Linux 4.2.1
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / i915_debugfs.c
blob82bbe3f2a7e1e6c7b1a2c56d2f066377f7254ceb
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Keith Packard <keithp@keithp.com>
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
43 enum {
44 ACTIVE_LIST,
45 INACTIVE_LIST,
46 PINNED_LIST,
49 static const char *yesno(int v)
51 return v ? "yes" : "no";
54 /* As the drm_debugfs_init() routines are called before dev->dev_private is
55 * allocated we need to hook into the minor for release. */
56 static int
57 drm_add_fake_info_node(struct drm_minor *minor,
58 struct dentry *ent,
59 const void *key)
61 struct drm_info_node *node;
63 node = kmalloc(sizeof(*node), GFP_KERNEL);
64 if (node == NULL) {
65 debugfs_remove(ent);
66 return -ENOMEM;
69 node->minor = minor;
70 node->dent = ent;
71 node->info_ent = (void *) key;
73 mutex_lock(&minor->debugfs_lock);
74 list_add(&node->list, &minor->debugfs_list);
75 mutex_unlock(&minor->debugfs_lock);
77 return 0;
80 static int i915_capabilities(struct seq_file *m, void *data)
82 struct drm_info_node *node = m->private;
83 struct drm_device *dev = node->minor->dev;
84 const struct intel_device_info *info = INTEL_INFO(dev);
86 seq_printf(m, "gen: %d\n", info->gen);
87 seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88 #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
89 #define SEP_SEMICOLON ;
90 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91 #undef PRINT_FLAG
92 #undef SEP_SEMICOLON
94 return 0;
97 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
99 if (obj->pin_display)
100 return "p";
101 else
102 return " ";
105 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
107 switch (obj->tiling_mode) {
108 default:
109 case I915_TILING_NONE: return " ";
110 case I915_TILING_X: return "X";
111 case I915_TILING_Y: return "Y";
115 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
117 return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
120 static void
121 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
123 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
124 struct intel_engine_cs *ring;
125 struct i915_vma *vma;
126 int pin_count = 0;
127 int i;
129 seq_printf(m, "%pK: %s%s%s%s %8zdKiB %02x %02x [ ",
130 &obj->base,
131 obj->active ? "*" : " ",
132 get_pin_flag(obj),
133 get_tiling_flag(obj),
134 get_global_flag(obj),
135 obj->base.size / 1024,
136 obj->base.read_domains,
137 obj->base.write_domain);
138 for_each_ring(ring, dev_priv, i)
139 seq_printf(m, "%x ",
140 i915_gem_request_get_seqno(obj->last_read_req[i]));
141 seq_printf(m, "] %x %x%s%s%s",
142 i915_gem_request_get_seqno(obj->last_write_req),
143 i915_gem_request_get_seqno(obj->last_fenced_req),
144 i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
145 obj->dirty ? " dirty" : "",
146 obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
147 if (obj->base.name)
148 seq_printf(m, " (name: %d)", obj->base.name);
149 list_for_each_entry(vma, &obj->vma_list, vma_link) {
150 if (vma->pin_count > 0)
151 pin_count++;
153 seq_printf(m, " (pinned x %d)", pin_count);
154 if (obj->pin_display)
155 seq_printf(m, " (display)");
156 if (obj->fence_reg != I915_FENCE_REG_NONE)
157 seq_printf(m, " (fence: %d)", obj->fence_reg);
158 list_for_each_entry(vma, &obj->vma_list, vma_link) {
159 if (!i915_is_ggtt(vma->vm))
160 seq_puts(m, " (pp");
161 else
162 seq_puts(m, " (g");
163 seq_printf(m, "gtt offset: %08llx, size: %08llx, type: %u)",
164 vma->node.start, vma->node.size,
165 vma->ggtt_view.type);
167 if (obj->stolen)
168 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
169 if (obj->pin_display || obj->fault_mappable) {
170 char s[3], *t = s;
171 if (obj->pin_display)
172 *t++ = 'p';
173 if (obj->fault_mappable)
174 *t++ = 'f';
175 *t = '\0';
176 seq_printf(m, " (%s mappable)", s);
178 if (obj->last_write_req != NULL)
179 seq_printf(m, " (%s)",
180 i915_gem_request_get_ring(obj->last_write_req)->name);
181 if (obj->frontbuffer_bits)
182 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
185 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
187 seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
188 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
189 seq_putc(m, ' ');
192 static int i915_gem_object_list_info(struct seq_file *m, void *data)
194 struct drm_info_node *node = m->private;
195 uintptr_t list = (uintptr_t) node->info_ent->data;
196 struct list_head *head;
197 struct drm_device *dev = node->minor->dev;
198 struct drm_i915_private *dev_priv = dev->dev_private;
199 struct i915_address_space *vm = &dev_priv->gtt.base;
200 struct i915_vma *vma;
201 size_t total_obj_size, total_gtt_size;
202 int count, ret;
204 ret = mutex_lock_interruptible(&dev->struct_mutex);
205 if (ret)
206 return ret;
208 /* FIXME: the user of this interface might want more than just GGTT */
209 switch (list) {
210 case ACTIVE_LIST:
211 seq_puts(m, "Active:\n");
212 head = &vm->active_list;
213 break;
214 case INACTIVE_LIST:
215 seq_puts(m, "Inactive:\n");
216 head = &vm->inactive_list;
217 break;
218 default:
219 mutex_unlock(&dev->struct_mutex);
220 return -EINVAL;
223 total_obj_size = total_gtt_size = count = 0;
224 list_for_each_entry(vma, head, mm_list) {
225 seq_printf(m, " ");
226 describe_obj(m, vma->obj);
227 seq_printf(m, "\n");
228 total_obj_size += vma->obj->base.size;
229 total_gtt_size += vma->node.size;
230 count++;
232 mutex_unlock(&dev->struct_mutex);
234 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
235 count, total_obj_size, total_gtt_size);
236 return 0;
239 static int obj_rank_by_stolen(void *priv,
240 struct list_head *A, struct list_head *B)
242 struct drm_i915_gem_object *a =
243 container_of(A, struct drm_i915_gem_object, obj_exec_link);
244 struct drm_i915_gem_object *b =
245 container_of(B, struct drm_i915_gem_object, obj_exec_link);
247 return a->stolen->start - b->stolen->start;
250 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
252 struct drm_info_node *node = m->private;
253 struct drm_device *dev = node->minor->dev;
254 struct drm_i915_private *dev_priv = dev->dev_private;
255 struct drm_i915_gem_object *obj;
256 size_t total_obj_size, total_gtt_size;
257 LIST_HEAD(stolen);
258 int count, ret;
260 ret = mutex_lock_interruptible(&dev->struct_mutex);
261 if (ret)
262 return ret;
264 total_obj_size = total_gtt_size = count = 0;
265 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
266 if (obj->stolen == NULL)
267 continue;
269 list_add(&obj->obj_exec_link, &stolen);
271 total_obj_size += obj->base.size;
272 total_gtt_size += i915_gem_obj_ggtt_size(obj);
273 count++;
275 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
276 if (obj->stolen == NULL)
277 continue;
279 list_add(&obj->obj_exec_link, &stolen);
281 total_obj_size += obj->base.size;
282 count++;
284 list_sort(NULL, &stolen, obj_rank_by_stolen);
285 seq_puts(m, "Stolen:\n");
286 while (!list_empty(&stolen)) {
287 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
288 seq_puts(m, " ");
289 describe_obj(m, obj);
290 seq_putc(m, '\n');
291 list_del_init(&obj->obj_exec_link);
293 mutex_unlock(&dev->struct_mutex);
295 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
296 count, total_obj_size, total_gtt_size);
297 return 0;
300 #define count_objects(list, member) do { \
301 list_for_each_entry(obj, list, member) { \
302 size += i915_gem_obj_ggtt_size(obj); \
303 ++count; \
304 if (obj->map_and_fenceable) { \
305 mappable_size += i915_gem_obj_ggtt_size(obj); \
306 ++mappable_count; \
309 } while (0)
311 struct file_stats {
312 struct drm_i915_file_private *file_priv;
313 int count;
314 size_t total, unbound;
315 size_t global, shared;
316 size_t active, inactive;
319 static int per_file_stats(int id, void *ptr, void *data)
321 struct drm_i915_gem_object *obj = ptr;
322 struct file_stats *stats = data;
323 struct i915_vma *vma;
325 stats->count++;
326 stats->total += obj->base.size;
328 if (obj->base.name || obj->base.dma_buf)
329 stats->shared += obj->base.size;
331 if (USES_FULL_PPGTT(obj->base.dev)) {
332 list_for_each_entry(vma, &obj->vma_list, vma_link) {
333 struct i915_hw_ppgtt *ppgtt;
335 if (!drm_mm_node_allocated(&vma->node))
336 continue;
338 if (i915_is_ggtt(vma->vm)) {
339 stats->global += obj->base.size;
340 continue;
343 ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
344 if (ppgtt->file_priv != stats->file_priv)
345 continue;
347 if (obj->active) /* XXX per-vma statistic */
348 stats->active += obj->base.size;
349 else
350 stats->inactive += obj->base.size;
352 return 0;
354 } else {
355 if (i915_gem_obj_ggtt_bound(obj)) {
356 stats->global += obj->base.size;
357 if (obj->active)
358 stats->active += obj->base.size;
359 else
360 stats->inactive += obj->base.size;
361 return 0;
365 if (!list_empty(&obj->global_list))
366 stats->unbound += obj->base.size;
368 return 0;
371 #define print_file_stats(m, name, stats) do { \
372 if (stats.count) \
373 seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n", \
374 name, \
375 stats.count, \
376 stats.total, \
377 stats.active, \
378 stats.inactive, \
379 stats.global, \
380 stats.shared, \
381 stats.unbound); \
382 } while (0)
384 static void print_batch_pool_stats(struct seq_file *m,
385 struct drm_i915_private *dev_priv)
387 struct drm_i915_gem_object *obj;
388 struct file_stats stats;
389 struct intel_engine_cs *ring;
390 int i, j;
392 memset(&stats, 0, sizeof(stats));
394 for_each_ring(ring, dev_priv, i) {
395 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
396 list_for_each_entry(obj,
397 &ring->batch_pool.cache_list[j],
398 batch_pool_link)
399 per_file_stats(0, obj, &stats);
403 print_file_stats(m, "[k]batch pool", stats);
406 #define count_vmas(list, member) do { \
407 list_for_each_entry(vma, list, member) { \
408 size += i915_gem_obj_ggtt_size(vma->obj); \
409 ++count; \
410 if (vma->obj->map_and_fenceable) { \
411 mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
412 ++mappable_count; \
415 } while (0)
417 static int i915_gem_object_info(struct seq_file *m, void* data)
419 struct drm_info_node *node = m->private;
420 struct drm_device *dev = node->minor->dev;
421 struct drm_i915_private *dev_priv = dev->dev_private;
422 u32 count, mappable_count, purgeable_count;
423 size_t size, mappable_size, purgeable_size;
424 struct drm_i915_gem_object *obj;
425 struct i915_address_space *vm = &dev_priv->gtt.base;
426 struct drm_file *file;
427 struct i915_vma *vma;
428 int ret;
430 ret = mutex_lock_interruptible(&dev->struct_mutex);
431 if (ret)
432 return ret;
434 seq_printf(m, "%u objects, %zu bytes\n",
435 dev_priv->mm.object_count,
436 dev_priv->mm.object_memory);
438 size = count = mappable_size = mappable_count = 0;
439 count_objects(&dev_priv->mm.bound_list, global_list);
440 seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
441 count, mappable_count, size, mappable_size);
443 size = count = mappable_size = mappable_count = 0;
444 count_vmas(&vm->active_list, mm_list);
445 seq_printf(m, " %u [%u] active objects, %zu [%zu] bytes\n",
446 count, mappable_count, size, mappable_size);
448 size = count = mappable_size = mappable_count = 0;
449 count_vmas(&vm->inactive_list, mm_list);
450 seq_printf(m, " %u [%u] inactive objects, %zu [%zu] bytes\n",
451 count, mappable_count, size, mappable_size);
453 size = count = purgeable_size = purgeable_count = 0;
454 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
455 size += obj->base.size, ++count;
456 if (obj->madv == I915_MADV_DONTNEED)
457 purgeable_size += obj->base.size, ++purgeable_count;
459 seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
461 size = count = mappable_size = mappable_count = 0;
462 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
463 if (obj->fault_mappable) {
464 size += i915_gem_obj_ggtt_size(obj);
465 ++count;
467 if (obj->pin_display) {
468 mappable_size += i915_gem_obj_ggtt_size(obj);
469 ++mappable_count;
471 if (obj->madv == I915_MADV_DONTNEED) {
472 purgeable_size += obj->base.size;
473 ++purgeable_count;
476 seq_printf(m, "%u purgeable objects, %zu bytes\n",
477 purgeable_count, purgeable_size);
478 seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
479 mappable_count, mappable_size);
480 seq_printf(m, "%u fault mappable objects, %zu bytes\n",
481 count, size);
483 seq_printf(m, "%zu [%lu] gtt total\n",
484 dev_priv->gtt.base.total,
485 dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
487 seq_putc(m, '\n');
488 print_batch_pool_stats(m, dev_priv);
489 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
490 struct file_stats stats;
491 struct task_struct *task;
493 memset(&stats, 0, sizeof(stats));
494 stats.file_priv = file->driver_priv;
495 spin_lock(&file->table_lock);
496 idr_for_each(&file->object_idr, per_file_stats, &stats);
497 spin_unlock(&file->table_lock);
499 * Although we have a valid reference on file->pid, that does
500 * not guarantee that the task_struct who called get_pid() is
501 * still alive (e.g. get_pid(current) => fork() => exit()).
502 * Therefore, we need to protect this ->comm access using RCU.
504 rcu_read_lock();
505 task = pid_task(file->pid, PIDTYPE_PID);
506 print_file_stats(m, task ? task->comm : "<unknown>", stats);
507 rcu_read_unlock();
510 mutex_unlock(&dev->struct_mutex);
512 return 0;
515 static int i915_gem_gtt_info(struct seq_file *m, void *data)
517 struct drm_info_node *node = m->private;
518 struct drm_device *dev = node->minor->dev;
519 uintptr_t list = (uintptr_t) node->info_ent->data;
520 struct drm_i915_private *dev_priv = dev->dev_private;
521 struct drm_i915_gem_object *obj;
522 size_t total_obj_size, total_gtt_size;
523 int count, ret;
525 ret = mutex_lock_interruptible(&dev->struct_mutex);
526 if (ret)
527 return ret;
529 total_obj_size = total_gtt_size = count = 0;
530 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
531 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
532 continue;
534 seq_puts(m, " ");
535 describe_obj(m, obj);
536 seq_putc(m, '\n');
537 total_obj_size += obj->base.size;
538 total_gtt_size += i915_gem_obj_ggtt_size(obj);
539 count++;
542 mutex_unlock(&dev->struct_mutex);
544 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
545 count, total_obj_size, total_gtt_size);
547 return 0;
550 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
552 struct drm_info_node *node = m->private;
553 struct drm_device *dev = node->minor->dev;
554 struct drm_i915_private *dev_priv = dev->dev_private;
555 struct intel_crtc *crtc;
556 int ret;
558 ret = mutex_lock_interruptible(&dev->struct_mutex);
559 if (ret)
560 return ret;
562 for_each_intel_crtc(dev, crtc) {
563 const char pipe = pipe_name(crtc->pipe);
564 const char plane = plane_name(crtc->plane);
565 struct intel_unpin_work *work;
567 spin_lock_irq(&dev->event_lock);
568 work = crtc->unpin_work;
569 if (work == NULL) {
570 seq_printf(m, "No flip due on pipe %c (plane %c)\n",
571 pipe, plane);
572 } else {
573 u32 addr;
575 if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
576 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
577 pipe, plane);
578 } else {
579 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
580 pipe, plane);
582 if (work->flip_queued_req) {
583 struct intel_engine_cs *ring =
584 i915_gem_request_get_ring(work->flip_queued_req);
586 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
587 ring->name,
588 i915_gem_request_get_seqno(work->flip_queued_req),
589 dev_priv->next_seqno,
590 ring->get_seqno(ring, true),
591 i915_gem_request_completed(work->flip_queued_req, true));
592 } else
593 seq_printf(m, "Flip not associated with any ring\n");
594 seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
595 work->flip_queued_vblank,
596 work->flip_ready_vblank,
597 drm_crtc_vblank_count(&crtc->base));
598 if (work->enable_stall_check)
599 seq_puts(m, "Stall check enabled, ");
600 else
601 seq_puts(m, "Stall check waiting for page flip ioctl, ");
602 seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
604 if (INTEL_INFO(dev)->gen >= 4)
605 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
606 else
607 addr = I915_READ(DSPADDR(crtc->plane));
608 seq_printf(m, "Current scanout address 0x%08x\n", addr);
610 if (work->pending_flip_obj) {
611 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
612 seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
615 spin_unlock_irq(&dev->event_lock);
618 mutex_unlock(&dev->struct_mutex);
620 return 0;
623 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
625 struct drm_info_node *node = m->private;
626 struct drm_device *dev = node->minor->dev;
627 struct drm_i915_private *dev_priv = dev->dev_private;
628 struct drm_i915_gem_object *obj;
629 struct intel_engine_cs *ring;
630 int total = 0;
631 int ret, i, j;
633 ret = mutex_lock_interruptible(&dev->struct_mutex);
634 if (ret)
635 return ret;
637 for_each_ring(ring, dev_priv, i) {
638 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
639 int count;
641 count = 0;
642 list_for_each_entry(obj,
643 &ring->batch_pool.cache_list[j],
644 batch_pool_link)
645 count++;
646 seq_printf(m, "%s cache[%d]: %d objects\n",
647 ring->name, j, count);
649 list_for_each_entry(obj,
650 &ring->batch_pool.cache_list[j],
651 batch_pool_link) {
652 seq_puts(m, " ");
653 describe_obj(m, obj);
654 seq_putc(m, '\n');
657 total += count;
661 seq_printf(m, "total: %d\n", total);
663 mutex_unlock(&dev->struct_mutex);
665 return 0;
668 static int i915_gem_request_info(struct seq_file *m, void *data)
670 struct drm_info_node *node = m->private;
671 struct drm_device *dev = node->minor->dev;
672 struct drm_i915_private *dev_priv = dev->dev_private;
673 struct intel_engine_cs *ring;
674 struct drm_i915_gem_request *req;
675 int ret, any, i;
677 ret = mutex_lock_interruptible(&dev->struct_mutex);
678 if (ret)
679 return ret;
681 any = 0;
682 for_each_ring(ring, dev_priv, i) {
683 int count;
685 count = 0;
686 list_for_each_entry(req, &ring->request_list, list)
687 count++;
688 if (count == 0)
689 continue;
691 seq_printf(m, "%s requests: %d\n", ring->name, count);
692 list_for_each_entry(req, &ring->request_list, list) {
693 struct task_struct *task;
695 rcu_read_lock();
696 task = NULL;
697 if (req->pid)
698 task = pid_task(req->pid, PIDTYPE_PID);
699 seq_printf(m, " %x @ %d: %s [%d]\n",
700 req->seqno,
701 (int) (jiffies - req->emitted_jiffies),
702 task ? task->comm : "<unknown>",
703 task ? task->pid : -1);
704 rcu_read_unlock();
707 any++;
709 mutex_unlock(&dev->struct_mutex);
711 if (any == 0)
712 seq_puts(m, "No requests\n");
714 return 0;
717 static void i915_ring_seqno_info(struct seq_file *m,
718 struct intel_engine_cs *ring)
720 if (ring->get_seqno) {
721 seq_printf(m, "Current sequence (%s): %x\n",
722 ring->name, ring->get_seqno(ring, false));
726 static int i915_gem_seqno_info(struct seq_file *m, void *data)
728 struct drm_info_node *node = m->private;
729 struct drm_device *dev = node->minor->dev;
730 struct drm_i915_private *dev_priv = dev->dev_private;
731 struct intel_engine_cs *ring;
732 int ret, i;
734 ret = mutex_lock_interruptible(&dev->struct_mutex);
735 if (ret)
736 return ret;
737 intel_runtime_pm_get(dev_priv);
739 for_each_ring(ring, dev_priv, i)
740 i915_ring_seqno_info(m, ring);
742 intel_runtime_pm_put(dev_priv);
743 mutex_unlock(&dev->struct_mutex);
745 return 0;
749 static int i915_interrupt_info(struct seq_file *m, void *data)
751 struct drm_info_node *node = m->private;
752 struct drm_device *dev = node->minor->dev;
753 struct drm_i915_private *dev_priv = dev->dev_private;
754 struct intel_engine_cs *ring;
755 int ret, i, pipe;
757 ret = mutex_lock_interruptible(&dev->struct_mutex);
758 if (ret)
759 return ret;
760 intel_runtime_pm_get(dev_priv);
762 if (IS_CHERRYVIEW(dev)) {
763 seq_printf(m, "Master Interrupt Control:\t%08x\n",
764 I915_READ(GEN8_MASTER_IRQ));
766 seq_printf(m, "Display IER:\t%08x\n",
767 I915_READ(VLV_IER));
768 seq_printf(m, "Display IIR:\t%08x\n",
769 I915_READ(VLV_IIR));
770 seq_printf(m, "Display IIR_RW:\t%08x\n",
771 I915_READ(VLV_IIR_RW));
772 seq_printf(m, "Display IMR:\t%08x\n",
773 I915_READ(VLV_IMR));
774 for_each_pipe(dev_priv, pipe)
775 seq_printf(m, "Pipe %c stat:\t%08x\n",
776 pipe_name(pipe),
777 I915_READ(PIPESTAT(pipe)));
779 seq_printf(m, "Port hotplug:\t%08x\n",
780 I915_READ(PORT_HOTPLUG_EN));
781 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
782 I915_READ(VLV_DPFLIPSTAT));
783 seq_printf(m, "DPINVGTT:\t%08x\n",
784 I915_READ(DPINVGTT));
786 for (i = 0; i < 4; i++) {
787 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
788 i, I915_READ(GEN8_GT_IMR(i)));
789 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
790 i, I915_READ(GEN8_GT_IIR(i)));
791 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
792 i, I915_READ(GEN8_GT_IER(i)));
795 seq_printf(m, "PCU interrupt mask:\t%08x\n",
796 I915_READ(GEN8_PCU_IMR));
797 seq_printf(m, "PCU interrupt identity:\t%08x\n",
798 I915_READ(GEN8_PCU_IIR));
799 seq_printf(m, "PCU interrupt enable:\t%08x\n",
800 I915_READ(GEN8_PCU_IER));
801 } else if (INTEL_INFO(dev)->gen >= 8) {
802 seq_printf(m, "Master Interrupt Control:\t%08x\n",
803 I915_READ(GEN8_MASTER_IRQ));
805 for (i = 0; i < 4; i++) {
806 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
807 i, I915_READ(GEN8_GT_IMR(i)));
808 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
809 i, I915_READ(GEN8_GT_IIR(i)));
810 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
811 i, I915_READ(GEN8_GT_IER(i)));
814 for_each_pipe(dev_priv, pipe) {
815 if (!intel_display_power_is_enabled(dev_priv,
816 POWER_DOMAIN_PIPE(pipe))) {
817 seq_printf(m, "Pipe %c power disabled\n",
818 pipe_name(pipe));
819 continue;
821 seq_printf(m, "Pipe %c IMR:\t%08x\n",
822 pipe_name(pipe),
823 I915_READ(GEN8_DE_PIPE_IMR(pipe)));
824 seq_printf(m, "Pipe %c IIR:\t%08x\n",
825 pipe_name(pipe),
826 I915_READ(GEN8_DE_PIPE_IIR(pipe)));
827 seq_printf(m, "Pipe %c IER:\t%08x\n",
828 pipe_name(pipe),
829 I915_READ(GEN8_DE_PIPE_IER(pipe)));
832 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
833 I915_READ(GEN8_DE_PORT_IMR));
834 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
835 I915_READ(GEN8_DE_PORT_IIR));
836 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
837 I915_READ(GEN8_DE_PORT_IER));
839 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
840 I915_READ(GEN8_DE_MISC_IMR));
841 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
842 I915_READ(GEN8_DE_MISC_IIR));
843 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
844 I915_READ(GEN8_DE_MISC_IER));
846 seq_printf(m, "PCU interrupt mask:\t%08x\n",
847 I915_READ(GEN8_PCU_IMR));
848 seq_printf(m, "PCU interrupt identity:\t%08x\n",
849 I915_READ(GEN8_PCU_IIR));
850 seq_printf(m, "PCU interrupt enable:\t%08x\n",
851 I915_READ(GEN8_PCU_IER));
852 } else if (IS_VALLEYVIEW(dev)) {
853 seq_printf(m, "Display IER:\t%08x\n",
854 I915_READ(VLV_IER));
855 seq_printf(m, "Display IIR:\t%08x\n",
856 I915_READ(VLV_IIR));
857 seq_printf(m, "Display IIR_RW:\t%08x\n",
858 I915_READ(VLV_IIR_RW));
859 seq_printf(m, "Display IMR:\t%08x\n",
860 I915_READ(VLV_IMR));
861 for_each_pipe(dev_priv, pipe)
862 seq_printf(m, "Pipe %c stat:\t%08x\n",
863 pipe_name(pipe),
864 I915_READ(PIPESTAT(pipe)));
866 seq_printf(m, "Master IER:\t%08x\n",
867 I915_READ(VLV_MASTER_IER));
869 seq_printf(m, "Render IER:\t%08x\n",
870 I915_READ(GTIER));
871 seq_printf(m, "Render IIR:\t%08x\n",
872 I915_READ(GTIIR));
873 seq_printf(m, "Render IMR:\t%08x\n",
874 I915_READ(GTIMR));
876 seq_printf(m, "PM IER:\t\t%08x\n",
877 I915_READ(GEN6_PMIER));
878 seq_printf(m, "PM IIR:\t\t%08x\n",
879 I915_READ(GEN6_PMIIR));
880 seq_printf(m, "PM IMR:\t\t%08x\n",
881 I915_READ(GEN6_PMIMR));
883 seq_printf(m, "Port hotplug:\t%08x\n",
884 I915_READ(PORT_HOTPLUG_EN));
885 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
886 I915_READ(VLV_DPFLIPSTAT));
887 seq_printf(m, "DPINVGTT:\t%08x\n",
888 I915_READ(DPINVGTT));
890 } else if (!HAS_PCH_SPLIT(dev)) {
891 seq_printf(m, "Interrupt enable: %08x\n",
892 I915_READ(IER));
893 seq_printf(m, "Interrupt identity: %08x\n",
894 I915_READ(IIR));
895 seq_printf(m, "Interrupt mask: %08x\n",
896 I915_READ(IMR));
897 for_each_pipe(dev_priv, pipe)
898 seq_printf(m, "Pipe %c stat: %08x\n",
899 pipe_name(pipe),
900 I915_READ(PIPESTAT(pipe)));
901 } else {
902 seq_printf(m, "North Display Interrupt enable: %08x\n",
903 I915_READ(DEIER));
904 seq_printf(m, "North Display Interrupt identity: %08x\n",
905 I915_READ(DEIIR));
906 seq_printf(m, "North Display Interrupt mask: %08x\n",
907 I915_READ(DEIMR));
908 seq_printf(m, "South Display Interrupt enable: %08x\n",
909 I915_READ(SDEIER));
910 seq_printf(m, "South Display Interrupt identity: %08x\n",
911 I915_READ(SDEIIR));
912 seq_printf(m, "South Display Interrupt mask: %08x\n",
913 I915_READ(SDEIMR));
914 seq_printf(m, "Graphics Interrupt enable: %08x\n",
915 I915_READ(GTIER));
916 seq_printf(m, "Graphics Interrupt identity: %08x\n",
917 I915_READ(GTIIR));
918 seq_printf(m, "Graphics Interrupt mask: %08x\n",
919 I915_READ(GTIMR));
921 for_each_ring(ring, dev_priv, i) {
922 if (INTEL_INFO(dev)->gen >= 6) {
923 seq_printf(m,
924 "Graphics Interrupt mask (%s): %08x\n",
925 ring->name, I915_READ_IMR(ring));
927 i915_ring_seqno_info(m, ring);
929 intel_runtime_pm_put(dev_priv);
930 mutex_unlock(&dev->struct_mutex);
932 return 0;
935 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
937 struct drm_info_node *node = m->private;
938 struct drm_device *dev = node->minor->dev;
939 struct drm_i915_private *dev_priv = dev->dev_private;
940 int i, ret;
942 ret = mutex_lock_interruptible(&dev->struct_mutex);
943 if (ret)
944 return ret;
946 seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
947 seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
948 for (i = 0; i < dev_priv->num_fence_regs; i++) {
949 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
951 seq_printf(m, "Fence %d, pin count = %d, object = ",
952 i, dev_priv->fence_regs[i].pin_count);
953 if (obj == NULL)
954 seq_puts(m, "unused");
955 else
956 describe_obj(m, obj);
957 seq_putc(m, '\n');
960 mutex_unlock(&dev->struct_mutex);
961 return 0;
964 static int i915_hws_info(struct seq_file *m, void *data)
966 struct drm_info_node *node = m->private;
967 struct drm_device *dev = node->minor->dev;
968 struct drm_i915_private *dev_priv = dev->dev_private;
969 struct intel_engine_cs *ring;
970 const u32 *hws;
971 int i;
973 ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
974 hws = ring->status_page.page_addr;
975 if (hws == NULL)
976 return 0;
978 for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
979 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
980 i * 4,
981 hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
983 return 0;
986 static ssize_t
987 i915_error_state_write(struct file *filp,
988 const char __user *ubuf,
989 size_t cnt,
990 loff_t *ppos)
992 struct i915_error_state_file_priv *error_priv = filp->private_data;
993 struct drm_device *dev = error_priv->dev;
994 int ret;
996 DRM_DEBUG_DRIVER("Resetting error state\n");
998 ret = mutex_lock_interruptible(&dev->struct_mutex);
999 if (ret)
1000 return ret;
1002 i915_destroy_error_state(dev);
1003 mutex_unlock(&dev->struct_mutex);
1005 return cnt;
1008 static int i915_error_state_open(struct inode *inode, struct file *file)
1010 struct drm_device *dev = inode->i_private;
1011 struct i915_error_state_file_priv *error_priv;
1013 error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1014 if (!error_priv)
1015 return -ENOMEM;
1017 error_priv->dev = dev;
1019 i915_error_state_get(dev, error_priv);
1021 file->private_data = error_priv;
1023 return 0;
1026 static int i915_error_state_release(struct inode *inode, struct file *file)
1028 struct i915_error_state_file_priv *error_priv = file->private_data;
1030 i915_error_state_put(error_priv);
1031 kfree(error_priv);
1033 return 0;
1036 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1037 size_t count, loff_t *pos)
1039 struct i915_error_state_file_priv *error_priv = file->private_data;
1040 struct drm_i915_error_state_buf error_str;
1041 loff_t tmp_pos = 0;
1042 ssize_t ret_count = 0;
1043 int ret;
1045 ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1046 if (ret)
1047 return ret;
1049 ret = i915_error_state_to_str(&error_str, error_priv);
1050 if (ret)
1051 goto out;
1053 ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1054 error_str.buf,
1055 error_str.bytes);
1057 if (ret_count < 0)
1058 ret = ret_count;
1059 else
1060 *pos = error_str.start + ret_count;
1061 out:
1062 i915_error_state_buf_release(&error_str);
1063 return ret ?: ret_count;
1066 static const struct file_operations i915_error_state_fops = {
1067 .owner = THIS_MODULE,
1068 .open = i915_error_state_open,
1069 .read = i915_error_state_read,
1070 .write = i915_error_state_write,
1071 .llseek = default_llseek,
1072 .release = i915_error_state_release,
1075 static int
1076 i915_next_seqno_get(void *data, u64 *val)
1078 struct drm_device *dev = data;
1079 struct drm_i915_private *dev_priv = dev->dev_private;
1080 int ret;
1082 ret = mutex_lock_interruptible(&dev->struct_mutex);
1083 if (ret)
1084 return ret;
1086 *val = dev_priv->next_seqno;
1087 mutex_unlock(&dev->struct_mutex);
1089 return 0;
1092 static int
1093 i915_next_seqno_set(void *data, u64 val)
1095 struct drm_device *dev = data;
1096 int ret;
1098 ret = mutex_lock_interruptible(&dev->struct_mutex);
1099 if (ret)
1100 return ret;
1102 ret = i915_gem_set_seqno(dev, val);
1103 mutex_unlock(&dev->struct_mutex);
1105 return ret;
1108 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1109 i915_next_seqno_get, i915_next_seqno_set,
1110 "0x%llx\n");
1112 static int i915_frequency_info(struct seq_file *m, void *unused)
1114 struct drm_info_node *node = m->private;
1115 struct drm_device *dev = node->minor->dev;
1116 struct drm_i915_private *dev_priv = dev->dev_private;
1117 int ret = 0;
1119 intel_runtime_pm_get(dev_priv);
1121 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1123 if (IS_GEN5(dev)) {
1124 u16 rgvswctl = I915_READ16(MEMSWCTL);
1125 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1127 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1128 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1129 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1130 MEMSTAT_VID_SHIFT);
1131 seq_printf(m, "Current P-state: %d\n",
1132 (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1133 } else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
1134 IS_BROADWELL(dev) || IS_GEN9(dev)) {
1135 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1136 u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1137 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1138 u32 rpmodectl, rpinclimit, rpdeclimit;
1139 u32 rpstat, cagf, reqf;
1140 u32 rpupei, rpcurup, rpprevup;
1141 u32 rpdownei, rpcurdown, rpprevdown;
1142 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1143 int max_freq;
1145 /* RPSTAT1 is in the GT power well */
1146 ret = mutex_lock_interruptible(&dev->struct_mutex);
1147 if (ret)
1148 goto out;
1150 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1152 reqf = I915_READ(GEN6_RPNSWREQ);
1153 if (IS_GEN9(dev))
1154 reqf >>= 23;
1155 else {
1156 reqf &= ~GEN6_TURBO_DISABLE;
1157 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1158 reqf >>= 24;
1159 else
1160 reqf >>= 25;
1162 reqf = intel_gpu_freq(dev_priv, reqf);
1164 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1165 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1166 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1168 rpstat = I915_READ(GEN6_RPSTAT1);
1169 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1170 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1171 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1172 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1173 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1174 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1175 if (IS_GEN9(dev))
1176 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1177 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1178 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1179 else
1180 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1181 cagf = intel_gpu_freq(dev_priv, cagf);
1183 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1184 mutex_unlock(&dev->struct_mutex);
1186 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1187 pm_ier = I915_READ(GEN6_PMIER);
1188 pm_imr = I915_READ(GEN6_PMIMR);
1189 pm_isr = I915_READ(GEN6_PMISR);
1190 pm_iir = I915_READ(GEN6_PMIIR);
1191 pm_mask = I915_READ(GEN6_PMINTRMSK);
1192 } else {
1193 pm_ier = I915_READ(GEN8_GT_IER(2));
1194 pm_imr = I915_READ(GEN8_GT_IMR(2));
1195 pm_isr = I915_READ(GEN8_GT_ISR(2));
1196 pm_iir = I915_READ(GEN8_GT_IIR(2));
1197 pm_mask = I915_READ(GEN6_PMINTRMSK);
1199 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1200 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1201 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1202 seq_printf(m, "Render p-state ratio: %d\n",
1203 (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1204 seq_printf(m, "Render p-state VID: %d\n",
1205 gt_perf_status & 0xff);
1206 seq_printf(m, "Render p-state limit: %d\n",
1207 rp_state_limits & 0xff);
1208 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1209 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1210 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1211 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1212 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1213 seq_printf(m, "CAGF: %dMHz\n", cagf);
1214 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1215 GEN6_CURICONT_MASK);
1216 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1217 GEN6_CURBSYTAVG_MASK);
1218 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1219 GEN6_CURBSYTAVG_MASK);
1220 seq_printf(m, "Up threshold: %d%%\n",
1221 dev_priv->rps.up_threshold);
1223 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1224 GEN6_CURIAVG_MASK);
1225 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1226 GEN6_CURBSYTAVG_MASK);
1227 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1228 GEN6_CURBSYTAVG_MASK);
1229 seq_printf(m, "Down threshold: %d%%\n",
1230 dev_priv->rps.down_threshold);
1232 max_freq = (rp_state_cap & 0xff0000) >> 16;
1233 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1234 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1235 intel_gpu_freq(dev_priv, max_freq));
1237 max_freq = (rp_state_cap & 0xff00) >> 8;
1238 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1239 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1240 intel_gpu_freq(dev_priv, max_freq));
1242 max_freq = rp_state_cap & 0xff;
1243 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1244 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1245 intel_gpu_freq(dev_priv, max_freq));
1246 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1247 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1249 seq_printf(m, "Current freq: %d MHz\n",
1250 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1251 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1252 seq_printf(m, "Idle freq: %d MHz\n",
1253 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1254 seq_printf(m, "Min freq: %d MHz\n",
1255 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1256 seq_printf(m, "Max freq: %d MHz\n",
1257 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1258 seq_printf(m,
1259 "efficient (RPe) frequency: %d MHz\n",
1260 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1261 } else if (IS_VALLEYVIEW(dev)) {
1262 u32 freq_sts;
1264 mutex_lock(&dev_priv->rps.hw_lock);
1265 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1266 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1267 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1269 seq_printf(m, "actual GPU freq: %d MHz\n",
1270 intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1272 seq_printf(m, "current GPU freq: %d MHz\n",
1273 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1275 seq_printf(m, "max GPU freq: %d MHz\n",
1276 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1278 seq_printf(m, "min GPU freq: %d MHz\n",
1279 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1281 seq_printf(m, "idle GPU freq: %d MHz\n",
1282 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1284 seq_printf(m,
1285 "efficient (RPe) frequency: %d MHz\n",
1286 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1287 mutex_unlock(&dev_priv->rps.hw_lock);
1288 } else {
1289 seq_puts(m, "no P-state info available\n");
1292 out:
1293 intel_runtime_pm_put(dev_priv);
1294 return ret;
1297 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1299 struct drm_info_node *node = m->private;
1300 struct drm_device *dev = node->minor->dev;
1301 struct drm_i915_private *dev_priv = dev->dev_private;
1302 struct intel_engine_cs *ring;
1303 u64 acthd[I915_NUM_RINGS];
1304 u32 seqno[I915_NUM_RINGS];
1305 int i;
1307 if (!i915.enable_hangcheck) {
1308 seq_printf(m, "Hangcheck disabled\n");
1309 return 0;
1312 intel_runtime_pm_get(dev_priv);
1314 for_each_ring(ring, dev_priv, i) {
1315 seqno[i] = ring->get_seqno(ring, false);
1316 acthd[i] = intel_ring_get_active_head(ring);
1319 intel_runtime_pm_put(dev_priv);
1321 if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1322 seq_printf(m, "Hangcheck active, fires in %dms\n",
1323 jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1324 jiffies));
1325 } else
1326 seq_printf(m, "Hangcheck inactive\n");
1328 for_each_ring(ring, dev_priv, i) {
1329 seq_printf(m, "%s:\n", ring->name);
1330 seq_printf(m, "\tseqno = %x [current %x]\n",
1331 ring->hangcheck.seqno, seqno[i]);
1332 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1333 (long long)ring->hangcheck.acthd,
1334 (long long)acthd[i]);
1335 seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
1336 (long long)ring->hangcheck.max_acthd);
1337 seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
1338 seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
1341 return 0;
1344 static int ironlake_drpc_info(struct seq_file *m)
1346 struct drm_info_node *node = m->private;
1347 struct drm_device *dev = node->minor->dev;
1348 struct drm_i915_private *dev_priv = dev->dev_private;
1349 u32 rgvmodectl, rstdbyctl;
1350 u16 crstandvid;
1351 int ret;
1353 ret = mutex_lock_interruptible(&dev->struct_mutex);
1354 if (ret)
1355 return ret;
1356 intel_runtime_pm_get(dev_priv);
1358 rgvmodectl = I915_READ(MEMMODECTL);
1359 rstdbyctl = I915_READ(RSTDBYCTL);
1360 crstandvid = I915_READ16(CRSTANDVID);
1362 intel_runtime_pm_put(dev_priv);
1363 mutex_unlock(&dev->struct_mutex);
1365 seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1366 "yes" : "no");
1367 seq_printf(m, "Boost freq: %d\n",
1368 (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1369 MEMMODE_BOOST_FREQ_SHIFT);
1370 seq_printf(m, "HW control enabled: %s\n",
1371 rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1372 seq_printf(m, "SW control enabled: %s\n",
1373 rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1374 seq_printf(m, "Gated voltage change: %s\n",
1375 rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1376 seq_printf(m, "Starting frequency: P%d\n",
1377 (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1378 seq_printf(m, "Max P-state: P%d\n",
1379 (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1380 seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1381 seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1382 seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1383 seq_printf(m, "Render standby enabled: %s\n",
1384 (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1385 seq_puts(m, "Current RS state: ");
1386 switch (rstdbyctl & RSX_STATUS_MASK) {
1387 case RSX_STATUS_ON:
1388 seq_puts(m, "on\n");
1389 break;
1390 case RSX_STATUS_RC1:
1391 seq_puts(m, "RC1\n");
1392 break;
1393 case RSX_STATUS_RC1E:
1394 seq_puts(m, "RC1E\n");
1395 break;
1396 case RSX_STATUS_RS1:
1397 seq_puts(m, "RS1\n");
1398 break;
1399 case RSX_STATUS_RS2:
1400 seq_puts(m, "RS2 (RC6)\n");
1401 break;
1402 case RSX_STATUS_RS3:
1403 seq_puts(m, "RC3 (RC6+)\n");
1404 break;
1405 default:
1406 seq_puts(m, "unknown\n");
1407 break;
1410 return 0;
1413 static int i915_forcewake_domains(struct seq_file *m, void *data)
1415 struct drm_info_node *node = m->private;
1416 struct drm_device *dev = node->minor->dev;
1417 struct drm_i915_private *dev_priv = dev->dev_private;
1418 struct intel_uncore_forcewake_domain *fw_domain;
1419 int i;
1421 spin_lock_irq(&dev_priv->uncore.lock);
1422 for_each_fw_domain(fw_domain, dev_priv, i) {
1423 seq_printf(m, "%s.wake_count = %u\n",
1424 intel_uncore_forcewake_domain_to_str(i),
1425 fw_domain->wake_count);
1427 spin_unlock_irq(&dev_priv->uncore.lock);
1429 return 0;
1432 static int vlv_drpc_info(struct seq_file *m)
1434 struct drm_info_node *node = m->private;
1435 struct drm_device *dev = node->minor->dev;
1436 struct drm_i915_private *dev_priv = dev->dev_private;
1437 u32 rpmodectl1, rcctl1, pw_status;
1439 intel_runtime_pm_get(dev_priv);
1441 pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1442 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1443 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1445 intel_runtime_pm_put(dev_priv);
1447 seq_printf(m, "Video Turbo Mode: %s\n",
1448 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1449 seq_printf(m, "Turbo enabled: %s\n",
1450 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1451 seq_printf(m, "HW control enabled: %s\n",
1452 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1453 seq_printf(m, "SW control enabled: %s\n",
1454 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1455 GEN6_RP_MEDIA_SW_MODE));
1456 seq_printf(m, "RC6 Enabled: %s\n",
1457 yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1458 GEN6_RC_CTL_EI_MODE(1))));
1459 seq_printf(m, "Render Power Well: %s\n",
1460 (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1461 seq_printf(m, "Media Power Well: %s\n",
1462 (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1464 seq_printf(m, "Render RC6 residency since boot: %u\n",
1465 I915_READ(VLV_GT_RENDER_RC6));
1466 seq_printf(m, "Media RC6 residency since boot: %u\n",
1467 I915_READ(VLV_GT_MEDIA_RC6));
1469 return i915_forcewake_domains(m, NULL);
1472 static int gen6_drpc_info(struct seq_file *m)
1474 struct drm_info_node *node = m->private;
1475 struct drm_device *dev = node->minor->dev;
1476 struct drm_i915_private *dev_priv = dev->dev_private;
1477 u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1478 unsigned forcewake_count;
1479 int count = 0, ret;
1481 ret = mutex_lock_interruptible(&dev->struct_mutex);
1482 if (ret)
1483 return ret;
1484 intel_runtime_pm_get(dev_priv);
1486 spin_lock_irq(&dev_priv->uncore.lock);
1487 forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1488 spin_unlock_irq(&dev_priv->uncore.lock);
1490 if (forcewake_count) {
1491 seq_puts(m, "RC information inaccurate because somebody "
1492 "holds a forcewake reference \n");
1493 } else {
1494 /* NB: we cannot use forcewake, else we read the wrong values */
1495 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1496 udelay(10);
1497 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1500 gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1501 trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1503 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1504 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1505 mutex_unlock(&dev->struct_mutex);
1506 mutex_lock(&dev_priv->rps.hw_lock);
1507 sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1508 mutex_unlock(&dev_priv->rps.hw_lock);
1510 intel_runtime_pm_put(dev_priv);
1512 seq_printf(m, "Video Turbo Mode: %s\n",
1513 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1514 seq_printf(m, "HW control enabled: %s\n",
1515 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1516 seq_printf(m, "SW control enabled: %s\n",
1517 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1518 GEN6_RP_MEDIA_SW_MODE));
1519 seq_printf(m, "RC1e Enabled: %s\n",
1520 yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1521 seq_printf(m, "RC6 Enabled: %s\n",
1522 yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1523 seq_printf(m, "Deep RC6 Enabled: %s\n",
1524 yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1525 seq_printf(m, "Deepest RC6 Enabled: %s\n",
1526 yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1527 seq_puts(m, "Current RC state: ");
1528 switch (gt_core_status & GEN6_RCn_MASK) {
1529 case GEN6_RC0:
1530 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1531 seq_puts(m, "Core Power Down\n");
1532 else
1533 seq_puts(m, "on\n");
1534 break;
1535 case GEN6_RC3:
1536 seq_puts(m, "RC3\n");
1537 break;
1538 case GEN6_RC6:
1539 seq_puts(m, "RC6\n");
1540 break;
1541 case GEN6_RC7:
1542 seq_puts(m, "RC7\n");
1543 break;
1544 default:
1545 seq_puts(m, "Unknown\n");
1546 break;
1549 seq_printf(m, "Core Power Down: %s\n",
1550 yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1552 /* Not exactly sure what this is */
1553 seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1554 I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1555 seq_printf(m, "RC6 residency since boot: %u\n",
1556 I915_READ(GEN6_GT_GFX_RC6));
1557 seq_printf(m, "RC6+ residency since boot: %u\n",
1558 I915_READ(GEN6_GT_GFX_RC6p));
1559 seq_printf(m, "RC6++ residency since boot: %u\n",
1560 I915_READ(GEN6_GT_GFX_RC6pp));
1562 seq_printf(m, "RC6 voltage: %dmV\n",
1563 GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1564 seq_printf(m, "RC6+ voltage: %dmV\n",
1565 GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1566 seq_printf(m, "RC6++ voltage: %dmV\n",
1567 GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1568 return 0;
1571 static int i915_drpc_info(struct seq_file *m, void *unused)
1573 struct drm_info_node *node = m->private;
1574 struct drm_device *dev = node->minor->dev;
1576 if (IS_VALLEYVIEW(dev))
1577 return vlv_drpc_info(m);
1578 else if (INTEL_INFO(dev)->gen >= 6)
1579 return gen6_drpc_info(m);
1580 else
1581 return ironlake_drpc_info(m);
1584 static int i915_fbc_status(struct seq_file *m, void *unused)
1586 struct drm_info_node *node = m->private;
1587 struct drm_device *dev = node->minor->dev;
1588 struct drm_i915_private *dev_priv = dev->dev_private;
1590 if (!HAS_FBC(dev)) {
1591 seq_puts(m, "FBC unsupported on this chipset\n");
1592 return 0;
1595 intel_runtime_pm_get(dev_priv);
1597 if (intel_fbc_enabled(dev)) {
1598 seq_puts(m, "FBC enabled\n");
1599 } else {
1600 seq_puts(m, "FBC disabled: ");
1601 switch (dev_priv->fbc.no_fbc_reason) {
1602 case FBC_OK:
1603 seq_puts(m, "FBC actived, but currently disabled in hardware");
1604 break;
1605 case FBC_UNSUPPORTED:
1606 seq_puts(m, "unsupported by this chipset");
1607 break;
1608 case FBC_NO_OUTPUT:
1609 seq_puts(m, "no outputs");
1610 break;
1611 case FBC_STOLEN_TOO_SMALL:
1612 seq_puts(m, "not enough stolen memory");
1613 break;
1614 case FBC_UNSUPPORTED_MODE:
1615 seq_puts(m, "mode not supported");
1616 break;
1617 case FBC_MODE_TOO_LARGE:
1618 seq_puts(m, "mode too large");
1619 break;
1620 case FBC_BAD_PLANE:
1621 seq_puts(m, "FBC unsupported on plane");
1622 break;
1623 case FBC_NOT_TILED:
1624 seq_puts(m, "scanout buffer not tiled");
1625 break;
1626 case FBC_MULTIPLE_PIPES:
1627 seq_puts(m, "multiple pipes are enabled");
1628 break;
1629 case FBC_MODULE_PARAM:
1630 seq_puts(m, "disabled per module param (default off)");
1631 break;
1632 case FBC_CHIP_DEFAULT:
1633 seq_puts(m, "disabled per chip default");
1634 break;
1635 default:
1636 seq_puts(m, "unknown reason");
1638 seq_putc(m, '\n');
1641 intel_runtime_pm_put(dev_priv);
1643 return 0;
1646 static int i915_fbc_fc_get(void *data, u64 *val)
1648 struct drm_device *dev = data;
1649 struct drm_i915_private *dev_priv = dev->dev_private;
1651 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1652 return -ENODEV;
1654 drm_modeset_lock_all(dev);
1655 *val = dev_priv->fbc.false_color;
1656 drm_modeset_unlock_all(dev);
1658 return 0;
1661 static int i915_fbc_fc_set(void *data, u64 val)
1663 struct drm_device *dev = data;
1664 struct drm_i915_private *dev_priv = dev->dev_private;
1665 u32 reg;
1667 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1668 return -ENODEV;
1670 drm_modeset_lock_all(dev);
1672 reg = I915_READ(ILK_DPFC_CONTROL);
1673 dev_priv->fbc.false_color = val;
1675 I915_WRITE(ILK_DPFC_CONTROL, val ?
1676 (reg | FBC_CTL_FALSE_COLOR) :
1677 (reg & ~FBC_CTL_FALSE_COLOR));
1679 drm_modeset_unlock_all(dev);
1680 return 0;
1683 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1684 i915_fbc_fc_get, i915_fbc_fc_set,
1685 "%llu\n");
1687 static int i915_ips_status(struct seq_file *m, void *unused)
1689 struct drm_info_node *node = m->private;
1690 struct drm_device *dev = node->minor->dev;
1691 struct drm_i915_private *dev_priv = dev->dev_private;
1693 if (!HAS_IPS(dev)) {
1694 seq_puts(m, "not supported\n");
1695 return 0;
1698 intel_runtime_pm_get(dev_priv);
1700 seq_printf(m, "Enabled by kernel parameter: %s\n",
1701 yesno(i915.enable_ips));
1703 if (INTEL_INFO(dev)->gen >= 8) {
1704 seq_puts(m, "Currently: unknown\n");
1705 } else {
1706 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1707 seq_puts(m, "Currently: enabled\n");
1708 else
1709 seq_puts(m, "Currently: disabled\n");
1712 intel_runtime_pm_put(dev_priv);
1714 return 0;
1717 static int i915_sr_status(struct seq_file *m, void *unused)
1719 struct drm_info_node *node = m->private;
1720 struct drm_device *dev = node->minor->dev;
1721 struct drm_i915_private *dev_priv = dev->dev_private;
1722 bool sr_enabled = false;
1724 intel_runtime_pm_get(dev_priv);
1726 if (HAS_PCH_SPLIT(dev))
1727 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1728 else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1729 IS_I945G(dev) || IS_I945GM(dev))
1730 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1731 else if (IS_I915GM(dev))
1732 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1733 else if (IS_PINEVIEW(dev))
1734 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1735 else if (IS_VALLEYVIEW(dev))
1736 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1738 intel_runtime_pm_put(dev_priv);
1740 seq_printf(m, "self-refresh: %s\n",
1741 sr_enabled ? "enabled" : "disabled");
1743 return 0;
1746 static int i915_emon_status(struct seq_file *m, void *unused)
1748 struct drm_info_node *node = m->private;
1749 struct drm_device *dev = node->minor->dev;
1750 struct drm_i915_private *dev_priv = dev->dev_private;
1751 unsigned long temp, chipset, gfx;
1752 int ret;
1754 if (!IS_GEN5(dev))
1755 return -ENODEV;
1757 ret = mutex_lock_interruptible(&dev->struct_mutex);
1758 if (ret)
1759 return ret;
1761 temp = i915_mch_val(dev_priv);
1762 chipset = i915_chipset_val(dev_priv);
1763 gfx = i915_gfx_val(dev_priv);
1764 mutex_unlock(&dev->struct_mutex);
1766 seq_printf(m, "GMCH temp: %ld\n", temp);
1767 seq_printf(m, "Chipset power: %ld\n", chipset);
1768 seq_printf(m, "GFX power: %ld\n", gfx);
1769 seq_printf(m, "Total power: %ld\n", chipset + gfx);
1771 return 0;
1774 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1776 struct drm_info_node *node = m->private;
1777 struct drm_device *dev = node->minor->dev;
1778 struct drm_i915_private *dev_priv = dev->dev_private;
1779 int ret = 0;
1780 int gpu_freq, ia_freq;
1782 if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1783 seq_puts(m, "unsupported on this chipset\n");
1784 return 0;
1787 intel_runtime_pm_get(dev_priv);
1789 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1791 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1792 if (ret)
1793 goto out;
1795 seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1797 for (gpu_freq = dev_priv->rps.min_freq_softlimit;
1798 gpu_freq <= dev_priv->rps.max_freq_softlimit;
1799 gpu_freq++) {
1800 ia_freq = gpu_freq;
1801 sandybridge_pcode_read(dev_priv,
1802 GEN6_PCODE_READ_MIN_FREQ_TABLE,
1803 &ia_freq);
1804 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1805 intel_gpu_freq(dev_priv, gpu_freq),
1806 ((ia_freq >> 0) & 0xff) * 100,
1807 ((ia_freq >> 8) & 0xff) * 100);
1810 mutex_unlock(&dev_priv->rps.hw_lock);
1812 out:
1813 intel_runtime_pm_put(dev_priv);
1814 return ret;
1817 static int i915_opregion(struct seq_file *m, void *unused)
1819 struct drm_info_node *node = m->private;
1820 struct drm_device *dev = node->minor->dev;
1821 struct drm_i915_private *dev_priv = dev->dev_private;
1822 struct intel_opregion *opregion = &dev_priv->opregion;
1823 void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1824 int ret;
1826 if (data == NULL)
1827 return -ENOMEM;
1829 ret = mutex_lock_interruptible(&dev->struct_mutex);
1830 if (ret)
1831 goto out;
1833 if (opregion->header) {
1834 memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1835 seq_write(m, data, OPREGION_SIZE);
1838 mutex_unlock(&dev->struct_mutex);
1840 out:
1841 kfree(data);
1842 return 0;
1845 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1847 struct drm_info_node *node = m->private;
1848 struct drm_device *dev = node->minor->dev;
1849 struct intel_fbdev *ifbdev = NULL;
1850 struct intel_framebuffer *fb;
1852 #ifdef CONFIG_DRM_I915_FBDEV
1853 struct drm_i915_private *dev_priv = dev->dev_private;
1855 ifbdev = dev_priv->fbdev;
1856 fb = to_intel_framebuffer(ifbdev->helper.fb);
1858 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1859 fb->base.width,
1860 fb->base.height,
1861 fb->base.depth,
1862 fb->base.bits_per_pixel,
1863 fb->base.modifier[0],
1864 atomic_read(&fb->base.refcount.refcount));
1865 describe_obj(m, fb->obj);
1866 seq_putc(m, '\n');
1867 #endif
1869 mutex_lock(&dev->mode_config.fb_lock);
1870 list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1871 if (ifbdev && &fb->base == ifbdev->helper.fb)
1872 continue;
1874 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1875 fb->base.width,
1876 fb->base.height,
1877 fb->base.depth,
1878 fb->base.bits_per_pixel,
1879 fb->base.modifier[0],
1880 atomic_read(&fb->base.refcount.refcount));
1881 describe_obj(m, fb->obj);
1882 seq_putc(m, '\n');
1884 mutex_unlock(&dev->mode_config.fb_lock);
1886 return 0;
1889 static void describe_ctx_ringbuf(struct seq_file *m,
1890 struct intel_ringbuffer *ringbuf)
1892 seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1893 ringbuf->space, ringbuf->head, ringbuf->tail,
1894 ringbuf->last_retired_head);
1897 static int i915_context_status(struct seq_file *m, void *unused)
1899 struct drm_info_node *node = m->private;
1900 struct drm_device *dev = node->minor->dev;
1901 struct drm_i915_private *dev_priv = dev->dev_private;
1902 struct intel_engine_cs *ring;
1903 struct intel_context *ctx;
1904 int ret, i;
1906 ret = mutex_lock_interruptible(&dev->struct_mutex);
1907 if (ret)
1908 return ret;
1910 list_for_each_entry(ctx, &dev_priv->context_list, link) {
1911 if (!i915.enable_execlists &&
1912 ctx->legacy_hw_ctx.rcs_state == NULL)
1913 continue;
1915 seq_puts(m, "HW context ");
1916 describe_ctx(m, ctx);
1917 for_each_ring(ring, dev_priv, i) {
1918 if (ring->default_context == ctx)
1919 seq_printf(m, "(default context %s) ",
1920 ring->name);
1923 if (i915.enable_execlists) {
1924 seq_putc(m, '\n');
1925 for_each_ring(ring, dev_priv, i) {
1926 struct drm_i915_gem_object *ctx_obj =
1927 ctx->engine[i].state;
1928 struct intel_ringbuffer *ringbuf =
1929 ctx->engine[i].ringbuf;
1931 seq_printf(m, "%s: ", ring->name);
1932 if (ctx_obj)
1933 describe_obj(m, ctx_obj);
1934 if (ringbuf)
1935 describe_ctx_ringbuf(m, ringbuf);
1936 seq_putc(m, '\n');
1938 } else {
1939 describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1942 seq_putc(m, '\n');
1945 mutex_unlock(&dev->struct_mutex);
1947 return 0;
1950 static void i915_dump_lrc_obj(struct seq_file *m,
1951 struct intel_engine_cs *ring,
1952 struct drm_i915_gem_object *ctx_obj)
1954 struct page *page;
1955 uint32_t *reg_state;
1956 int j;
1957 unsigned long ggtt_offset = 0;
1959 if (ctx_obj == NULL) {
1960 seq_printf(m, "Context on %s with no gem object\n",
1961 ring->name);
1962 return;
1965 seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1966 intel_execlists_ctx_id(ctx_obj));
1968 if (!i915_gem_obj_ggtt_bound(ctx_obj))
1969 seq_puts(m, "\tNot bound in GGTT\n");
1970 else
1971 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
1973 if (i915_gem_object_get_pages(ctx_obj)) {
1974 seq_puts(m, "\tFailed to get pages for context object\n");
1975 return;
1978 page = i915_gem_object_get_page(ctx_obj, 1);
1979 if (!WARN_ON(page == NULL)) {
1980 reg_state = kmap_atomic(page);
1982 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
1983 seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
1984 ggtt_offset + 4096 + (j * 4),
1985 reg_state[j], reg_state[j + 1],
1986 reg_state[j + 2], reg_state[j + 3]);
1988 kunmap_atomic(reg_state);
1991 seq_putc(m, '\n');
1994 static int i915_dump_lrc(struct seq_file *m, void *unused)
1996 struct drm_info_node *node = (struct drm_info_node *) m->private;
1997 struct drm_device *dev = node->minor->dev;
1998 struct drm_i915_private *dev_priv = dev->dev_private;
1999 struct intel_engine_cs *ring;
2000 struct intel_context *ctx;
2001 int ret, i;
2003 if (!i915.enable_execlists) {
2004 seq_printf(m, "Logical Ring Contexts are disabled\n");
2005 return 0;
2008 ret = mutex_lock_interruptible(&dev->struct_mutex);
2009 if (ret)
2010 return ret;
2012 list_for_each_entry(ctx, &dev_priv->context_list, link) {
2013 for_each_ring(ring, dev_priv, i) {
2014 if (ring->default_context != ctx)
2015 i915_dump_lrc_obj(m, ring,
2016 ctx->engine[i].state);
2020 mutex_unlock(&dev->struct_mutex);
2022 return 0;
2025 static int i915_execlists(struct seq_file *m, void *data)
2027 struct drm_info_node *node = (struct drm_info_node *)m->private;
2028 struct drm_device *dev = node->minor->dev;
2029 struct drm_i915_private *dev_priv = dev->dev_private;
2030 struct intel_engine_cs *ring;
2031 u32 status_pointer;
2032 u8 read_pointer;
2033 u8 write_pointer;
2034 u32 status;
2035 u32 ctx_id;
2036 struct list_head *cursor;
2037 int ring_id, i;
2038 int ret;
2040 if (!i915.enable_execlists) {
2041 seq_puts(m, "Logical Ring Contexts are disabled\n");
2042 return 0;
2045 ret = mutex_lock_interruptible(&dev->struct_mutex);
2046 if (ret)
2047 return ret;
2049 intel_runtime_pm_get(dev_priv);
2051 for_each_ring(ring, dev_priv, ring_id) {
2052 struct drm_i915_gem_request *head_req = NULL;
2053 int count = 0;
2054 unsigned long flags;
2056 seq_printf(m, "%s\n", ring->name);
2058 status = I915_READ(RING_EXECLIST_STATUS(ring));
2059 ctx_id = I915_READ(RING_EXECLIST_STATUS(ring) + 4);
2060 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2061 status, ctx_id);
2063 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
2064 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2066 read_pointer = ring->next_context_status_buffer;
2067 write_pointer = status_pointer & 0x07;
2068 if (read_pointer > write_pointer)
2069 write_pointer += 6;
2070 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2071 read_pointer, write_pointer);
2073 for (i = 0; i < 6; i++) {
2074 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i);
2075 ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i + 4);
2077 seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2078 i, status, ctx_id);
2081 spin_lock_irqsave(&ring->execlist_lock, flags);
2082 list_for_each(cursor, &ring->execlist_queue)
2083 count++;
2084 head_req = list_first_entry_or_null(&ring->execlist_queue,
2085 struct drm_i915_gem_request, execlist_link);
2086 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2088 seq_printf(m, "\t%d requests in queue\n", count);
2089 if (head_req) {
2090 struct drm_i915_gem_object *ctx_obj;
2092 ctx_obj = head_req->ctx->engine[ring_id].state;
2093 seq_printf(m, "\tHead request id: %u\n",
2094 intel_execlists_ctx_id(ctx_obj));
2095 seq_printf(m, "\tHead request tail: %u\n",
2096 head_req->tail);
2099 seq_putc(m, '\n');
2102 intel_runtime_pm_put(dev_priv);
2103 mutex_unlock(&dev->struct_mutex);
2105 return 0;
2108 static const char *swizzle_string(unsigned swizzle)
2110 switch (swizzle) {
2111 case I915_BIT_6_SWIZZLE_NONE:
2112 return "none";
2113 case I915_BIT_6_SWIZZLE_9:
2114 return "bit9";
2115 case I915_BIT_6_SWIZZLE_9_10:
2116 return "bit9/bit10";
2117 case I915_BIT_6_SWIZZLE_9_11:
2118 return "bit9/bit11";
2119 case I915_BIT_6_SWIZZLE_9_10_11:
2120 return "bit9/bit10/bit11";
2121 case I915_BIT_6_SWIZZLE_9_17:
2122 return "bit9/bit17";
2123 case I915_BIT_6_SWIZZLE_9_10_17:
2124 return "bit9/bit10/bit17";
2125 case I915_BIT_6_SWIZZLE_UNKNOWN:
2126 return "unknown";
2129 return "bug";
2132 static int i915_swizzle_info(struct seq_file *m, void *data)
2134 struct drm_info_node *node = m->private;
2135 struct drm_device *dev = node->minor->dev;
2136 struct drm_i915_private *dev_priv = dev->dev_private;
2137 int ret;
2139 ret = mutex_lock_interruptible(&dev->struct_mutex);
2140 if (ret)
2141 return ret;
2142 intel_runtime_pm_get(dev_priv);
2144 seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2145 swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2146 seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2147 swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2149 if (IS_GEN3(dev) || IS_GEN4(dev)) {
2150 seq_printf(m, "DDC = 0x%08x\n",
2151 I915_READ(DCC));
2152 seq_printf(m, "DDC2 = 0x%08x\n",
2153 I915_READ(DCC2));
2154 seq_printf(m, "C0DRB3 = 0x%04x\n",
2155 I915_READ16(C0DRB3));
2156 seq_printf(m, "C1DRB3 = 0x%04x\n",
2157 I915_READ16(C1DRB3));
2158 } else if (INTEL_INFO(dev)->gen >= 6) {
2159 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2160 I915_READ(MAD_DIMM_C0));
2161 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2162 I915_READ(MAD_DIMM_C1));
2163 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2164 I915_READ(MAD_DIMM_C2));
2165 seq_printf(m, "TILECTL = 0x%08x\n",
2166 I915_READ(TILECTL));
2167 if (INTEL_INFO(dev)->gen >= 8)
2168 seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2169 I915_READ(GAMTARBMODE));
2170 else
2171 seq_printf(m, "ARB_MODE = 0x%08x\n",
2172 I915_READ(ARB_MODE));
2173 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2174 I915_READ(DISP_ARB_CTL));
2177 if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2178 seq_puts(m, "L-shaped memory detected\n");
2180 intel_runtime_pm_put(dev_priv);
2181 mutex_unlock(&dev->struct_mutex);
2183 return 0;
2186 static int per_file_ctx(int id, void *ptr, void *data)
2188 struct intel_context *ctx = ptr;
2189 struct seq_file *m = data;
2190 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2192 if (!ppgtt) {
2193 seq_printf(m, " no ppgtt for context %d\n",
2194 ctx->user_handle);
2195 return 0;
2198 if (i915_gem_context_is_default(ctx))
2199 seq_puts(m, " default context:\n");
2200 else
2201 seq_printf(m, " context %d:\n", ctx->user_handle);
2202 ppgtt->debug_dump(ppgtt, m);
2204 return 0;
2207 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2209 struct drm_i915_private *dev_priv = dev->dev_private;
2210 struct intel_engine_cs *ring;
2211 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2212 int unused, i;
2214 if (!ppgtt)
2215 return;
2217 for_each_ring(ring, dev_priv, unused) {
2218 seq_printf(m, "%s\n", ring->name);
2219 for (i = 0; i < 4; i++) {
2220 u32 offset = 0x270 + i * 8;
2221 u64 pdp = I915_READ(ring->mmio_base + offset + 4);
2222 pdp <<= 32;
2223 pdp |= I915_READ(ring->mmio_base + offset);
2224 seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2229 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2231 struct drm_i915_private *dev_priv = dev->dev_private;
2232 struct intel_engine_cs *ring;
2233 struct drm_file *file;
2234 int i;
2236 if (INTEL_INFO(dev)->gen == 6)
2237 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2239 for_each_ring(ring, dev_priv, i) {
2240 seq_printf(m, "%s\n", ring->name);
2241 if (INTEL_INFO(dev)->gen == 7)
2242 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2243 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2244 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2245 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2247 if (dev_priv->mm.aliasing_ppgtt) {
2248 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2250 seq_puts(m, "aliasing PPGTT:\n");
2251 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.pd_offset);
2253 ppgtt->debug_dump(ppgtt, m);
2256 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2257 struct drm_i915_file_private *file_priv = file->driver_priv;
2259 seq_printf(m, "proc: %s\n",
2260 get_pid_task(file->pid, PIDTYPE_PID)->comm);
2261 idr_for_each(&file_priv->context_idr, per_file_ctx, m);
2263 seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2266 static int i915_ppgtt_info(struct seq_file *m, void *data)
2268 struct drm_info_node *node = m->private;
2269 struct drm_device *dev = node->minor->dev;
2270 struct drm_i915_private *dev_priv = dev->dev_private;
2272 int ret = mutex_lock_interruptible(&dev->struct_mutex);
2273 if (ret)
2274 return ret;
2275 intel_runtime_pm_get(dev_priv);
2277 if (INTEL_INFO(dev)->gen >= 8)
2278 gen8_ppgtt_info(m, dev);
2279 else if (INTEL_INFO(dev)->gen >= 6)
2280 gen6_ppgtt_info(m, dev);
2282 intel_runtime_pm_put(dev_priv);
2283 mutex_unlock(&dev->struct_mutex);
2285 return 0;
2288 static int count_irq_waiters(struct drm_i915_private *i915)
2290 struct intel_engine_cs *ring;
2291 int count = 0;
2292 int i;
2294 for_each_ring(ring, i915, i)
2295 count += ring->irq_refcount;
2297 return count;
2300 static int i915_rps_boost_info(struct seq_file *m, void *data)
2302 struct drm_info_node *node = m->private;
2303 struct drm_device *dev = node->minor->dev;
2304 struct drm_i915_private *dev_priv = dev->dev_private;
2305 struct drm_file *file;
2307 seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2308 seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
2309 seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2310 seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2311 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2312 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2313 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2314 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2315 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2316 spin_lock(&dev_priv->rps.client_lock);
2317 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2318 struct drm_i915_file_private *file_priv = file->driver_priv;
2319 struct task_struct *task;
2321 rcu_read_lock();
2322 task = pid_task(file->pid, PIDTYPE_PID);
2323 seq_printf(m, "%s [%d]: %d boosts%s\n",
2324 task ? task->comm : "<unknown>",
2325 task ? task->pid : -1,
2326 file_priv->rps.boosts,
2327 list_empty(&file_priv->rps.link) ? "" : ", active");
2328 rcu_read_unlock();
2330 seq_printf(m, "Semaphore boosts: %d%s\n",
2331 dev_priv->rps.semaphores.boosts,
2332 list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
2333 seq_printf(m, "MMIO flip boosts: %d%s\n",
2334 dev_priv->rps.mmioflips.boosts,
2335 list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
2336 seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
2337 spin_unlock(&dev_priv->rps.client_lock);
2339 return 0;
2342 static int i915_llc(struct seq_file *m, void *data)
2344 struct drm_info_node *node = m->private;
2345 struct drm_device *dev = node->minor->dev;
2346 struct drm_i915_private *dev_priv = dev->dev_private;
2348 /* Size calculation for LLC is a bit of a pain. Ignore for now. */
2349 seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2350 seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2352 return 0;
2355 static int i915_edp_psr_status(struct seq_file *m, void *data)
2357 struct drm_info_node *node = m->private;
2358 struct drm_device *dev = node->minor->dev;
2359 struct drm_i915_private *dev_priv = dev->dev_private;
2360 u32 psrperf = 0;
2361 u32 stat[3];
2362 enum pipe pipe;
2363 bool enabled = false;
2365 if (!HAS_PSR(dev)) {
2366 seq_puts(m, "PSR not supported\n");
2367 return 0;
2370 intel_runtime_pm_get(dev_priv);
2372 mutex_lock(&dev_priv->psr.lock);
2373 seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2374 seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2375 seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2376 seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2377 seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2378 dev_priv->psr.busy_frontbuffer_bits);
2379 seq_printf(m, "Re-enable work scheduled: %s\n",
2380 yesno(work_busy(&dev_priv->psr.work.work)));
2382 if (HAS_DDI(dev))
2383 enabled = I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
2384 else {
2385 for_each_pipe(dev_priv, pipe) {
2386 stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2387 VLV_EDP_PSR_CURR_STATE_MASK;
2388 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2389 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2390 enabled = true;
2393 seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2395 if (!HAS_DDI(dev))
2396 for_each_pipe(dev_priv, pipe) {
2397 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2398 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2399 seq_printf(m, " pipe %c", pipe_name(pipe));
2401 seq_puts(m, "\n");
2403 /* CHV PSR has no kind of performance counter */
2404 if (HAS_DDI(dev)) {
2405 psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
2406 EDP_PSR_PERF_CNT_MASK;
2408 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2410 mutex_unlock(&dev_priv->psr.lock);
2412 intel_runtime_pm_put(dev_priv);
2413 return 0;
2416 static int i915_sink_crc(struct seq_file *m, void *data)
2418 struct drm_info_node *node = m->private;
2419 struct drm_device *dev = node->minor->dev;
2420 struct intel_encoder *encoder;
2421 struct intel_connector *connector;
2422 struct intel_dp *intel_dp = NULL;
2423 int ret;
2424 u8 crc[6];
2426 drm_modeset_lock_all(dev);
2427 for_each_intel_connector(dev, connector) {
2429 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2430 continue;
2432 if (!connector->base.encoder)
2433 continue;
2435 encoder = to_intel_encoder(connector->base.encoder);
2436 if (encoder->type != INTEL_OUTPUT_EDP)
2437 continue;
2439 intel_dp = enc_to_intel_dp(&encoder->base);
2441 ret = intel_dp_sink_crc(intel_dp, crc);
2442 if (ret)
2443 goto out;
2445 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2446 crc[0], crc[1], crc[2],
2447 crc[3], crc[4], crc[5]);
2448 goto out;
2450 ret = -ENODEV;
2451 out:
2452 drm_modeset_unlock_all(dev);
2453 return ret;
2456 static int i915_energy_uJ(struct seq_file *m, void *data)
2458 struct drm_info_node *node = m->private;
2459 struct drm_device *dev = node->minor->dev;
2460 struct drm_i915_private *dev_priv = dev->dev_private;
2461 u64 power;
2462 u32 units;
2464 if (INTEL_INFO(dev)->gen < 6)
2465 return -ENODEV;
2467 intel_runtime_pm_get(dev_priv);
2469 rdmsrl(MSR_RAPL_POWER_UNIT, power);
2470 power = (power & 0x1f00) >> 8;
2471 units = 1000000 / (1 << power); /* convert to uJ */
2472 power = I915_READ(MCH_SECP_NRG_STTS);
2473 power *= units;
2475 intel_runtime_pm_put(dev_priv);
2477 seq_printf(m, "%llu", (long long unsigned)power);
2479 return 0;
2482 static int i915_pc8_status(struct seq_file *m, void *unused)
2484 struct drm_info_node *node = m->private;
2485 struct drm_device *dev = node->minor->dev;
2486 struct drm_i915_private *dev_priv = dev->dev_private;
2488 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2489 seq_puts(m, "not supported\n");
2490 return 0;
2493 seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2494 seq_printf(m, "IRQs disabled: %s\n",
2495 yesno(!intel_irqs_enabled(dev_priv)));
2497 return 0;
2500 static const char *power_domain_str(enum intel_display_power_domain domain)
2502 switch (domain) {
2503 case POWER_DOMAIN_PIPE_A:
2504 return "PIPE_A";
2505 case POWER_DOMAIN_PIPE_B:
2506 return "PIPE_B";
2507 case POWER_DOMAIN_PIPE_C:
2508 return "PIPE_C";
2509 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2510 return "PIPE_A_PANEL_FITTER";
2511 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2512 return "PIPE_B_PANEL_FITTER";
2513 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2514 return "PIPE_C_PANEL_FITTER";
2515 case POWER_DOMAIN_TRANSCODER_A:
2516 return "TRANSCODER_A";
2517 case POWER_DOMAIN_TRANSCODER_B:
2518 return "TRANSCODER_B";
2519 case POWER_DOMAIN_TRANSCODER_C:
2520 return "TRANSCODER_C";
2521 case POWER_DOMAIN_TRANSCODER_EDP:
2522 return "TRANSCODER_EDP";
2523 case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2524 return "PORT_DDI_A_2_LANES";
2525 case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2526 return "PORT_DDI_A_4_LANES";
2527 case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2528 return "PORT_DDI_B_2_LANES";
2529 case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2530 return "PORT_DDI_B_4_LANES";
2531 case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2532 return "PORT_DDI_C_2_LANES";
2533 case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2534 return "PORT_DDI_C_4_LANES";
2535 case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2536 return "PORT_DDI_D_2_LANES";
2537 case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2538 return "PORT_DDI_D_4_LANES";
2539 case POWER_DOMAIN_PORT_DSI:
2540 return "PORT_DSI";
2541 case POWER_DOMAIN_PORT_CRT:
2542 return "PORT_CRT";
2543 case POWER_DOMAIN_PORT_OTHER:
2544 return "PORT_OTHER";
2545 case POWER_DOMAIN_VGA:
2546 return "VGA";
2547 case POWER_DOMAIN_AUDIO:
2548 return "AUDIO";
2549 case POWER_DOMAIN_PLLS:
2550 return "PLLS";
2551 case POWER_DOMAIN_AUX_A:
2552 return "AUX_A";
2553 case POWER_DOMAIN_AUX_B:
2554 return "AUX_B";
2555 case POWER_DOMAIN_AUX_C:
2556 return "AUX_C";
2557 case POWER_DOMAIN_AUX_D:
2558 return "AUX_D";
2559 case POWER_DOMAIN_INIT:
2560 return "INIT";
2561 default:
2562 MISSING_CASE(domain);
2563 return "?";
2567 static int i915_power_domain_info(struct seq_file *m, void *unused)
2569 struct drm_info_node *node = m->private;
2570 struct drm_device *dev = node->minor->dev;
2571 struct drm_i915_private *dev_priv = dev->dev_private;
2572 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2573 int i;
2575 mutex_lock(&power_domains->lock);
2577 seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2578 for (i = 0; i < power_domains->power_well_count; i++) {
2579 struct i915_power_well *power_well;
2580 enum intel_display_power_domain power_domain;
2582 power_well = &power_domains->power_wells[i];
2583 seq_printf(m, "%-25s %d\n", power_well->name,
2584 power_well->count);
2586 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2587 power_domain++) {
2588 if (!(BIT(power_domain) & power_well->domains))
2589 continue;
2591 seq_printf(m, " %-23s %d\n",
2592 power_domain_str(power_domain),
2593 power_domains->domain_use_count[power_domain]);
2597 mutex_unlock(&power_domains->lock);
2599 return 0;
2602 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2603 struct drm_display_mode *mode)
2605 int i;
2607 for (i = 0; i < tabs; i++)
2608 seq_putc(m, '\t');
2610 seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2611 mode->base.id, mode->name,
2612 mode->vrefresh, mode->clock,
2613 mode->hdisplay, mode->hsync_start,
2614 mode->hsync_end, mode->htotal,
2615 mode->vdisplay, mode->vsync_start,
2616 mode->vsync_end, mode->vtotal,
2617 mode->type, mode->flags);
2620 static void intel_encoder_info(struct seq_file *m,
2621 struct intel_crtc *intel_crtc,
2622 struct intel_encoder *intel_encoder)
2624 struct drm_info_node *node = m->private;
2625 struct drm_device *dev = node->minor->dev;
2626 struct drm_crtc *crtc = &intel_crtc->base;
2627 struct intel_connector *intel_connector;
2628 struct drm_encoder *encoder;
2630 encoder = &intel_encoder->base;
2631 seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2632 encoder->base.id, encoder->name);
2633 for_each_connector_on_encoder(dev, encoder, intel_connector) {
2634 struct drm_connector *connector = &intel_connector->base;
2635 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2636 connector->base.id,
2637 connector->name,
2638 drm_get_connector_status_name(connector->status));
2639 if (connector->status == connector_status_connected) {
2640 struct drm_display_mode *mode = &crtc->mode;
2641 seq_printf(m, ", mode:\n");
2642 intel_seq_print_mode(m, 2, mode);
2643 } else {
2644 seq_putc(m, '\n');
2649 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2651 struct drm_info_node *node = m->private;
2652 struct drm_device *dev = node->minor->dev;
2653 struct drm_crtc *crtc = &intel_crtc->base;
2654 struct intel_encoder *intel_encoder;
2656 if (crtc->primary->fb)
2657 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2658 crtc->primary->fb->base.id, crtc->x, crtc->y,
2659 crtc->primary->fb->width, crtc->primary->fb->height);
2660 else
2661 seq_puts(m, "\tprimary plane disabled\n");
2662 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2663 intel_encoder_info(m, intel_crtc, intel_encoder);
2666 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2668 struct drm_display_mode *mode = panel->fixed_mode;
2670 seq_printf(m, "\tfixed mode:\n");
2671 intel_seq_print_mode(m, 2, mode);
2674 static void intel_dp_info(struct seq_file *m,
2675 struct intel_connector *intel_connector)
2677 struct intel_encoder *intel_encoder = intel_connector->encoder;
2678 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2680 seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2681 seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
2682 "no");
2683 if (intel_encoder->type == INTEL_OUTPUT_EDP)
2684 intel_panel_info(m, &intel_connector->panel);
2687 static void intel_hdmi_info(struct seq_file *m,
2688 struct intel_connector *intel_connector)
2690 struct intel_encoder *intel_encoder = intel_connector->encoder;
2691 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2693 seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
2694 "no");
2697 static void intel_lvds_info(struct seq_file *m,
2698 struct intel_connector *intel_connector)
2700 intel_panel_info(m, &intel_connector->panel);
2703 static void intel_connector_info(struct seq_file *m,
2704 struct drm_connector *connector)
2706 struct intel_connector *intel_connector = to_intel_connector(connector);
2707 struct intel_encoder *intel_encoder = intel_connector->encoder;
2708 struct drm_display_mode *mode;
2710 seq_printf(m, "connector %d: type %s, status: %s\n",
2711 connector->base.id, connector->name,
2712 drm_get_connector_status_name(connector->status));
2713 if (connector->status == connector_status_connected) {
2714 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2715 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2716 connector->display_info.width_mm,
2717 connector->display_info.height_mm);
2718 seq_printf(m, "\tsubpixel order: %s\n",
2719 drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2720 seq_printf(m, "\tCEA rev: %d\n",
2721 connector->display_info.cea_rev);
2723 if (intel_encoder) {
2724 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2725 intel_encoder->type == INTEL_OUTPUT_EDP)
2726 intel_dp_info(m, intel_connector);
2727 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2728 intel_hdmi_info(m, intel_connector);
2729 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2730 intel_lvds_info(m, intel_connector);
2733 seq_printf(m, "\tmodes:\n");
2734 list_for_each_entry(mode, &connector->modes, head)
2735 intel_seq_print_mode(m, 2, mode);
2738 static bool cursor_active(struct drm_device *dev, int pipe)
2740 struct drm_i915_private *dev_priv = dev->dev_private;
2741 u32 state;
2743 if (IS_845G(dev) || IS_I865G(dev))
2744 state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
2745 else
2746 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2748 return state;
2751 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2753 struct drm_i915_private *dev_priv = dev->dev_private;
2754 u32 pos;
2756 pos = I915_READ(CURPOS(pipe));
2758 *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2759 if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2760 *x = -*x;
2762 *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2763 if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2764 *y = -*y;
2766 return cursor_active(dev, pipe);
2769 static int i915_display_info(struct seq_file *m, void *unused)
2771 struct drm_info_node *node = m->private;
2772 struct drm_device *dev = node->minor->dev;
2773 struct drm_i915_private *dev_priv = dev->dev_private;
2774 struct intel_crtc *crtc;
2775 struct drm_connector *connector;
2777 intel_runtime_pm_get(dev_priv);
2778 drm_modeset_lock_all(dev);
2779 seq_printf(m, "CRTC info\n");
2780 seq_printf(m, "---------\n");
2781 for_each_intel_crtc(dev, crtc) {
2782 bool active;
2783 int x, y;
2785 seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
2786 crtc->base.base.id, pipe_name(crtc->pipe),
2787 yesno(crtc->active), crtc->config->pipe_src_w,
2788 crtc->config->pipe_src_h);
2789 if (crtc->active) {
2790 intel_crtc_info(m, crtc);
2792 active = cursor_position(dev, crtc->pipe, &x, &y);
2793 seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
2794 yesno(crtc->cursor_base),
2795 x, y, crtc->base.cursor->state->crtc_w,
2796 crtc->base.cursor->state->crtc_h,
2797 crtc->cursor_addr, yesno(active));
2800 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2801 yesno(!crtc->cpu_fifo_underrun_disabled),
2802 yesno(!crtc->pch_fifo_underrun_disabled));
2805 seq_printf(m, "\n");
2806 seq_printf(m, "Connector info\n");
2807 seq_printf(m, "--------------\n");
2808 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2809 intel_connector_info(m, connector);
2811 drm_modeset_unlock_all(dev);
2812 intel_runtime_pm_put(dev_priv);
2814 return 0;
2817 static int i915_semaphore_status(struct seq_file *m, void *unused)
2819 struct drm_info_node *node = (struct drm_info_node *) m->private;
2820 struct drm_device *dev = node->minor->dev;
2821 struct drm_i915_private *dev_priv = dev->dev_private;
2822 struct intel_engine_cs *ring;
2823 int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
2824 int i, j, ret;
2826 if (!i915_semaphore_is_enabled(dev)) {
2827 seq_puts(m, "Semaphores are disabled\n");
2828 return 0;
2831 ret = mutex_lock_interruptible(&dev->struct_mutex);
2832 if (ret)
2833 return ret;
2834 intel_runtime_pm_get(dev_priv);
2836 if (IS_BROADWELL(dev)) {
2837 struct page *page;
2838 uint64_t *seqno;
2840 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
2842 seqno = (uint64_t *)kmap_atomic(page);
2843 for_each_ring(ring, dev_priv, i) {
2844 uint64_t offset;
2846 seq_printf(m, "%s\n", ring->name);
2848 seq_puts(m, " Last signal:");
2849 for (j = 0; j < num_rings; j++) {
2850 offset = i * I915_NUM_RINGS + j;
2851 seq_printf(m, "0x%08llx (0x%02llx) ",
2852 seqno[offset], offset * 8);
2854 seq_putc(m, '\n');
2856 seq_puts(m, " Last wait: ");
2857 for (j = 0; j < num_rings; j++) {
2858 offset = i + (j * I915_NUM_RINGS);
2859 seq_printf(m, "0x%08llx (0x%02llx) ",
2860 seqno[offset], offset * 8);
2862 seq_putc(m, '\n');
2865 kunmap_atomic(seqno);
2866 } else {
2867 seq_puts(m, " Last signal:");
2868 for_each_ring(ring, dev_priv, i)
2869 for (j = 0; j < num_rings; j++)
2870 seq_printf(m, "0x%08x\n",
2871 I915_READ(ring->semaphore.mbox.signal[j]));
2872 seq_putc(m, '\n');
2875 seq_puts(m, "\nSync seqno:\n");
2876 for_each_ring(ring, dev_priv, i) {
2877 for (j = 0; j < num_rings; j++) {
2878 seq_printf(m, " 0x%08x ", ring->semaphore.sync_seqno[j]);
2880 seq_putc(m, '\n');
2882 seq_putc(m, '\n');
2884 intel_runtime_pm_put(dev_priv);
2885 mutex_unlock(&dev->struct_mutex);
2886 return 0;
2889 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
2891 struct drm_info_node *node = (struct drm_info_node *) m->private;
2892 struct drm_device *dev = node->minor->dev;
2893 struct drm_i915_private *dev_priv = dev->dev_private;
2894 int i;
2896 drm_modeset_lock_all(dev);
2897 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2898 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
2900 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
2901 seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
2902 pll->config.crtc_mask, pll->active, yesno(pll->on));
2903 seq_printf(m, " tracked hardware state:\n");
2904 seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll);
2905 seq_printf(m, " dpll_md: 0x%08x\n",
2906 pll->config.hw_state.dpll_md);
2907 seq_printf(m, " fp0: 0x%08x\n", pll->config.hw_state.fp0);
2908 seq_printf(m, " fp1: 0x%08x\n", pll->config.hw_state.fp1);
2909 seq_printf(m, " wrpll: 0x%08x\n", pll->config.hw_state.wrpll);
2911 drm_modeset_unlock_all(dev);
2913 return 0;
2916 static int i915_wa_registers(struct seq_file *m, void *unused)
2918 int i;
2919 int ret;
2920 struct drm_info_node *node = (struct drm_info_node *) m->private;
2921 struct drm_device *dev = node->minor->dev;
2922 struct drm_i915_private *dev_priv = dev->dev_private;
2924 ret = mutex_lock_interruptible(&dev->struct_mutex);
2925 if (ret)
2926 return ret;
2928 intel_runtime_pm_get(dev_priv);
2930 seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
2931 for (i = 0; i < dev_priv->workarounds.count; ++i) {
2932 u32 addr, mask, value, read;
2933 bool ok;
2935 addr = dev_priv->workarounds.reg[i].addr;
2936 mask = dev_priv->workarounds.reg[i].mask;
2937 value = dev_priv->workarounds.reg[i].value;
2938 read = I915_READ(addr);
2939 ok = (value & mask) == (read & mask);
2940 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
2941 addr, value, mask, read, ok ? "OK" : "FAIL");
2944 intel_runtime_pm_put(dev_priv);
2945 mutex_unlock(&dev->struct_mutex);
2947 return 0;
2950 static int i915_ddb_info(struct seq_file *m, void *unused)
2952 struct drm_info_node *node = m->private;
2953 struct drm_device *dev = node->minor->dev;
2954 struct drm_i915_private *dev_priv = dev->dev_private;
2955 struct skl_ddb_allocation *ddb;
2956 struct skl_ddb_entry *entry;
2957 enum pipe pipe;
2958 int plane;
2960 if (INTEL_INFO(dev)->gen < 9)
2961 return 0;
2963 drm_modeset_lock_all(dev);
2965 ddb = &dev_priv->wm.skl_hw.ddb;
2967 seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
2969 for_each_pipe(dev_priv, pipe) {
2970 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
2972 for_each_plane(dev_priv, pipe, plane) {
2973 entry = &ddb->plane[pipe][plane];
2974 seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
2975 entry->start, entry->end,
2976 skl_ddb_entry_size(entry));
2979 entry = &ddb->cursor[pipe];
2980 seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
2981 entry->end, skl_ddb_entry_size(entry));
2984 drm_modeset_unlock_all(dev);
2986 return 0;
2989 static void drrs_status_per_crtc(struct seq_file *m,
2990 struct drm_device *dev, struct intel_crtc *intel_crtc)
2992 struct intel_encoder *intel_encoder;
2993 struct drm_i915_private *dev_priv = dev->dev_private;
2994 struct i915_drrs *drrs = &dev_priv->drrs;
2995 int vrefresh = 0;
2997 for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
2998 /* Encoder connected on this CRTC */
2999 switch (intel_encoder->type) {
3000 case INTEL_OUTPUT_EDP:
3001 seq_puts(m, "eDP:\n");
3002 break;
3003 case INTEL_OUTPUT_DSI:
3004 seq_puts(m, "DSI:\n");
3005 break;
3006 case INTEL_OUTPUT_HDMI:
3007 seq_puts(m, "HDMI:\n");
3008 break;
3009 case INTEL_OUTPUT_DISPLAYPORT:
3010 seq_puts(m, "DP:\n");
3011 break;
3012 default:
3013 seq_printf(m, "Other encoder (id=%d).\n",
3014 intel_encoder->type);
3015 return;
3019 if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3020 seq_puts(m, "\tVBT: DRRS_type: Static");
3021 else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3022 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3023 else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3024 seq_puts(m, "\tVBT: DRRS_type: None");
3025 else
3026 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3028 seq_puts(m, "\n\n");
3030 if (intel_crtc->config->has_drrs) {
3031 struct intel_panel *panel;
3033 mutex_lock(&drrs->mutex);
3034 /* DRRS Supported */
3035 seq_puts(m, "\tDRRS Supported: Yes\n");
3037 /* disable_drrs() will make drrs->dp NULL */
3038 if (!drrs->dp) {
3039 seq_puts(m, "Idleness DRRS: Disabled");
3040 mutex_unlock(&drrs->mutex);
3041 return;
3044 panel = &drrs->dp->attached_connector->panel;
3045 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3046 drrs->busy_frontbuffer_bits);
3048 seq_puts(m, "\n\t\t");
3049 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3050 seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3051 vrefresh = panel->fixed_mode->vrefresh;
3052 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3053 seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3054 vrefresh = panel->downclock_mode->vrefresh;
3055 } else {
3056 seq_printf(m, "DRRS_State: Unknown(%d)\n",
3057 drrs->refresh_rate_type);
3058 mutex_unlock(&drrs->mutex);
3059 return;
3061 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3063 seq_puts(m, "\n\t\t");
3064 mutex_unlock(&drrs->mutex);
3065 } else {
3066 /* DRRS not supported. Print the VBT parameter*/
3067 seq_puts(m, "\tDRRS Supported : No");
3069 seq_puts(m, "\n");
3072 static int i915_drrs_status(struct seq_file *m, void *unused)
3074 struct drm_info_node *node = m->private;
3075 struct drm_device *dev = node->minor->dev;
3076 struct intel_crtc *intel_crtc;
3077 int active_crtc_cnt = 0;
3079 for_each_intel_crtc(dev, intel_crtc) {
3080 drm_modeset_lock(&intel_crtc->base.mutex, NULL);
3082 if (intel_crtc->active) {
3083 active_crtc_cnt++;
3084 seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
3086 drrs_status_per_crtc(m, dev, intel_crtc);
3089 drm_modeset_unlock(&intel_crtc->base.mutex);
3092 if (!active_crtc_cnt)
3093 seq_puts(m, "No active crtc found\n");
3095 return 0;
3098 struct pipe_crc_info {
3099 const char *name;
3100 struct drm_device *dev;
3101 enum pipe pipe;
3104 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3106 struct drm_info_node *node = (struct drm_info_node *) m->private;
3107 struct drm_device *dev = node->minor->dev;
3108 struct drm_encoder *encoder;
3109 struct intel_encoder *intel_encoder;
3110 struct intel_digital_port *intel_dig_port;
3111 drm_modeset_lock_all(dev);
3112 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3113 intel_encoder = to_intel_encoder(encoder);
3114 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3115 continue;
3116 intel_dig_port = enc_to_dig_port(encoder);
3117 if (!intel_dig_port->dp.can_mst)
3118 continue;
3120 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3122 drm_modeset_unlock_all(dev);
3123 return 0;
3126 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3128 struct pipe_crc_info *info = inode->i_private;
3129 struct drm_i915_private *dev_priv = info->dev->dev_private;
3130 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3132 if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3133 return -ENODEV;
3135 spin_lock_irq(&pipe_crc->lock);
3137 if (pipe_crc->opened) {
3138 spin_unlock_irq(&pipe_crc->lock);
3139 return -EBUSY; /* already open */
3142 pipe_crc->opened = true;
3143 filep->private_data = inode->i_private;
3145 spin_unlock_irq(&pipe_crc->lock);
3147 return 0;
3150 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3152 struct pipe_crc_info *info = inode->i_private;
3153 struct drm_i915_private *dev_priv = info->dev->dev_private;
3154 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3156 spin_lock_irq(&pipe_crc->lock);
3157 pipe_crc->opened = false;
3158 spin_unlock_irq(&pipe_crc->lock);
3160 return 0;
3163 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3164 #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
3165 /* account for \'0' */
3166 #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
3168 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3170 assert_spin_locked(&pipe_crc->lock);
3171 return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3172 INTEL_PIPE_CRC_ENTRIES_NR);
3175 static ssize_t
3176 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3177 loff_t *pos)
3179 struct pipe_crc_info *info = filep->private_data;
3180 struct drm_device *dev = info->dev;
3181 struct drm_i915_private *dev_priv = dev->dev_private;
3182 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3183 char buf[PIPE_CRC_BUFFER_LEN];
3184 int n_entries;
3185 ssize_t bytes_read;
3188 * Don't allow user space to provide buffers not big enough to hold
3189 * a line of data.
3191 if (count < PIPE_CRC_LINE_LEN)
3192 return -EINVAL;
3194 if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3195 return 0;
3197 /* nothing to read */
3198 spin_lock_irq(&pipe_crc->lock);
3199 while (pipe_crc_data_count(pipe_crc) == 0) {
3200 int ret;
3202 if (filep->f_flags & O_NONBLOCK) {
3203 spin_unlock_irq(&pipe_crc->lock);
3204 return -EAGAIN;
3207 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3208 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3209 if (ret) {
3210 spin_unlock_irq(&pipe_crc->lock);
3211 return ret;
3215 /* We now have one or more entries to read */
3216 n_entries = count / PIPE_CRC_LINE_LEN;
3218 bytes_read = 0;
3219 while (n_entries > 0) {
3220 struct intel_pipe_crc_entry *entry =
3221 &pipe_crc->entries[pipe_crc->tail];
3222 int ret;
3224 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3225 INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3226 break;
3228 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3229 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3231 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3232 "%8u %8x %8x %8x %8x %8x\n",
3233 entry->frame, entry->crc[0],
3234 entry->crc[1], entry->crc[2],
3235 entry->crc[3], entry->crc[4]);
3237 spin_unlock_irq(&pipe_crc->lock);
3239 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3240 if (ret == PIPE_CRC_LINE_LEN)
3241 return -EFAULT;
3243 user_buf += PIPE_CRC_LINE_LEN;
3244 n_entries--;
3246 spin_lock_irq(&pipe_crc->lock);
3249 spin_unlock_irq(&pipe_crc->lock);
3251 return bytes_read;
3254 static const struct file_operations i915_pipe_crc_fops = {
3255 .owner = THIS_MODULE,
3256 .open = i915_pipe_crc_open,
3257 .read = i915_pipe_crc_read,
3258 .release = i915_pipe_crc_release,
3261 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3263 .name = "i915_pipe_A_crc",
3264 .pipe = PIPE_A,
3267 .name = "i915_pipe_B_crc",
3268 .pipe = PIPE_B,
3271 .name = "i915_pipe_C_crc",
3272 .pipe = PIPE_C,
3276 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3277 enum pipe pipe)
3279 struct drm_device *dev = minor->dev;
3280 struct dentry *ent;
3281 struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3283 info->dev = dev;
3284 ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3285 &i915_pipe_crc_fops);
3286 if (!ent)
3287 return -ENOMEM;
3289 return drm_add_fake_info_node(minor, ent, info);
3292 static const char * const pipe_crc_sources[] = {
3293 "none",
3294 "plane1",
3295 "plane2",
3296 "pf",
3297 "pipe",
3298 "TV",
3299 "DP-B",
3300 "DP-C",
3301 "DP-D",
3302 "auto",
3305 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3307 BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3308 return pipe_crc_sources[source];
3311 static int display_crc_ctl_show(struct seq_file *m, void *data)
3313 struct drm_device *dev = m->private;
3314 struct drm_i915_private *dev_priv = dev->dev_private;
3315 int i;
3317 for (i = 0; i < I915_MAX_PIPES; i++)
3318 seq_printf(m, "%c %s\n", pipe_name(i),
3319 pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3321 return 0;
3324 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3326 struct drm_device *dev = inode->i_private;
3328 return single_open(file, display_crc_ctl_show, dev);
3331 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3332 uint32_t *val)
3334 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3335 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3337 switch (*source) {
3338 case INTEL_PIPE_CRC_SOURCE_PIPE:
3339 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3340 break;
3341 case INTEL_PIPE_CRC_SOURCE_NONE:
3342 *val = 0;
3343 break;
3344 default:
3345 return -EINVAL;
3348 return 0;
3351 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3352 enum intel_pipe_crc_source *source)
3354 struct intel_encoder *encoder;
3355 struct intel_crtc *crtc;
3356 struct intel_digital_port *dig_port;
3357 int ret = 0;
3359 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3361 drm_modeset_lock_all(dev);
3362 for_each_intel_encoder(dev, encoder) {
3363 if (!encoder->base.crtc)
3364 continue;
3366 crtc = to_intel_crtc(encoder->base.crtc);
3368 if (crtc->pipe != pipe)
3369 continue;
3371 switch (encoder->type) {
3372 case INTEL_OUTPUT_TVOUT:
3373 *source = INTEL_PIPE_CRC_SOURCE_TV;
3374 break;
3375 case INTEL_OUTPUT_DISPLAYPORT:
3376 case INTEL_OUTPUT_EDP:
3377 dig_port = enc_to_dig_port(&encoder->base);
3378 switch (dig_port->port) {
3379 case PORT_B:
3380 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3381 break;
3382 case PORT_C:
3383 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3384 break;
3385 case PORT_D:
3386 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3387 break;
3388 default:
3389 WARN(1, "nonexisting DP port %c\n",
3390 port_name(dig_port->port));
3391 break;
3393 break;
3394 default:
3395 break;
3398 drm_modeset_unlock_all(dev);
3400 return ret;
3403 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3404 enum pipe pipe,
3405 enum intel_pipe_crc_source *source,
3406 uint32_t *val)
3408 struct drm_i915_private *dev_priv = dev->dev_private;
3409 bool need_stable_symbols = false;
3411 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3412 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3413 if (ret)
3414 return ret;
3417 switch (*source) {
3418 case INTEL_PIPE_CRC_SOURCE_PIPE:
3419 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3420 break;
3421 case INTEL_PIPE_CRC_SOURCE_DP_B:
3422 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3423 need_stable_symbols = true;
3424 break;
3425 case INTEL_PIPE_CRC_SOURCE_DP_C:
3426 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3427 need_stable_symbols = true;
3428 break;
3429 case INTEL_PIPE_CRC_SOURCE_DP_D:
3430 if (!IS_CHERRYVIEW(dev))
3431 return -EINVAL;
3432 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3433 need_stable_symbols = true;
3434 break;
3435 case INTEL_PIPE_CRC_SOURCE_NONE:
3436 *val = 0;
3437 break;
3438 default:
3439 return -EINVAL;
3443 * When the pipe CRC tap point is after the transcoders we need
3444 * to tweak symbol-level features to produce a deterministic series of
3445 * symbols for a given frame. We need to reset those features only once
3446 * a frame (instead of every nth symbol):
3447 * - DC-balance: used to ensure a better clock recovery from the data
3448 * link (SDVO)
3449 * - DisplayPort scrambling: used for EMI reduction
3451 if (need_stable_symbols) {
3452 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3454 tmp |= DC_BALANCE_RESET_VLV;
3455 switch (pipe) {
3456 case PIPE_A:
3457 tmp |= PIPE_A_SCRAMBLE_RESET;
3458 break;
3459 case PIPE_B:
3460 tmp |= PIPE_B_SCRAMBLE_RESET;
3461 break;
3462 case PIPE_C:
3463 tmp |= PIPE_C_SCRAMBLE_RESET;
3464 break;
3465 default:
3466 return -EINVAL;
3468 I915_WRITE(PORT_DFT2_G4X, tmp);
3471 return 0;
3474 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3475 enum pipe pipe,
3476 enum intel_pipe_crc_source *source,
3477 uint32_t *val)
3479 struct drm_i915_private *dev_priv = dev->dev_private;
3480 bool need_stable_symbols = false;
3482 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3483 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3484 if (ret)
3485 return ret;
3488 switch (*source) {
3489 case INTEL_PIPE_CRC_SOURCE_PIPE:
3490 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3491 break;
3492 case INTEL_PIPE_CRC_SOURCE_TV:
3493 if (!SUPPORTS_TV(dev))
3494 return -EINVAL;
3495 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3496 break;
3497 case INTEL_PIPE_CRC_SOURCE_DP_B:
3498 if (!IS_G4X(dev))
3499 return -EINVAL;
3500 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3501 need_stable_symbols = true;
3502 break;
3503 case INTEL_PIPE_CRC_SOURCE_DP_C:
3504 if (!IS_G4X(dev))
3505 return -EINVAL;
3506 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3507 need_stable_symbols = true;
3508 break;
3509 case INTEL_PIPE_CRC_SOURCE_DP_D:
3510 if (!IS_G4X(dev))
3511 return -EINVAL;
3512 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3513 need_stable_symbols = true;
3514 break;
3515 case INTEL_PIPE_CRC_SOURCE_NONE:
3516 *val = 0;
3517 break;
3518 default:
3519 return -EINVAL;
3523 * When the pipe CRC tap point is after the transcoders we need
3524 * to tweak symbol-level features to produce a deterministic series of
3525 * symbols for a given frame. We need to reset those features only once
3526 * a frame (instead of every nth symbol):
3527 * - DC-balance: used to ensure a better clock recovery from the data
3528 * link (SDVO)
3529 * - DisplayPort scrambling: used for EMI reduction
3531 if (need_stable_symbols) {
3532 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3534 WARN_ON(!IS_G4X(dev));
3536 I915_WRITE(PORT_DFT_I9XX,
3537 I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3539 if (pipe == PIPE_A)
3540 tmp |= PIPE_A_SCRAMBLE_RESET;
3541 else
3542 tmp |= PIPE_B_SCRAMBLE_RESET;
3544 I915_WRITE(PORT_DFT2_G4X, tmp);
3547 return 0;
3550 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3551 enum pipe pipe)
3553 struct drm_i915_private *dev_priv = dev->dev_private;
3554 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3556 switch (pipe) {
3557 case PIPE_A:
3558 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3559 break;
3560 case PIPE_B:
3561 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3562 break;
3563 case PIPE_C:
3564 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3565 break;
3566 default:
3567 return;
3569 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3570 tmp &= ~DC_BALANCE_RESET_VLV;
3571 I915_WRITE(PORT_DFT2_G4X, tmp);
3575 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3576 enum pipe pipe)
3578 struct drm_i915_private *dev_priv = dev->dev_private;
3579 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3581 if (pipe == PIPE_A)
3582 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3583 else
3584 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3585 I915_WRITE(PORT_DFT2_G4X, tmp);
3587 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3588 I915_WRITE(PORT_DFT_I9XX,
3589 I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3593 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3594 uint32_t *val)
3596 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3597 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3599 switch (*source) {
3600 case INTEL_PIPE_CRC_SOURCE_PLANE1:
3601 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3602 break;
3603 case INTEL_PIPE_CRC_SOURCE_PLANE2:
3604 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3605 break;
3606 case INTEL_PIPE_CRC_SOURCE_PIPE:
3607 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3608 break;
3609 case INTEL_PIPE_CRC_SOURCE_NONE:
3610 *val = 0;
3611 break;
3612 default:
3613 return -EINVAL;
3616 return 0;
3619 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3621 struct drm_i915_private *dev_priv = dev->dev_private;
3622 struct intel_crtc *crtc =
3623 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3625 drm_modeset_lock_all(dev);
3627 * If we use the eDP transcoder we need to make sure that we don't
3628 * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3629 * relevant on hsw with pipe A when using the always-on power well
3630 * routing.
3632 if (crtc->config->cpu_transcoder == TRANSCODER_EDP &&
3633 !crtc->config->pch_pfit.enabled) {
3634 crtc->config->pch_pfit.force_thru = true;
3636 intel_display_power_get(dev_priv,
3637 POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3639 intel_crtc_reset(crtc);
3641 drm_modeset_unlock_all(dev);
3644 static void hsw_undo_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3646 struct drm_i915_private *dev_priv = dev->dev_private;
3647 struct intel_crtc *crtc =
3648 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3650 drm_modeset_lock_all(dev);
3652 * If we use the eDP transcoder we need to make sure that we don't
3653 * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3654 * relevant on hsw with pipe A when using the always-on power well
3655 * routing.
3657 if (crtc->config->pch_pfit.force_thru) {
3658 crtc->config->pch_pfit.force_thru = false;
3660 intel_crtc_reset(crtc);
3662 intel_display_power_put(dev_priv,
3663 POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3665 drm_modeset_unlock_all(dev);
3668 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3669 enum pipe pipe,
3670 enum intel_pipe_crc_source *source,
3671 uint32_t *val)
3673 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3674 *source = INTEL_PIPE_CRC_SOURCE_PF;
3676 switch (*source) {
3677 case INTEL_PIPE_CRC_SOURCE_PLANE1:
3678 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3679 break;
3680 case INTEL_PIPE_CRC_SOURCE_PLANE2:
3681 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3682 break;
3683 case INTEL_PIPE_CRC_SOURCE_PF:
3684 if (IS_HASWELL(dev) && pipe == PIPE_A)
3685 hsw_trans_edp_pipe_A_crc_wa(dev);
3687 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3688 break;
3689 case INTEL_PIPE_CRC_SOURCE_NONE:
3690 *val = 0;
3691 break;
3692 default:
3693 return -EINVAL;
3696 return 0;
3699 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3700 enum intel_pipe_crc_source source)
3702 struct drm_i915_private *dev_priv = dev->dev_private;
3703 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3704 struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
3705 pipe));
3706 u32 val = 0; /* shut up gcc */
3707 int ret;
3709 if (pipe_crc->source == source)
3710 return 0;
3712 /* forbid changing the source without going back to 'none' */
3713 if (pipe_crc->source && source)
3714 return -EINVAL;
3716 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
3717 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
3718 return -EIO;
3721 if (IS_GEN2(dev))
3722 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
3723 else if (INTEL_INFO(dev)->gen < 5)
3724 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3725 else if (IS_VALLEYVIEW(dev))
3726 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3727 else if (IS_GEN5(dev) || IS_GEN6(dev))
3728 ret = ilk_pipe_crc_ctl_reg(&source, &val);
3729 else
3730 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3732 if (ret != 0)
3733 return ret;
3735 /* none -> real source transition */
3736 if (source) {
3737 struct intel_pipe_crc_entry *entries;
3739 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
3740 pipe_name(pipe), pipe_crc_source_name(source));
3742 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
3743 sizeof(pipe_crc->entries[0]),
3744 GFP_KERNEL);
3745 if (!entries)
3746 return -ENOMEM;
3749 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
3750 * enabled and disabled dynamically based on package C states,
3751 * user space can't make reliable use of the CRCs, so let's just
3752 * completely disable it.
3754 hsw_disable_ips(crtc);
3756 spin_lock_irq(&pipe_crc->lock);
3757 kfree(pipe_crc->entries);
3758 pipe_crc->entries = entries;
3759 pipe_crc->head = 0;
3760 pipe_crc->tail = 0;
3761 spin_unlock_irq(&pipe_crc->lock);
3764 pipe_crc->source = source;
3766 I915_WRITE(PIPE_CRC_CTL(pipe), val);
3767 POSTING_READ(PIPE_CRC_CTL(pipe));
3769 /* real source -> none transition */
3770 if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
3771 struct intel_pipe_crc_entry *entries;
3772 struct intel_crtc *crtc =
3773 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
3775 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
3776 pipe_name(pipe));
3778 drm_modeset_lock(&crtc->base.mutex, NULL);
3779 if (crtc->active)
3780 intel_wait_for_vblank(dev, pipe);
3781 drm_modeset_unlock(&crtc->base.mutex);
3783 spin_lock_irq(&pipe_crc->lock);
3784 entries = pipe_crc->entries;
3785 pipe_crc->entries = NULL;
3786 pipe_crc->head = 0;
3787 pipe_crc->tail = 0;
3788 spin_unlock_irq(&pipe_crc->lock);
3790 kfree(entries);
3792 if (IS_G4X(dev))
3793 g4x_undo_pipe_scramble_reset(dev, pipe);
3794 else if (IS_VALLEYVIEW(dev))
3795 vlv_undo_pipe_scramble_reset(dev, pipe);
3796 else if (IS_HASWELL(dev) && pipe == PIPE_A)
3797 hsw_undo_trans_edp_pipe_A_crc_wa(dev);
3799 hsw_enable_ips(crtc);
3802 return 0;
3806 * Parse pipe CRC command strings:
3807 * command: wsp* object wsp+ name wsp+ source wsp*
3808 * object: 'pipe'
3809 * name: (A | B | C)
3810 * source: (none | plane1 | plane2 | pf)
3811 * wsp: (#0x20 | #0x9 | #0xA)+
3813 * eg.:
3814 * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
3815 * "pipe A none" -> Stop CRC
3817 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
3819 int n_words = 0;
3821 while (*buf) {
3822 char *end;
3824 /* skip leading white space */
3825 buf = skip_spaces(buf);
3826 if (!*buf)
3827 break; /* end of buffer */
3829 /* find end of word */
3830 for (end = buf; *end && !isspace(*end); end++)
3833 if (n_words == max_words) {
3834 DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
3835 max_words);
3836 return -EINVAL; /* ran out of words[] before bytes */
3839 if (*end)
3840 *end++ = '\0';
3841 words[n_words++] = buf;
3842 buf = end;
3845 return n_words;
3848 enum intel_pipe_crc_object {
3849 PIPE_CRC_OBJECT_PIPE,
3852 static const char * const pipe_crc_objects[] = {
3853 "pipe",
3856 static int
3857 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
3859 int i;
3861 for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
3862 if (!strcmp(buf, pipe_crc_objects[i])) {
3863 *o = i;
3864 return 0;
3867 return -EINVAL;
3870 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
3872 const char name = buf[0];
3874 if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
3875 return -EINVAL;
3877 *pipe = name - 'A';
3879 return 0;
3882 static int
3883 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
3885 int i;
3887 for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
3888 if (!strcmp(buf, pipe_crc_sources[i])) {
3889 *s = i;
3890 return 0;
3893 return -EINVAL;
3896 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
3898 #define N_WORDS 3
3899 int n_words;
3900 char *words[N_WORDS];
3901 enum pipe pipe;
3902 enum intel_pipe_crc_object object;
3903 enum intel_pipe_crc_source source;
3905 n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
3906 if (n_words != N_WORDS) {
3907 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
3908 N_WORDS);
3909 return -EINVAL;
3912 if (display_crc_ctl_parse_object(words[0], &object) < 0) {
3913 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
3914 return -EINVAL;
3917 if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
3918 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
3919 return -EINVAL;
3922 if (display_crc_ctl_parse_source(words[2], &source) < 0) {
3923 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
3924 return -EINVAL;
3927 return pipe_crc_set_source(dev, pipe, source);
3930 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
3931 size_t len, loff_t *offp)
3933 struct seq_file *m = file->private_data;
3934 struct drm_device *dev = m->private;
3935 char *tmpbuf;
3936 int ret;
3938 if (len == 0)
3939 return 0;
3941 if (len > PAGE_SIZE - 1) {
3942 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
3943 PAGE_SIZE);
3944 return -E2BIG;
3947 tmpbuf = kmalloc(len + 1, GFP_KERNEL);
3948 if (!tmpbuf)
3949 return -ENOMEM;
3951 if (copy_from_user(tmpbuf, ubuf, len)) {
3952 ret = -EFAULT;
3953 goto out;
3955 tmpbuf[len] = '\0';
3957 ret = display_crc_ctl_parse(dev, tmpbuf, len);
3959 out:
3960 kfree(tmpbuf);
3961 if (ret < 0)
3962 return ret;
3964 *offp += len;
3965 return len;
3968 static const struct file_operations i915_display_crc_ctl_fops = {
3969 .owner = THIS_MODULE,
3970 .open = display_crc_ctl_open,
3971 .read = seq_read,
3972 .llseek = seq_lseek,
3973 .release = single_release,
3974 .write = display_crc_ctl_write
3977 static ssize_t i915_displayport_test_active_write(struct file *file,
3978 const char __user *ubuf,
3979 size_t len, loff_t *offp)
3981 char *input_buffer;
3982 int status = 0;
3983 struct seq_file *m;
3984 struct drm_device *dev;
3985 struct drm_connector *connector;
3986 struct list_head *connector_list;
3987 struct intel_dp *intel_dp;
3988 int val = 0;
3990 m = file->private_data;
3991 if (!m) {
3992 status = -ENODEV;
3993 return status;
3995 dev = m->private;
3997 if (!dev) {
3998 status = -ENODEV;
3999 return status;
4001 connector_list = &dev->mode_config.connector_list;
4003 if (len == 0)
4004 return 0;
4006 input_buffer = kmalloc(len + 1, GFP_KERNEL);
4007 if (!input_buffer)
4008 return -ENOMEM;
4010 if (copy_from_user(input_buffer, ubuf, len)) {
4011 status = -EFAULT;
4012 goto out;
4015 input_buffer[len] = '\0';
4016 DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4018 list_for_each_entry(connector, connector_list, head) {
4020 if (connector->connector_type !=
4021 DRM_MODE_CONNECTOR_DisplayPort)
4022 continue;
4024 if (connector->connector_type ==
4025 DRM_MODE_CONNECTOR_DisplayPort &&
4026 connector->status == connector_status_connected &&
4027 connector->encoder != NULL) {
4028 intel_dp = enc_to_intel_dp(connector->encoder);
4029 status = kstrtoint(input_buffer, 10, &val);
4030 if (status < 0)
4031 goto out;
4032 DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4033 /* To prevent erroneous activation of the compliance
4034 * testing code, only accept an actual value of 1 here
4036 if (val == 1)
4037 intel_dp->compliance_test_active = 1;
4038 else
4039 intel_dp->compliance_test_active = 0;
4042 out:
4043 kfree(input_buffer);
4044 if (status < 0)
4045 return status;
4047 *offp += len;
4048 return len;
4051 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4053 struct drm_device *dev = m->private;
4054 struct drm_connector *connector;
4055 struct list_head *connector_list = &dev->mode_config.connector_list;
4056 struct intel_dp *intel_dp;
4058 if (!dev)
4059 return -ENODEV;
4061 list_for_each_entry(connector, connector_list, head) {
4063 if (connector->connector_type !=
4064 DRM_MODE_CONNECTOR_DisplayPort)
4065 continue;
4067 if (connector->status == connector_status_connected &&
4068 connector->encoder != NULL) {
4069 intel_dp = enc_to_intel_dp(connector->encoder);
4070 if (intel_dp->compliance_test_active)
4071 seq_puts(m, "1");
4072 else
4073 seq_puts(m, "0");
4074 } else
4075 seq_puts(m, "0");
4078 return 0;
4081 static int i915_displayport_test_active_open(struct inode *inode,
4082 struct file *file)
4084 struct drm_device *dev = inode->i_private;
4086 return single_open(file, i915_displayport_test_active_show, dev);
4089 static const struct file_operations i915_displayport_test_active_fops = {
4090 .owner = THIS_MODULE,
4091 .open = i915_displayport_test_active_open,
4092 .read = seq_read,
4093 .llseek = seq_lseek,
4094 .release = single_release,
4095 .write = i915_displayport_test_active_write
4098 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4100 struct drm_device *dev = m->private;
4101 struct drm_connector *connector;
4102 struct list_head *connector_list = &dev->mode_config.connector_list;
4103 struct intel_dp *intel_dp;
4105 if (!dev)
4106 return -ENODEV;
4108 list_for_each_entry(connector, connector_list, head) {
4110 if (connector->connector_type !=
4111 DRM_MODE_CONNECTOR_DisplayPort)
4112 continue;
4114 if (connector->status == connector_status_connected &&
4115 connector->encoder != NULL) {
4116 intel_dp = enc_to_intel_dp(connector->encoder);
4117 seq_printf(m, "%lx", intel_dp->compliance_test_data);
4118 } else
4119 seq_puts(m, "0");
4122 return 0;
4124 static int i915_displayport_test_data_open(struct inode *inode,
4125 struct file *file)
4127 struct drm_device *dev = inode->i_private;
4129 return single_open(file, i915_displayport_test_data_show, dev);
4132 static const struct file_operations i915_displayport_test_data_fops = {
4133 .owner = THIS_MODULE,
4134 .open = i915_displayport_test_data_open,
4135 .read = seq_read,
4136 .llseek = seq_lseek,
4137 .release = single_release
4140 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4142 struct drm_device *dev = m->private;
4143 struct drm_connector *connector;
4144 struct list_head *connector_list = &dev->mode_config.connector_list;
4145 struct intel_dp *intel_dp;
4147 if (!dev)
4148 return -ENODEV;
4150 list_for_each_entry(connector, connector_list, head) {
4152 if (connector->connector_type !=
4153 DRM_MODE_CONNECTOR_DisplayPort)
4154 continue;
4156 if (connector->status == connector_status_connected &&
4157 connector->encoder != NULL) {
4158 intel_dp = enc_to_intel_dp(connector->encoder);
4159 seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4160 } else
4161 seq_puts(m, "0");
4164 return 0;
4167 static int i915_displayport_test_type_open(struct inode *inode,
4168 struct file *file)
4170 struct drm_device *dev = inode->i_private;
4172 return single_open(file, i915_displayport_test_type_show, dev);
4175 static const struct file_operations i915_displayport_test_type_fops = {
4176 .owner = THIS_MODULE,
4177 .open = i915_displayport_test_type_open,
4178 .read = seq_read,
4179 .llseek = seq_lseek,
4180 .release = single_release
4183 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4185 struct drm_device *dev = m->private;
4186 int num_levels = ilk_wm_max_level(dev) + 1;
4187 int level;
4189 drm_modeset_lock_all(dev);
4191 for (level = 0; level < num_levels; level++) {
4192 unsigned int latency = wm[level];
4195 * - WM1+ latency values in 0.5us units
4196 * - latencies are in us on gen9
4198 if (INTEL_INFO(dev)->gen >= 9)
4199 latency *= 10;
4200 else if (level > 0)
4201 latency *= 5;
4203 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4204 level, wm[level], latency / 10, latency % 10);
4207 drm_modeset_unlock_all(dev);
4210 static int pri_wm_latency_show(struct seq_file *m, void *data)
4212 struct drm_device *dev = m->private;
4213 struct drm_i915_private *dev_priv = dev->dev_private;
4214 const uint16_t *latencies;
4216 if (INTEL_INFO(dev)->gen >= 9)
4217 latencies = dev_priv->wm.skl_latency;
4218 else
4219 latencies = to_i915(dev)->wm.pri_latency;
4221 wm_latency_show(m, latencies);
4223 return 0;
4226 static int spr_wm_latency_show(struct seq_file *m, void *data)
4228 struct drm_device *dev = m->private;
4229 struct drm_i915_private *dev_priv = dev->dev_private;
4230 const uint16_t *latencies;
4232 if (INTEL_INFO(dev)->gen >= 9)
4233 latencies = dev_priv->wm.skl_latency;
4234 else
4235 latencies = to_i915(dev)->wm.spr_latency;
4237 wm_latency_show(m, latencies);
4239 return 0;
4242 static int cur_wm_latency_show(struct seq_file *m, void *data)
4244 struct drm_device *dev = m->private;
4245 struct drm_i915_private *dev_priv = dev->dev_private;
4246 const uint16_t *latencies;
4248 if (INTEL_INFO(dev)->gen >= 9)
4249 latencies = dev_priv->wm.skl_latency;
4250 else
4251 latencies = to_i915(dev)->wm.cur_latency;
4253 wm_latency_show(m, latencies);
4255 return 0;
4258 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4260 struct drm_device *dev = inode->i_private;
4262 if (HAS_GMCH_DISPLAY(dev))
4263 return -ENODEV;
4265 return single_open(file, pri_wm_latency_show, dev);
4268 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4270 struct drm_device *dev = inode->i_private;
4272 if (HAS_GMCH_DISPLAY(dev))
4273 return -ENODEV;
4275 return single_open(file, spr_wm_latency_show, dev);
4278 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4280 struct drm_device *dev = inode->i_private;
4282 if (HAS_GMCH_DISPLAY(dev))
4283 return -ENODEV;
4285 return single_open(file, cur_wm_latency_show, dev);
4288 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4289 size_t len, loff_t *offp, uint16_t wm[8])
4291 struct seq_file *m = file->private_data;
4292 struct drm_device *dev = m->private;
4293 uint16_t new[8] = { 0 };
4294 int num_levels = ilk_wm_max_level(dev) + 1;
4295 int level;
4296 int ret;
4297 char tmp[32];
4299 if (len >= sizeof(tmp))
4300 return -EINVAL;
4302 if (copy_from_user(tmp, ubuf, len))
4303 return -EFAULT;
4305 tmp[len] = '\0';
4307 ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4308 &new[0], &new[1], &new[2], &new[3],
4309 &new[4], &new[5], &new[6], &new[7]);
4310 if (ret != num_levels)
4311 return -EINVAL;
4313 drm_modeset_lock_all(dev);
4315 for (level = 0; level < num_levels; level++)
4316 wm[level] = new[level];
4318 drm_modeset_unlock_all(dev);
4320 return len;
4324 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4325 size_t len, loff_t *offp)
4327 struct seq_file *m = file->private_data;
4328 struct drm_device *dev = m->private;
4329 struct drm_i915_private *dev_priv = dev->dev_private;
4330 uint16_t *latencies;
4332 if (INTEL_INFO(dev)->gen >= 9)
4333 latencies = dev_priv->wm.skl_latency;
4334 else
4335 latencies = to_i915(dev)->wm.pri_latency;
4337 return wm_latency_write(file, ubuf, len, offp, latencies);
4340 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4341 size_t len, loff_t *offp)
4343 struct seq_file *m = file->private_data;
4344 struct drm_device *dev = m->private;
4345 struct drm_i915_private *dev_priv = dev->dev_private;
4346 uint16_t *latencies;
4348 if (INTEL_INFO(dev)->gen >= 9)
4349 latencies = dev_priv->wm.skl_latency;
4350 else
4351 latencies = to_i915(dev)->wm.spr_latency;
4353 return wm_latency_write(file, ubuf, len, offp, latencies);
4356 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4357 size_t len, loff_t *offp)
4359 struct seq_file *m = file->private_data;
4360 struct drm_device *dev = m->private;
4361 struct drm_i915_private *dev_priv = dev->dev_private;
4362 uint16_t *latencies;
4364 if (INTEL_INFO(dev)->gen >= 9)
4365 latencies = dev_priv->wm.skl_latency;
4366 else
4367 latencies = to_i915(dev)->wm.cur_latency;
4369 return wm_latency_write(file, ubuf, len, offp, latencies);
4372 static const struct file_operations i915_pri_wm_latency_fops = {
4373 .owner = THIS_MODULE,
4374 .open = pri_wm_latency_open,
4375 .read = seq_read,
4376 .llseek = seq_lseek,
4377 .release = single_release,
4378 .write = pri_wm_latency_write
4381 static const struct file_operations i915_spr_wm_latency_fops = {
4382 .owner = THIS_MODULE,
4383 .open = spr_wm_latency_open,
4384 .read = seq_read,
4385 .llseek = seq_lseek,
4386 .release = single_release,
4387 .write = spr_wm_latency_write
4390 static const struct file_operations i915_cur_wm_latency_fops = {
4391 .owner = THIS_MODULE,
4392 .open = cur_wm_latency_open,
4393 .read = seq_read,
4394 .llseek = seq_lseek,
4395 .release = single_release,
4396 .write = cur_wm_latency_write
4399 static int
4400 i915_wedged_get(void *data, u64 *val)
4402 struct drm_device *dev = data;
4403 struct drm_i915_private *dev_priv = dev->dev_private;
4405 *val = atomic_read(&dev_priv->gpu_error.reset_counter);
4407 return 0;
4410 static int
4411 i915_wedged_set(void *data, u64 val)
4413 struct drm_device *dev = data;
4414 struct drm_i915_private *dev_priv = dev->dev_private;
4417 * There is no safeguard against this debugfs entry colliding
4418 * with the hangcheck calling same i915_handle_error() in
4419 * parallel, causing an explosion. For now we assume that the
4420 * test harness is responsible enough not to inject gpu hangs
4421 * while it is writing to 'i915_wedged'
4424 if (i915_reset_in_progress(&dev_priv->gpu_error))
4425 return -EAGAIN;
4427 intel_runtime_pm_get(dev_priv);
4429 i915_handle_error(dev, val,
4430 "Manually setting wedged to %llu", val);
4432 intel_runtime_pm_put(dev_priv);
4434 return 0;
4437 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4438 i915_wedged_get, i915_wedged_set,
4439 "%llu\n");
4441 static int
4442 i915_ring_stop_get(void *data, u64 *val)
4444 struct drm_device *dev = data;
4445 struct drm_i915_private *dev_priv = dev->dev_private;
4447 *val = dev_priv->gpu_error.stop_rings;
4449 return 0;
4452 static int
4453 i915_ring_stop_set(void *data, u64 val)
4455 struct drm_device *dev = data;
4456 struct drm_i915_private *dev_priv = dev->dev_private;
4457 int ret;
4459 DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4461 ret = mutex_lock_interruptible(&dev->struct_mutex);
4462 if (ret)
4463 return ret;
4465 dev_priv->gpu_error.stop_rings = val;
4466 mutex_unlock(&dev->struct_mutex);
4468 return 0;
4471 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4472 i915_ring_stop_get, i915_ring_stop_set,
4473 "0x%08llx\n");
4475 static int
4476 i915_ring_missed_irq_get(void *data, u64 *val)
4478 struct drm_device *dev = data;
4479 struct drm_i915_private *dev_priv = dev->dev_private;
4481 *val = dev_priv->gpu_error.missed_irq_rings;
4482 return 0;
4485 static int
4486 i915_ring_missed_irq_set(void *data, u64 val)
4488 struct drm_device *dev = data;
4489 struct drm_i915_private *dev_priv = dev->dev_private;
4490 int ret;
4492 /* Lock against concurrent debugfs callers */
4493 ret = mutex_lock_interruptible(&dev->struct_mutex);
4494 if (ret)
4495 return ret;
4496 dev_priv->gpu_error.missed_irq_rings = val;
4497 mutex_unlock(&dev->struct_mutex);
4499 return 0;
4502 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4503 i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4504 "0x%08llx\n");
4506 static int
4507 i915_ring_test_irq_get(void *data, u64 *val)
4509 struct drm_device *dev = data;
4510 struct drm_i915_private *dev_priv = dev->dev_private;
4512 *val = dev_priv->gpu_error.test_irq_rings;
4514 return 0;
4517 static int
4518 i915_ring_test_irq_set(void *data, u64 val)
4520 struct drm_device *dev = data;
4521 struct drm_i915_private *dev_priv = dev->dev_private;
4522 int ret;
4524 DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4526 /* Lock against concurrent debugfs callers */
4527 ret = mutex_lock_interruptible(&dev->struct_mutex);
4528 if (ret)
4529 return ret;
4531 dev_priv->gpu_error.test_irq_rings = val;
4532 mutex_unlock(&dev->struct_mutex);
4534 return 0;
4537 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4538 i915_ring_test_irq_get, i915_ring_test_irq_set,
4539 "0x%08llx\n");
4541 #define DROP_UNBOUND 0x1
4542 #define DROP_BOUND 0x2
4543 #define DROP_RETIRE 0x4
4544 #define DROP_ACTIVE 0x8
4545 #define DROP_ALL (DROP_UNBOUND | \
4546 DROP_BOUND | \
4547 DROP_RETIRE | \
4548 DROP_ACTIVE)
4549 static int
4550 i915_drop_caches_get(void *data, u64 *val)
4552 *val = DROP_ALL;
4554 return 0;
4557 static int
4558 i915_drop_caches_set(void *data, u64 val)
4560 struct drm_device *dev = data;
4561 struct drm_i915_private *dev_priv = dev->dev_private;
4562 int ret;
4564 DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4566 /* No need to check and wait for gpu resets, only libdrm auto-restarts
4567 * on ioctls on -EAGAIN. */
4568 ret = mutex_lock_interruptible(&dev->struct_mutex);
4569 if (ret)
4570 return ret;
4572 if (val & DROP_ACTIVE) {
4573 ret = i915_gpu_idle(dev);
4574 if (ret)
4575 goto unlock;
4578 if (val & (DROP_RETIRE | DROP_ACTIVE))
4579 i915_gem_retire_requests(dev);
4581 if (val & DROP_BOUND)
4582 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4584 if (val & DROP_UNBOUND)
4585 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4587 unlock:
4588 mutex_unlock(&dev->struct_mutex);
4590 return ret;
4593 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4594 i915_drop_caches_get, i915_drop_caches_set,
4595 "0x%08llx\n");
4597 static int
4598 i915_max_freq_get(void *data, u64 *val)
4600 struct drm_device *dev = data;
4601 struct drm_i915_private *dev_priv = dev->dev_private;
4602 int ret;
4604 if (INTEL_INFO(dev)->gen < 6)
4605 return -ENODEV;
4607 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4609 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4610 if (ret)
4611 return ret;
4613 *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4614 mutex_unlock(&dev_priv->rps.hw_lock);
4616 return 0;
4619 static int
4620 i915_max_freq_set(void *data, u64 val)
4622 struct drm_device *dev = data;
4623 struct drm_i915_private *dev_priv = dev->dev_private;
4624 u32 hw_max, hw_min;
4625 int ret;
4627 if (INTEL_INFO(dev)->gen < 6)
4628 return -ENODEV;
4630 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4632 DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4634 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4635 if (ret)
4636 return ret;
4639 * Turbo will still be enabled, but won't go above the set value.
4641 val = intel_freq_opcode(dev_priv, val);
4643 hw_max = dev_priv->rps.max_freq;
4644 hw_min = dev_priv->rps.min_freq;
4646 if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4647 mutex_unlock(&dev_priv->rps.hw_lock);
4648 return -EINVAL;
4651 dev_priv->rps.max_freq_softlimit = val;
4653 intel_set_rps(dev, val);
4655 mutex_unlock(&dev_priv->rps.hw_lock);
4657 return 0;
4660 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4661 i915_max_freq_get, i915_max_freq_set,
4662 "%llu\n");
4664 static int
4665 i915_min_freq_get(void *data, u64 *val)
4667 struct drm_device *dev = data;
4668 struct drm_i915_private *dev_priv = dev->dev_private;
4669 int ret;
4671 if (INTEL_INFO(dev)->gen < 6)
4672 return -ENODEV;
4674 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4676 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4677 if (ret)
4678 return ret;
4680 *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4681 mutex_unlock(&dev_priv->rps.hw_lock);
4683 return 0;
4686 static int
4687 i915_min_freq_set(void *data, u64 val)
4689 struct drm_device *dev = data;
4690 struct drm_i915_private *dev_priv = dev->dev_private;
4691 u32 hw_max, hw_min;
4692 int ret;
4694 if (INTEL_INFO(dev)->gen < 6)
4695 return -ENODEV;
4697 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4699 DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4701 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4702 if (ret)
4703 return ret;
4706 * Turbo will still be enabled, but won't go below the set value.
4708 val = intel_freq_opcode(dev_priv, val);
4710 hw_max = dev_priv->rps.max_freq;
4711 hw_min = dev_priv->rps.min_freq;
4713 if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4714 mutex_unlock(&dev_priv->rps.hw_lock);
4715 return -EINVAL;
4718 dev_priv->rps.min_freq_softlimit = val;
4720 intel_set_rps(dev, val);
4722 mutex_unlock(&dev_priv->rps.hw_lock);
4724 return 0;
4727 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4728 i915_min_freq_get, i915_min_freq_set,
4729 "%llu\n");
4731 static int
4732 i915_cache_sharing_get(void *data, u64 *val)
4734 struct drm_device *dev = data;
4735 struct drm_i915_private *dev_priv = dev->dev_private;
4736 u32 snpcr;
4737 int ret;
4739 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4740 return -ENODEV;
4742 ret = mutex_lock_interruptible(&dev->struct_mutex);
4743 if (ret)
4744 return ret;
4745 intel_runtime_pm_get(dev_priv);
4747 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4749 intel_runtime_pm_put(dev_priv);
4750 mutex_unlock(&dev_priv->dev->struct_mutex);
4752 *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4754 return 0;
4757 static int
4758 i915_cache_sharing_set(void *data, u64 val)
4760 struct drm_device *dev = data;
4761 struct drm_i915_private *dev_priv = dev->dev_private;
4762 u32 snpcr;
4764 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4765 return -ENODEV;
4767 if (val > 3)
4768 return -EINVAL;
4770 intel_runtime_pm_get(dev_priv);
4771 DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4773 /* Update the cache sharing policy here as well */
4774 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4775 snpcr &= ~GEN6_MBC_SNPCR_MASK;
4776 snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4777 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4779 intel_runtime_pm_put(dev_priv);
4780 return 0;
4783 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4784 i915_cache_sharing_get, i915_cache_sharing_set,
4785 "%llu\n");
4787 struct sseu_dev_status {
4788 unsigned int slice_total;
4789 unsigned int subslice_total;
4790 unsigned int subslice_per_slice;
4791 unsigned int eu_total;
4792 unsigned int eu_per_subslice;
4795 static void cherryview_sseu_device_status(struct drm_device *dev,
4796 struct sseu_dev_status *stat)
4798 struct drm_i915_private *dev_priv = dev->dev_private;
4799 const int ss_max = 2;
4800 int ss;
4801 u32 sig1[ss_max], sig2[ss_max];
4803 sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
4804 sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
4805 sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
4806 sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
4808 for (ss = 0; ss < ss_max; ss++) {
4809 unsigned int eu_cnt;
4811 if (sig1[ss] & CHV_SS_PG_ENABLE)
4812 /* skip disabled subslice */
4813 continue;
4815 stat->slice_total = 1;
4816 stat->subslice_per_slice++;
4817 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
4818 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
4819 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
4820 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
4821 stat->eu_total += eu_cnt;
4822 stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
4824 stat->subslice_total = stat->subslice_per_slice;
4827 static void gen9_sseu_device_status(struct drm_device *dev,
4828 struct sseu_dev_status *stat)
4830 struct drm_i915_private *dev_priv = dev->dev_private;
4831 int s_max = 3, ss_max = 4;
4832 int s, ss;
4833 u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
4835 /* BXT has a single slice and at most 3 subslices. */
4836 if (IS_BROXTON(dev)) {
4837 s_max = 1;
4838 ss_max = 3;
4841 for (s = 0; s < s_max; s++) {
4842 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
4843 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
4844 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
4847 eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
4848 GEN9_PGCTL_SSA_EU19_ACK |
4849 GEN9_PGCTL_SSA_EU210_ACK |
4850 GEN9_PGCTL_SSA_EU311_ACK;
4851 eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
4852 GEN9_PGCTL_SSB_EU19_ACK |
4853 GEN9_PGCTL_SSB_EU210_ACK |
4854 GEN9_PGCTL_SSB_EU311_ACK;
4856 for (s = 0; s < s_max; s++) {
4857 unsigned int ss_cnt = 0;
4859 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
4860 /* skip disabled slice */
4861 continue;
4863 stat->slice_total++;
4865 if (IS_SKYLAKE(dev))
4866 ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
4868 for (ss = 0; ss < ss_max; ss++) {
4869 unsigned int eu_cnt;
4871 if (IS_BROXTON(dev) &&
4872 !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
4873 /* skip disabled subslice */
4874 continue;
4876 if (IS_BROXTON(dev))
4877 ss_cnt++;
4879 eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
4880 eu_mask[ss%2]);
4881 stat->eu_total += eu_cnt;
4882 stat->eu_per_subslice = max(stat->eu_per_subslice,
4883 eu_cnt);
4886 stat->subslice_total += ss_cnt;
4887 stat->subslice_per_slice = max(stat->subslice_per_slice,
4888 ss_cnt);
4892 static int i915_sseu_status(struct seq_file *m, void *unused)
4894 struct drm_info_node *node = (struct drm_info_node *) m->private;
4895 struct drm_device *dev = node->minor->dev;
4896 struct sseu_dev_status stat;
4898 if ((INTEL_INFO(dev)->gen < 8) || IS_BROADWELL(dev))
4899 return -ENODEV;
4901 seq_puts(m, "SSEU Device Info\n");
4902 seq_printf(m, " Available Slice Total: %u\n",
4903 INTEL_INFO(dev)->slice_total);
4904 seq_printf(m, " Available Subslice Total: %u\n",
4905 INTEL_INFO(dev)->subslice_total);
4906 seq_printf(m, " Available Subslice Per Slice: %u\n",
4907 INTEL_INFO(dev)->subslice_per_slice);
4908 seq_printf(m, " Available EU Total: %u\n",
4909 INTEL_INFO(dev)->eu_total);
4910 seq_printf(m, " Available EU Per Subslice: %u\n",
4911 INTEL_INFO(dev)->eu_per_subslice);
4912 seq_printf(m, " Has Slice Power Gating: %s\n",
4913 yesno(INTEL_INFO(dev)->has_slice_pg));
4914 seq_printf(m, " Has Subslice Power Gating: %s\n",
4915 yesno(INTEL_INFO(dev)->has_subslice_pg));
4916 seq_printf(m, " Has EU Power Gating: %s\n",
4917 yesno(INTEL_INFO(dev)->has_eu_pg));
4919 seq_puts(m, "SSEU Device Status\n");
4920 memset(&stat, 0, sizeof(stat));
4921 if (IS_CHERRYVIEW(dev)) {
4922 cherryview_sseu_device_status(dev, &stat);
4923 } else if (INTEL_INFO(dev)->gen >= 9) {
4924 gen9_sseu_device_status(dev, &stat);
4926 seq_printf(m, " Enabled Slice Total: %u\n",
4927 stat.slice_total);
4928 seq_printf(m, " Enabled Subslice Total: %u\n",
4929 stat.subslice_total);
4930 seq_printf(m, " Enabled Subslice Per Slice: %u\n",
4931 stat.subslice_per_slice);
4932 seq_printf(m, " Enabled EU Total: %u\n",
4933 stat.eu_total);
4934 seq_printf(m, " Enabled EU Per Subslice: %u\n",
4935 stat.eu_per_subslice);
4937 return 0;
4940 static int i915_forcewake_open(struct inode *inode, struct file *file)
4942 struct drm_device *dev = inode->i_private;
4943 struct drm_i915_private *dev_priv = dev->dev_private;
4945 if (INTEL_INFO(dev)->gen < 6)
4946 return 0;
4948 intel_runtime_pm_get(dev_priv);
4949 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4951 return 0;
4954 static int i915_forcewake_release(struct inode *inode, struct file *file)
4956 struct drm_device *dev = inode->i_private;
4957 struct drm_i915_private *dev_priv = dev->dev_private;
4959 if (INTEL_INFO(dev)->gen < 6)
4960 return 0;
4962 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4963 intel_runtime_pm_put(dev_priv);
4965 return 0;
4968 static const struct file_operations i915_forcewake_fops = {
4969 .owner = THIS_MODULE,
4970 .open = i915_forcewake_open,
4971 .release = i915_forcewake_release,
4974 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
4976 struct drm_device *dev = minor->dev;
4977 struct dentry *ent;
4979 ent = debugfs_create_file("i915_forcewake_user",
4980 S_IRUSR,
4981 root, dev,
4982 &i915_forcewake_fops);
4983 if (!ent)
4984 return -ENOMEM;
4986 return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
4989 static int i915_debugfs_create(struct dentry *root,
4990 struct drm_minor *minor,
4991 const char *name,
4992 const struct file_operations *fops)
4994 struct drm_device *dev = minor->dev;
4995 struct dentry *ent;
4997 ent = debugfs_create_file(name,
4998 S_IRUGO | S_IWUSR,
4999 root, dev,
5000 fops);
5001 if (!ent)
5002 return -ENOMEM;
5004 return drm_add_fake_info_node(minor, ent, fops);
5007 static const struct drm_info_list i915_debugfs_list[] = {
5008 {"i915_capabilities", i915_capabilities, 0},
5009 {"i915_gem_objects", i915_gem_object_info, 0},
5010 {"i915_gem_gtt", i915_gem_gtt_info, 0},
5011 {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5012 {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5013 {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5014 {"i915_gem_stolen", i915_gem_stolen_list_info },
5015 {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5016 {"i915_gem_request", i915_gem_request_info, 0},
5017 {"i915_gem_seqno", i915_gem_seqno_info, 0},
5018 {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5019 {"i915_gem_interrupt", i915_interrupt_info, 0},
5020 {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5021 {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5022 {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5023 {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5024 {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5025 {"i915_frequency_info", i915_frequency_info, 0},
5026 {"i915_hangcheck_info", i915_hangcheck_info, 0},
5027 {"i915_drpc_info", i915_drpc_info, 0},
5028 {"i915_emon_status", i915_emon_status, 0},
5029 {"i915_ring_freq_table", i915_ring_freq_table, 0},
5030 {"i915_fbc_status", i915_fbc_status, 0},
5031 {"i915_ips_status", i915_ips_status, 0},
5032 {"i915_sr_status", i915_sr_status, 0},
5033 {"i915_opregion", i915_opregion, 0},
5034 {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5035 {"i915_context_status", i915_context_status, 0},
5036 {"i915_dump_lrc", i915_dump_lrc, 0},
5037 {"i915_execlists", i915_execlists, 0},
5038 {"i915_forcewake_domains", i915_forcewake_domains, 0},
5039 {"i915_swizzle_info", i915_swizzle_info, 0},
5040 {"i915_ppgtt_info", i915_ppgtt_info, 0},
5041 {"i915_llc", i915_llc, 0},
5042 {"i915_edp_psr_status", i915_edp_psr_status, 0},
5043 {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5044 {"i915_energy_uJ", i915_energy_uJ, 0},
5045 {"i915_pc8_status", i915_pc8_status, 0},
5046 {"i915_power_domain_info", i915_power_domain_info, 0},
5047 {"i915_display_info", i915_display_info, 0},
5048 {"i915_semaphore_status", i915_semaphore_status, 0},
5049 {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5050 {"i915_dp_mst_info", i915_dp_mst_info, 0},
5051 {"i915_wa_registers", i915_wa_registers, 0},
5052 {"i915_ddb_info", i915_ddb_info, 0},
5053 {"i915_sseu_status", i915_sseu_status, 0},
5054 {"i915_drrs_status", i915_drrs_status, 0},
5055 {"i915_rps_boost_info", i915_rps_boost_info, 0},
5057 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5059 static const struct i915_debugfs_files {
5060 const char *name;
5061 const struct file_operations *fops;
5062 } i915_debugfs_files[] = {
5063 {"i915_wedged", &i915_wedged_fops},
5064 {"i915_max_freq", &i915_max_freq_fops},
5065 {"i915_min_freq", &i915_min_freq_fops},
5066 {"i915_cache_sharing", &i915_cache_sharing_fops},
5067 {"i915_ring_stop", &i915_ring_stop_fops},
5068 {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5069 {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5070 {"i915_gem_drop_caches", &i915_drop_caches_fops},
5071 {"i915_error_state", &i915_error_state_fops},
5072 {"i915_next_seqno", &i915_next_seqno_fops},
5073 {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5074 {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5075 {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5076 {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5077 {"i915_fbc_false_color", &i915_fbc_fc_fops},
5078 {"i915_dp_test_data", &i915_displayport_test_data_fops},
5079 {"i915_dp_test_type", &i915_displayport_test_type_fops},
5080 {"i915_dp_test_active", &i915_displayport_test_active_fops}
5083 void intel_display_crc_init(struct drm_device *dev)
5085 struct drm_i915_private *dev_priv = dev->dev_private;
5086 enum pipe pipe;
5088 for_each_pipe(dev_priv, pipe) {
5089 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5091 pipe_crc->opened = false;
5092 spin_lock_init(&pipe_crc->lock);
5093 init_waitqueue_head(&pipe_crc->wq);
5097 int i915_debugfs_init(struct drm_minor *minor)
5099 int ret, i;
5101 ret = i915_forcewake_create(minor->debugfs_root, minor);
5102 if (ret)
5103 return ret;
5105 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5106 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5107 if (ret)
5108 return ret;
5111 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5112 ret = i915_debugfs_create(minor->debugfs_root, minor,
5113 i915_debugfs_files[i].name,
5114 i915_debugfs_files[i].fops);
5115 if (ret)
5116 return ret;
5119 return drm_debugfs_create_files(i915_debugfs_list,
5120 I915_DEBUGFS_ENTRIES,
5121 minor->debugfs_root, minor);
5124 void i915_debugfs_cleanup(struct drm_minor *minor)
5126 int i;
5128 drm_debugfs_remove_files(i915_debugfs_list,
5129 I915_DEBUGFS_ENTRIES, minor);
5131 drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5132 1, minor);
5134 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5135 struct drm_info_list *info_list =
5136 (struct drm_info_list *)&i915_pipe_crc_data[i];
5138 drm_debugfs_remove_files(info_list, 1, minor);
5141 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5142 struct drm_info_list *info_list =
5143 (struct drm_info_list *) i915_debugfs_files[i].fops;
5145 drm_debugfs_remove_files(info_list, 1, minor);
5149 struct dpcd_block {
5150 /* DPCD dump start address. */
5151 unsigned int offset;
5152 /* DPCD dump end address, inclusive. If unset, .size will be used. */
5153 unsigned int end;
5154 /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5155 size_t size;
5156 /* Only valid for eDP. */
5157 bool edp;
5160 static const struct dpcd_block i915_dpcd_debug[] = {
5161 { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5162 { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5163 { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5164 { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5165 { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5166 { .offset = DP_SET_POWER },
5167 { .offset = DP_EDP_DPCD_REV },
5168 { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5169 { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5170 { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5173 static int i915_dpcd_show(struct seq_file *m, void *data)
5175 struct drm_connector *connector = m->private;
5176 struct intel_dp *intel_dp =
5177 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5178 uint8_t buf[16];
5179 ssize_t err;
5180 int i;
5182 if (connector->status != connector_status_connected)
5183 return -ENODEV;
5185 for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5186 const struct dpcd_block *b = &i915_dpcd_debug[i];
5187 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5189 if (b->edp &&
5190 connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5191 continue;
5193 /* low tech for now */
5194 if (WARN_ON(size > sizeof(buf)))
5195 continue;
5197 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5198 if (err <= 0) {
5199 DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5200 size, b->offset, err);
5201 continue;
5204 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5207 return 0;
5210 static int i915_dpcd_open(struct inode *inode, struct file *file)
5212 return single_open(file, i915_dpcd_show, inode->i_private);
5215 static const struct file_operations i915_dpcd_fops = {
5216 .owner = THIS_MODULE,
5217 .open = i915_dpcd_open,
5218 .read = seq_read,
5219 .llseek = seq_lseek,
5220 .release = single_release,
5224 * i915_debugfs_connector_add - add i915 specific connector debugfs files
5225 * @connector: pointer to a registered drm_connector
5227 * Cleanup will be done by drm_connector_unregister() through a call to
5228 * drm_debugfs_connector_remove().
5230 * Returns 0 on success, negative error codes on error.
5232 int i915_debugfs_connector_add(struct drm_connector *connector)
5234 struct dentry *root = connector->debugfs_entry;
5236 /* The connector must have been registered beforehands. */
5237 if (!root)
5238 return -ENODEV;
5240 if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5241 connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5242 debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5243 &i915_dpcd_fops);
5245 return 0;