf
, NBPF_CTRL
, NBPF_CTRL_LVINT
);
570 /* DMA ENGINE functions */
571 static void nbpf_issue_pending(struct dma_chan
*dchan
)
573 struct nbpf_channel
*chan
= nbpf_to_chan(dchan
);
576 dev_dbg(dchan
->device
->dev
, "Entry %s()\n", __func__
);
578 spin_lock_irqsave(&chan
->lock
, flags
);
579 if (list_empty(&chan
->queued
))
582 list_splice_tail_init(&chan
->queued
, &chan
->active
);
584 if (!chan
->running
) {
585 struct nbpf_desc
*desc
= list_first_entry(&chan
->active
,
586 struct nbpf_desc
, node
);
587 if (!nbpf_start(desc
))
588 chan
->running
= desc
;
592 spin_unlock_irqrestore(&chan
->lock
, flags
);
595 static enum dma_status
nbpf_tx_status(struct dma_chan
*dchan
,
596 dma_cookie_t cookie
, struct dma_tx_state
*state
)
598 struct nbpf_channel
*chan
= nbpf_to_chan(dchan
);
599 enum dma_status status
= dma_cookie_status(dchan
, cookie
, state
);
602 dma_cookie_t running
;
605 spin_lock_irqsave(&chan
->lock
, flags
);
606 running
= chan
->running
? chan
->running
->async_tx
.cookie
: -EINVAL
;
608 if (cookie
== running
) {
609 state
->residue
= nbpf_bytes_left(chan
);
610 dev_dbg(dchan
->device
->dev
, "%s(): residue %u\n", __func__
,
612 } else if (status
== DMA_IN_PROGRESS
) {
613 struct nbpf_desc
*desc
;
616 list_for_each_entry(desc
, &chan
->active
, node
)
617 if (desc
->async_tx
.cookie
== cookie
) {
623 list_for_each_entry(desc
, &chan
->queued
, node
)
624 if (desc
->async_tx
.cookie
== cookie
) {
630 state
->residue
= found
? desc
->length
: 0;
633 spin_unlock_irqrestore(&chan
->lock
, flags
);
642 static dma_cookie_t
nbpf_tx_submit(struct dma_async_tx_descriptor
*tx
)
644 struct nbpf_desc
*desc
= container_of(tx
, struct nbpf_desc
, async_tx
);
645 struct nbpf_channel
*chan
= desc
->chan
;
649 spin_lock_irqsave(&chan
->lock
, flags
);
650 cookie
= dma_cookie_assign(tx
);
651 list_add_tail(&desc
->node
, &chan
->queued
);
652 spin_unlock_irqrestore(&chan
->lock
, flags
);
654 dev_dbg(chan
->dma_chan
.device
->dev
, "Entry %s(%d)\n", __func__
, cookie
);
659 static int nbpf_desc_page_alloc(struct nbpf_channel
*chan
)
661 struct dma_chan
*dchan
= &chan
->dma_chan
;
662 struct nbpf_desc_page
*dpage
= (void *)get_zeroed_page(GFP_KERNEL
| GFP_DMA
);
663 struct nbpf_link_desc
*ldesc
;
664 struct nbpf_link_reg
*hwdesc
;
665 struct nbpf_desc
*desc
;
669 struct device
*dev
= dchan
->device
->dev
;
674 dev_dbg(dev
, "%s(): alloc %lu descriptors, %lu segments, total alloc %zu\n",
675 __func__
, NBPF_DESCS_PER_PAGE
, NBPF_SEGMENTS_PER_PAGE
, sizeof(*dpage
));
677 for (i
= 0, ldesc
= dpage
->ldesc
, hwdesc
= dpage
->hwdesc
;
678 i
< ARRAY_SIZE(dpage
->ldesc
);
679 i
++, ldesc
++, hwdesc
++) {
680 ldesc
->hwdesc
= hwdesc
;
681 list_add_tail(&ldesc
->node
, &lhead
);
682 ldesc
->hwdesc_dma_addr
= dma_map_single(dchan
->device
->dev
,
683 hwdesc
, sizeof(*hwdesc
), DMA_TO_DEVICE
);
685 dev_dbg(dev
, "%s(): mapped 0x%p to %pad\n", __func__
,
686 hwdesc
, &ldesc
->hwdesc_dma_addr
);
689 for (i
= 0, desc
= dpage
->desc
;
690 i
< ARRAY_SIZE(dpage
->desc
);
692 dma_async_tx_descriptor_init(&desc
->async_tx
, dchan
);
693 desc
->async_tx
.tx_submit
= nbpf_tx_submit
;
695 INIT_LIST_HEAD(&desc
->sg
);
696 list_add_tail(&desc
->node
, &head
);
700 * This function cannot be called from interrupt context, so, no need to
703 spin_lock_irq(&chan
->lock
);
704 list_splice_tail(&lhead
, &chan
->free_links
);
705 list_splice_tail(&head
, &chan
->free
);
706 list_add(&dpage
->node
, &chan
->desc_page
);
707 spin_unlock_irq(&chan
->lock
);
709 return ARRAY_SIZE(dpage
->desc
);
712 static void nbpf_desc_put(struct nbpf_desc
*desc
)
714 struct nbpf_channel
*chan
= desc
->chan
;
715 struct nbpf_link_desc
*ldesc
, *tmp
;
718 spin_lock_irqsave(&chan
->lock
, flags
);
719 list_for_each_entry_safe(ldesc
, tmp
, &desc
->sg
, node
)
720 list_move(&ldesc
->node
, &chan
->free_links
);
722 list_add(&desc
->node
, &chan
->free
);
723 spin_unlock_irqrestore(&chan
->lock
, flags
);
726 static void nbpf_scan_acked(struct nbpf_channel
*chan
)
728 struct nbpf_desc
*desc
, *tmp
;
732 spin_lock_irqsave(&chan
->lock
, flags
);
733 list_for_each_entry_safe(desc
, tmp
, &chan
->done
, node
)
734 if (async_tx_test_ack(&desc
->async_tx
) && desc
->user_wait
) {
735 list_move(&desc
->node
, &head
);
736 desc
->user_wait
= false;
738 spin_unlock_irqrestore(&chan
->lock
, flags
);
740 list_for_each_entry_safe(desc
, tmp
, &head
, node
) {
741 list_del(&desc
->node
);
747 * We have to allocate descriptors with the channel lock dropped. This means,
748 * before we re-acquire the lock buffers can be taken already, so we have to
749 * re-check after re-acquiring the lock and possibly retry, if buffers are gone
752 static struct nbpf_desc
*nbpf_desc_get(struct nbpf_channel
*chan
, size_t len
)
754 struct nbpf_desc
*desc
= NULL
;
755 struct nbpf_link_desc
*ldesc
, *prev
= NULL
;
757 nbpf_scan_acked(chan
);
759 spin_lock_irq(&chan
->lock
);
764 if (list_empty(&chan
->free
)) {
765 /* No more free descriptors */
766 spin_unlock_irq(&chan
->lock
);
767 ret
= nbpf_desc_page_alloc(chan
);
770 spin_lock_irq(&chan
->lock
);
773 desc
= list_first_entry(&chan
->free
, struct nbpf_desc
, node
);
774 list_del(&desc
->node
);
777 if (list_empty(&chan
->free_links
)) {
778 /* No more free link descriptors */
779 spin_unlock_irq(&chan
->lock
);
780 ret
= nbpf_desc_page_alloc(chan
);
785 spin_lock_irq(&chan
->lock
);
789 ldesc
= list_first_entry(&chan
->free_links
,
790 struct nbpf_link_desc
, node
);
793 prev
->hwdesc
->next
= (u32
)ldesc
->hwdesc_dma_addr
;
796 list_move_tail(&ldesc
->node
, &desc
->sg
);
802 prev
->hwdesc
->next
= 0;
804 spin_unlock_irq(&chan
->lock
);
809 static void nbpf_chan_idle(struct nbpf_channel
*chan
)
811 struct nbpf_desc
*desc
, *tmp
;
815 spin_lock_irqsave(&chan
->lock
, flags
);
817 list_splice_init(&chan
->done
, &head
);
818 list_splice_init(&chan
->active
, &head
);
819 list_splice_init(&chan
->queued
, &head
);
821 chan
->running
= NULL
;
823 spin_unlock_irqrestore(&chan
->lock
, flags
);
825 list_for_each_entry_safe(desc
, tmp
, &head
, node
) {
826 dev_dbg(chan
->nbpf
->dma_dev
.dev
, "%s(): force-free desc %p cookie %d\n",
827 __func__
, desc
, desc
->async_tx
.cookie
);
828 list_del(&desc
->node
);
833 static int nbpf_pause(struct dma_chan
*dchan
)
835 struct nbpf_channel
*chan
= nbpf_to_chan(dchan
);
837 dev_dbg(dchan
->device
->dev
, "Entry %s\n", __func__
);
840 nbpf_chan_write(chan
, NBPF_CHAN_CTRL
, NBPF_CHAN_CTRL_SETSUS
);
841 /* See comment in nbpf_prep_one() */
842 nbpf_chan_write(chan
, NBPF_CHAN_CTRL
, NBPF_CHAN_CTRL_CLREN
);
847 static int nbpf_terminate_all(struct dma_chan
*dchan
)
849 struct nbpf_channel
*chan
= nbpf_to_chan(dchan
);
851 dev_dbg(dchan
->device
->dev
, "Entry %s\n", __func__
);
852 dev_dbg(dchan
->device
->dev
, "Terminating\n");
854 nbpf_chan_halt(chan
);
855 nbpf_chan_idle(chan
);
860 static int nbpf_config(struct dma_chan
*dchan
,
861 struct dma_slave_config
*config
)
863 struct nbpf_channel
*chan
= nbpf_to_chan(dchan
);
865 dev_dbg(dchan
->device
->dev
, "Entry %s\n", __func__
);
868 * We could check config->slave_id to match chan->terminal here,
869 * but with DT they would be coming from the same source, so
870 * such a check would be superflous
873 chan
->slave_dst_addr
= config
->dst_addr
;
874 chan
->slave_dst_width
= nbpf_xfer_size(chan
->nbpf
,
875 config
->dst_addr_width
, 1);
876 chan
->slave_dst_burst
= nbpf_xfer_size(chan
->nbpf
,
877 config
->dst_addr_width
,
878 config
->dst_maxburst
);
879 chan
->slave_src_addr
= config
->src_addr
;
880 chan
->slave_src_width
= nbpf_xfer_size(chan
->nbpf
,
881 config
->src_addr_width
, 1);
882 chan
->slave_src_burst
= nbpf_xfer_size(chan
->nbpf
,
883 config
->src_addr_width
,
884 config
->src_maxburst
);
889 static struct dma_async_tx_descriptor
*nbpf_prep_sg(struct nbpf_channel
*chan
,
890 struct scatterlist
*src_sg
, struct scatterlist
*dst_sg
,
891 size_t len
, enum dma_transfer_direction direction
,
894 struct nbpf_link_desc
*ldesc
;
895 struct scatterlist
*mem_sg
;
896 struct nbpf_desc
*desc
;
897 bool inc_src
, inc_dst
;
921 desc
= nbpf_desc_get(chan
, len
);
925 desc
->async_tx
.flags
= flags
;
926 desc
->async_tx
.cookie
= -EBUSY
;
927 desc
->user_wait
= false;
930 * This is a private descriptor list, and we own the descriptor. No need
933 list_for_each_entry(ldesc
, &desc
->sg
, node
) {
934 int ret
= nbpf_prep_one(ldesc
, direction
,
935 sg_dma_address(src_sg
),
936 sg_dma_address(dst_sg
),
943 data_len
+= sg_dma_len(mem_sg
);
945 src_sg
= sg_next(src_sg
);
947 dst_sg
= sg_next(dst_sg
);
948 mem_sg
= direction
== DMA_DEV_TO_MEM
? dst_sg
: src_sg
;
952 desc
->length
= data_len
;
954 /* The user has to return the descriptor to us ASAP via .tx_submit() */
955 return &desc
->async_tx
;
958 static struct dma_async_tx_descriptor
*nbpf_prep_memcpy(
959 struct dma_chan
*dchan
, dma_addr_t dst
, dma_addr_t src
,
960 size_t len
, unsigned long flags
)
962 struct nbpf_channel
*chan
= nbpf_to_chan(dchan
);
963 struct scatterlist dst_sg
;
964 struct scatterlist src_sg
;
966 sg_init_table(&dst_sg
, 1);
967 sg_init_table(&src_sg
, 1);
969 sg_dma_address(&dst_sg
) = dst
;
970 sg_dma_address(&src_sg
) = src
;
972 sg_dma_len(&dst_sg
) = len
;
973 sg_dma_len(&src_sg
) = len
;
975 dev_dbg(dchan
->device
->dev
, "%s(): %zu @ %pad -> %pad\n",
976 __func__
, len
, &src
, &dst
);
978 return nbpf_prep_sg(chan
, &src_sg
, &dst_sg
, 1,
979 DMA_MEM_TO_MEM
, flags
);
982 static struct dma_async_tx_descriptor
*nbpf_prep_memcpy_sg(
983 struct dma_chan
*dchan
,
984 struct scatterlist
*dst_sg
, unsigned int dst_nents
,
985 struct scatterlist
*src_sg
, unsigned int src_nents
,
988 struct nbpf_channel
*chan
= nbpf_to_chan(dchan
);
990 if (dst_nents
!= src_nents
)
993 return nbpf_prep_sg(chan
, src_sg
, dst_sg
, src_nents
,
994 DMA_MEM_TO_MEM
, flags
);
997 static struct dma_async_tx_descriptor
*nbpf_prep_slave_sg(
998 struct dma_chan
*dchan
, struct scatterlist
*sgl
, unsigned int sg_len
,
999 enum dma_transfer_direction direction
, unsigned long flags
, void *context
)
1001 struct nbpf_channel
*chan
= nbpf_to_chan(dchan
);
1002 struct scatterlist slave_sg
;
1004 dev_dbg(dchan
->device
->dev
, "Entry %s()\n", __func__
);
1006 sg_init_table(&slave_sg
, 1);
1008 switch (direction
) {
1009 case DMA_MEM_TO_DEV
:
1010 sg_dma_address(&slave_sg
) = chan
->slave_dst_addr
;
1011 return nbpf_prep_sg(chan
, sgl
, &slave_sg
, sg_len
,
1014 case DMA_DEV_TO_MEM
:
1015 sg_dma_address(&slave_sg
) = chan
->slave_src_addr
;
1016 return nbpf_prep_sg(chan
, &slave_sg
, sgl
, sg_len
,
1024 static int nbpf_alloc_chan_resources(struct dma_chan
*dchan
)
1026 struct nbpf_channel
*chan
= nbpf_to_chan(dchan
);
1029 INIT_LIST_HEAD(&chan
->free
);
1030 INIT_LIST_HEAD(&chan
->free_links
);
1031 INIT_LIST_HEAD(&chan
->queued
);
1032 INIT_LIST_HEAD(&chan
->active
);
1033 INIT_LIST_HEAD(&chan
->done
);
1035 ret
= nbpf_desc_page_alloc(chan
);
1039 dev_dbg(dchan
->device
->dev
, "Entry %s(): terminal %u\n", __func__
,
1042 nbpf_chan_configure(chan
);
1047 static void nbpf_free_chan_resources(struct dma_chan
*dchan
)
1049 struct nbpf_channel
*chan
= nbpf_to_chan(dchan
);
1050 struct nbpf_desc_page
*dpage
, *tmp
;
1052 dev_dbg(dchan
->device
->dev
, "Entry %s()\n", __func__
);
1054 nbpf_chan_halt(chan
);
1055 nbpf_chan_idle(chan
);
1056 /* Clean up for if a channel is re-used for MEMCPY after slave DMA */
1057 nbpf_chan_prepare_default(chan
);
1059 list_for_each_entry_safe(dpage
, tmp
, &chan
->desc_page
, node
) {
1060 struct nbpf_link_desc
*ldesc
;
1062 list_del(&dpage
->node
);
1063 for (i
= 0, ldesc
= dpage
->ldesc
;
1064 i
< ARRAY_SIZE(dpage
->ldesc
);
1066 dma_unmap_single(dchan
->device
->dev
, ldesc
->hwdesc_dma_addr
,
1067 sizeof(*ldesc
->hwdesc
), DMA_TO_DEVICE
);
1068 free_page((unsigned long)dpage
);
1072 static struct dma_chan
*nbpf_of_xlate(struct of_phandle_args
*dma_spec
,
1073 struct of_dma
*ofdma
)
1075 struct nbpf_device
*nbpf
= ofdma
->of_dma_data
;
1076 struct dma_chan
*dchan
;
1077 struct nbpf_channel
*chan
;
1079 if (dma_spec
->args_count
!= 2)
1082 dchan
= dma_get_any_slave_channel(&nbpf
->dma_dev
);
1086 dev_dbg(dchan
->device
->dev
, "Entry %s(%s)\n", __func__
,
1087 dma_spec
->np
->name
);
1089 chan
= nbpf_to_chan(dchan
);
1091 chan
->terminal
= dma_spec
->args
[0];
1092 chan
->flags
= dma_spec
->args
[1];
1094 nbpf_chan_prepare(chan
);
1095 nbpf_chan_configure(chan
);
1100 static void nbpf_chan_tasklet(unsigned long data
)
1102 struct nbpf_channel
*chan
= (struct nbpf_channel
*)data
;
1103 struct nbpf_desc
*desc
, *tmp
;
1104 dma_async_tx_callback callback
;
1107 while (!list_empty(&chan
->done
)) {
1108 bool found
= false, must_put
, recycling
= false;
1110 spin_lock_irq(&chan
->lock
);
1112 list_for_each_entry_safe(desc
, tmp
, &chan
->done
, node
) {
1113 if (!desc
->user_wait
) {
1114 /* Newly completed descriptor, have to process */
1117 } else if (async_tx_test_ack(&desc
->async_tx
)) {
1119 * This descriptor was waiting for a user ACK,
1120 * it can be recycled now.
1122 list_del(&desc
->node
);
1123 spin_unlock_irq(&chan
->lock
);
1124 nbpf_desc_put(desc
);
1134 /* This can happen if TERMINATE_ALL has been called */
1135 spin_unlock_irq(&chan
->lock
);
1139 dma_cookie_complete(&desc
->async_tx
);
1142 * With released lock we cannot dereference desc, maybe it's
1143 * still on the "done" list
1145 if (async_tx_test_ack(&desc
->async_tx
)) {
1146 list_del(&desc
->node
);
1149 desc
->user_wait
= true;
1153 callback
= desc
->async_tx
.callback
;
1154 param
= desc
->async_tx
.callback_param
;
1156 /* ack and callback completed descriptor */
1157 spin_unlock_irq(&chan
->lock
);
1163 nbpf_desc_put(desc
);
1167 static irqreturn_t
nbpf_chan_irq(int irq
, void *dev
)
1169 struct nbpf_channel
*chan
= dev
;
1170 bool done
= nbpf_status_get(chan
);
1171 struct nbpf_desc
*desc
;
1178 nbpf_status_ack(chan
);
1180 dev_dbg(&chan
->dma_chan
.dev
->device
, "%s()\n", __func__
);
1182 spin_lock(&chan
->lock
);
1183 desc
= chan
->running
;
1184 if (WARN_ON(!desc
)) {
1192 list_move_tail(&desc
->node
, &chan
->done
);
1193 chan
->running
= NULL
;
1195 if (!list_empty(&chan
->active
)) {
1196 desc
= list_first_entry(&chan
->active
,
1197 struct nbpf_desc
, node
);
1198 if (!nbpf_start(desc
))
1199 chan
->running
= desc
;
1203 spin_unlock(&chan
->lock
);
1206 tasklet_schedule(&chan
->tasklet
);
1211 static irqreturn_t
nbpf_err_irq(int irq
, void *dev
)
1213 struct nbpf_device
*nbpf
= dev
;
1214 u32 error
= nbpf_error_get(nbpf
);
1216 dev_warn(nbpf
->dma_dev
.dev
, "DMA error IRQ %u\n", irq
);
1222 struct nbpf_channel
*chan
= nbpf_error_get_channel(nbpf
, error
);
1223 /* On error: abort all queued transfers, no callback */
1224 nbpf_error_clear(chan
);
1225 nbpf_chan_idle(chan
);
1226 error
= nbpf_error_get(nbpf
);
1232 static int nbpf_chan_probe(struct nbpf_device
*nbpf
, int n
)
1234 struct dma_device
*dma_dev
= &nbpf
->dma_dev
;
1235 struct nbpf_channel
*chan
= nbpf
->chan
+ n
;
1239 chan
->base
= nbpf
->base
+ NBPF_REG_CHAN_OFFSET
+ NBPF_REG_CHAN_SIZE
* n
;
1240 INIT_LIST_HEAD(&chan
->desc_page
);
1241 spin_lock_init(&chan
->lock
);
1242 chan
->dma_chan
.device
= dma_dev
;
1243 dma_cookie_init(&chan
->dma_chan
);
1244 nbpf_chan_prepare_default(chan
);
1246 dev_dbg(dma_dev
->dev
, "%s(): channel %d: -> %p\n", __func__
, n
, chan
->base
);
1248 snprintf(chan
->name
, sizeof(chan
->name
), "nbpf %d", n
);
1250 tasklet_init(&chan
->tasklet
, nbpf_chan_tasklet
, (unsigned long)chan
);
1251 ret
= devm_request_irq(dma_dev
->dev
, chan
->irq
,
1252 nbpf_chan_irq
, IRQF_SHARED
,
1257 /* Add the channel to DMA device channel list */
1258 list_add_tail(&chan
->dma_chan
.device_node
,
1259 &dma_dev
->channels
);
1264 static const struct of_device_id nbpf_match
[] = {
1265 {.compatible
= "renesas,nbpfaxi64dmac1b4", .data
= &nbpf_cfg
[NBPF1B4
]},
1266 {.compatible
= "renesas,nbpfaxi64dmac1b8", .data
= &nbpf_cfg
[NBPF1B8
]},
1267 {.compatible
= "renesas,nbpfaxi64dmac1b16", .data
= &nbpf_cfg
[NBPF1B16
]},
1268 {.compatible
= "renesas,nbpfaxi64dmac4b4", .data
= &nbpf_cfg
[NBPF4B4
]},
1269 {.compatible
= "renesas,nbpfaxi64dmac4b8", .data
= &nbpf_cfg
[NBPF4B8
]},
1270 {.compatible
= "renesas,nbpfaxi64dmac4b16", .data
= &nbpf_cfg
[NBPF4B16
]},
1271 {.compatible
= "renesas,nbpfaxi64dmac8b4", .data
= &nbpf_cfg
[NBPF8B4
]},
1272 {.compatible
= "renesas,nbpfaxi64dmac8b8", .data
= &nbpf_cfg
[NBPF8B8
]},
1273 {.compatible
= "renesas,nbpfaxi64dmac8b16", .data
= &nbpf_cfg
[NBPF8B16
]},
1276 MODULE_DEVICE_TABLE(of
, nbpf_match
);
1278 static int nbpf_probe(struct platform_device
*pdev
)
1280 struct device
*dev
= &pdev
->dev
;
1281 const struct of_device_id
*of_id
= of_match_device(nbpf_match
, dev
);
1282 struct device_node
*np
= dev
->of_node
;
1283 struct nbpf_device
*nbpf
;
1284 struct dma_device
*dma_dev
;
1285 struct resource
*iomem
, *irq_res
;
1286 const struct nbpf_config
*cfg
;
1288 int ret
, irq
, eirq
, i
;
1289 int irqbuf
[9] /* maximum 8 channels + error IRQ */;
1290 unsigned int irqs
= 0;
1292 BUILD_BUG_ON(sizeof(struct nbpf_desc_page
) > PAGE_SIZE
);
1295 if (!np
|| !of_id
|| !of_id
->data
)
1299 num_channels
= cfg
->num_channels
;
1301 nbpf
= devm_kzalloc(dev
, sizeof(*nbpf
) + num_channels
*
1302 sizeof(nbpf
->chan
[0]), GFP_KERNEL
);
1304 dev_err(dev
, "Memory allocation failed\n");
1307 dma_dev
= &nbpf
->dma_dev
;
1310 iomem
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1311 nbpf
->base
= devm_ioremap_resource(dev
, iomem
);
1312 if (IS_ERR(nbpf
->base
))
1313 return PTR_ERR(nbpf
->base
);
1315 nbpf
->clk
= devm_clk_get(dev
, NULL
);
1316 if (IS_ERR(nbpf
->clk
))
1317 return PTR_ERR(nbpf
->clk
);
1321 for (i
= 0; irqs
< ARRAY_SIZE(irqbuf
); i
++) {
1322 irq_res
= platform_get_resource(pdev
, IORESOURCE_IRQ
, i
);
1326 for (irq
= irq_res
->start
; irq
<= irq_res
->end
;
1332 * 3 IRQ resource schemes are supported:
1333 * 1. 1 shared IRQ for error and all channels
1334 * 2. 2 IRQs: one for error and one shared for all channels
1335 * 3. 1 IRQ for error and an own IRQ for each channel
1337 if (irqs
!= 1 && irqs
!= 2 && irqs
!= num_channels
+ 1)
1343 for (i
= 0; i
<= num_channels
; i
++)
1344 nbpf
->chan
[i
].irq
= irqbuf
[0];
1346 eirq
= platform_get_irq_byname(pdev
, "error");
1350 if (irqs
== num_channels
+ 1) {
1351 struct nbpf_channel
*chan
;
1353 for (i
= 0, chan
= nbpf
->chan
; i
<= num_channels
;
1355 /* Skip the error IRQ */
1356 if (irqbuf
[i
] == eirq
)
1358 chan
->irq
= irqbuf
[i
];
1361 if (chan
!= nbpf
->chan
+ num_channels
)
1364 /* 2 IRQs and more than one channel */
1365 if (irqbuf
[0] == eirq
)
1370 for (i
= 0; i
<= num_channels
; i
++)
1371 nbpf
->chan
[i
].irq
= irq
;
1375 ret
= devm_request_irq(dev
, eirq
, nbpf_err_irq
,
1376 IRQF_SHARED
, "dma error", nbpf
);
1380 INIT_LIST_HEAD(&dma_dev
->channels
);
1382 /* Create DMA Channel */
1383 for (i
= 0; i
< num_channels
; i
++) {
1384 ret
= nbpf_chan_probe(nbpf
, i
);
1389 dma_cap_set(DMA_MEMCPY
, dma_dev
->cap_mask
);
1390 dma_cap_set(DMA_SLAVE
, dma_dev
->cap_mask
);
1391 dma_cap_set(DMA_PRIVATE
, dma_dev
->cap_mask
);
1392 dma_cap_set(DMA_SG
, dma_dev
->cap_mask
);
1394 /* Common and MEMCPY operations */
1395 dma_dev
->device_alloc_chan_resources
1396 = nbpf_alloc_chan_resources
;
1397 dma_dev
->device_free_chan_resources
= nbpf_free_chan_resources
;
1398 dma_dev
->device_prep_dma_sg
= nbpf_prep_memcpy_sg
;
1399 dma_dev
->device_prep_dma_memcpy
= nbpf_prep_memcpy
;
1400 dma_dev
->device_tx_status
= nbpf_tx_status
;
1401 dma_dev
->device_issue_pending
= nbpf_issue_pending
;
1404 * If we drop support for unaligned MEMCPY buffer addresses and / or
1405 * lengths by setting
1406 * dma_dev->copy_align = 4;
1407 * then we can set transfer length to 4 bytes in nbpf_prep_one() for
1411 /* Compulsory for DMA_SLAVE fields */
1412 dma_dev
->device_prep_slave_sg
= nbpf_prep_slave_sg
;
1413 dma_dev
->device_config
= nbpf_config
;
1414 dma_dev
->device_pause
= nbpf_pause
;
1415 dma_dev
->device_terminate_all
= nbpf_terminate_all
;
1417 dma_dev
->src_addr_widths
= NBPF_DMA_BUSWIDTHS
;
1418 dma_dev
->dst_addr_widths
= NBPF_DMA_BUSWIDTHS
;
1419 dma_dev
->directions
= BIT(DMA_DEV_TO_MEM
) | BIT(DMA_MEM_TO_DEV
);
1421 platform_set_drvdata(pdev
, nbpf
);
1423 ret
= clk_prepare_enable(nbpf
->clk
);
1427 nbpf_configure(nbpf
);
1429 ret
= dma_async_device_register(dma_dev
);
1433 ret
= of_dma_controller_register(np
, nbpf_of_xlate
, nbpf
);
1435 goto e_dma_dev_unreg
;
1440 dma_async_device_unregister(dma_dev
);
1442 clk_disable_unprepare(nbpf
->clk
);
1447 static int nbpf_remove(struct platform_device
*pdev
)
1449 struct nbpf_device
*nbpf
= platform_get_drvdata(pdev
);
1451 of_dma_controller_free(pdev
->dev
.of_node
);
1452 dma_async_device_unregister(&nbpf
->dma_dev
);
1453 clk_disable_unprepare(nbpf
->clk
);
1458 static const struct platform_device_id nbpf_ids
[] = {
1459 {"nbpfaxi64dmac1b4", (kernel_ulong_t
)&nbpf_cfg
[NBPF1B4
]},
1460 {"nbpfaxi64dmac1b8", (kernel_ulong_t
)&nbpf_cfg
[NBPF1B8
]},
1461 {"nbpfaxi64dmac1b16", (kernel_ulong_t
)&nbpf_cfg
[NBPF1B16
]},
1462 {"nbpfaxi64dmac4b4", (kernel_ulong_t
)&nbpf_cfg
[NBPF4B4
]},
1463 {"nbpfaxi64dmac4b8", (kernel_ulong_t
)&nbpf_cfg
[NBPF4B8
]},
1464 {"nbpfaxi64dmac4b16", (kernel_ulong_t
)&nbpf_cfg
[NBPF4B16
]},
1465 {"nbpfaxi64dmac8b4", (kernel_ulong_t
)&nbpf_cfg
[NBPF8B4
]},
1466 {"nbpfaxi64dmac8b8", (kernel_ulong_t
)&nbpf_cfg
[NBPF8B8
]},
1467 {"nbpfaxi64dmac8b16", (kernel_ulong_t
)&nbpf_cfg
[NBPF8B16
]},
1470 MODULE_DEVICE_TABLE(platform
, nbpf_ids
);
1473 static int nbpf_runtime_suspend(struct device
*dev
)
1475 struct nbpf_device
*nbpf
= platform_get_drvdata(to_platform_device(dev
));
1476 clk_disable_unprepare(nbpf
->clk
);
1480 static int nbpf_runtime_resume(struct device
*dev
)
1482 struct nbpf_device
*nbpf
= platform_get_drvdata(to_platform_device(dev
));
1483 return clk_prepare_enable(nbpf
->clk
);
1487 static const struct dev_pm_ops nbpf_pm_ops
= {
1488 SET_RUNTIME_PM_OPS(nbpf_runtime_suspend
, nbpf_runtime_resume
, NULL
)
1491 static struct platform_driver nbpf_driver
= {
1494 .of_match_table
= nbpf_match
,
1497 .id_table
= nbpf_ids
,
1498 .probe
= nbpf_probe
,
1499 .remove
= nbpf_remove
,
1502 module_platform_driver(nbpf_driver
);
1504 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1505 MODULE_DESCRIPTION("dmaengine driver for NBPFAXI64* DMACs");
1506 MODULE_LICENSE("GPL v2");