2 * Copyright (C) 2006-2009 DENX Software Engineering.
4 * Author: Yuri Tikhonov <yur@emcraft.com>
6 * Further porting to arch/powerpc by
7 * Anatolij Gustschin <agust@denx.de>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the Free
11 * Software Foundation; either version 2 of the License, or (at your option)
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
19 * The full GNU General Public License is included in this distribution in the
20 * file called COPYING.
24 * This driver supports the asynchrounous DMA copy and RAID engines available
25 * on the AMCC PPC440SPe Processors.
26 * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
27 * ADMA driver written by D.Williams.
30 #include <linux/init.h>
31 #include <linux/module.h>
32 #include <linux/async_tx.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/spinlock.h>
36 #include <linux/interrupt.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39 #include <linux/proc_fs.h>
41 #include <linux/of_address.h>
42 #include <linux/of_irq.h>
43 #include <linux/of_platform.h>
45 #include <asm/dcr-regs.h>
47 #include "../dmaengine.h"
49 enum ppc_adma_init_code
{
54 PPC_ADMA_INIT_COHERENT
,
55 PPC_ADMA_INIT_CHANNEL
,
58 PPC_ADMA_INIT_REGISTER
61 static char *ppc_adma_errors
[] = {
62 [PPC_ADMA_INIT_OK
] = "ok",
63 [PPC_ADMA_INIT_MEMRES
] = "failed to get memory resource",
64 [PPC_ADMA_INIT_MEMREG
] = "failed to request memory region",
65 [PPC_ADMA_INIT_ALLOC
] = "failed to allocate memory for adev "
67 [PPC_ADMA_INIT_COHERENT
] = "failed to allocate coherent memory for "
68 "hardware descriptors",
69 [PPC_ADMA_INIT_CHANNEL
] = "failed to allocate memory for channel",
70 [PPC_ADMA_INIT_IRQ1
] = "failed to request first irq",
71 [PPC_ADMA_INIT_IRQ2
] = "failed to request second irq",
72 [PPC_ADMA_INIT_REGISTER
] = "failed to register dma async device",
75 static enum ppc_adma_init_code
76 ppc440spe_adma_devices
[PPC440SPE_ADMA_ENGINES_NUM
];
78 struct ppc_dma_chan_ref
{
79 struct dma_chan
*chan
;
80 struct list_head node
;
83 /* The list of channels exported by ppc440spe ADMA */
85 ppc440spe_adma_chan_list
= LIST_HEAD_INIT(ppc440spe_adma_chan_list
);
87 /* This flag is set when want to refetch the xor chain in the interrupt
90 static u32 do_xor_refetch
;
92 /* Pointer to DMA0, DMA1 CP/CS FIFO */
93 static void *ppc440spe_dma_fifo_buf
;
95 /* Pointers to last submitted to DMA0, DMA1 CDBs */
96 static struct ppc440spe_adma_desc_slot
*chan_last_sub
[3];
97 static struct ppc440spe_adma_desc_slot
*chan_first_cdb
[3];
99 /* Pointer to last linked and submitted xor CB */
100 static struct ppc440spe_adma_desc_slot
*xor_last_linked
;
101 static struct ppc440spe_adma_desc_slot
*xor_last_submit
;
103 /* This array is used in data-check operations for storing a pattern */
104 static char ppc440spe_qword
[16];
106 static atomic_t ppc440spe_adma_err_irq_ref
;
107 static dcr_host_t ppc440spe_mq_dcr_host
;
108 static unsigned int ppc440spe_mq_dcr_len
;
110 /* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
111 * the block size in transactions, then we do not allow to activate more than
112 * only one RXOR transactions simultaneously. So use this var to store
113 * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
114 * set) or not (PPC440SPE_RXOR_RUN is clear).
116 static unsigned long ppc440spe_rxor_state
;
118 /* These are used in enable & check routines
120 static u32 ppc440spe_r6_enabled
;
121 static struct ppc440spe_adma_chan
*ppc440spe_r6_tchan
;
122 static struct completion ppc440spe_r6_test_comp
;
124 static int ppc440spe_adma_dma2rxor_prep_src(
125 struct ppc440spe_adma_desc_slot
*desc
,
126 struct ppc440spe_rxor
*cursor
, int index
,
127 int src_cnt
, u32 addr
);
128 static void ppc440spe_adma_dma2rxor_set_src(
129 struct ppc440spe_adma_desc_slot
*desc
,
130 int index
, dma_addr_t addr
);
131 static void ppc440spe_adma_dma2rxor_set_mult(
132 struct ppc440spe_adma_desc_slot
*desc
,
136 #define ADMA_LL_DBG(x) ({ if (1) x; 0; })
138 #define ADMA_LL_DBG(x) ({ if (0) x; 0; })
141 static void print_cb(struct ppc440spe_adma_chan
*chan
, void *block
)
147 switch (chan
->device
->id
) {
152 pr_debug("CDB at %p [%d]:\n"
153 "\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
154 "\t sg1u 0x%08x sg1l 0x%08x\n"
155 "\t sg2u 0x%08x sg2l 0x%08x\n"
156 "\t sg3u 0x%08x sg3l 0x%08x\n",
157 cdb
, chan
->device
->id
,
158 cdb
->attr
, cdb
->opc
, le32_to_cpu(cdb
->cnt
),
159 le32_to_cpu(cdb
->sg1u
), le32_to_cpu(cdb
->sg1l
),
160 le32_to_cpu(cdb
->sg2u
), le32_to_cpu(cdb
->sg2l
),
161 le32_to_cpu(cdb
->sg3u
), le32_to_cpu(cdb
->sg3l
)
167 pr_debug("CB at %p [%d]:\n"
168 "\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
169 "\t cbtah 0x%08x cbtal 0x%08x\n"
170 "\t cblah 0x%08x cblal 0x%08x\n",
171 cb
, chan
->device
->id
,
172 cb
->cbc
, cb
->cbbc
, cb
->cbs
,
173 cb
->cbtah
, cb
->cbtal
,
174 cb
->cblah
, cb
->cblal
);
175 for (i
= 0; i
< 16; i
++) {
176 if (i
&& !cb
->ops
[i
].h
&& !cb
->ops
[i
].l
)
178 pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
179 i
, cb
->ops
[i
].h
, cb
->ops
[i
].l
);
185 static void print_cb_list(struct ppc440spe_adma_chan
*chan
,
186 struct ppc440spe_adma_desc_slot
*iter
)
188 for (; iter
; iter
= iter
->hw_next
)
189 print_cb(chan
, iter
->hw_desc
);
192 static void prep_dma_xor_dbg(int id
, dma_addr_t dst
, dma_addr_t
*src
,
193 unsigned int src_cnt
)
197 pr_debug("\n%s(%d):\nsrc: ", __func__
, id
);
198 for (i
= 0; i
< src_cnt
; i
++)
199 pr_debug("\t0x%016llx ", src
[i
]);
200 pr_debug("dst:\n\t0x%016llx\n", dst
);
203 static void prep_dma_pq_dbg(int id
, dma_addr_t
*dst
, dma_addr_t
*src
,
204 unsigned int src_cnt
)
208 pr_debug("\n%s(%d):\nsrc: ", __func__
, id
);
209 for (i
= 0; i
< src_cnt
; i
++)
210 pr_debug("\t0x%016llx ", src
[i
]);
212 for (i
= 0; i
< 2; i
++)
213 pr_debug("\t0x%016llx ", dst
[i
]);
216 static void prep_dma_pqzero_sum_dbg(int id
, dma_addr_t
*src
,
217 unsigned int src_cnt
,
218 const unsigned char *scf
)
222 pr_debug("\n%s(%d):\nsrc(coef): ", __func__
, id
);
224 for (i
= 0; i
< src_cnt
; i
++)
225 pr_debug("\t0x%016llx(0x%02x) ", src
[i
], scf
[i
]);
227 for (i
= 0; i
< src_cnt
; i
++)
228 pr_debug("\t0x%016llx(no) ", src
[i
]);
232 for (i
= 0; i
< 2; i
++)
233 pr_debug("\t0x%016llx ", src
[src_cnt
+ i
]);
236 /******************************************************************************
237 * Command (Descriptor) Blocks low-level routines
238 ******************************************************************************/
240 * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
243 static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot
*desc
,
244 struct ppc440spe_adma_chan
*chan
)
248 switch (chan
->device
->id
) {
249 case PPC440SPE_XOR_ID
:
251 memset(desc
->hw_desc
, 0, sizeof(struct xor_cb
));
252 /* NOP with Command Block Complete Enable */
253 p
->cbc
= XOR_CBCR_CBCE_BIT
;
255 case PPC440SPE_DMA0_ID
:
256 case PPC440SPE_DMA1_ID
:
257 memset(desc
->hw_desc
, 0, sizeof(struct dma_cdb
));
258 /* NOP with interrupt */
259 set_bit(PPC440SPE_DESC_INT
, &desc
->flags
);
262 printk(KERN_ERR
"Unsupported id %d in %s\n", chan
->device
->id
,
269 * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
272 static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot
*desc
)
274 memset(desc
->hw_desc
, 0, sizeof(struct xor_cb
));
275 desc
->hw_next
= NULL
;
281 * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
283 static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot
*desc
,
284 int src_cnt
, unsigned long flags
)
286 struct xor_cb
*hw_desc
= desc
->hw_desc
;
288 memset(desc
->hw_desc
, 0, sizeof(struct xor_cb
));
289 desc
->hw_next
= NULL
;
290 desc
->src_cnt
= src_cnt
;
293 hw_desc
->cbc
= XOR_CBCR_TGT_BIT
| src_cnt
;
294 if (flags
& DMA_PREP_INTERRUPT
)
295 /* Enable interrupt on completion */
296 hw_desc
->cbc
|= XOR_CBCR_CBCE_BIT
;
300 * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
301 * operation in DMA2 controller
303 static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot
*desc
,
304 int dst_cnt
, int src_cnt
, unsigned long flags
)
306 struct xor_cb
*hw_desc
= desc
->hw_desc
;
308 memset(desc
->hw_desc
, 0, sizeof(struct xor_cb
));
309 desc
->hw_next
= NULL
;
310 desc
->src_cnt
= src_cnt
;
311 desc
->dst_cnt
= dst_cnt
;
312 memset(desc
->reverse_flags
, 0, sizeof(desc
->reverse_flags
));
313 desc
->descs_per_op
= 0;
315 hw_desc
->cbc
= XOR_CBCR_TGT_BIT
;
316 if (flags
& DMA_PREP_INTERRUPT
)
317 /* Enable interrupt on completion */
318 hw_desc
->cbc
|= XOR_CBCR_CBCE_BIT
;
321 #define DMA_CTRL_FLAGS_LAST DMA_PREP_FENCE
322 #define DMA_PREP_ZERO_P (DMA_CTRL_FLAGS_LAST << 1)
323 #define DMA_PREP_ZERO_Q (DMA_PREP_ZERO_P << 1)
326 * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
329 static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot
*desc
,
330 int dst_cnt
, int src_cnt
, unsigned long flags
,
333 struct dma_cdb
*hw_desc
;
334 struct ppc440spe_adma_desc_slot
*iter
;
337 /* Common initialization of a PQ descriptors chain */
338 set_bits(op
, &desc
->flags
);
339 desc
->src_cnt
= src_cnt
;
340 desc
->dst_cnt
= dst_cnt
;
342 /* WXOR MULTICAST if both P and Q are being computed
343 * MV_SG1_SG2 if Q only
345 dopc
= (desc
->dst_cnt
== DMA_DEST_MAX_NUM
) ?
346 DMA_CDB_OPC_MULTICAST
: DMA_CDB_OPC_MV_SG1_SG2
;
348 list_for_each_entry(iter
, &desc
->group_list
, chain_node
) {
349 hw_desc
= iter
->hw_desc
;
350 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
352 if (likely(!list_is_last(&iter
->chain_node
,
353 &desc
->group_list
))) {
354 /* set 'next' pointer */
355 iter
->hw_next
= list_entry(iter
->chain_node
.next
,
356 struct ppc440spe_adma_desc_slot
, chain_node
);
357 clear_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
359 /* this is the last descriptor.
360 * this slot will be pasted from ADMA level
361 * each time it wants to configure parameters
362 * of the transaction (src, dst, ...)
364 iter
->hw_next
= NULL
;
365 if (flags
& DMA_PREP_INTERRUPT
)
366 set_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
368 clear_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
372 /* Set OPS depending on WXOR/RXOR type of operation */
373 if (!test_bit(PPC440SPE_DESC_RXOR
, &desc
->flags
)) {
374 /* This is a WXOR only chain:
375 * - first descriptors are for zeroing destinations
376 * if PPC440SPE_ZERO_P/Q set;
377 * - descriptors remained are for GF-XOR operations.
379 iter
= list_first_entry(&desc
->group_list
,
380 struct ppc440spe_adma_desc_slot
,
383 if (test_bit(PPC440SPE_ZERO_P
, &desc
->flags
)) {
384 hw_desc
= iter
->hw_desc
;
385 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
386 iter
= list_first_entry(&iter
->chain_node
,
387 struct ppc440spe_adma_desc_slot
,
391 if (test_bit(PPC440SPE_ZERO_Q
, &desc
->flags
)) {
392 hw_desc
= iter
->hw_desc
;
393 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
394 iter
= list_first_entry(&iter
->chain_node
,
395 struct ppc440spe_adma_desc_slot
,
399 list_for_each_entry_from(iter
, &desc
->group_list
, chain_node
) {
400 hw_desc
= iter
->hw_desc
;
404 /* This is either RXOR-only or mixed RXOR/WXOR */
406 /* The first 1 or 2 slots in chain are always RXOR,
407 * if need to calculate P & Q, then there are two
408 * RXOR slots; if only P or only Q, then there is one
410 iter
= list_first_entry(&desc
->group_list
,
411 struct ppc440spe_adma_desc_slot
,
413 hw_desc
= iter
->hw_desc
;
414 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
416 if (desc
->dst_cnt
== DMA_DEST_MAX_NUM
) {
417 iter
= list_first_entry(&iter
->chain_node
,
418 struct ppc440spe_adma_desc_slot
,
420 hw_desc
= iter
->hw_desc
;
421 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
424 /* The remaining descs (if any) are WXORs */
425 if (test_bit(PPC440SPE_DESC_WXOR
, &desc
->flags
)) {
426 iter
= list_first_entry(&iter
->chain_node
,
427 struct ppc440spe_adma_desc_slot
,
429 list_for_each_entry_from(iter
, &desc
->group_list
,
431 hw_desc
= iter
->hw_desc
;
439 * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
440 * for PQ_ZERO_SUM operation
442 static void ppc440spe_desc_init_dma01pqzero_sum(
443 struct ppc440spe_adma_desc_slot
*desc
,
444 int dst_cnt
, int src_cnt
)
446 struct dma_cdb
*hw_desc
;
447 struct ppc440spe_adma_desc_slot
*iter
;
449 u8 dopc
= (dst_cnt
== 2) ? DMA_CDB_OPC_MULTICAST
:
450 DMA_CDB_OPC_MV_SG1_SG2
;
452 * Initialize starting from 2nd or 3rd descriptor dependent
453 * on dst_cnt. First one or two slots are for cloning P
454 * and/or Q to chan->pdest and/or chan->qdest as we have
455 * to preserve original P/Q.
457 iter
= list_first_entry(&desc
->group_list
,
458 struct ppc440spe_adma_desc_slot
, chain_node
);
459 iter
= list_entry(iter
->chain_node
.next
,
460 struct ppc440spe_adma_desc_slot
, chain_node
);
463 iter
= list_entry(iter
->chain_node
.next
,
464 struct ppc440spe_adma_desc_slot
, chain_node
);
466 /* initialize each source descriptor in chain */
467 list_for_each_entry_from(iter
, &desc
->group_list
, chain_node
) {
468 hw_desc
= iter
->hw_desc
;
469 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
473 /* This is a ZERO_SUM operation:
474 * - <src_cnt> descriptors starting from 2nd or 3rd
475 * descriptor are for GF-XOR operations;
476 * - remaining <dst_cnt> descriptors are for checking the result
479 /* MV_SG1_SG2 if only Q is being verified
480 * MULTICAST if both P and Q are being verified
484 /* DMA_CDB_OPC_DCHECK128 operation */
485 hw_desc
->opc
= DMA_CDB_OPC_DCHECK128
;
487 if (likely(!list_is_last(&iter
->chain_node
,
488 &desc
->group_list
))) {
489 /* set 'next' pointer */
490 iter
->hw_next
= list_entry(iter
->chain_node
.next
,
491 struct ppc440spe_adma_desc_slot
,
494 /* this is the last descriptor.
495 * this slot will be pasted from ADMA level
496 * each time it wants to configure parameters
497 * of the transaction (src, dst, ...)
499 iter
->hw_next
= NULL
;
500 /* always enable interrupt generation since we get
501 * the status of pqzero from the handler
503 set_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
506 desc
->src_cnt
= src_cnt
;
507 desc
->dst_cnt
= dst_cnt
;
511 * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
513 static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot
*desc
,
516 struct dma_cdb
*hw_desc
= desc
->hw_desc
;
518 memset(desc
->hw_desc
, 0, sizeof(struct dma_cdb
));
519 desc
->hw_next
= NULL
;
523 if (flags
& DMA_PREP_INTERRUPT
)
524 set_bit(PPC440SPE_DESC_INT
, &desc
->flags
);
526 clear_bit(PPC440SPE_DESC_INT
, &desc
->flags
);
528 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
532 * ppc440spe_desc_set_src_addr - set source address into the descriptor
534 static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot
*desc
,
535 struct ppc440spe_adma_chan
*chan
,
536 int src_idx
, dma_addr_t addrh
,
539 struct dma_cdb
*dma_hw_desc
;
540 struct xor_cb
*xor_hw_desc
;
541 phys_addr_t addr64
, tmplow
, tmphi
;
543 switch (chan
->device
->id
) {
544 case PPC440SPE_DMA0_ID
:
545 case PPC440SPE_DMA1_ID
:
548 tmphi
= (addr64
>> 32);
549 tmplow
= (addr64
& 0xFFFFFFFF);
554 dma_hw_desc
= desc
->hw_desc
;
555 dma_hw_desc
->sg1l
= cpu_to_le32((u32
)tmplow
);
556 dma_hw_desc
->sg1u
|= cpu_to_le32((u32
)tmphi
);
558 case PPC440SPE_XOR_ID
:
559 xor_hw_desc
= desc
->hw_desc
;
560 xor_hw_desc
->ops
[src_idx
].l
= addrl
;
561 xor_hw_desc
->ops
[src_idx
].h
|= addrh
;
567 * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
569 static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot
*desc
,
570 struct ppc440spe_adma_chan
*chan
, u32 mult_index
,
571 int sg_index
, unsigned char mult_value
)
573 struct dma_cdb
*dma_hw_desc
;
574 struct xor_cb
*xor_hw_desc
;
577 switch (chan
->device
->id
) {
578 case PPC440SPE_DMA0_ID
:
579 case PPC440SPE_DMA1_ID
:
580 dma_hw_desc
= desc
->hw_desc
;
583 /* for RXOR operations set multiplier
584 * into source cued address
587 psgu
= &dma_hw_desc
->sg1u
;
589 /* for WXOR operations set multiplier
590 * into destination cued address(es)
592 case DMA_CDB_SG_DST1
:
593 psgu
= &dma_hw_desc
->sg2u
;
595 case DMA_CDB_SG_DST2
:
596 psgu
= &dma_hw_desc
->sg3u
;
602 *psgu
|= cpu_to_le32(mult_value
<< mult_index
);
604 case PPC440SPE_XOR_ID
:
605 xor_hw_desc
= desc
->hw_desc
;
613 * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
615 static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot
*desc
,
616 struct ppc440spe_adma_chan
*chan
,
617 dma_addr_t addrh
, dma_addr_t addrl
,
620 struct dma_cdb
*dma_hw_desc
;
621 struct xor_cb
*xor_hw_desc
;
622 phys_addr_t addr64
, tmphi
, tmplow
;
625 switch (chan
->device
->id
) {
626 case PPC440SPE_DMA0_ID
:
627 case PPC440SPE_DMA1_ID
:
630 tmphi
= (addr64
>> 32);
631 tmplow
= (addr64
& 0xFFFFFFFF);
636 dma_hw_desc
= desc
->hw_desc
;
638 psgu
= dst_idx
? &dma_hw_desc
->sg3u
: &dma_hw_desc
->sg2u
;
639 psgl
= dst_idx
? &dma_hw_desc
->sg3l
: &dma_hw_desc
->sg2l
;
641 *psgl
= cpu_to_le32((u32
)tmplow
);
642 *psgu
|= cpu_to_le32((u32
)tmphi
);
644 case PPC440SPE_XOR_ID
:
645 xor_hw_desc
= desc
->hw_desc
;
646 xor_hw_desc
->cbtal
= addrl
;
647 xor_hw_desc
->cbtah
|= addrh
;
653 * ppc440spe_desc_set_byte_count - set number of data bytes involved
656 static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot
*desc
,
657 struct ppc440spe_adma_chan
*chan
,
660 struct dma_cdb
*dma_hw_desc
;
661 struct xor_cb
*xor_hw_desc
;
663 switch (chan
->device
->id
) {
664 case PPC440SPE_DMA0_ID
:
665 case PPC440SPE_DMA1_ID
:
666 dma_hw_desc
= desc
->hw_desc
;
667 dma_hw_desc
->cnt
= cpu_to_le32(byte_count
);
669 case PPC440SPE_XOR_ID
:
670 xor_hw_desc
= desc
->hw_desc
;
671 xor_hw_desc
->cbbc
= byte_count
;
677 * ppc440spe_desc_set_rxor_block_size - set RXOR block size
679 static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count
)
681 /* assume that byte_count is aligned on the 512-boundary;
682 * thus write it directly to the register (bits 23:31 are
685 dcr_write(ppc440spe_mq_dcr_host
, DCRN_MQ0_CF2H
, byte_count
);
689 * ppc440spe_desc_set_dcheck - set CHECK pattern
691 static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot
*desc
,
692 struct ppc440spe_adma_chan
*chan
, u8
*qword
)
694 struct dma_cdb
*dma_hw_desc
;
696 switch (chan
->device
->id
) {
697 case PPC440SPE_DMA0_ID
:
698 case PPC440SPE_DMA1_ID
:
699 dma_hw_desc
= desc
->hw_desc
;
700 iowrite32(qword
[0], &dma_hw_desc
->sg3l
);
701 iowrite32(qword
[4], &dma_hw_desc
->sg3u
);
702 iowrite32(qword
[8], &dma_hw_desc
->sg2l
);
703 iowrite32(qword
[12], &dma_hw_desc
->sg2u
);
711 * ppc440spe_xor_set_link - set link address in xor CB
713 static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot
*prev_desc
,
714 struct ppc440spe_adma_desc_slot
*next_desc
)
716 struct xor_cb
*xor_hw_desc
= prev_desc
->hw_desc
;
718 if (unlikely(!next_desc
|| !(next_desc
->phys
))) {
719 printk(KERN_ERR
"%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
721 next_desc
? next_desc
->phys
: 0);
725 xor_hw_desc
->cbs
= 0;
726 xor_hw_desc
->cblal
= next_desc
->phys
;
727 xor_hw_desc
->cblah
= 0;
728 xor_hw_desc
->cbc
|= XOR_CBCR_LNK_BIT
;
732 * ppc440spe_desc_set_link - set the address of descriptor following this
733 * descriptor in chain
735 static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan
*chan
,
736 struct ppc440spe_adma_desc_slot
*prev_desc
,
737 struct ppc440spe_adma_desc_slot
*next_desc
)
740 struct ppc440spe_adma_desc_slot
*tail
= next_desc
;
742 if (unlikely(!prev_desc
|| !next_desc
||
743 (prev_desc
->hw_next
&& prev_desc
->hw_next
!= next_desc
))) {
744 /* If previous next is overwritten something is wrong.
745 * though we may refetch from append to initiate list
746 * processing; in this case - it's ok.
748 printk(KERN_ERR
"%s: prev_desc=0x%p; next_desc=0x%p; "
749 "prev->hw_next=0x%p\n", __func__
, prev_desc
,
750 next_desc
, prev_desc
? prev_desc
->hw_next
: 0);
754 local_irq_save(flags
);
756 /* do s/w chaining both for DMA and XOR descriptors */
757 prev_desc
->hw_next
= next_desc
;
759 switch (chan
->device
->id
) {
760 case PPC440SPE_DMA0_ID
:
761 case PPC440SPE_DMA1_ID
:
763 case PPC440SPE_XOR_ID
:
764 /* bind descriptor to the chain */
765 while (tail
->hw_next
)
766 tail
= tail
->hw_next
;
767 xor_last_linked
= tail
;
769 if (prev_desc
== xor_last_submit
)
770 /* do not link to the last submitted CB */
772 ppc440spe_xor_set_link(prev_desc
, next_desc
);
776 local_irq_restore(flags
);
780 * ppc440spe_desc_get_link - get the address of the descriptor that
783 static inline u32
ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot
*desc
,
784 struct ppc440spe_adma_chan
*chan
)
789 return desc
->hw_next
->phys
;
793 * ppc440spe_desc_is_aligned - check alignment
795 static inline int ppc440spe_desc_is_aligned(
796 struct ppc440spe_adma_desc_slot
*desc
, int num_slots
)
798 return (desc
->idx
& (num_slots
- 1)) ? 0 : 1;
802 * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
805 static int ppc440spe_chan_xor_slot_count(size_t len
, int src_cnt
,
810 /* each XOR descriptor provides up to 16 source operands */
811 slot_cnt
= *slots_per_op
= (src_cnt
+ XOR_MAX_OPS
- 1)/XOR_MAX_OPS
;
813 if (likely(len
<= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT
))
816 printk(KERN_ERR
"%s: len %d > max %d !!\n",
817 __func__
, len
, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT
);
823 * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
826 static int ppc440spe_dma2_pq_slot_count(dma_addr_t
*srcs
,
827 int src_cnt
, size_t len
)
829 signed long long order
= 0;
833 for (i
= 1; i
< src_cnt
; i
++) {
834 dma_addr_t cur_addr
= srcs
[i
];
835 dma_addr_t old_addr
= srcs
[i
-1];
838 if (cur_addr
== old_addr
+ len
) {
844 } else if (old_addr
== cur_addr
+ len
) {
855 if (i
== src_cnt
-2 || (order
== -1
856 && cur_addr
!= old_addr
- len
)) {
860 } else if (cur_addr
== old_addr
+ len
*order
) {
864 } else if (cur_addr
== old_addr
+ 2*len
) {
868 } else if (cur_addr
== old_addr
+ 3*len
) {
887 if (src_cnt
<= 1 || (state
!= 1 && state
!= 2)) {
888 pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
889 __func__
, src_cnt
, state
, addr_count
, order
);
890 for (i
= 0; i
< src_cnt
; i
++)
891 pr_err("\t[%d] 0x%llx \n", i
, srcs
[i
]);
895 return (addr_count
+ XOR_MAX_OPS
- 1) / XOR_MAX_OPS
;
899 /******************************************************************************
900 * ADMA channel low-level routines
901 ******************************************************************************/
904 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan
*chan
);
905 static void ppc440spe_chan_append(struct ppc440spe_adma_chan
*chan
);
908 * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
910 static void ppc440spe_adma_device_clear_eot_status(
911 struct ppc440spe_adma_chan
*chan
)
913 struct dma_regs
*dma_reg
;
914 struct xor_regs
*xor_reg
;
915 u8
*p
= chan
->device
->dma_desc_pool_virt
;
919 switch (chan
->device
->id
) {
920 case PPC440SPE_DMA0_ID
:
921 case PPC440SPE_DMA1_ID
:
922 /* read FIFO to ack */
923 dma_reg
= chan
->device
->dma_reg
;
924 while ((rv
= ioread32(&dma_reg
->csfpl
))) {
925 i
= rv
& DMA_CDB_ADDR_MSK
;
926 cdb
= (struct dma_cdb
*)&p
[i
-
927 (u32
)chan
->device
->dma_desc_pool
];
929 /* Clear opcode to ack. This is necessary for
930 * ZeroSum operations only
934 if (test_bit(PPC440SPE_RXOR_RUN
,
935 &ppc440spe_rxor_state
)) {
936 /* probably this is a completed RXOR op,
937 * get pointer to CDB using the fact that
938 * physical and virtual addresses of CDB
939 * in pools have the same offsets
941 if (le32_to_cpu(cdb
->sg1u
) &
944 clear_bit(PPC440SPE_RXOR_RUN
,
945 &ppc440spe_rxor_state
);
949 if (rv
& DMA_CDB_STATUS_MSK
) {
950 /* ZeroSum check failed
952 struct ppc440spe_adma_desc_slot
*iter
;
953 dma_addr_t phys
= rv
& ~DMA_CDB_MSK
;
956 * Update the status of corresponding
959 list_for_each_entry(iter
, &chan
->chain
,
961 if (iter
->phys
== phys
)
965 * if cannot find the corresponding
968 BUG_ON(&iter
->chain_node
== &chan
->chain
);
970 if (iter
->xor_check_result
) {
971 if (test_bit(PPC440SPE_DESC_PCHECK
,
973 *iter
->xor_check_result
|=
976 if (test_bit(PPC440SPE_DESC_QCHECK
,
978 *iter
->xor_check_result
|=
986 rv
= ioread32(&dma_reg
->dsts
);
988 pr_err("DMA%d err status: 0x%x\n",
989 chan
->device
->id
, rv
);
990 /* write back to clear */
991 iowrite32(rv
, &dma_reg
->dsts
);
994 case PPC440SPE_XOR_ID
:
995 /* reset status bits to ack */
996 xor_reg
= chan
->device
->xor_reg
;
997 rv
= ioread32be(&xor_reg
->sr
);
998 iowrite32be(rv
, &xor_reg
->sr
);
1000 if (rv
& (XOR_IE_ICBIE_BIT
|XOR_IE_ICIE_BIT
|XOR_IE_RPTIE_BIT
)) {
1001 if (rv
& XOR_IE_RPTIE_BIT
) {
1002 /* Read PLB Timeout Error.
1003 * Try to resubmit the CB
1005 u32 val
= ioread32be(&xor_reg
->ccbalr
);
1007 iowrite32be(val
, &xor_reg
->cblalr
);
1009 val
= ioread32be(&xor_reg
->crsr
);
1010 iowrite32be(val
| XOR_CRSR_XAE_BIT
,
1013 pr_err("XOR ERR 0x%x status\n", rv
);
1017 /* if the XORcore is idle, but there are unprocessed CBs
1018 * then refetch the s/w chain here
1020 if (!(ioread32be(&xor_reg
->sr
) & XOR_SR_XCP_BIT
) &&
1022 ppc440spe_chan_append(chan
);
1028 * ppc440spe_chan_is_busy - get the channel status
1030 static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan
*chan
)
1032 struct dma_regs
*dma_reg
;
1033 struct xor_regs
*xor_reg
;
1036 switch (chan
->device
->id
) {
1037 case PPC440SPE_DMA0_ID
:
1038 case PPC440SPE_DMA1_ID
:
1039 dma_reg
= chan
->device
->dma_reg
;
1040 /* if command FIFO's head and tail pointers are equal and
1041 * status tail is the same as command, then channel is free
1043 if (ioread16(&dma_reg
->cpfhp
) != ioread16(&dma_reg
->cpftp
) ||
1044 ioread16(&dma_reg
->cpftp
) != ioread16(&dma_reg
->csftp
))
1047 case PPC440SPE_XOR_ID
:
1048 /* use the special status bit for the XORcore
1050 xor_reg
= chan
->device
->xor_reg
;
1051 busy
= (ioread32be(&xor_reg
->sr
) & XOR_SR_XCP_BIT
) ? 1 : 0;
1059 * ppc440spe_chan_set_first_xor_descriptor - init XORcore chain
1061 static void ppc440spe_chan_set_first_xor_descriptor(
1062 struct ppc440spe_adma_chan
*chan
,
1063 struct ppc440spe_adma_desc_slot
*next_desc
)
1065 struct xor_regs
*xor_reg
= chan
->device
->xor_reg
;
1067 if (ioread32be(&xor_reg
->sr
) & XOR_SR_XCP_BIT
)
1068 printk(KERN_INFO
"%s: Warn: XORcore is running "
1069 "when try to set the first CDB!\n",
1072 xor_last_submit
= xor_last_linked
= next_desc
;
1074 iowrite32be(XOR_CRSR_64BA_BIT
, &xor_reg
->crsr
);
1076 iowrite32be(next_desc
->phys
, &xor_reg
->cblalr
);
1077 iowrite32be(0, &xor_reg
->cblahr
);
1078 iowrite32be(ioread32be(&xor_reg
->cbcr
) | XOR_CBCR_LNK_BIT
,
1081 chan
->hw_chain_inited
= 1;
1085 * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
1086 * called with irqs disabled
1088 static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan
*chan
,
1089 struct ppc440spe_adma_desc_slot
*desc
)
1092 struct dma_regs
*dma_reg
= chan
->device
->dma_reg
;
1095 if (!test_bit(PPC440SPE_DESC_INT
, &desc
->flags
))
1096 pcdb
|= DMA_CDB_NO_INT
;
1098 chan_last_sub
[chan
->device
->id
] = desc
;
1100 ADMA_LL_DBG(print_cb(chan
, desc
->hw_desc
));
1102 iowrite32(pcdb
, &dma_reg
->cpfpl
);
1106 * ppc440spe_chan_append - update the h/w chain in the channel
1108 static void ppc440spe_chan_append(struct ppc440spe_adma_chan
*chan
)
1110 struct xor_regs
*xor_reg
;
1111 struct ppc440spe_adma_desc_slot
*iter
;
1114 unsigned long flags
;
1116 local_irq_save(flags
);
1118 switch (chan
->device
->id
) {
1119 case PPC440SPE_DMA0_ID
:
1120 case PPC440SPE_DMA1_ID
:
1121 cur_desc
= ppc440spe_chan_get_current_descriptor(chan
);
1123 if (likely(cur_desc
)) {
1124 iter
= chan_last_sub
[chan
->device
->id
];
1128 iter
= chan_first_cdb
[chan
->device
->id
];
1130 ppc440spe_dma_put_desc(chan
, iter
);
1131 chan
->hw_chain_inited
= 1;
1134 /* is there something new to append */
1138 /* flush descriptors from the s/w queue to fifo */
1139 list_for_each_entry_continue(iter
, &chan
->chain
, chain_node
) {
1140 ppc440spe_dma_put_desc(chan
, iter
);
1145 case PPC440SPE_XOR_ID
:
1146 /* update h/w links and refetch */
1147 if (!xor_last_submit
->hw_next
)
1150 xor_reg
= chan
->device
->xor_reg
;
1151 /* the last linked CDB has to generate an interrupt
1152 * that we'd be able to append the next lists to h/w
1153 * regardless of the XOR engine state at the moment of
1154 * appending of these next lists
1156 xcb
= xor_last_linked
->hw_desc
;
1157 xcb
->cbc
|= XOR_CBCR_CBCE_BIT
;
1159 if (!(ioread32be(&xor_reg
->sr
) & XOR_SR_XCP_BIT
)) {
1160 /* XORcore is idle. Refetch now */
1162 ppc440spe_xor_set_link(xor_last_submit
,
1163 xor_last_submit
->hw_next
);
1165 ADMA_LL_DBG(print_cb_list(chan
,
1166 xor_last_submit
->hw_next
));
1168 xor_last_submit
= xor_last_linked
;
1169 iowrite32be(ioread32be(&xor_reg
->crsr
) |
1170 XOR_CRSR_RCBE_BIT
| XOR_CRSR_64BA_BIT
,
1173 /* XORcore is running. Refetch later in the handler */
1180 local_irq_restore(flags
);
1184 * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
1187 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan
*chan
)
1189 struct dma_regs
*dma_reg
;
1190 struct xor_regs
*xor_reg
;
1192 if (unlikely(!chan
->hw_chain_inited
))
1193 /* h/w descriptor chain is not initialized yet */
1196 switch (chan
->device
->id
) {
1197 case PPC440SPE_DMA0_ID
:
1198 case PPC440SPE_DMA1_ID
:
1199 dma_reg
= chan
->device
->dma_reg
;
1200 return ioread32(&dma_reg
->acpl
) & (~DMA_CDB_MSK
);
1201 case PPC440SPE_XOR_ID
:
1202 xor_reg
= chan
->device
->xor_reg
;
1203 return ioread32be(&xor_reg
->ccbalr
);
1209 * ppc440spe_chan_run - enable the channel
1211 static void ppc440spe_chan_run(struct ppc440spe_adma_chan
*chan
)
1213 struct xor_regs
*xor_reg
;
1215 switch (chan
->device
->id
) {
1216 case PPC440SPE_DMA0_ID
:
1217 case PPC440SPE_DMA1_ID
:
1218 /* DMAs are always enabled, do nothing */
1220 case PPC440SPE_XOR_ID
:
1221 /* drain write buffer */
1222 xor_reg
= chan
->device
->xor_reg
;
1224 /* fetch descriptor pointed to in <link> */
1225 iowrite32be(XOR_CRSR_64BA_BIT
| XOR_CRSR_XAE_BIT
,
1231 /******************************************************************************
1233 ******************************************************************************/
1235 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan
*chan
);
1236 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan
*chan
);
1239 ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor
*tx
);
1241 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot
*tx
,
1242 dma_addr_t addr
, int index
);
1244 ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot
*tx
,
1245 dma_addr_t addr
, int index
);
1248 ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot
*tx
,
1249 dma_addr_t
*paddr
, unsigned long flags
);
1251 ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot
*tx
,
1252 dma_addr_t addr
, int index
);
1254 ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot
*tx
,
1255 unsigned char mult
, int index
, int dst_pos
);
1257 ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot
*tx
,
1258 dma_addr_t paddr
, dma_addr_t qaddr
);
1260 static struct page
*ppc440spe_rxor_srcs
[32];
1263 * ppc440spe_can_rxor - check if the operands may be processed with RXOR
1265 static int ppc440spe_can_rxor(struct page
**srcs
, int src_cnt
, size_t len
)
1267 int i
, order
= 0, state
= 0;
1270 if (unlikely(!(src_cnt
> 1)))
1273 BUG_ON(src_cnt
> ARRAY_SIZE(ppc440spe_rxor_srcs
));
1275 /* Skip holes in the source list before checking */
1276 for (i
= 0; i
< src_cnt
; i
++) {
1279 ppc440spe_rxor_srcs
[idx
++] = srcs
[i
];
1283 for (i
= 1; i
< src_cnt
; i
++) {
1284 char *cur_addr
= page_address(ppc440spe_rxor_srcs
[i
]);
1285 char *old_addr
= page_address(ppc440spe_rxor_srcs
[i
- 1]);
1289 if (cur_addr
== old_addr
+ len
) {
1293 } else if (old_addr
== cur_addr
+ len
) {
1301 if ((i
== src_cnt
- 2) ||
1302 (order
== -1 && cur_addr
!= old_addr
- len
)) {
1305 } else if ((cur_addr
== old_addr
+ len
* order
) ||
1306 (cur_addr
== old_addr
+ 2 * len
) ||
1307 (cur_addr
== old_addr
+ 3 * len
)) {
1322 if (state
== 1 || state
== 2)
1329 * ppc440spe_adma_device_estimate - estimate the efficiency of processing
1330 * the operation given on this channel. It's assumed that 'chan' is
1331 * capable to process 'cap' type of operation.
1332 * @chan: channel to use
1333 * @cap: type of transaction
1334 * @dst_lst: array of destination pointers
1335 * @dst_cnt: number of destination operands
1336 * @src_lst: array of source pointers
1337 * @src_cnt: number of source operands
1338 * @src_sz: size of each source operand
1340 static int ppc440spe_adma_estimate(struct dma_chan
*chan
,
1341 enum dma_transaction_type cap
, struct page
**dst_lst
, int dst_cnt
,
1342 struct page
**src_lst
, int src_cnt
, size_t src_sz
)
1346 if (cap
== DMA_PQ
|| cap
== DMA_PQ_VAL
) {
1347 /* If RAID-6 capabilities were not activated don't try
1350 if (unlikely(!ppc440spe_r6_enabled
))
1353 /* In the current implementation of ppc440spe ADMA driver it
1354 * makes sense to pick out only pq case, because it may be
1356 * (1) either using Biskup method on DMA2;
1358 * Thus we give a favour to (1) if the sources are suitable;
1359 * else let it be processed on one of the DMA0/1 engines.
1360 * In the sum_product case where destination is also the
1361 * source process it on DMA0/1 only.
1363 if (cap
== DMA_PQ
&& chan
->chan_id
== PPC440SPE_XOR_ID
) {
1365 if (dst_cnt
== 1 && src_cnt
== 2 && dst_lst
[0] == src_lst
[1])
1366 ef
= 0; /* sum_product case, process on DMA0/1 */
1367 else if (ppc440spe_can_rxor(src_lst
, src_cnt
, src_sz
))
1368 ef
= 3; /* override (DMA0/1 + idle) */
1370 ef
= 0; /* can't process on DMA2 if !rxor */
1373 /* channel idleness increases the priority */
1375 !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan
)))
1382 ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap
,
1383 struct page
**dst_lst
, int dst_cnt
, struct page
**src_lst
,
1384 int src_cnt
, size_t src_sz
)
1386 struct dma_chan
*best_chan
= NULL
;
1387 struct ppc_dma_chan_ref
*ref
;
1390 if (unlikely(!src_sz
))
1392 if (src_sz
> PAGE_SIZE
) {
1394 * should a user of the api ever pass > PAGE_SIZE requests
1395 * we sort out cases where temporary page-sized buffers
1400 if (src_cnt
== 1 && dst_lst
[1] == src_lst
[0])
1402 if (src_cnt
== 2 && dst_lst
[1] == src_lst
[1])
1413 list_for_each_entry(ref
, &ppc440spe_adma_chan_list
, node
) {
1414 if (dma_has_cap(cap
, ref
->chan
->device
->cap_mask
)) {
1417 rank
= ppc440spe_adma_estimate(ref
->chan
, cap
, dst_lst
,
1418 dst_cnt
, src_lst
, src_cnt
, src_sz
);
1419 if (rank
> best_rank
) {
1421 best_chan
= ref
->chan
;
1428 EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel
);
1431 * ppc440spe_get_group_entry - get group entry with index idx
1432 * @tdesc: is the last allocated slot in the group.
1434 static struct ppc440spe_adma_desc_slot
*
1435 ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot
*tdesc
, u32 entry_idx
)
1437 struct ppc440spe_adma_desc_slot
*iter
= tdesc
->group_head
;
1440 if (entry_idx
< 0 || entry_idx
>= (tdesc
->src_cnt
+ tdesc
->dst_cnt
)) {
1441 printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
1442 __func__
, entry_idx
, tdesc
->src_cnt
, tdesc
->dst_cnt
);
1446 list_for_each_entry(iter
, &tdesc
->group_list
, chain_node
) {
1447 if (i
++ == entry_idx
)
1454 * ppc440spe_adma_free_slots - flags descriptor slots for reuse
1455 * @slot: Slot to free
1456 * Caller must hold &ppc440spe_chan->lock while calling this function
1458 static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot
*slot
,
1459 struct ppc440spe_adma_chan
*chan
)
1461 int stride
= slot
->slots_per_op
;
1464 slot
->slots_per_op
= 0;
1465 slot
= list_entry(slot
->slot_node
.next
,
1466 struct ppc440spe_adma_desc_slot
,
1472 * ppc440spe_adma_run_tx_complete_actions - call functions to be called
1475 static dma_cookie_t
ppc440spe_adma_run_tx_complete_actions(
1476 struct ppc440spe_adma_desc_slot
*desc
,
1477 struct ppc440spe_adma_chan
*chan
,
1478 dma_cookie_t cookie
)
1480 BUG_ON(desc
->async_tx
.cookie
< 0);
1481 if (desc
->async_tx
.cookie
> 0) {
1482 cookie
= desc
->async_tx
.cookie
;
1483 desc
->async_tx
.cookie
= 0;
1485 /* call the callback (must not sleep or submit new
1486 * operations to this channel)
1488 if (desc
->async_tx
.callback
)
1489 desc
->async_tx
.callback(
1490 desc
->async_tx
.callback_param
);
1492 dma_descriptor_unmap(&desc
->async_tx
);
1495 /* run dependent operations */
1496 dma_run_dependencies(&desc
->async_tx
);
1502 * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
1504 static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot
*desc
,
1505 struct ppc440spe_adma_chan
*chan
)
1507 /* the client is allowed to attach dependent operations
1508 * until 'ack' is set
1510 if (!async_tx_test_ack(&desc
->async_tx
))
1513 /* leave the last descriptor in the chain
1514 * so we can append to it
1516 if (list_is_last(&desc
->chain_node
, &chan
->chain
) ||
1517 desc
->phys
== ppc440spe_chan_get_current_descriptor(chan
))
1520 if (chan
->device
->id
!= PPC440SPE_XOR_ID
) {
1521 /* our DMA interrupt handler clears opc field of
1522 * each processed descriptor. For all types of
1523 * operations except for ZeroSum we do not actually
1524 * need ack from the interrupt handler. ZeroSum is a
1525 * special case since the result of this operation
1526 * is available from the handler only, so if we see
1527 * such type of descriptor (which is unprocessed yet)
1528 * then leave it in chain.
1530 struct dma_cdb
*cdb
= desc
->hw_desc
;
1531 if (cdb
->opc
== DMA_CDB_OPC_DCHECK128
)
1535 dev_dbg(chan
->device
->common
.dev
, "\tfree slot %llx: %d stride: %d\n",
1536 desc
->phys
, desc
->idx
, desc
->slots_per_op
);
1538 list_del(&desc
->chain_node
);
1539 ppc440spe_adma_free_slots(desc
, chan
);
1544 * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
1545 * which runs through the channel CDBs list until reach the descriptor
1546 * currently processed. When routine determines that all CDBs of group
1547 * are completed then corresponding callbacks (if any) are called and slots
1550 static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan
*chan
)
1552 struct ppc440spe_adma_desc_slot
*iter
, *_iter
, *group_start
= NULL
;
1553 dma_cookie_t cookie
= 0;
1554 u32 current_desc
= ppc440spe_chan_get_current_descriptor(chan
);
1555 int busy
= ppc440spe_chan_is_busy(chan
);
1556 int seen_current
= 0, slot_cnt
= 0, slots_per_op
= 0;
1558 dev_dbg(chan
->device
->common
.dev
, "ppc440spe adma%d: %s\n",
1559 chan
->device
->id
, __func__
);
1561 if (!current_desc
) {
1562 /* There were no transactions yet, so
1568 /* free completed slots from the chain starting with
1569 * the oldest descriptor
1571 list_for_each_entry_safe(iter
, _iter
, &chan
->chain
,
1573 dev_dbg(chan
->device
->common
.dev
, "\tcookie: %d slot: %d "
1574 "busy: %d this_desc: %#llx next_desc: %#x "
1575 "cur: %#x ack: %d\n",
1576 iter
->async_tx
.cookie
, iter
->idx
, busy
, iter
->phys
,
1577 ppc440spe_desc_get_link(iter
, chan
), current_desc
,
1578 async_tx_test_ack(&iter
->async_tx
));
1580 prefetch(&_iter
->async_tx
);
1582 /* do not advance past the current descriptor loaded into the
1583 * hardware channel,subsequent descriptors are either in process
1584 * or have not been submitted
1589 /* stop the search if we reach the current descriptor and the
1590 * channel is busy, or if it appears that the current descriptor
1591 * needs to be re-read (i.e. has been appended to)
1593 if (iter
->phys
== current_desc
) {
1594 BUG_ON(seen_current
++);
1595 if (busy
|| ppc440spe_desc_get_link(iter
, chan
)) {
1596 /* not all descriptors of the group have
1597 * been completed; exit.
1603 /* detect the start of a group transaction */
1604 if (!slot_cnt
&& !slots_per_op
) {
1605 slot_cnt
= iter
->slot_cnt
;
1606 slots_per_op
= iter
->slots_per_op
;
1607 if (slot_cnt
<= slots_per_op
) {
1616 slot_cnt
-= slots_per_op
;
1619 /* all the members of a group are complete */
1620 if (slots_per_op
!= 0 && slot_cnt
== 0) {
1621 struct ppc440spe_adma_desc_slot
*grp_iter
, *_grp_iter
;
1622 int end_of_chain
= 0;
1624 /* clean up the group */
1625 slot_cnt
= group_start
->slot_cnt
;
1626 grp_iter
= group_start
;
1627 list_for_each_entry_safe_from(grp_iter
, _grp_iter
,
1628 &chan
->chain
, chain_node
) {
1630 cookie
= ppc440spe_adma_run_tx_complete_actions(
1631 grp_iter
, chan
, cookie
);
1633 slot_cnt
-= slots_per_op
;
1634 end_of_chain
= ppc440spe_adma_clean_slot(
1636 if (end_of_chain
&& slot_cnt
) {
1637 /* Should wait for ZeroSum completion */
1639 chan
->common
.completed_cookie
= cookie
;
1643 if (slot_cnt
== 0 || end_of_chain
)
1647 /* the group should be complete at this point */
1656 } else if (slots_per_op
) /* wait for group completion */
1659 cookie
= ppc440spe_adma_run_tx_complete_actions(iter
, chan
,
1662 if (ppc440spe_adma_clean_slot(iter
, chan
))
1666 BUG_ON(!seen_current
);
1669 chan
->common
.completed_cookie
= cookie
;
1670 pr_debug("\tcompleted cookie %d\n", cookie
);
1676 * ppc440spe_adma_tasklet - clean up watch-dog initiator
1678 static void ppc440spe_adma_tasklet(unsigned long data
)
1680 struct ppc440spe_adma_chan
*chan
= (struct ppc440spe_adma_chan
*) data
;
1682 spin_lock_nested(&chan
->lock
, SINGLE_DEPTH_NESTING
);
1683 __ppc440spe_adma_slot_cleanup(chan
);
1684 spin_unlock(&chan
->lock
);
1688 * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
1690 static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan
*chan
)
1692 spin_lock_bh(&chan
->lock
);
1693 __ppc440spe_adma_slot_cleanup(chan
);
1694 spin_unlock_bh(&chan
->lock
);
1698 * ppc440spe_adma_alloc_slots - allocate free slots (if any)
1700 static struct ppc440spe_adma_desc_slot
*ppc440spe_adma_alloc_slots(
1701 struct ppc440spe_adma_chan
*chan
, int num_slots
,
1704 struct ppc440spe_adma_desc_slot
*iter
= NULL
, *_iter
;
1705 struct ppc440spe_adma_desc_slot
*alloc_start
= NULL
;
1706 struct list_head chain
= LIST_HEAD_INIT(chain
);
1707 int slots_found
, retry
= 0;
1710 BUG_ON(!num_slots
|| !slots_per_op
);
1711 /* start search from the last allocated descrtiptor
1712 * if a contiguous allocation can not be found start searching
1713 * from the beginning of the list
1718 iter
= chan
->last_used
;
1720 iter
= list_entry(&chan
->all_slots
,
1721 struct ppc440spe_adma_desc_slot
,
1723 list_for_each_entry_safe_continue(iter
, _iter
, &chan
->all_slots
,
1726 prefetch(&_iter
->async_tx
);
1727 if (iter
->slots_per_op
) {
1732 /* start the allocation if the slot is correctly aligned */
1736 if (slots_found
== num_slots
) {
1737 struct ppc440spe_adma_desc_slot
*alloc_tail
= NULL
;
1738 struct ppc440spe_adma_desc_slot
*last_used
= NULL
;
1743 /* pre-ack all but the last descriptor */
1744 if (num_slots
!= slots_per_op
)
1745 async_tx_ack(&iter
->async_tx
);
1747 list_add_tail(&iter
->chain_node
, &chain
);
1749 iter
->async_tx
.cookie
= 0;
1750 iter
->hw_next
= NULL
;
1752 iter
->slot_cnt
= num_slots
;
1753 iter
->xor_check_result
= NULL
;
1754 for (i
= 0; i
< slots_per_op
; i
++) {
1755 iter
->slots_per_op
= slots_per_op
- i
;
1757 iter
= list_entry(iter
->slot_node
.next
,
1758 struct ppc440spe_adma_desc_slot
,
1761 num_slots
-= slots_per_op
;
1763 alloc_tail
->group_head
= alloc_start
;
1764 alloc_tail
->async_tx
.cookie
= -EBUSY
;
1765 list_splice(&chain
, &alloc_tail
->group_list
);
1766 chan
->last_used
= last_used
;
1773 /* try to free some slots if the allocation fails */
1774 tasklet_schedule(&chan
->irq_tasklet
);
1779 * ppc440spe_adma_alloc_chan_resources - allocate pools for CDB slots
1781 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan
*chan
)
1783 struct ppc440spe_adma_chan
*ppc440spe_chan
;
1784 struct ppc440spe_adma_desc_slot
*slot
= NULL
;
1789 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
1790 init
= ppc440spe_chan
->slots_allocated
? 0 : 1;
1791 chan
->chan_id
= ppc440spe_chan
->device
->id
;
1793 /* Allocate descriptor slots */
1794 i
= ppc440spe_chan
->slots_allocated
;
1795 if (ppc440spe_chan
->device
->id
!= PPC440SPE_XOR_ID
)
1796 db_sz
= sizeof(struct dma_cdb
);
1798 db_sz
= sizeof(struct xor_cb
);
1800 for (; i
< (ppc440spe_chan
->device
->pool_size
/ db_sz
); i
++) {
1801 slot
= kzalloc(sizeof(struct ppc440spe_adma_desc_slot
),
1804 printk(KERN_INFO
"SPE ADMA Channel only initialized"
1805 " %d descriptor slots", i
--);
1809 hw_desc
= (char *) ppc440spe_chan
->device
->dma_desc_pool_virt
;
1810 slot
->hw_desc
= (void *) &hw_desc
[i
* db_sz
];
1811 dma_async_tx_descriptor_init(&slot
->async_tx
, chan
);
1812 slot
->async_tx
.tx_submit
= ppc440spe_adma_tx_submit
;
1813 INIT_LIST_HEAD(&slot
->chain_node
);
1814 INIT_LIST_HEAD(&slot
->slot_node
);
1815 INIT_LIST_HEAD(&slot
->group_list
);
1816 slot
->phys
= ppc440spe_chan
->device
->dma_desc_pool
+ i
* db_sz
;
1819 spin_lock_bh(&ppc440spe_chan
->lock
);
1820 ppc440spe_chan
->slots_allocated
++;
1821 list_add_tail(&slot
->slot_node
, &ppc440spe_chan
->all_slots
);
1822 spin_unlock_bh(&ppc440spe_chan
->lock
);
1825 if (i
&& !ppc440spe_chan
->last_used
) {
1826 ppc440spe_chan
->last_used
=
1827 list_entry(ppc440spe_chan
->all_slots
.next
,
1828 struct ppc440spe_adma_desc_slot
,
1832 dev_dbg(ppc440spe_chan
->device
->common
.dev
,
1833 "ppc440spe adma%d: allocated %d descriptor slots\n",
1834 ppc440spe_chan
->device
->id
, i
);
1836 /* initialize the channel and the chain with a null operation */
1838 switch (ppc440spe_chan
->device
->id
) {
1839 case PPC440SPE_DMA0_ID
:
1840 case PPC440SPE_DMA1_ID
:
1841 ppc440spe_chan
->hw_chain_inited
= 0;
1842 /* Use WXOR for self-testing */
1843 if (!ppc440spe_r6_tchan
)
1844 ppc440spe_r6_tchan
= ppc440spe_chan
;
1846 case PPC440SPE_XOR_ID
:
1847 ppc440spe_chan_start_null_xor(ppc440spe_chan
);
1852 ppc440spe_chan
->needs_unmap
= 1;
1855 return (i
> 0) ? i
: -ENOMEM
;
1859 * ppc440spe_rxor_set_region_data -
1861 static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot
*desc
,
1862 u8 xor_arg_no
, u32 mask
)
1864 struct xor_cb
*xcb
= desc
->hw_desc
;
1866 xcb
->ops
[xor_arg_no
].h
|= mask
;
1870 * ppc440spe_rxor_set_src -
1872 static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot
*desc
,
1873 u8 xor_arg_no
, dma_addr_t addr
)
1875 struct xor_cb
*xcb
= desc
->hw_desc
;
1877 xcb
->ops
[xor_arg_no
].h
|= DMA_CUED_XOR_BASE
;
1878 xcb
->ops
[xor_arg_no
].l
= addr
;
1882 * ppc440spe_rxor_set_mult -
1884 static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot
*desc
,
1885 u8 xor_arg_no
, u8 idx
, u8 mult
)
1887 struct xor_cb
*xcb
= desc
->hw_desc
;
1889 xcb
->ops
[xor_arg_no
].h
|= mult
<< (DMA_CUED_MULT1_OFF
+ idx
* 8);
1893 * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
1896 static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan
*chan
)
1898 dev_dbg(chan
->device
->common
.dev
, "ppc440spe adma%d: pending: %d\n",
1899 chan
->device
->id
, chan
->pending
);
1901 if (chan
->pending
>= PPC440SPE_ADMA_THRESHOLD
) {
1903 ppc440spe_chan_append(chan
);
1908 * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
1909 * (it's not necessary that descriptors will be submitted to the h/w
1910 * chains too right now)
1912 static dma_cookie_t
ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor
*tx
)
1914 struct ppc440spe_adma_desc_slot
*sw_desc
;
1915 struct ppc440spe_adma_chan
*chan
= to_ppc440spe_adma_chan(tx
->chan
);
1916 struct ppc440spe_adma_desc_slot
*group_start
, *old_chain_tail
;
1919 dma_cookie_t cookie
;
1921 sw_desc
= tx_to_ppc440spe_adma_slot(tx
);
1923 group_start
= sw_desc
->group_head
;
1924 slot_cnt
= group_start
->slot_cnt
;
1925 slots_per_op
= group_start
->slots_per_op
;
1927 spin_lock_bh(&chan
->lock
);
1928 cookie
= dma_cookie_assign(tx
);
1930 if (unlikely(list_empty(&chan
->chain
))) {
1932 list_splice_init(&sw_desc
->group_list
, &chan
->chain
);
1933 chan_first_cdb
[chan
->device
->id
] = group_start
;
1935 /* isn't first peer, bind CDBs to chain */
1936 old_chain_tail
= list_entry(chan
->chain
.prev
,
1937 struct ppc440spe_adma_desc_slot
,
1939 list_splice_init(&sw_desc
->group_list
,
1940 &old_chain_tail
->chain_node
);
1941 /* fix up the hardware chain */
1942 ppc440spe_desc_set_link(chan
, old_chain_tail
, group_start
);
1945 /* increment the pending count by the number of operations */
1946 chan
->pending
+= slot_cnt
/ slots_per_op
;
1947 ppc440spe_adma_check_threshold(chan
);
1948 spin_unlock_bh(&chan
->lock
);
1950 dev_dbg(chan
->device
->common
.dev
,
1951 "ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
1952 chan
->device
->id
, __func__
,
1953 sw_desc
->async_tx
.cookie
, sw_desc
->idx
, sw_desc
);
1959 * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
1961 static struct dma_async_tx_descriptor
*ppc440spe_adma_prep_dma_interrupt(
1962 struct dma_chan
*chan
, unsigned long flags
)
1964 struct ppc440spe_adma_chan
*ppc440spe_chan
;
1965 struct ppc440spe_adma_desc_slot
*sw_desc
, *group_start
;
1966 int slot_cnt
, slots_per_op
;
1968 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
1970 dev_dbg(ppc440spe_chan
->device
->common
.dev
,
1971 "ppc440spe adma%d: %s\n", ppc440spe_chan
->device
->id
,
1974 spin_lock_bh(&ppc440spe_chan
->lock
);
1975 slot_cnt
= slots_per_op
= 1;
1976 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
,
1979 group_start
= sw_desc
->group_head
;
1980 ppc440spe_desc_init_interrupt(group_start
, ppc440spe_chan
);
1981 group_start
->unmap_len
= 0;
1982 sw_desc
->async_tx
.flags
= flags
;
1984 spin_unlock_bh(&ppc440spe_chan
->lock
);
1986 return sw_desc
? &sw_desc
->async_tx
: NULL
;
1990 * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
1992 static struct dma_async_tx_descriptor
*ppc440spe_adma_prep_dma_memcpy(
1993 struct dma_chan
*chan
, dma_addr_t dma_dest
,
1994 dma_addr_t dma_src
, size_t len
, unsigned long flags
)
1996 struct ppc440spe_adma_chan
*ppc440spe_chan
;
1997 struct ppc440spe_adma_desc_slot
*sw_desc
, *group_start
;
1998 int slot_cnt
, slots_per_op
;
2000 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
2005 BUG_ON(len
> PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT
);
2007 spin_lock_bh(&ppc440spe_chan
->lock
);
2009 dev_dbg(ppc440spe_chan
->device
->common
.dev
,
2010 "ppc440spe adma%d: %s len: %u int_en %d\n",
2011 ppc440spe_chan
->device
->id
, __func__
, len
,
2012 flags
& DMA_PREP_INTERRUPT
? 1 : 0);
2013 slot_cnt
= slots_per_op
= 1;
2014 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
,
2017 group_start
= sw_desc
->group_head
;
2018 ppc440spe_desc_init_memcpy(group_start
, flags
);
2019 ppc440spe_adma_set_dest(group_start
, dma_dest
, 0);
2020 ppc440spe_adma_memcpy_xor_set_src(group_start
, dma_src
, 0);
2021 ppc440spe_desc_set_byte_count(group_start
, ppc440spe_chan
, len
);
2022 sw_desc
->unmap_len
= len
;
2023 sw_desc
->async_tx
.flags
= flags
;
2025 spin_unlock_bh(&ppc440spe_chan
->lock
);
2027 return sw_desc
? &sw_desc
->async_tx
: NULL
;
2031 * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
2033 static struct dma_async_tx_descriptor
*ppc440spe_adma_prep_dma_xor(
2034 struct dma_chan
*chan
, dma_addr_t dma_dest
,
2035 dma_addr_t
*dma_src
, u32 src_cnt
, size_t len
,
2036 unsigned long flags
)
2038 struct ppc440spe_adma_chan
*ppc440spe_chan
;
2039 struct ppc440spe_adma_desc_slot
*sw_desc
, *group_start
;
2040 int slot_cnt
, slots_per_op
;
2042 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
2044 ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan
->device
->id
,
2045 dma_dest
, dma_src
, src_cnt
));
2048 BUG_ON(len
> PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT
);
2050 dev_dbg(ppc440spe_chan
->device
->common
.dev
,
2051 "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2052 ppc440spe_chan
->device
->id
, __func__
, src_cnt
, len
,
2053 flags
& DMA_PREP_INTERRUPT
? 1 : 0);
2055 spin_lock_bh(&ppc440spe_chan
->lock
);
2056 slot_cnt
= ppc440spe_chan_xor_slot_count(len
, src_cnt
, &slots_per_op
);
2057 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
,
2060 group_start
= sw_desc
->group_head
;
2061 ppc440spe_desc_init_xor(group_start
, src_cnt
, flags
);
2062 ppc440spe_adma_set_dest(group_start
, dma_dest
, 0);
2064 ppc440spe_adma_memcpy_xor_set_src(group_start
,
2065 dma_src
[src_cnt
], src_cnt
);
2066 ppc440spe_desc_set_byte_count(group_start
, ppc440spe_chan
, len
);
2067 sw_desc
->unmap_len
= len
;
2068 sw_desc
->async_tx
.flags
= flags
;
2070 spin_unlock_bh(&ppc440spe_chan
->lock
);
2072 return sw_desc
? &sw_desc
->async_tx
: NULL
;
2076 ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot
*desc
,
2078 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor
*cursor
);
2081 * ppc440spe_adma_init_dma2rxor_slot -
2083 static void ppc440spe_adma_init_dma2rxor_slot(
2084 struct ppc440spe_adma_desc_slot
*desc
,
2085 dma_addr_t
*src
, int src_cnt
)
2089 /* initialize CDB */
2090 for (i
= 0; i
< src_cnt
; i
++) {
2091 ppc440spe_adma_dma2rxor_prep_src(desc
, &desc
->rxor_cursor
, i
,
2092 desc
->src_cnt
, (u32
)src
[i
]);
2097 * ppc440spe_dma01_prep_mult -
2098 * for Q operation where destination is also the source
2100 static struct ppc440spe_adma_desc_slot
*ppc440spe_dma01_prep_mult(
2101 struct ppc440spe_adma_chan
*ppc440spe_chan
,
2102 dma_addr_t
*dst
, int dst_cnt
, dma_addr_t
*src
, int src_cnt
,
2103 const unsigned char *scf
, size_t len
, unsigned long flags
)
2105 struct ppc440spe_adma_desc_slot
*sw_desc
= NULL
;
2106 unsigned long op
= 0;
2109 set_bit(PPC440SPE_DESC_WXOR
, &op
);
2112 spin_lock_bh(&ppc440spe_chan
->lock
);
2114 /* use WXOR, each descriptor occupies one slot */
2115 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
, 1);
2117 struct ppc440spe_adma_chan
*chan
;
2118 struct ppc440spe_adma_desc_slot
*iter
;
2119 struct dma_cdb
*hw_desc
;
2121 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
2122 set_bits(op
, &sw_desc
->flags
);
2123 sw_desc
->src_cnt
= src_cnt
;
2124 sw_desc
->dst_cnt
= dst_cnt
;
2125 /* First descriptor, zero data in the destination and copy it
2126 * to q page using MULTICAST transfer.
2128 iter
= list_first_entry(&sw_desc
->group_list
,
2129 struct ppc440spe_adma_desc_slot
,
2131 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
2132 /* set 'next' pointer */
2133 iter
->hw_next
= list_entry(iter
->chain_node
.next
,
2134 struct ppc440spe_adma_desc_slot
,
2136 clear_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2137 hw_desc
= iter
->hw_desc
;
2138 hw_desc
->opc
= DMA_CDB_OPC_MULTICAST
;
2140 ppc440spe_desc_set_dest_addr(iter
, chan
,
2141 DMA_CUED_XOR_BASE
, dst
[0], 0);
2142 ppc440spe_desc_set_dest_addr(iter
, chan
, 0, dst
[1], 1);
2143 ppc440spe_desc_set_src_addr(iter
, chan
, 0, DMA_CUED_XOR_HB
,
2145 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
, len
);
2146 iter
->unmap_len
= len
;
2149 * Second descriptor, multiply data from the q page
2150 * and store the result in real destination.
2152 iter
= list_first_entry(&iter
->chain_node
,
2153 struct ppc440spe_adma_desc_slot
,
2155 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
2156 iter
->hw_next
= NULL
;
2157 if (flags
& DMA_PREP_INTERRUPT
)
2158 set_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2160 clear_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2162 hw_desc
= iter
->hw_desc
;
2163 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
2164 ppc440spe_desc_set_src_addr(iter
, chan
, 0,
2165 DMA_CUED_XOR_HB
, dst
[1]);
2166 ppc440spe_desc_set_dest_addr(iter
, chan
,
2167 DMA_CUED_XOR_BASE
, dst
[0], 0);
2169 ppc440spe_desc_set_src_mult(iter
, chan
, DMA_CUED_MULT1_OFF
,
2170 DMA_CDB_SG_DST1
, scf
[0]);
2171 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
, len
);
2172 iter
->unmap_len
= len
;
2173 sw_desc
->async_tx
.flags
= flags
;
2176 spin_unlock_bh(&ppc440spe_chan
->lock
);
2182 * ppc440spe_dma01_prep_sum_product -
2183 * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
2186 static struct ppc440spe_adma_desc_slot
*ppc440spe_dma01_prep_sum_product(
2187 struct ppc440spe_adma_chan
*ppc440spe_chan
,
2188 dma_addr_t
*dst
, dma_addr_t
*src
, int src_cnt
,
2189 const unsigned char *scf
, size_t len
, unsigned long flags
)
2191 struct ppc440spe_adma_desc_slot
*sw_desc
= NULL
;
2192 unsigned long op
= 0;
2195 set_bit(PPC440SPE_DESC_WXOR
, &op
);
2198 spin_lock_bh(&ppc440spe_chan
->lock
);
2200 /* WXOR, each descriptor occupies one slot */
2201 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
, 1);
2203 struct ppc440spe_adma_chan
*chan
;
2204 struct ppc440spe_adma_desc_slot
*iter
;
2205 struct dma_cdb
*hw_desc
;
2207 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
2208 set_bits(op
, &sw_desc
->flags
);
2209 sw_desc
->src_cnt
= src_cnt
;
2210 sw_desc
->dst_cnt
= 1;
2211 /* 1st descriptor, src[1] data to q page and zero destination */
2212 iter
= list_first_entry(&sw_desc
->group_list
,
2213 struct ppc440spe_adma_desc_slot
,
2215 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
2216 iter
->hw_next
= list_entry(iter
->chain_node
.next
,
2217 struct ppc440spe_adma_desc_slot
,
2219 clear_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2220 hw_desc
= iter
->hw_desc
;
2221 hw_desc
->opc
= DMA_CDB_OPC_MULTICAST
;
2223 ppc440spe_desc_set_dest_addr(iter
, chan
, DMA_CUED_XOR_BASE
,
2225 ppc440spe_desc_set_dest_addr(iter
, chan
, 0,
2226 ppc440spe_chan
->qdest
, 1);
2227 ppc440spe_desc_set_src_addr(iter
, chan
, 0, DMA_CUED_XOR_HB
,
2229 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
, len
);
2230 iter
->unmap_len
= len
;
2232 /* 2nd descriptor, multiply src[1] data and store the
2233 * result in destination */
2234 iter
= list_first_entry(&iter
->chain_node
,
2235 struct ppc440spe_adma_desc_slot
,
2237 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
2238 /* set 'next' pointer */
2239 iter
->hw_next
= list_entry(iter
->chain_node
.next
,
2240 struct ppc440spe_adma_desc_slot
,
2242 if (flags
& DMA_PREP_INTERRUPT
)
2243 set_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2245 clear_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2247 hw_desc
= iter
->hw_desc
;
2248 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
2249 ppc440spe_desc_set_src_addr(iter
, chan
, 0, DMA_CUED_XOR_HB
,
2250 ppc440spe_chan
->qdest
);
2251 ppc440spe_desc_set_dest_addr(iter
, chan
, DMA_CUED_XOR_BASE
,
2253 ppc440spe_desc_set_src_mult(iter
, chan
, DMA_CUED_MULT1_OFF
,
2254 DMA_CDB_SG_DST1
, scf
[1]);
2255 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
, len
);
2256 iter
->unmap_len
= len
;
2259 * 3rd descriptor, multiply src[0] data and xor it
2262 iter
= list_first_entry(&iter
->chain_node
,
2263 struct ppc440spe_adma_desc_slot
,
2265 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
2266 iter
->hw_next
= NULL
;
2267 if (flags
& DMA_PREP_INTERRUPT
)
2268 set_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2270 clear_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2272 hw_desc
= iter
->hw_desc
;
2273 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
2274 ppc440spe_desc_set_src_addr(iter
, chan
, 0, DMA_CUED_XOR_HB
,
2276 ppc440spe_desc_set_dest_addr(iter
, chan
, DMA_CUED_XOR_BASE
,
2278 ppc440spe_desc_set_src_mult(iter
, chan
, DMA_CUED_MULT1_OFF
,
2279 DMA_CDB_SG_DST1
, scf
[0]);
2280 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
, len
);
2281 iter
->unmap_len
= len
;
2282 sw_desc
->async_tx
.flags
= flags
;
2285 spin_unlock_bh(&ppc440spe_chan
->lock
);
2290 static struct ppc440spe_adma_desc_slot
*ppc440spe_dma01_prep_pq(
2291 struct ppc440spe_adma_chan
*ppc440spe_chan
,
2292 dma_addr_t
*dst
, int dst_cnt
, dma_addr_t
*src
, int src_cnt
,
2293 const unsigned char *scf
, size_t len
, unsigned long flags
)
2296 struct ppc440spe_adma_desc_slot
*sw_desc
= NULL
, *iter
;
2297 unsigned long op
= 0;
2298 unsigned char mult
= 1;
2300 pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2301 __func__
, dst_cnt
, src_cnt
, len
);
2302 /* select operations WXOR/RXOR depending on the
2303 * source addresses of operators and the number
2304 * of destinations (RXOR support only Q-parity calculations)
2306 set_bit(PPC440SPE_DESC_WXOR
, &op
);
2307 if (!test_and_set_bit(PPC440SPE_RXOR_RUN
, &ppc440spe_rxor_state
)) {
2310 * - there are more than 1 source,
2311 * - len is aligned on 512-byte boundary,
2312 * - source addresses fit to one of 4 possible regions.
2315 !(len
& MQ0_CF2H_RXOR_BS_MASK
) &&
2316 (src
[0] + len
) == src
[1]) {
2317 /* may do RXOR R1 R2 */
2318 set_bit(PPC440SPE_DESC_RXOR
, &op
);
2320 /* may try to enhance region of RXOR */
2321 if ((src
[1] + len
) == src
[2]) {
2322 /* do RXOR R1 R2 R3 */
2323 set_bit(PPC440SPE_DESC_RXOR123
,
2325 } else if ((src
[1] + len
* 2) == src
[2]) {
2326 /* do RXOR R1 R2 R4 */
2327 set_bit(PPC440SPE_DESC_RXOR124
, &op
);
2328 } else if ((src
[1] + len
* 3) == src
[2]) {
2329 /* do RXOR R1 R2 R5 */
2330 set_bit(PPC440SPE_DESC_RXOR125
,
2334 set_bit(PPC440SPE_DESC_RXOR12
,
2339 set_bit(PPC440SPE_DESC_RXOR12
, &op
);
2343 if (!test_bit(PPC440SPE_DESC_RXOR
, &op
)) {
2344 /* can not do this operation with RXOR */
2345 clear_bit(PPC440SPE_RXOR_RUN
,
2346 &ppc440spe_rxor_state
);
2348 /* can do; set block size right now */
2349 ppc440spe_desc_set_rxor_block_size(len
);
2353 /* Number of necessary slots depends on operation type selected */
2354 if (!test_bit(PPC440SPE_DESC_RXOR
, &op
)) {
2355 /* This is a WXOR only chain. Need descriptors for each
2356 * source to GF-XOR them with WXOR, and need descriptors
2357 * for each destination to zero them with WXOR
2361 if (flags
& DMA_PREP_ZERO_P
) {
2363 set_bit(PPC440SPE_ZERO_P
, &op
);
2365 if (flags
& DMA_PREP_ZERO_Q
) {
2367 set_bit(PPC440SPE_ZERO_Q
, &op
);
2370 /* Need 1/2 descriptor for RXOR operation, and
2371 * need (src_cnt - (2 or 3)) for WXOR of sources
2376 if (flags
& DMA_PREP_ZERO_P
)
2377 set_bit(PPC440SPE_ZERO_P
, &op
);
2378 if (flags
& DMA_PREP_ZERO_Q
)
2379 set_bit(PPC440SPE_ZERO_Q
, &op
);
2381 if (test_bit(PPC440SPE_DESC_RXOR12
, &op
))
2382 slot_cnt
+= src_cnt
- 2;
2384 slot_cnt
+= src_cnt
- 3;
2386 /* Thus we have either RXOR only chain or
2389 if (slot_cnt
== dst_cnt
)
2390 /* RXOR only chain */
2391 clear_bit(PPC440SPE_DESC_WXOR
, &op
);
2394 spin_lock_bh(&ppc440spe_chan
->lock
);
2395 /* for both RXOR/WXOR each descriptor occupies one slot */
2396 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
, 1);
2398 ppc440spe_desc_init_dma01pq(sw_desc
, dst_cnt
, src_cnt
,
2401 /* setup dst/src/mult */
2402 pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
2403 __func__
, dst
[0], dst
[1]);
2404 ppc440spe_adma_pq_set_dest(sw_desc
, dst
, flags
);
2406 ppc440spe_adma_pq_set_src(sw_desc
, src
[src_cnt
],
2409 /* NOTE: "Multi = 0 is equivalent to = 1" as it
2410 * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
2411 * doesn't work for RXOR with DMA0/1! Instead, multi=0
2412 * leads to zeroing source data after RXOR.
2413 * So, for P case set-up mult=1 explicitly.
2415 if (!(flags
& DMA_PREP_PQ_DISABLE_Q
))
2416 mult
= scf
[src_cnt
];
2417 ppc440spe_adma_pq_set_src_mult(sw_desc
,
2418 mult
, src_cnt
, dst_cnt
- 1);
2421 /* Setup byte count foreach slot just allocated */
2422 sw_desc
->async_tx
.flags
= flags
;
2423 list_for_each_entry(iter
, &sw_desc
->group_list
,
2425 ppc440spe_desc_set_byte_count(iter
,
2426 ppc440spe_chan
, len
);
2427 iter
->unmap_len
= len
;
2430 spin_unlock_bh(&ppc440spe_chan
->lock
);
2435 static struct ppc440spe_adma_desc_slot
*ppc440spe_dma2_prep_pq(
2436 struct ppc440spe_adma_chan
*ppc440spe_chan
,
2437 dma_addr_t
*dst
, int dst_cnt
, dma_addr_t
*src
, int src_cnt
,
2438 const unsigned char *scf
, size_t len
, unsigned long flags
)
2440 int slot_cnt
, descs_per_op
;
2441 struct ppc440spe_adma_desc_slot
*sw_desc
= NULL
, *iter
;
2442 unsigned long op
= 0;
2443 unsigned char mult
= 1;
2446 /*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2447 __func__, dst_cnt, src_cnt, len);*/
2449 spin_lock_bh(&ppc440spe_chan
->lock
);
2450 descs_per_op
= ppc440spe_dma2_pq_slot_count(src
, src_cnt
, len
);
2451 if (descs_per_op
< 0) {
2452 spin_unlock_bh(&ppc440spe_chan
->lock
);
2456 /* depending on number of sources we have 1 or 2 RXOR chains */
2457 slot_cnt
= descs_per_op
* dst_cnt
;
2459 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
, 1);
2462 sw_desc
->async_tx
.flags
= flags
;
2463 list_for_each_entry(iter
, &sw_desc
->group_list
, chain_node
) {
2464 ppc440spe_desc_init_dma2pq(iter
, dst_cnt
, src_cnt
,
2466 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
,
2468 iter
->unmap_len
= len
;
2470 ppc440spe_init_rxor_cursor(&(iter
->rxor_cursor
));
2471 iter
->rxor_cursor
.len
= len
;
2472 iter
->descs_per_op
= descs_per_op
;
2475 list_for_each_entry(iter
, &sw_desc
->group_list
, chain_node
) {
2477 if (op
% descs_per_op
== 0)
2478 ppc440spe_adma_init_dma2rxor_slot(iter
, src
,
2480 if (likely(!list_is_last(&iter
->chain_node
,
2481 &sw_desc
->group_list
))) {
2482 /* set 'next' pointer */
2484 list_entry(iter
->chain_node
.next
,
2485 struct ppc440spe_adma_desc_slot
,
2487 ppc440spe_xor_set_link(iter
, iter
->hw_next
);
2489 /* this is the last descriptor. */
2490 iter
->hw_next
= NULL
;
2494 /* fixup head descriptor */
2495 sw_desc
->dst_cnt
= dst_cnt
;
2496 if (flags
& DMA_PREP_ZERO_P
)
2497 set_bit(PPC440SPE_ZERO_P
, &sw_desc
->flags
);
2498 if (flags
& DMA_PREP_ZERO_Q
)
2499 set_bit(PPC440SPE_ZERO_Q
, &sw_desc
->flags
);
2501 /* setup dst/src/mult */
2502 ppc440spe_adma_pq_set_dest(sw_desc
, dst
, flags
);
2505 /* handle descriptors (if dst_cnt == 2) inside
2506 * the ppc440spe_adma_pq_set_srcxxx() functions
2508 ppc440spe_adma_pq_set_src(sw_desc
, src
[src_cnt
],
2510 if (!(flags
& DMA_PREP_PQ_DISABLE_Q
))
2511 mult
= scf
[src_cnt
];
2512 ppc440spe_adma_pq_set_src_mult(sw_desc
,
2513 mult
, src_cnt
, dst_cnt
- 1);
2516 spin_unlock_bh(&ppc440spe_chan
->lock
);
2517 ppc440spe_desc_set_rxor_block_size(len
);
2522 * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
2524 static struct dma_async_tx_descriptor
*ppc440spe_adma_prep_dma_pq(
2525 struct dma_chan
*chan
, dma_addr_t
*dst
, dma_addr_t
*src
,
2526 unsigned int src_cnt
, const unsigned char *scf
,
2527 size_t len
, unsigned long flags
)
2529 struct ppc440spe_adma_chan
*ppc440spe_chan
;
2530 struct ppc440spe_adma_desc_slot
*sw_desc
= NULL
;
2533 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
2535 ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan
->device
->id
,
2536 dst
, src
, src_cnt
));
2538 BUG_ON(len
> PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT
);
2541 if (src_cnt
== 1 && dst
[1] == src
[0]) {
2544 /* dst[1] is real destination (Q) */
2546 /* this is the page to multicast source data to */
2547 dest
[1] = ppc440spe_chan
->qdest
;
2548 sw_desc
= ppc440spe_dma01_prep_mult(ppc440spe_chan
,
2549 dest
, 2, src
, src_cnt
, scf
, len
, flags
);
2550 return sw_desc
? &sw_desc
->async_tx
: NULL
;
2553 if (src_cnt
== 2 && dst
[1] == src
[1]) {
2554 sw_desc
= ppc440spe_dma01_prep_sum_product(ppc440spe_chan
,
2555 &dst
[1], src
, 2, scf
, len
, flags
);
2556 return sw_desc
? &sw_desc
->async_tx
: NULL
;
2559 if (!(flags
& DMA_PREP_PQ_DISABLE_P
)) {
2562 flags
|= DMA_PREP_ZERO_P
;
2565 if (!(flags
& DMA_PREP_PQ_DISABLE_Q
)) {
2568 flags
|= DMA_PREP_ZERO_Q
;
2573 dev_dbg(ppc440spe_chan
->device
->common
.dev
,
2574 "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2575 ppc440spe_chan
->device
->id
, __func__
, src_cnt
, len
,
2576 flags
& DMA_PREP_INTERRUPT
? 1 : 0);
2578 switch (ppc440spe_chan
->device
->id
) {
2579 case PPC440SPE_DMA0_ID
:
2580 case PPC440SPE_DMA1_ID
:
2581 sw_desc
= ppc440spe_dma01_prep_pq(ppc440spe_chan
,
2582 dst
, dst_cnt
, src
, src_cnt
, scf
,
2586 case PPC440SPE_XOR_ID
:
2587 sw_desc
= ppc440spe_dma2_prep_pq(ppc440spe_chan
,
2588 dst
, dst_cnt
, src
, src_cnt
, scf
,
2593 return sw_desc
? &sw_desc
->async_tx
: NULL
;
2597 * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
2598 * a PQ_ZERO_SUM operation
2600 static struct dma_async_tx_descriptor
*ppc440spe_adma_prep_dma_pqzero_sum(
2601 struct dma_chan
*chan
, dma_addr_t
*pq
, dma_addr_t
*src
,
2602 unsigned int src_cnt
, const unsigned char *scf
, size_t len
,
2603 enum sum_check_flags
*pqres
, unsigned long flags
)
2605 struct ppc440spe_adma_chan
*ppc440spe_chan
;
2606 struct ppc440spe_adma_desc_slot
*sw_desc
, *iter
;
2607 dma_addr_t pdest
, qdest
;
2608 int slot_cnt
, slots_per_op
, idst
, dst_cnt
;
2610 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
2612 if (flags
& DMA_PREP_PQ_DISABLE_P
)
2617 if (flags
& DMA_PREP_PQ_DISABLE_Q
)
2622 ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan
->device
->id
,
2623 src
, src_cnt
, scf
));
2625 /* Always use WXOR for P/Q calculations (two destinations).
2626 * Need 1 or 2 extra slots to verify results are zero.
2628 idst
= dst_cnt
= (pdest
&& qdest
) ? 2 : 1;
2630 /* One additional slot per destination to clone P/Q
2631 * before calculation (we have to preserve destinations).
2633 slot_cnt
= src_cnt
+ dst_cnt
* 2;
2636 spin_lock_bh(&ppc440spe_chan
->lock
);
2637 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
,
2640 ppc440spe_desc_init_dma01pqzero_sum(sw_desc
, dst_cnt
, src_cnt
);
2642 /* Setup byte count for each slot just allocated */
2643 sw_desc
->async_tx
.flags
= flags
;
2644 list_for_each_entry(iter
, &sw_desc
->group_list
, chain_node
) {
2645 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
,
2647 iter
->unmap_len
= len
;
2651 struct dma_cdb
*hw_desc
;
2652 struct ppc440spe_adma_chan
*chan
;
2654 iter
= sw_desc
->group_head
;
2655 chan
= to_ppc440spe_adma_chan(iter
->async_tx
.chan
);
2656 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
2657 iter
->hw_next
= list_entry(iter
->chain_node
.next
,
2658 struct ppc440spe_adma_desc_slot
,
2660 hw_desc
= iter
->hw_desc
;
2661 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
2664 ppc440spe_desc_set_dest_addr(iter
, chan
, 0,
2665 ppc440spe_chan
->pdest
, 0);
2666 ppc440spe_desc_set_src_addr(iter
, chan
, 0, 0, pdest
);
2667 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
,
2669 iter
->unmap_len
= 0;
2670 /* override pdest to preserve original P */
2671 pdest
= ppc440spe_chan
->pdest
;
2674 struct dma_cdb
*hw_desc
;
2675 struct ppc440spe_adma_chan
*chan
;
2677 iter
= list_first_entry(&sw_desc
->group_list
,
2678 struct ppc440spe_adma_desc_slot
,
2680 chan
= to_ppc440spe_adma_chan(iter
->async_tx
.chan
);
2683 iter
= list_entry(iter
->chain_node
.next
,
2684 struct ppc440spe_adma_desc_slot
,
2688 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
2689 iter
->hw_next
= list_entry(iter
->chain_node
.next
,
2690 struct ppc440spe_adma_desc_slot
,
2692 hw_desc
= iter
->hw_desc
;
2693 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
2696 ppc440spe_desc_set_dest_addr(iter
, chan
, 0,
2697 ppc440spe_chan
->qdest
, 0);
2698 ppc440spe_desc_set_src_addr(iter
, chan
, 0, 0, qdest
);
2699 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
,
2701 iter
->unmap_len
= 0;
2702 /* override qdest to preserve original Q */
2703 qdest
= ppc440spe_chan
->qdest
;
2706 /* Setup destinations for P/Q ops */
2707 ppc440spe_adma_pqzero_sum_set_dest(sw_desc
, pdest
, qdest
);
2709 /* Setup zero QWORDs into DCHECK CDBs */
2711 list_for_each_entry_reverse(iter
, &sw_desc
->group_list
,
2714 * The last CDB corresponds to Q-parity check,
2715 * the one before last CDB corresponds
2718 if (idst
== DMA_DEST_MAX_NUM
) {
2719 if (idst
== dst_cnt
) {
2720 set_bit(PPC440SPE_DESC_QCHECK
,
2723 set_bit(PPC440SPE_DESC_PCHECK
,
2728 set_bit(PPC440SPE_DESC_QCHECK
,
2731 set_bit(PPC440SPE_DESC_PCHECK
,
2735 iter
->xor_check_result
= pqres
;
2738 * set it to zero, if check fail then result will
2741 *iter
->xor_check_result
= 0;
2742 ppc440spe_desc_set_dcheck(iter
, ppc440spe_chan
,
2749 /* Setup sources and mults for P/Q ops */
2750 list_for_each_entry_continue_reverse(iter
, &sw_desc
->group_list
,
2752 struct ppc440spe_adma_chan
*chan
;
2755 chan
= to_ppc440spe_adma_chan(iter
->async_tx
.chan
);
2756 ppc440spe_desc_set_src_addr(iter
, chan
, 0,
2760 mult_dst
= (dst_cnt
- 1) ? DMA_CDB_SG_DST2
:
2762 ppc440spe_desc_set_src_mult(iter
, chan
,
2771 spin_unlock_bh(&ppc440spe_chan
->lock
);
2772 return sw_desc
? &sw_desc
->async_tx
: NULL
;
2776 * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
2777 * XOR ZERO_SUM operation
2779 static struct dma_async_tx_descriptor
*ppc440spe_adma_prep_dma_xor_zero_sum(
2780 struct dma_chan
*chan
, dma_addr_t
*src
, unsigned int src_cnt
,
2781 size_t len
, enum sum_check_flags
*result
, unsigned long flags
)
2783 struct dma_async_tx_descriptor
*tx
;
2786 /* validate P, disable Q */
2789 flags
|= DMA_PREP_PQ_DISABLE_Q
;
2791 tx
= ppc440spe_adma_prep_dma_pqzero_sum(chan
, pq
, &src
[1],
2792 src_cnt
- 1, 0, len
,
2798 * ppc440spe_adma_set_dest - set destination address into descriptor
2800 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot
*sw_desc
,
2801 dma_addr_t addr
, int index
)
2803 struct ppc440spe_adma_chan
*chan
;
2805 BUG_ON(index
>= sw_desc
->dst_cnt
);
2807 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
2809 switch (chan
->device
->id
) {
2810 case PPC440SPE_DMA0_ID
:
2811 case PPC440SPE_DMA1_ID
:
2812 /* to do: support transfers lengths >
2813 * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
2815 ppc440spe_desc_set_dest_addr(sw_desc
->group_head
,
2816 chan
, 0, addr
, index
);
2818 case PPC440SPE_XOR_ID
:
2819 sw_desc
= ppc440spe_get_group_entry(sw_desc
, index
);
2820 ppc440spe_desc_set_dest_addr(sw_desc
,
2821 chan
, 0, addr
, index
);
2826 static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot
*iter
,
2827 struct ppc440spe_adma_chan
*chan
, dma_addr_t addr
)
2829 /* To clear destinations update the descriptor
2830 * (P or Q depending on index) as follows:
2831 * addr is destination (0 corresponds to SG2):
2833 ppc440spe_desc_set_dest_addr(iter
, chan
, DMA_CUED_XOR_BASE
, addr
, 0);
2835 /* ... and the addr is source: */
2836 ppc440spe_desc_set_src_addr(iter
, chan
, 0, DMA_CUED_XOR_HB
, addr
);
2838 /* addr is always SG2 then the mult is always DST1 */
2839 ppc440spe_desc_set_src_mult(iter
, chan
, DMA_CUED_MULT1_OFF
,
2840 DMA_CDB_SG_DST1
, 1);
2844 * ppc440spe_adma_pq_set_dest - set destination address into descriptor
2845 * for the PQXOR operation
2847 static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot
*sw_desc
,
2848 dma_addr_t
*addrs
, unsigned long flags
)
2850 struct ppc440spe_adma_desc_slot
*iter
;
2851 struct ppc440spe_adma_chan
*chan
;
2852 dma_addr_t paddr
, qaddr
;
2853 dma_addr_t addr
= 0, ppath
, qpath
;
2856 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
2858 if (flags
& DMA_PREP_PQ_DISABLE_P
)
2863 if (flags
& DMA_PREP_PQ_DISABLE_Q
)
2868 if (!paddr
|| !qaddr
)
2869 addr
= paddr
? paddr
: qaddr
;
2871 switch (chan
->device
->id
) {
2872 case PPC440SPE_DMA0_ID
:
2873 case PPC440SPE_DMA1_ID
:
2874 /* walk through the WXOR source list and set P/Q-destinations
2877 if (!test_bit(PPC440SPE_DESC_RXOR
, &sw_desc
->flags
)) {
2878 /* This is WXOR-only chain; may have 1/2 zero descs */
2879 if (test_bit(PPC440SPE_ZERO_P
, &sw_desc
->flags
))
2881 if (test_bit(PPC440SPE_ZERO_Q
, &sw_desc
->flags
))
2884 iter
= ppc440spe_get_group_entry(sw_desc
, index
);
2886 /* one destination */
2887 list_for_each_entry_from(iter
,
2888 &sw_desc
->group_list
, chain_node
)
2889 ppc440spe_desc_set_dest_addr(iter
, chan
,
2890 DMA_CUED_XOR_BASE
, addr
, 0);
2892 /* two destinations */
2893 list_for_each_entry_from(iter
,
2894 &sw_desc
->group_list
, chain_node
) {
2895 ppc440spe_desc_set_dest_addr(iter
, chan
,
2896 DMA_CUED_XOR_BASE
, paddr
, 0);
2897 ppc440spe_desc_set_dest_addr(iter
, chan
,
2898 DMA_CUED_XOR_BASE
, qaddr
, 1);
2903 /* To clear destinations update the descriptor
2904 * (1st,2nd, or both depending on flags)
2907 if (test_bit(PPC440SPE_ZERO_P
,
2909 iter
= ppc440spe_get_group_entry(
2911 ppc440spe_adma_pq_zero_op(iter
, chan
,
2915 if (test_bit(PPC440SPE_ZERO_Q
,
2917 iter
= ppc440spe_get_group_entry(
2919 ppc440spe_adma_pq_zero_op(iter
, chan
,
2926 /* This is RXOR-only or RXOR/WXOR mixed chain */
2928 /* If we want to include destination into calculations,
2929 * then make dest addresses cued with mult=1 (XOR).
2931 ppath
= test_bit(PPC440SPE_ZERO_P
, &sw_desc
->flags
) ?
2934 (1 << DMA_CUED_MULT1_OFF
);
2935 qpath
= test_bit(PPC440SPE_ZERO_Q
, &sw_desc
->flags
) ?
2938 (1 << DMA_CUED_MULT1_OFF
);
2940 /* Setup destination(s) in RXOR slot(s) */
2941 iter
= ppc440spe_get_group_entry(sw_desc
, index
++);
2942 ppc440spe_desc_set_dest_addr(iter
, chan
,
2943 paddr
? ppath
: qpath
,
2944 paddr
? paddr
: qaddr
, 0);
2946 /* two destinations */
2947 iter
= ppc440spe_get_group_entry(sw_desc
,
2949 ppc440spe_desc_set_dest_addr(iter
, chan
,
2953 if (test_bit(PPC440SPE_DESC_WXOR
, &sw_desc
->flags
)) {
2954 /* Setup destination(s) in remaining WXOR
2957 iter
= ppc440spe_get_group_entry(sw_desc
,
2960 /* one destination */
2961 list_for_each_entry_from(iter
,
2962 &sw_desc
->group_list
,
2964 ppc440spe_desc_set_dest_addr(
2970 /* two destinations */
2971 list_for_each_entry_from(iter
,
2972 &sw_desc
->group_list
,
2974 ppc440spe_desc_set_dest_addr(
2978 ppc440spe_desc_set_dest_addr(
2989 case PPC440SPE_XOR_ID
:
2990 /* DMA2 descriptors have only 1 destination, so there are
2991 * two chains - one for each dest.
2992 * If we want to include destination into calculations,
2993 * then make dest addresses cued with mult=1 (XOR).
2995 ppath
= test_bit(PPC440SPE_ZERO_P
, &sw_desc
->flags
) ?
2998 (1 << DMA_CUED_MULT1_OFF
);
3000 qpath
= test_bit(PPC440SPE_ZERO_Q
, &sw_desc
->flags
) ?
3003 (1 << DMA_CUED_MULT1_OFF
);
3005 iter
= ppc440spe_get_group_entry(sw_desc
, 0);
3006 for (i
= 0; i
< sw_desc
->descs_per_op
; i
++) {
3007 ppc440spe_desc_set_dest_addr(iter
, chan
,
3008 paddr
? ppath
: qpath
,
3009 paddr
? paddr
: qaddr
, 0);
3010 iter
= list_entry(iter
->chain_node
.next
,
3011 struct ppc440spe_adma_desc_slot
,
3016 /* Two destinations; setup Q here */
3017 iter
= ppc440spe_get_group_entry(sw_desc
,
3018 sw_desc
->descs_per_op
);
3019 for (i
= 0; i
< sw_desc
->descs_per_op
; i
++) {
3020 ppc440spe_desc_set_dest_addr(iter
,
3021 chan
, qpath
, qaddr
, 0);
3022 iter
= list_entry(iter
->chain_node
.next
,
3023 struct ppc440spe_adma_desc_slot
,
3033 * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
3034 * for the PQ_ZERO_SUM operation
3036 static void ppc440spe_adma_pqzero_sum_set_dest(
3037 struct ppc440spe_adma_desc_slot
*sw_desc
,
3038 dma_addr_t paddr
, dma_addr_t qaddr
)
3040 struct ppc440spe_adma_desc_slot
*iter
, *end
;
3041 struct ppc440spe_adma_chan
*chan
;
3042 dma_addr_t addr
= 0;
3045 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
3047 /* walk through the WXOR source list and set P/Q-destinations
3050 idx
= (paddr
&& qaddr
) ? 2 : 1;
3052 list_for_each_entry_reverse(end
, &sw_desc
->group_list
,
3058 idx
= (paddr
&& qaddr
) ? 2 : 1;
3059 iter
= ppc440spe_get_group_entry(sw_desc
, idx
);
3061 if (paddr
&& qaddr
) {
3062 /* two destinations */
3063 list_for_each_entry_from(iter
, &sw_desc
->group_list
,
3065 if (unlikely(iter
== end
))
3067 ppc440spe_desc_set_dest_addr(iter
, chan
,
3068 DMA_CUED_XOR_BASE
, paddr
, 0);
3069 ppc440spe_desc_set_dest_addr(iter
, chan
,
3070 DMA_CUED_XOR_BASE
, qaddr
, 1);
3073 /* one destination */
3074 addr
= paddr
? paddr
: qaddr
;
3075 list_for_each_entry_from(iter
, &sw_desc
->group_list
,
3077 if (unlikely(iter
== end
))
3079 ppc440spe_desc_set_dest_addr(iter
, chan
,
3080 DMA_CUED_XOR_BASE
, addr
, 0);
3084 /* The remaining descriptors are DATACHECK. These have no need in
3085 * destination. Actually, these destinations are used there
3086 * as sources for check operation. So, set addr as source.
3088 ppc440spe_desc_set_src_addr(end
, chan
, 0, 0, addr
? addr
: paddr
);
3091 end
= list_entry(end
->chain_node
.next
,
3092 struct ppc440spe_adma_desc_slot
, chain_node
);
3093 ppc440spe_desc_set_src_addr(end
, chan
, 0, 0, qaddr
);
3098 * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
3100 static inline void ppc440spe_desc_set_xor_src_cnt(
3101 struct ppc440spe_adma_desc_slot
*desc
,
3104 struct xor_cb
*hw_desc
= desc
->hw_desc
;
3106 hw_desc
->cbc
&= ~XOR_CDCR_OAC_MSK
;
3107 hw_desc
->cbc
|= src_cnt
;
3111 * ppc440spe_adma_pq_set_src - set source address into descriptor
3113 static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot
*sw_desc
,
3114 dma_addr_t addr
, int index
)
3116 struct ppc440spe_adma_chan
*chan
;
3117 dma_addr_t haddr
= 0;
3118 struct ppc440spe_adma_desc_slot
*iter
= NULL
;
3120 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
3122 switch (chan
->device
->id
) {
3123 case PPC440SPE_DMA0_ID
:
3124 case PPC440SPE_DMA1_ID
:
3125 /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
3127 if (test_bit(PPC440SPE_DESC_RXOR
, &sw_desc
->flags
)) {
3128 /* RXOR-only or RXOR/WXOR operation */
3129 int iskip
= test_bit(PPC440SPE_DESC_RXOR12
,
3130 &sw_desc
->flags
) ? 2 : 3;
3133 /* 1st slot (RXOR) */
3134 /* setup sources region (R1-2-3, R1-2-4,
3137 if (test_bit(PPC440SPE_DESC_RXOR12
,
3139 haddr
= DMA_RXOR12
<<
3140 DMA_CUED_REGION_OFF
;
3141 else if (test_bit(PPC440SPE_DESC_RXOR123
,
3143 haddr
= DMA_RXOR123
<<
3144 DMA_CUED_REGION_OFF
;
3145 else if (test_bit(PPC440SPE_DESC_RXOR124
,
3147 haddr
= DMA_RXOR124
<<
3148 DMA_CUED_REGION_OFF
;
3149 else if (test_bit(PPC440SPE_DESC_RXOR125
,
3151 haddr
= DMA_RXOR125
<<
3152 DMA_CUED_REGION_OFF
;
3155 haddr
|= DMA_CUED_XOR_BASE
;
3156 iter
= ppc440spe_get_group_entry(sw_desc
, 0);
3157 } else if (index
< iskip
) {
3159 * shall actually set source address only once
3160 * instead of first <iskip>
3164 /* 2nd/3d and next slots (WXOR);
3165 * skip first slot with RXOR
3167 haddr
= DMA_CUED_XOR_HB
;
3168 iter
= ppc440spe_get_group_entry(sw_desc
,
3169 index
- iskip
+ sw_desc
->dst_cnt
);
3174 /* WXOR-only operation; skip first slots with
3175 * zeroing destinations
3177 if (test_bit(PPC440SPE_ZERO_P
, &sw_desc
->flags
))
3179 if (test_bit(PPC440SPE_ZERO_Q
, &sw_desc
->flags
))
3182 haddr
= DMA_CUED_XOR_HB
;
3183 iter
= ppc440spe_get_group_entry(sw_desc
,
3188 ppc440spe_desc_set_src_addr(iter
, chan
, 0, haddr
, addr
);
3191 test_bit(PPC440SPE_DESC_RXOR
, &sw_desc
->flags
) &&
3192 sw_desc
->dst_cnt
== 2) {
3193 /* if we have two destinations for RXOR, then
3194 * setup source in the second descr too
3196 iter
= ppc440spe_get_group_entry(sw_desc
, 1);
3197 ppc440spe_desc_set_src_addr(iter
, chan
, 0,
3203 case PPC440SPE_XOR_ID
:
3204 /* DMA2 may do Biskup */
3205 iter
= sw_desc
->group_head
;
3206 if (iter
->dst_cnt
== 2) {
3207 /* both P & Q calculations required; set P src here */
3208 ppc440spe_adma_dma2rxor_set_src(iter
, index
, addr
);
3211 iter
= ppc440spe_get_group_entry(sw_desc
,
3212 sw_desc
->descs_per_op
);
3214 ppc440spe_adma_dma2rxor_set_src(iter
, index
, addr
);
3220 * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
3222 static void ppc440spe_adma_memcpy_xor_set_src(
3223 struct ppc440spe_adma_desc_slot
*sw_desc
,
3224 dma_addr_t addr
, int index
)
3226 struct ppc440spe_adma_chan
*chan
;
3228 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
3229 sw_desc
= sw_desc
->group_head
;
3231 if (likely(sw_desc
))
3232 ppc440spe_desc_set_src_addr(sw_desc
, chan
, index
, 0, addr
);
3236 * ppc440spe_adma_dma2rxor_inc_addr -
3238 static void ppc440spe_adma_dma2rxor_inc_addr(
3239 struct ppc440spe_adma_desc_slot
*desc
,
3240 struct ppc440spe_rxor
*cursor
, int index
, int src_cnt
)
3242 cursor
->addr_count
++;
3243 if (index
== src_cnt
- 1) {
3244 ppc440spe_desc_set_xor_src_cnt(desc
, cursor
->addr_count
);
3245 } else if (cursor
->addr_count
== XOR_MAX_OPS
) {
3246 ppc440spe_desc_set_xor_src_cnt(desc
, cursor
->addr_count
);
3247 cursor
->addr_count
= 0;
3248 cursor
->desc_count
++;
3253 * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
3255 static int ppc440spe_adma_dma2rxor_prep_src(
3256 struct ppc440spe_adma_desc_slot
*hdesc
,
3257 struct ppc440spe_rxor
*cursor
, int index
,
3258 int src_cnt
, u32 addr
)
3262 struct ppc440spe_adma_desc_slot
*desc
= hdesc
;
3265 for (i
= 0; i
< cursor
->desc_count
; i
++) {
3266 desc
= list_entry(hdesc
->chain_node
.next
,
3267 struct ppc440spe_adma_desc_slot
,
3271 switch (cursor
->state
) {
3273 if (addr
== cursor
->addrl
+ cursor
->len
) {
3276 cursor
->xor_count
++;
3277 if (index
== src_cnt
-1) {
3278 ppc440spe_rxor_set_region(desc
,
3280 DMA_RXOR12
<< DMA_CUED_REGION_OFF
);
3281 ppc440spe_adma_dma2rxor_inc_addr(
3282 desc
, cursor
, index
, src_cnt
);
3284 } else if (cursor
->addrl
== addr
+ cursor
->len
) {
3287 cursor
->xor_count
++;
3288 set_bit(cursor
->addr_count
, &desc
->reverse_flags
[0]);
3289 if (index
== src_cnt
-1) {
3290 ppc440spe_rxor_set_region(desc
,
3292 DMA_RXOR12
<< DMA_CUED_REGION_OFF
);
3293 ppc440spe_adma_dma2rxor_inc_addr(
3294 desc
, cursor
, index
, src_cnt
);
3297 printk(KERN_ERR
"Cannot build "
3298 "DMA2 RXOR command block.\n");
3303 sign
= test_bit(cursor
->addr_count
,
3304 desc
->reverse_flags
)
3306 if (index
== src_cnt
-2 || (sign
== -1
3307 && addr
!= cursor
->addrl
- 2*cursor
->len
)) {
3309 cursor
->xor_count
= 1;
3310 cursor
->addrl
= addr
;
3311 ppc440spe_rxor_set_region(desc
,
3313 DMA_RXOR12
<< DMA_CUED_REGION_OFF
);
3314 ppc440spe_adma_dma2rxor_inc_addr(
3315 desc
, cursor
, index
, src_cnt
);
3316 } else if (addr
== cursor
->addrl
+ 2*sign
*cursor
->len
) {
3318 cursor
->xor_count
= 0;
3319 ppc440spe_rxor_set_region(desc
,
3321 DMA_RXOR123
<< DMA_CUED_REGION_OFF
);
3322 if (index
== src_cnt
-1) {
3323 ppc440spe_adma_dma2rxor_inc_addr(
3324 desc
, cursor
, index
, src_cnt
);
3326 } else if (addr
== cursor
->addrl
+ 3*cursor
->len
) {
3328 cursor
->xor_count
= 0;
3329 ppc440spe_rxor_set_region(desc
,
3331 DMA_RXOR124
<< DMA_CUED_REGION_OFF
);
3332 if (index
== src_cnt
-1) {
3333 ppc440spe_adma_dma2rxor_inc_addr(
3334 desc
, cursor
, index
, src_cnt
);
3336 } else if (addr
== cursor
->addrl
+ 4*cursor
->len
) {
3338 cursor
->xor_count
= 0;
3339 ppc440spe_rxor_set_region(desc
,
3341 DMA_RXOR125
<< DMA_CUED_REGION_OFF
);
3342 if (index
== src_cnt
-1) {
3343 ppc440spe_adma_dma2rxor_inc_addr(
3344 desc
, cursor
, index
, src_cnt
);
3348 cursor
->xor_count
= 1;
3349 cursor
->addrl
= addr
;
3350 ppc440spe_rxor_set_region(desc
,
3352 DMA_RXOR12
<< DMA_CUED_REGION_OFF
);
3353 ppc440spe_adma_dma2rxor_inc_addr(
3354 desc
, cursor
, index
, src_cnt
);
3359 cursor
->addrl
= addr
;
3360 cursor
->xor_count
++;
3362 ppc440spe_adma_dma2rxor_inc_addr(
3363 desc
, cursor
, index
, src_cnt
);
3372 * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
3373 * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3375 static void ppc440spe_adma_dma2rxor_set_src(
3376 struct ppc440spe_adma_desc_slot
*desc
,
3377 int index
, dma_addr_t addr
)
3379 struct xor_cb
*xcb
= desc
->hw_desc
;
3380 int k
= 0, op
= 0, lop
= 0;
3382 /* get the RXOR operand which corresponds to index addr */
3383 while (op
<= index
) {
3385 if (k
== XOR_MAX_OPS
) {
3387 desc
= list_entry(desc
->chain_node
.next
,
3388 struct ppc440spe_adma_desc_slot
, chain_node
);
3389 xcb
= desc
->hw_desc
;
3392 if ((xcb
->ops
[k
++].h
& (DMA_RXOR12
<< DMA_CUED_REGION_OFF
)) ==
3393 (DMA_RXOR12
<< DMA_CUED_REGION_OFF
))
3401 if (test_bit(k
-1, desc
->reverse_flags
)) {
3402 /* reverse operand order; put last op in RXOR group */
3403 if (index
== op
- 1)
3404 ppc440spe_rxor_set_src(desc
, k
- 1, addr
);
3406 /* direct operand order; put first op in RXOR group */
3408 ppc440spe_rxor_set_src(desc
, k
- 1, addr
);
3413 * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
3414 * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3416 static void ppc440spe_adma_dma2rxor_set_mult(
3417 struct ppc440spe_adma_desc_slot
*desc
,
3420 struct xor_cb
*xcb
= desc
->hw_desc
;
3421 int k
= 0, op
= 0, lop
= 0;
3423 /* get the RXOR operand which corresponds to index mult */
3424 while (op
<= index
) {
3426 if (k
== XOR_MAX_OPS
) {
3428 desc
= list_entry(desc
->chain_node
.next
,
3429 struct ppc440spe_adma_desc_slot
,
3431 xcb
= desc
->hw_desc
;
3434 if ((xcb
->ops
[k
++].h
& (DMA_RXOR12
<< DMA_CUED_REGION_OFF
)) ==
3435 (DMA_RXOR12
<< DMA_CUED_REGION_OFF
))
3442 if (test_bit(k
-1, desc
->reverse_flags
)) {
3444 ppc440spe_rxor_set_mult(desc
, k
- 1, op
- index
- 1, mult
);
3447 ppc440spe_rxor_set_mult(desc
, k
- 1, index
- lop
, mult
);
3452 * ppc440spe_init_rxor_cursor -
3454 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor
*cursor
)
3456 memset(cursor
, 0, sizeof(struct ppc440spe_rxor
));
3461 * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
3462 * descriptor for the PQXOR operation
3464 static void ppc440spe_adma_pq_set_src_mult(
3465 struct ppc440spe_adma_desc_slot
*sw_desc
,
3466 unsigned char mult
, int index
, int dst_pos
)
3468 struct ppc440spe_adma_chan
*chan
;
3469 u32 mult_idx
, mult_dst
;
3470 struct ppc440spe_adma_desc_slot
*iter
= NULL
, *iter1
= NULL
;
3472 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
3474 switch (chan
->device
->id
) {
3475 case PPC440SPE_DMA0_ID
:
3476 case PPC440SPE_DMA1_ID
:
3477 if (test_bit(PPC440SPE_DESC_RXOR
, &sw_desc
->flags
)) {
3478 int region
= test_bit(PPC440SPE_DESC_RXOR12
,
3479 &sw_desc
->flags
) ? 2 : 3;
3481 if (index
< region
) {
3482 /* RXOR multipliers */
3483 iter
= ppc440spe_get_group_entry(sw_desc
,
3484 sw_desc
->dst_cnt
- 1);
3485 if (sw_desc
->dst_cnt
== 2)
3486 iter1
= ppc440spe_get_group_entry(
3489 mult_idx
= DMA_CUED_MULT1_OFF
+ (index
<< 3);
3490 mult_dst
= DMA_CDB_SG_SRC
;
3492 /* WXOR multiplier */
3493 iter
= ppc440spe_get_group_entry(sw_desc
,
3496 mult_idx
= DMA_CUED_MULT1_OFF
;
3497 mult_dst
= dst_pos
? DMA_CDB_SG_DST2
:
3504 * skip first slots with destinations (if ZERO_DST has
3507 if (test_bit(PPC440SPE_ZERO_P
, &sw_desc
->flags
))
3509 if (test_bit(PPC440SPE_ZERO_Q
, &sw_desc
->flags
))
3512 iter
= ppc440spe_get_group_entry(sw_desc
, index
+ znum
);
3513 mult_idx
= DMA_CUED_MULT1_OFF
;
3514 mult_dst
= dst_pos
? DMA_CDB_SG_DST2
: DMA_CDB_SG_DST1
;
3518 ppc440spe_desc_set_src_mult(iter
, chan
,
3519 mult_idx
, mult_dst
, mult
);
3521 if (unlikely(iter1
)) {
3522 /* if we have two destinations for RXOR, then
3523 * we've just set Q mult. Set-up P now.
3525 ppc440spe_desc_set_src_mult(iter1
, chan
,
3526 mult_idx
, mult_dst
, 1);
3532 case PPC440SPE_XOR_ID
:
3533 iter
= sw_desc
->group_head
;
3534 if (sw_desc
->dst_cnt
== 2) {
3535 /* both P & Q calculations required; set P mult here */
3536 ppc440spe_adma_dma2rxor_set_mult(iter
, index
, 1);
3538 /* and then set Q mult */
3539 iter
= ppc440spe_get_group_entry(sw_desc
,
3540 sw_desc
->descs_per_op
);
3542 ppc440spe_adma_dma2rxor_set_mult(iter
, index
, mult
);
3548 * ppc440spe_adma_free_chan_resources - free the resources allocated
3550 static void ppc440spe_adma_free_chan_resources(struct dma_chan
*chan
)
3552 struct ppc440spe_adma_chan
*ppc440spe_chan
;
3553 struct ppc440spe_adma_desc_slot
*iter
, *_iter
;
3554 int in_use_descs
= 0;
3556 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
3557 ppc440spe_adma_slot_cleanup(ppc440spe_chan
);
3559 spin_lock_bh(&ppc440spe_chan
->lock
);
3560 list_for_each_entry_safe(iter
, _iter
, &ppc440spe_chan
->chain
,
3563 list_del(&iter
->chain_node
);
3565 list_for_each_entry_safe_reverse(iter
, _iter
,
3566 &ppc440spe_chan
->all_slots
, slot_node
) {
3567 list_del(&iter
->slot_node
);
3569 ppc440spe_chan
->slots_allocated
--;
3571 ppc440spe_chan
->last_used
= NULL
;
3573 dev_dbg(ppc440spe_chan
->device
->common
.dev
,
3574 "ppc440spe adma%d %s slots_allocated %d\n",
3575 ppc440spe_chan
->device
->id
,
3576 __func__
, ppc440spe_chan
->slots_allocated
);
3577 spin_unlock_bh(&ppc440spe_chan
->lock
);
3579 /* one is ok since we left it on there on purpose */
3580 if (in_use_descs
> 1)
3581 printk(KERN_ERR
"SPE: Freeing %d in use descriptors!\n",
3586 * ppc440spe_adma_tx_status - poll the status of an ADMA transaction
3587 * @chan: ADMA channel handle
3588 * @cookie: ADMA transaction identifier
3589 * @txstate: a holder for the current state of the channel
3591 static enum dma_status
ppc440spe_adma_tx_status(struct dma_chan
*chan
,
3592 dma_cookie_t cookie
, struct dma_tx_state
*txstate
)
3594 struct ppc440spe_adma_chan
*ppc440spe_chan
;
3595 enum dma_status ret
;
3597 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
3598 ret
= dma_cookie_status(chan
, cookie
, txstate
);
3599 if (ret
== DMA_COMPLETE
)
3602 ppc440spe_adma_slot_cleanup(ppc440spe_chan
);
3604 return dma_cookie_status(chan
, cookie
, txstate
);
3608 * ppc440spe_adma_eot_handler - end of transfer interrupt handler
3610 static irqreturn_t
ppc440spe_adma_eot_handler(int irq
, void *data
)
3612 struct ppc440spe_adma_chan
*chan
= data
;
3614 dev_dbg(chan
->device
->common
.dev
,
3615 "ppc440spe adma%d: %s\n", chan
->device
->id
, __func__
);
3617 tasklet_schedule(&chan
->irq_tasklet
);
3618 ppc440spe_adma_device_clear_eot_status(chan
);
3624 * ppc440spe_adma_err_handler - DMA error interrupt handler;
3625 * do the same things as a eot handler
3627 static irqreturn_t
ppc440spe_adma_err_handler(int irq
, void *data
)
3629 struct ppc440spe_adma_chan
*chan
= data
;
3631 dev_dbg(chan
->device
->common
.dev
,
3632 "ppc440spe adma%d: %s\n", chan
->device
->id
, __func__
);
3634 tasklet_schedule(&chan
->irq_tasklet
);
3635 ppc440spe_adma_device_clear_eot_status(chan
);
3641 * ppc440spe_test_callback - called when test operation has been done
3643 static void ppc440spe_test_callback(void *unused
)
3645 complete(&ppc440spe_r6_test_comp
);
3649 * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
3651 static void ppc440spe_adma_issue_pending(struct dma_chan
*chan
)
3653 struct ppc440spe_adma_chan
*ppc440spe_chan
;
3655 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
3656 dev_dbg(ppc440spe_chan
->device
->common
.dev
,
3657 "ppc440spe adma%d: %s %d \n", ppc440spe_chan
->device
->id
,
3658 __func__
, ppc440spe_chan
->pending
);
3660 if (ppc440spe_chan
->pending
) {
3661 ppc440spe_chan
->pending
= 0;
3662 ppc440spe_chan_append(ppc440spe_chan
);
3667 * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
3668 * use FIFOs (as opposite to chains used in XOR) so this is a XOR
3669 * specific operation)
3671 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan
*chan
)
3673 struct ppc440spe_adma_desc_slot
*sw_desc
, *group_start
;
3674 dma_cookie_t cookie
;
3675 int slot_cnt
, slots_per_op
;
3677 dev_dbg(chan
->device
->common
.dev
,
3678 "ppc440spe adma%d: %s\n", chan
->device
->id
, __func__
);
3680 spin_lock_bh(&chan
->lock
);
3681 slot_cnt
= ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op
);
3682 sw_desc
= ppc440spe_adma_alloc_slots(chan
, slot_cnt
, slots_per_op
);
3684 group_start
= sw_desc
->group_head
;
3685 list_splice_init(&sw_desc
->group_list
, &chan
->chain
);
3686 async_tx_ack(&sw_desc
->async_tx
);
3687 ppc440spe_desc_init_null_xor(group_start
);
3689 cookie
= dma_cookie_assign(&sw_desc
->async_tx
);
3691 /* initialize the completed cookie to be less than
3692 * the most recently used cookie
3694 chan
->common
.completed_cookie
= cookie
- 1;
3696 /* channel should not be busy */
3697 BUG_ON(ppc440spe_chan_is_busy(chan
));
3699 /* set the descriptor address */
3700 ppc440spe_chan_set_first_xor_descriptor(chan
, sw_desc
);
3702 /* run the descriptor */
3703 ppc440spe_chan_run(chan
);
3705 printk(KERN_ERR
"ppc440spe adma%d"
3706 " failed to allocate null descriptor\n",
3708 spin_unlock_bh(&chan
->lock
);
3712 * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
3713 * For this we just perform one WXOR operation with the same source
3714 * and destination addresses, the GF-multiplier is 1; so if RAID-6
3715 * capabilities are enabled then we'll get src/dst filled with zero.
3717 static int ppc440spe_test_raid6(struct ppc440spe_adma_chan
*chan
)
3719 struct ppc440spe_adma_desc_slot
*sw_desc
, *iter
;
3722 dma_addr_t dma_addr
, addrs
[2];
3723 unsigned long op
= 0;
3726 set_bit(PPC440SPE_DESC_WXOR
, &op
);
3728 pg
= alloc_page(GFP_KERNEL
);
3732 spin_lock_bh(&chan
->lock
);
3733 sw_desc
= ppc440spe_adma_alloc_slots(chan
, 1, 1);
3735 /* 1 src, 1 dsr, int_ena, WXOR */
3736 ppc440spe_desc_init_dma01pq(sw_desc
, 1, 1, 1, op
);
3737 list_for_each_entry(iter
, &sw_desc
->group_list
, chain_node
) {
3738 ppc440spe_desc_set_byte_count(iter
, chan
, PAGE_SIZE
);
3739 iter
->unmap_len
= PAGE_SIZE
;
3743 spin_unlock_bh(&chan
->lock
);
3746 spin_unlock_bh(&chan
->lock
);
3748 /* Fill the test page with ones */
3749 memset(page_address(pg
), 0xFF, PAGE_SIZE
);
3750 dma_addr
= dma_map_page(chan
->device
->dev
, pg
, 0,
3751 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
3753 /* Setup addresses */
3754 ppc440spe_adma_pq_set_src(sw_desc
, dma_addr
, 0);
3755 ppc440spe_adma_pq_set_src_mult(sw_desc
, 1, 0, 0);
3756 addrs
[0] = dma_addr
;
3758 ppc440spe_adma_pq_set_dest(sw_desc
, addrs
, DMA_PREP_PQ_DISABLE_Q
);
3760 async_tx_ack(&sw_desc
->async_tx
);
3761 sw_desc
->async_tx
.callback
= ppc440spe_test_callback
;
3762 sw_desc
->async_tx
.callback_param
= NULL
;
3764 init_completion(&ppc440spe_r6_test_comp
);
3766 ppc440spe_adma_tx_submit(&sw_desc
->async_tx
);
3767 ppc440spe_adma_issue_pending(&chan
->common
);
3769 wait_for_completion(&ppc440spe_r6_test_comp
);
3771 /* Now check if the test page is zeroed */
3772 a
= page_address(pg
);
3773 if ((*(u32
*)a
) == 0 && memcmp(a
, a
+4, PAGE_SIZE
-4) == 0) {
3774 /* page is zero - RAID-6 enabled */
3777 /* RAID-6 was not enabled */
3785 static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device
*adev
)
3788 case PPC440SPE_DMA0_ID
:
3789 case PPC440SPE_DMA1_ID
:
3790 dma_cap_set(DMA_MEMCPY
, adev
->common
.cap_mask
);
3791 dma_cap_set(DMA_INTERRUPT
, adev
->common
.cap_mask
);
3792 dma_cap_set(DMA_PQ
, adev
->common
.cap_mask
);
3793 dma_cap_set(DMA_PQ_VAL
, adev
->common
.cap_mask
);
3794 dma_cap_set(DMA_XOR_VAL
, adev
->common
.cap_mask
);
3796 case PPC440SPE_XOR_ID
:
3797 dma_cap_set(DMA_XOR
, adev
->common
.cap_mask
);
3798 dma_cap_set(DMA_PQ
, adev
->common
.cap_mask
);
3799 dma_cap_set(DMA_INTERRUPT
, adev
->common
.cap_mask
);
3800 adev
->common
.cap_mask
= adev
->common
.cap_mask
;
3804 /* Set base routines */
3805 adev
->common
.device_alloc_chan_resources
=
3806 ppc440spe_adma_alloc_chan_resources
;
3807 adev
->common
.device_free_chan_resources
=
3808 ppc440spe_adma_free_chan_resources
;
3809 adev
->common
.device_tx_status
= ppc440spe_adma_tx_status
;
3810 adev
->common
.device_issue_pending
= ppc440spe_adma_issue_pending
;
3812 /* Set prep routines based on capability */
3813 if (dma_has_cap(DMA_MEMCPY
, adev
->common
.cap_mask
)) {
3814 adev
->common
.device_prep_dma_memcpy
=
3815 ppc440spe_adma_prep_dma_memcpy
;
3817 if (dma_has_cap(DMA_XOR
, adev
->common
.cap_mask
)) {
3818 adev
->common
.max_xor
= XOR_MAX_OPS
;
3819 adev
->common
.device_prep_dma_xor
=
3820 ppc440spe_adma_prep_dma_xor
;
3822 if (dma_has_cap(DMA_PQ
, adev
->common
.cap_mask
)) {
3824 case PPC440SPE_DMA0_ID
:
3825 dma_set_maxpq(&adev
->common
,
3826 DMA0_FIFO_SIZE
/ sizeof(struct dma_cdb
), 0);
3828 case PPC440SPE_DMA1_ID
:
3829 dma_set_maxpq(&adev
->common
,
3830 DMA1_FIFO_SIZE
/ sizeof(struct dma_cdb
), 0);
3832 case PPC440SPE_XOR_ID
:
3833 adev
->common
.max_pq
= XOR_MAX_OPS
* 3;
3836 adev
->common
.device_prep_dma_pq
=
3837 ppc440spe_adma_prep_dma_pq
;
3839 if (dma_has_cap(DMA_PQ_VAL
, adev
->common
.cap_mask
)) {
3841 case PPC440SPE_DMA0_ID
:
3842 adev
->common
.max_pq
= DMA0_FIFO_SIZE
/
3843 sizeof(struct dma_cdb
);
3845 case PPC440SPE_DMA1_ID
:
3846 adev
->common
.max_pq
= DMA1_FIFO_SIZE
/
3847 sizeof(struct dma_cdb
);
3850 adev
->common
.device_prep_dma_pq_val
=
3851 ppc440spe_adma_prep_dma_pqzero_sum
;
3853 if (dma_has_cap(DMA_XOR_VAL
, adev
->common
.cap_mask
)) {
3855 case PPC440SPE_DMA0_ID
:
3856 adev
->common
.max_xor
= DMA0_FIFO_SIZE
/
3857 sizeof(struct dma_cdb
);
3859 case PPC440SPE_DMA1_ID
:
3860 adev
->common
.max_xor
= DMA1_FIFO_SIZE
/
3861 sizeof(struct dma_cdb
);
3864 adev
->common
.device_prep_dma_xor_val
=
3865 ppc440spe_adma_prep_dma_xor_zero_sum
;
3867 if (dma_has_cap(DMA_INTERRUPT
, adev
->common
.cap_mask
)) {
3868 adev
->common
.device_prep_dma_interrupt
=
3869 ppc440spe_adma_prep_dma_interrupt
;
3871 pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
3872 "( %s%s%s%s%s%s)\n",
3873 dev_name(adev
->dev
),
3874 dma_has_cap(DMA_PQ
, adev
->common
.cap_mask
) ? "pq " : "",
3875 dma_has_cap(DMA_PQ_VAL
, adev
->common
.cap_mask
) ? "pq_val " : "",
3876 dma_has_cap(DMA_XOR
, adev
->common
.cap_mask
) ? "xor " : "",
3877 dma_has_cap(DMA_XOR_VAL
, adev
->common
.cap_mask
) ? "xor_val " : "",
3878 dma_has_cap(DMA_MEMCPY
, adev
->common
.cap_mask
) ? "memcpy " : "",
3879 dma_has_cap(DMA_INTERRUPT
, adev
->common
.cap_mask
) ? "intr " : "");
3882 static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device
*adev
,
3883 struct ppc440spe_adma_chan
*chan
,
3886 struct platform_device
*ofdev
;
3887 struct device_node
*np
;
3890 ofdev
= container_of(adev
->dev
, struct platform_device
, dev
);
3891 np
= ofdev
->dev
.of_node
;
3892 if (adev
->id
!= PPC440SPE_XOR_ID
) {
3893 adev
->err_irq
= irq_of_parse_and_map(np
, 1);
3894 if (adev
->err_irq
== NO_IRQ
) {
3895 dev_warn(adev
->dev
, "no err irq resource?\n");
3896 *initcode
= PPC_ADMA_INIT_IRQ2
;
3897 adev
->err_irq
= -ENXIO
;
3899 atomic_inc(&ppc440spe_adma_err_irq_ref
);
3901 adev
->err_irq
= -ENXIO
;
3904 adev
->irq
= irq_of_parse_and_map(np
, 0);
3905 if (adev
->irq
== NO_IRQ
) {
3906 dev_err(adev
->dev
, "no irq resource\n");
3907 *initcode
= PPC_ADMA_INIT_IRQ1
;
3911 dev_dbg(adev
->dev
, "irq %d, err irq %d\n",
3912 adev
->irq
, adev
->err_irq
);
3914 ret
= request_irq(adev
->irq
, ppc440spe_adma_eot_handler
,
3915 0, dev_driver_string(adev
->dev
), chan
);
3917 dev_err(adev
->dev
, "can't request irq %d\n",
3919 *initcode
= PPC_ADMA_INIT_IRQ1
;
3924 /* only DMA engines have a separate error IRQ
3925 * so it's Ok if err_irq < 0 in XOR engine case.
3927 if (adev
->err_irq
> 0) {
3928 /* both DMA engines share common error IRQ */
3929 ret
= request_irq(adev
->err_irq
,
3930 ppc440spe_adma_err_handler
,
3932 dev_driver_string(adev
->dev
),
3935 dev_err(adev
->dev
, "can't request irq %d\n",
3937 *initcode
= PPC_ADMA_INIT_IRQ2
;
3943 if (adev
->id
== PPC440SPE_XOR_ID
) {
3944 /* enable XOR engine interrupts */
3945 iowrite32be(XOR_IE_CBCIE_BIT
| XOR_IE_ICBIE_BIT
|
3946 XOR_IE_ICIE_BIT
| XOR_IE_RPTIE_BIT
,
3947 &adev
->xor_reg
->ier
);
3951 np
= of_find_compatible_node(NULL
, NULL
, "ibm,i2o-440spe");
3953 pr_err("%s: can't find I2O device tree node\n",
3958 adev
->i2o_reg
= of_iomap(np
, 0);
3959 if (!adev
->i2o_reg
) {
3960 pr_err("%s: failed to map I2O registers\n", __func__
);
3966 /* Unmask 'CS FIFO Attention' interrupts and
3967 * enable generating interrupts on errors
3969 enable
= (adev
->id
== PPC440SPE_DMA0_ID
) ?
3970 ~(I2O_IOPIM_P0SNE
| I2O_IOPIM_P0EM
) :
3971 ~(I2O_IOPIM_P1SNE
| I2O_IOPIM_P1EM
);
3972 mask
= ioread32(&adev
->i2o_reg
->iopim
) & enable
;
3973 iowrite32(mask
, &adev
->i2o_reg
->iopim
);
3978 free_irq(adev
->irq
, chan
);
3980 irq_dispose_mapping(adev
->irq
);
3982 if (adev
->err_irq
> 0) {
3983 if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref
))
3984 irq_dispose_mapping(adev
->err_irq
);
3989 static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device
*adev
,
3990 struct ppc440spe_adma_chan
*chan
)
3994 if (adev
->id
== PPC440SPE_XOR_ID
) {
3995 /* disable XOR engine interrupts */
3996 mask
= ioread32be(&adev
->xor_reg
->ier
);
3997 mask
&= ~(XOR_IE_CBCIE_BIT
| XOR_IE_ICBIE_BIT
|
3998 XOR_IE_ICIE_BIT
| XOR_IE_RPTIE_BIT
);
3999 iowrite32be(mask
, &adev
->xor_reg
->ier
);
4001 /* disable DMAx engine interrupts */
4002 disable
= (adev
->id
== PPC440SPE_DMA0_ID
) ?
4003 (I2O_IOPIM_P0SNE
| I2O_IOPIM_P0EM
) :
4004 (I2O_IOPIM_P1SNE
| I2O_IOPIM_P1EM
);
4005 mask
= ioread32(&adev
->i2o_reg
->iopim
) | disable
;
4006 iowrite32(mask
, &adev
->i2o_reg
->iopim
);
4008 free_irq(adev
->irq
, chan
);
4009 irq_dispose_mapping(adev
->irq
);
4010 if (adev
->err_irq
> 0) {
4011 free_irq(adev
->err_irq
, chan
);
4012 if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref
)) {
4013 irq_dispose_mapping(adev
->err_irq
);
4014 iounmap(adev
->i2o_reg
);
4020 * ppc440spe_adma_probe - probe the asynch device
4022 static int ppc440spe_adma_probe(struct platform_device
*ofdev
)
4024 struct device_node
*np
= ofdev
->dev
.of_node
;
4025 struct resource res
;
4026 struct ppc440spe_adma_device
*adev
;
4027 struct ppc440spe_adma_chan
*chan
;
4028 struct ppc_dma_chan_ref
*ref
, *_ref
;
4029 int ret
= 0, initcode
= PPC_ADMA_INIT_OK
;
4035 if (of_device_is_compatible(np
, "amcc,xor-accelerator")) {
4036 id
= PPC440SPE_XOR_ID
;
4037 /* As far as the XOR engine is concerned, it does not
4038 * use FIFOs but uses linked list. So there is no dependency
4039 * between pool size to allocate and the engine configuration.
4041 pool_size
= PAGE_SIZE
<< 1;
4043 /* it is DMA0 or DMA1 */
4044 idx
= of_get_property(np
, "cell-index", &len
);
4045 if (!idx
|| (len
!= sizeof(u32
))) {
4046 dev_err(&ofdev
->dev
, "Device node %s has missing "
4047 "or invalid cell-index property\n",
4052 /* DMA0,1 engines use FIFO to maintain CDBs, so we
4053 * should allocate the pool accordingly to size of this
4054 * FIFO. Thus, the pool size depends on the FIFO depth:
4055 * how much CDBs pointers the FIFO may contain then so
4056 * much CDBs we should provide in the pool.
4059 * CDBs number = (DMA0_FIFO_SIZE >> 3);
4060 * Pool size = CDBs number * CDB size =
4061 * = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
4063 pool_size
= (id
== PPC440SPE_DMA0_ID
) ?
4064 DMA0_FIFO_SIZE
: DMA1_FIFO_SIZE
;
4068 if (of_address_to_resource(np
, 0, &res
)) {
4069 dev_err(&ofdev
->dev
, "failed to get memory resource\n");
4070 initcode
= PPC_ADMA_INIT_MEMRES
;
4075 if (!request_mem_region(res
.start
, resource_size(&res
),
4076 dev_driver_string(&ofdev
->dev
))) {
4077 dev_err(&ofdev
->dev
, "failed to request memory region %pR\n",
4079 initcode
= PPC_ADMA_INIT_MEMREG
;
4084 /* create a device */
4085 adev
= kzalloc(sizeof(*adev
), GFP_KERNEL
);
4087 dev_err(&ofdev
->dev
, "failed to allocate device\n");
4088 initcode
= PPC_ADMA_INIT_ALLOC
;
4090 goto err_adev_alloc
;
4094 adev
->pool_size
= pool_size
;
4095 /* allocate coherent memory for hardware descriptors */
4096 adev
->dma_desc_pool_virt
= dma_alloc_coherent(&ofdev
->dev
,
4097 adev
->pool_size
, &adev
->dma_desc_pool
,
4099 if (adev
->dma_desc_pool_virt
== NULL
) {
4100 dev_err(&ofdev
->dev
, "failed to allocate %d bytes of coherent "
4101 "memory for hardware descriptors\n",
4103 initcode
= PPC_ADMA_INIT_COHERENT
;
4107 dev_dbg(&ofdev
->dev
, "allocated descriptor pool virt 0x%p phys 0x%llx\n",
4108 adev
->dma_desc_pool_virt
, (u64
)adev
->dma_desc_pool
);
4110 regs
= ioremap(res
.start
, resource_size(&res
));
4112 dev_err(&ofdev
->dev
, "failed to ioremap regs!\n");
4114 goto err_regs_alloc
;
4117 if (adev
->id
== PPC440SPE_XOR_ID
) {
4118 adev
->xor_reg
= regs
;
4120 iowrite32be(XOR_CRSR_XASR_BIT
, &adev
->xor_reg
->crsr
);
4121 iowrite32be(XOR_CRSR_64BA_BIT
, &adev
->xor_reg
->crrr
);
4123 size_t fifo_size
= (adev
->id
== PPC440SPE_DMA0_ID
) ?
4124 DMA0_FIFO_SIZE
: DMA1_FIFO_SIZE
;
4125 adev
->dma_reg
= regs
;
4126 /* DMAx_FIFO_SIZE is defined in bytes,
4127 * <fsiz> - is defined in number of CDB pointers (8byte).
4128 * DMA FIFO Length = CSlength + CPlength, where
4129 * CSlength = CPlength = (fsiz + 1) * 8.
4131 iowrite32(DMA_FIFO_ENABLE
| ((fifo_size
>> 3) - 2),
4132 &adev
->dma_reg
->fsiz
);
4133 /* Configure DMA engine */
4134 iowrite32(DMA_CFG_DXEPR_HP
| DMA_CFG_DFMPP_HP
| DMA_CFG_FALGN
,
4135 &adev
->dma_reg
->cfg
);
4137 iowrite32(~0, &adev
->dma_reg
->dsts
);
4140 adev
->dev
= &ofdev
->dev
;
4141 adev
->common
.dev
= &ofdev
->dev
;
4142 INIT_LIST_HEAD(&adev
->common
.channels
);
4143 platform_set_drvdata(ofdev
, adev
);
4145 /* create a channel */
4146 chan
= kzalloc(sizeof(*chan
), GFP_KERNEL
);
4148 dev_err(&ofdev
->dev
, "can't allocate channel structure\n");
4149 initcode
= PPC_ADMA_INIT_CHANNEL
;
4151 goto err_chan_alloc
;
4154 spin_lock_init(&chan
->lock
);
4155 INIT_LIST_HEAD(&chan
->chain
);
4156 INIT_LIST_HEAD(&chan
->all_slots
);
4157 chan
->device
= adev
;
4158 chan
->common
.device
= &adev
->common
;
4159 dma_cookie_init(&chan
->common
);
4160 list_add_tail(&chan
->common
.device_node
, &adev
->common
.channels
);
4161 tasklet_init(&chan
->irq_tasklet
, ppc440spe_adma_tasklet
,
4162 (unsigned long)chan
);
4164 /* allocate and map helper pages for async validation or
4165 * async_mult/async_sum_product operations on DMA0/1.
4167 if (adev
->id
!= PPC440SPE_XOR_ID
) {
4168 chan
->pdest_page
= alloc_page(GFP_KERNEL
);
4169 chan
->qdest_page
= alloc_page(GFP_KERNEL
);
4170 if (!chan
->pdest_page
||
4171 !chan
->qdest_page
) {
4172 if (chan
->pdest_page
)
4173 __free_page(chan
->pdest_page
);
4174 if (chan
->qdest_page
)
4175 __free_page(chan
->qdest_page
);
4177 goto err_page_alloc
;
4179 chan
->pdest
= dma_map_page(&ofdev
->dev
, chan
->pdest_page
, 0,
4180 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
4181 chan
->qdest
= dma_map_page(&ofdev
->dev
, chan
->qdest_page
, 0,
4182 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
4185 ref
= kmalloc(sizeof(*ref
), GFP_KERNEL
);
4187 ref
->chan
= &chan
->common
;
4188 INIT_LIST_HEAD(&ref
->node
);
4189 list_add_tail(&ref
->node
, &ppc440spe_adma_chan_list
);
4191 dev_err(&ofdev
->dev
, "failed to allocate channel reference!\n");
4196 ret
= ppc440spe_adma_setup_irqs(adev
, chan
, &initcode
);
4200 ppc440spe_adma_init_capabilities(adev
);
4202 ret
= dma_async_device_register(&adev
->common
);
4204 initcode
= PPC_ADMA_INIT_REGISTER
;
4205 dev_err(&ofdev
->dev
, "failed to register dma device\n");
4212 ppc440spe_adma_release_irqs(adev
, chan
);
4214 list_for_each_entry_safe(ref
, _ref
, &ppc440spe_adma_chan_list
, node
) {
4215 if (chan
== to_ppc440spe_adma_chan(ref
->chan
)) {
4216 list_del(&ref
->node
);
4221 if (adev
->id
!= PPC440SPE_XOR_ID
) {
4222 dma_unmap_page(&ofdev
->dev
, chan
->pdest
,
4223 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
4224 dma_unmap_page(&ofdev
->dev
, chan
->qdest
,
4225 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
4226 __free_page(chan
->pdest_page
);
4227 __free_page(chan
->qdest_page
);
4232 if (adev
->id
== PPC440SPE_XOR_ID
)
4233 iounmap(adev
->xor_reg
);
4235 iounmap(adev
->dma_reg
);
4237 dma_free_coherent(adev
->dev
, adev
->pool_size
,
4238 adev
->dma_desc_pool_virt
,
4239 adev
->dma_desc_pool
);
4243 release_mem_region(res
.start
, resource_size(&res
));
4245 if (id
< PPC440SPE_ADMA_ENGINES_NUM
)
4246 ppc440spe_adma_devices
[id
] = initcode
;
4252 * ppc440spe_adma_remove - remove the asynch device
4254 static int ppc440spe_adma_remove(struct platform_device
*ofdev
)
4256 struct ppc440spe_adma_device
*adev
= platform_get_drvdata(ofdev
);
4257 struct device_node
*np
= ofdev
->dev
.of_node
;
4258 struct resource res
;
4259 struct dma_chan
*chan
, *_chan
;
4260 struct ppc_dma_chan_ref
*ref
, *_ref
;
4261 struct ppc440spe_adma_chan
*ppc440spe_chan
;
4263 if (adev
->id
< PPC440SPE_ADMA_ENGINES_NUM
)
4264 ppc440spe_adma_devices
[adev
->id
] = -1;
4266 dma_async_device_unregister(&adev
->common
);
4268 list_for_each_entry_safe(chan
, _chan
, &adev
->common
.channels
,
4270 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
4271 ppc440spe_adma_release_irqs(adev
, ppc440spe_chan
);
4272 tasklet_kill(&ppc440spe_chan
->irq_tasklet
);
4273 if (adev
->id
!= PPC440SPE_XOR_ID
) {
4274 dma_unmap_page(&ofdev
->dev
, ppc440spe_chan
->pdest
,
4275 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
4276 dma_unmap_page(&ofdev
->dev
, ppc440spe_chan
->qdest
,
4277 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
4278 __free_page(ppc440spe_chan
->pdest_page
);
4279 __free_page(ppc440spe_chan
->qdest_page
);
4281 list_for_each_entry_safe(ref
, _ref
, &ppc440spe_adma_chan_list
,
4283 if (ppc440spe_chan
==
4284 to_ppc440spe_adma_chan(ref
->chan
)) {
4285 list_del(&ref
->node
);
4289 list_del(&chan
->device_node
);
4290 kfree(ppc440spe_chan
);
4293 dma_free_coherent(adev
->dev
, adev
->pool_size
,
4294 adev
->dma_desc_pool_virt
, adev
->dma_desc_pool
);
4295 if (adev
->id
== PPC440SPE_XOR_ID
)
4296 iounmap(adev
->xor_reg
);
4298 iounmap(adev
->dma_reg
);
4299 of_address_to_resource(np
, 0, &res
);
4300 release_mem_region(res
.start
, resource_size(&res
));
4306 * /sys driver interface to enable h/w RAID-6 capabilities
4307 * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
4308 * directory are "devices", "enable" and "poly".
4309 * "devices" shows available engines.
4310 * "enable" is used to enable RAID-6 capabilities or to check
4311 * whether these has been activated.
4312 * "poly" allows setting/checking used polynomial (for PPC440SPe only).
4315 static ssize_t
show_ppc440spe_devices(struct device_driver
*dev
, char *buf
)
4320 for (i
= 0; i
< PPC440SPE_ADMA_ENGINES_NUM
; i
++) {
4321 if (ppc440spe_adma_devices
[i
] == -1)
4323 size
+= snprintf(buf
+ size
, PAGE_SIZE
- size
,
4324 "PPC440SP(E)-ADMA.%d: %s\n", i
,
4325 ppc_adma_errors
[ppc440spe_adma_devices
[i
]]);
4330 static ssize_t
show_ppc440spe_r6enable(struct device_driver
*dev
, char *buf
)
4332 return snprintf(buf
, PAGE_SIZE
,
4333 "PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
4334 ppc440spe_r6_enabled
? "EN" : "DIS");
4337 static ssize_t
store_ppc440spe_r6enable(struct device_driver
*dev
,
4338 const char *buf
, size_t count
)
4342 if (!count
|| count
> 11)
4345 if (!ppc440spe_r6_tchan
)
4349 sscanf(buf
, "%lx", &val
);
4350 dcr_write(ppc440spe_mq_dcr_host
, DCRN_MQ0_XORBA
, val
);
4353 /* Verify whether it really works now */
4354 if (ppc440spe_test_raid6(ppc440spe_r6_tchan
) == 0) {
4355 pr_info("PPC440SP(e) RAID-6 has been activated "
4357 ppc440spe_r6_enabled
= 1;
4359 pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
4361 ppc440spe_r6_enabled
= 0;
4366 static ssize_t
show_ppc440spe_r6poly(struct device_driver
*dev
, char *buf
)
4372 /* 440SP has fixed polynomial */
4375 reg
= dcr_read(ppc440spe_mq_dcr_host
, DCRN_MQ0_CFBHL
);
4376 reg
>>= MQ0_CFBHL_POLY
;
4380 size
= snprintf(buf
, PAGE_SIZE
, "PPC440SP(e) RAID-6 driver "
4381 "uses 0x1%02x polynomial.\n", reg
);
4385 static ssize_t
store_ppc440spe_r6poly(struct device_driver
*dev
,
4386 const char *buf
, size_t count
)
4388 unsigned long reg
, val
;
4391 /* 440SP uses default 0x14D polynomial only */
4395 if (!count
|| count
> 6)
4398 /* e.g., 0x14D or 0x11D */
4399 sscanf(buf
, "%lx", &val
);
4405 reg
= dcr_read(ppc440spe_mq_dcr_host
, DCRN_MQ0_CFBHL
);
4406 reg
&= ~(0xFF << MQ0_CFBHL_POLY
);
4407 reg
|= val
<< MQ0_CFBHL_POLY
;
4408 dcr_write(ppc440spe_mq_dcr_host
, DCRN_MQ0_CFBHL
, reg
);
4413 static DRIVER_ATTR(devices
, S_IRUGO
, show_ppc440spe_devices
, NULL
);
4414 static DRIVER_ATTR(enable
, S_IRUGO
| S_IWUSR
, show_ppc440spe_r6enable
,
4415 store_ppc440spe_r6enable
);
4416 static DRIVER_ATTR(poly
, S_IRUGO
| S_IWUSR
, show_ppc440spe_r6poly
,
4417 store_ppc440spe_r6poly
);
4420 * Common initialisation for RAID engines; allocate memory for
4421 * DMAx FIFOs, perform configuration common for all DMA engines.
4422 * Further DMA engine specific configuration is done at probe time.
4424 static int ppc440spe_configure_raid_devices(void)
4426 struct device_node
*np
;
4427 struct resource i2o_res
;
4428 struct i2o_regs __iomem
*i2o_reg
;
4429 dcr_host_t i2o_dcr_host
;
4430 unsigned int dcr_base
, dcr_len
;
4433 np
= of_find_compatible_node(NULL
, NULL
, "ibm,i2o-440spe");
4435 pr_err("%s: can't find I2O device tree node\n",
4440 if (of_address_to_resource(np
, 0, &i2o_res
)) {
4445 i2o_reg
= of_iomap(np
, 0);
4447 pr_err("%s: failed to map I2O registers\n", __func__
);
4452 /* Get I2O DCRs base */
4453 dcr_base
= dcr_resource_start(np
, 0);
4454 dcr_len
= dcr_resource_len(np
, 0);
4455 if (!dcr_base
&& !dcr_len
) {
4456 pr_err("%s: can't get DCR registers base/len!\n",
4463 i2o_dcr_host
= dcr_map(np
, dcr_base
, dcr_len
);
4464 if (!DCR_MAP_OK(i2o_dcr_host
)) {
4465 pr_err("%s: failed to map DCRs!\n", np
->full_name
);
4472 /* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
4473 * the base address of FIFO memory space.
4474 * Actually we need twice more physical memory than programmed in the
4475 * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
4477 ppc440spe_dma_fifo_buf
= kmalloc((DMA0_FIFO_SIZE
+ DMA1_FIFO_SIZE
) << 1,
4479 if (!ppc440spe_dma_fifo_buf
) {
4480 pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__
);
4482 dcr_unmap(i2o_dcr_host
, dcr_len
);
4490 mtdcri(SDR0
, DCRN_SDR0_SRST
, DCRN_SDR0_SRST_I2ODMA
);
4491 mtdcri(SDR0
, DCRN_SDR0_SRST
, 0);
4493 /* Setup the base address of mmaped registers */
4494 dcr_write(i2o_dcr_host
, DCRN_I2O0_IBAH
, (u32
)(i2o_res
.start
>> 32));
4495 dcr_write(i2o_dcr_host
, DCRN_I2O0_IBAL
, (u32
)(i2o_res
.start
) |
4497 dcr_unmap(i2o_dcr_host
, dcr_len
);
4499 /* Setup FIFO memory space base address */
4500 iowrite32(0, &i2o_reg
->ifbah
);
4501 iowrite32(((u32
)__pa(ppc440spe_dma_fifo_buf
)), &i2o_reg
->ifbal
);
4503 /* set zero FIFO size for I2O, so the whole
4504 * ppc440spe_dma_fifo_buf is used by DMAs.
4505 * DMAx_FIFOs will be configured while probe.
4507 iowrite32(0, &i2o_reg
->ifsiz
);
4510 /* To prepare WXOR/RXOR functionality we need access to
4511 * Memory Queue Module DCRs (finally it will be enabled
4512 * via /sys interface of the ppc440spe ADMA driver).
4514 np
= of_find_compatible_node(NULL
, NULL
, "ibm,mq-440spe");
4516 pr_err("%s: can't find MQ device tree node\n",
4522 /* Get MQ DCRs base */
4523 dcr_base
= dcr_resource_start(np
, 0);
4524 dcr_len
= dcr_resource_len(np
, 0);
4525 if (!dcr_base
&& !dcr_len
) {
4526 pr_err("%s: can't get DCR registers base/len!\n",
4532 ppc440spe_mq_dcr_host
= dcr_map(np
, dcr_base
, dcr_len
);
4533 if (!DCR_MAP_OK(ppc440spe_mq_dcr_host
)) {
4534 pr_err("%s: failed to map DCRs!\n", np
->full_name
);
4539 ppc440spe_mq_dcr_len
= dcr_len
;
4542 dcr_write(ppc440spe_mq_dcr_host
, DCRN_MQ0_BAUH
, DMA_CUED_XOR_HB
);
4545 * - LL transaction passing limit to 1;
4546 * - Memory controller cycle limit to 1;
4547 * - Galois Polynomial to 0x14d (default)
4549 dcr_write(ppc440spe_mq_dcr_host
, DCRN_MQ0_CFBHL
,
4550 (1 << MQ0_CFBHL_TPLM
) | (1 << MQ0_CFBHL_HBCL
) |
4551 (PPC440SPE_DEFAULT_POLY
<< MQ0_CFBHL_POLY
));
4553 atomic_set(&ppc440spe_adma_err_irq_ref
, 0);
4554 for (i
= 0; i
< PPC440SPE_ADMA_ENGINES_NUM
; i
++)
4555 ppc440spe_adma_devices
[i
] = -1;
4562 kfree(ppc440spe_dma_fifo_buf
);
4566 static const struct of_device_id ppc440spe_adma_of_match
[] = {
4567 { .compatible
= "ibm,dma-440spe", },
4568 { .compatible
= "amcc,xor-accelerator", },
4571 MODULE_DEVICE_TABLE(of
, ppc440spe_adma_of_match
);
4573 static struct platform_driver ppc440spe_adma_driver
= {
4574 .probe
= ppc440spe_adma_probe
,
4575 .remove
= ppc440spe_adma_remove
,
4577 .name
= "PPC440SP(E)-ADMA",
4578 .of_match_table
= ppc440spe_adma_of_match
,
4582 static __init
int ppc440spe_adma_init(void)
4586 ret
= ppc440spe_configure_raid_devices();
4590 ret
= platform_driver_register(&ppc440spe_adma_driver
);
4592 pr_err("%s: failed to register platform driver\n",
4597 /* Initialization status */
4598 ret
= driver_create_file(&ppc440spe_adma_driver
.driver
,
4599 &driver_attr_devices
);
4603 /* RAID-6 h/w enable entry */
4604 ret
= driver_create_file(&ppc440spe_adma_driver
.driver
,
4605 &driver_attr_enable
);
4609 /* GF polynomial to use */
4610 ret
= driver_create_file(&ppc440spe_adma_driver
.driver
,
4615 driver_remove_file(&ppc440spe_adma_driver
.driver
,
4616 &driver_attr_enable
);
4618 driver_remove_file(&ppc440spe_adma_driver
.driver
,
4619 &driver_attr_devices
);
4621 /* User will not be able to enable h/w RAID-6 */
4622 pr_err("%s: failed to create RAID-6 driver interface\n",
4624 platform_driver_unregister(&ppc440spe_adma_driver
);
4626 dcr_unmap(ppc440spe_mq_dcr_host
, ppc440spe_mq_dcr_len
);
4627 kfree(ppc440spe_dma_fifo_buf
);
4631 static void __exit
ppc440spe_adma_exit(void)
4633 driver_remove_file(&ppc440spe_adma_driver
.driver
,
4635 driver_remove_file(&ppc440spe_adma_driver
.driver
,
4636 &driver_attr_enable
);
4637 driver_remove_file(&ppc440spe_adma_driver
.driver
,
4638 &driver_attr_devices
);
4639 platform_driver_unregister(&ppc440spe_adma_driver
);
4640 dcr_unmap(ppc440spe_mq_dcr_host
, ppc440spe_mq_dcr_len
);
4641 kfree(ppc440spe_dma_fifo_buf
);
4644 arch_initcall(ppc440spe_adma_init
);
4645 module_exit(ppc440spe_adma_exit
);
4647 MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
4648 MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
4649 MODULE_LICENSE("GPL");