2 * Copyright © 2014 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
23 * Please try to maintain the following order within this file unless it makes
24 * sense to do otherwise. From top to bottom:
26 * 2. #defines, and macros
27 * 3. structure definitions
28 * 4. function prototypes
30 * Within each section, please try to order by generation in ascending order,
31 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
34 #ifndef __I915_GEM_GTT_H__
35 #define __I915_GEM_GTT_H__
37 struct drm_i915_file_private
;
39 typedef uint32_t gen6_pte_t
;
40 typedef uint64_t gen8_pte_t
;
41 typedef uint64_t gen8_pde_t
;
43 #define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)
46 /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
47 #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
48 #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
49 #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
50 #define GEN6_PTE_CACHE_LLC (2 << 1)
51 #define GEN6_PTE_UNCACHED (1 << 1)
52 #define GEN6_PTE_VALID (1 << 0)
54 #define I915_PTES(pte_len) (PAGE_SIZE / (pte_len))
55 #define I915_PTE_MASK(pte_len) (I915_PTES(pte_len) - 1)
57 #define I915_PDE_MASK (I915_PDES - 1)
58 #define NUM_PTE(pde_shift) (1 << (pde_shift - PAGE_SHIFT))
60 #define GEN6_PTES I915_PTES(sizeof(gen6_pte_t))
61 #define GEN6_PD_SIZE (I915_PDES * PAGE_SIZE)
62 #define GEN6_PD_ALIGN (PAGE_SIZE * 16)
63 #define GEN6_PDE_SHIFT 22
64 #define GEN6_PDE_VALID (1 << 0)
66 #define GEN7_PTE_CACHE_L3_LLC (3 << 1)
68 #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
69 #define BYT_PTE_WRITEABLE (1 << 1)
71 /* Cacheability Control is a 4-bit value. The low three bits are stored in bits
72 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
74 #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
75 (((bits) & 0x8) << (11 - 3)))
76 #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
77 #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
78 #define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
79 #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
80 #define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
81 #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
82 #define HSW_PTE_UNCACHED (0)
83 #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
84 #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
86 /* GEN8 legacy style address is defined as a 3 level page table:
87 * 31:30 | 29:21 | 20:12 | 11:0
88 * PDPE | PDE | PTE | offset
89 * The difference as compared to normal x86 3 level page table is the PDPEs are
90 * programmed via register.
92 #define GEN8_PDPE_SHIFT 30
93 #define GEN8_PDPE_MASK 0x3
94 #define GEN8_PDE_SHIFT 21
95 #define GEN8_PDE_MASK 0x1ff
96 #define GEN8_PTE_SHIFT 12
97 #define GEN8_PTE_MASK 0x1ff
98 #define GEN8_LEGACY_PDPES 4
99 #define GEN8_PTES I915_PTES(sizeof(gen8_pte_t))
101 #define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
102 #define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
103 #define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
104 #define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
106 #define CHV_PPAT_SNOOP (1<<6)
107 #define GEN8_PPAT_AGE(x) (x<<4)
108 #define GEN8_PPAT_LLCeLLC (3<<2)
109 #define GEN8_PPAT_LLCELLC (2<<2)
110 #define GEN8_PPAT_LLC (1<<2)
111 #define GEN8_PPAT_WB (3<<0)
112 #define GEN8_PPAT_WT (2<<0)
113 #define GEN8_PPAT_WC (1<<0)
114 #define GEN8_PPAT_UC (0<<0)
115 #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
116 #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
118 enum i915_ggtt_view_type
{
119 I915_GGTT_VIEW_NORMAL
= 0,
120 I915_GGTT_VIEW_ROTATED
,
121 I915_GGTT_VIEW_PARTIAL
,
124 struct intel_rotation_info
{
127 uint32_t pixel_format
;
128 uint64_t fb_modifier
;
131 struct i915_ggtt_view
{
132 enum i915_ggtt_view_type type
;
136 unsigned long offset
;
141 struct sg_table
*pages
;
144 struct intel_rotation_info rotation_info
;
148 extern const struct i915_ggtt_view i915_ggtt_view_normal
;
149 extern const struct i915_ggtt_view i915_ggtt_view_rotated
;
151 enum i915_cache_level
;
154 * A VMA represents a GEM BO that is bound into an address space. Therefore, a
155 * VMA's presence cannot be guaranteed before binding, or after unbinding the
156 * object into/from the address space.
158 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
159 * will always be <= an objects lifetime. So object refcounting should cover us.
162 struct drm_mm_node node
;
163 struct drm_i915_gem_object
*obj
;
164 struct i915_address_space
*vm
;
166 /** Flags and address space this VMA is bound to */
167 #define GLOBAL_BIND (1<<0)
168 #define LOCAL_BIND (1<<1)
169 unsigned int bound
: 4;
172 * Support different GGTT views into the same object.
173 * This means there can be multiple VMA mappings per object and per VM.
174 * i915_ggtt_view_type is used to distinguish between those entries.
175 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
176 * assumed in GEM functions which take no ggtt view parameter.
178 struct i915_ggtt_view ggtt_view
;
180 /** This object's place on the active/inactive lists */
181 struct list_head mm_list
;
183 struct list_head vma_link
; /* Link in the object's VMA list */
185 /** This vma's place in the batchbuffer or on the eviction list */
186 struct list_head exec_list
;
189 * Used for performing relocations during execbuffer insertion.
191 struct hlist_node exec_node
;
192 unsigned long exec_handle
;
193 struct drm_i915_gem_exec_object2
*exec_entry
;
196 * How many users have pinned this object in GTT space. The following
197 * users can each hold at most one reference: pwrite/pread, execbuffer
198 * (objects are not allowed multiple times for the same batchbuffer),
199 * and the framebuffer code. When switching/pageflipping, the
200 * framebuffer code has at most two buffers pinned per crtc.
202 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
203 * bits with absolutely no headroom. So use 4 bits. */
204 unsigned int pin_count
:4;
205 #define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
208 struct i915_page_table
{
212 unsigned long *used_ptes
;
215 struct i915_page_directory
{
216 struct page
*page
; /* NULL for GEN6-GEN7 */
222 unsigned long *used_pdes
;
223 struct i915_page_table
*page_table
[I915_PDES
]; /* PDEs */
226 struct i915_page_directory_pointer
{
227 /* struct page *page; */
228 DECLARE_BITMAP(used_pdpes
, GEN8_LEGACY_PDPES
);
229 struct i915_page_directory
*page_directory
[GEN8_LEGACY_PDPES
];
232 struct i915_address_space
{
234 struct drm_device
*dev
;
235 struct list_head global_link
;
236 unsigned long start
; /* Start offset always 0 for dri2 */
237 size_t total
; /* size addr space maps (ex. 2GB for ggtt) */
245 * List of objects currently involved in rendering.
247 * Includes buffers having the contents of their GPU caches
248 * flushed, not necessarily primitives. last_read_req
249 * represents when the rendering involved will be completed.
251 * A reference is held on the buffer while on this list.
253 struct list_head active_list
;
256 * LRU list of objects which are not in the ringbuffer and
257 * are ready to unbind, but are still in the GTT.
259 * last_read_req is NULL while an object is in this list.
261 * A reference is not held on the buffer while on this list,
262 * as merely being GTT-bound shouldn't prevent its being
263 * freed, and we'll pull it off the list in the free path.
265 struct list_head inactive_list
;
267 /* FIXME: Need a more generic return type */
268 gen6_pte_t (*pte_encode
)(dma_addr_t addr
,
269 enum i915_cache_level level
,
270 bool valid
, u32 flags
); /* Create a valid PTE */
271 /* flags for pte_encode */
272 #define PTE_READ_ONLY (1<<0)
273 int (*allocate_va_range
)(struct i915_address_space
*vm
,
276 void (*clear_range
)(struct i915_address_space
*vm
,
280 void (*insert_entries
)(struct i915_address_space
*vm
,
283 enum i915_cache_level cache_level
, u32 flags
);
284 void (*cleanup
)(struct i915_address_space
*vm
);
285 /** Unmap an object from an address space. This usually consists of
286 * setting the valid PTE entries to a reserved scratch page. */
287 void (*unbind_vma
)(struct i915_vma
*vma
);
288 /* Map an object into an address space with the given cache flags. */
289 int (*bind_vma
)(struct i915_vma
*vma
,
290 enum i915_cache_level cache_level
,
294 /* The Graphics Translation Table is the way in which GEN hardware translates a
295 * Graphics Virtual Address into a Physical Address. In addition to the normal
296 * collateral associated with any va->pa translations GEN hardware also has a
297 * portion of the GTT which can be mapped by the CPU and remain both coherent
298 * and correct (in cases like swizzling). That region is referred to as GMADR in
302 struct i915_address_space base
;
303 size_t stolen_size
; /* Total size of stolen memory */
305 unsigned long mappable_end
; /* End offset that we can CPU map */
306 struct io_mapping
*mappable
; /* Mapping to our CPU mappable region */
307 phys_addr_t mappable_base
; /* PA of our GMADR */
309 /** "Graphics Stolen Memory" holds the global PTEs */
317 int (*gtt_probe
)(struct drm_device
*dev
, size_t *gtt_total
,
318 size_t *stolen
, phys_addr_t
*mappable_base
,
319 unsigned long *mappable_end
);
322 struct i915_hw_ppgtt
{
323 struct i915_address_space base
;
325 struct drm_mm_node node
;
326 unsigned long pd_dirty_rings
;
328 struct i915_page_directory_pointer pdp
;
329 struct i915_page_directory pd
;
332 struct i915_page_table
*scratch_pt
;
333 struct i915_page_directory
*scratch_pd
;
335 struct drm_i915_file_private
*file_priv
;
337 gen6_pte_t __iomem
*pd_addr
;
339 int (*enable
)(struct i915_hw_ppgtt
*ppgtt
);
340 int (*switch_mm
)(struct i915_hw_ppgtt
*ppgtt
,
341 struct intel_engine_cs
*ring
);
342 void (*debug_dump
)(struct i915_hw_ppgtt
*ppgtt
, struct seq_file
*m
);
345 /* For each pde iterates over every pde between from start until start + length.
346 * If start, and start+length are not perfectly divisible, the macro will round
347 * down, and up as needed. The macro modifies pde, start, and length. Dev is
348 * only used to differentiate shift values. Temp is temp. On gen6/7, start = 0,
349 * and length = 2G effectively iterates over every PDE in the system.
351 * XXX: temp is not actually needed, but it saves doing the ALIGN operation.
353 #define gen6_for_each_pde(pt, pd, start, length, temp, iter) \
354 for (iter = gen6_pde_index(start); \
355 pt = (pd)->page_table[iter], length > 0 && iter < I915_PDES; \
357 temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT) - start, \
358 temp = min_t(unsigned, temp, length), \
359 start += temp, length -= temp)
361 #define gen6_for_all_pdes(pt, ppgtt, iter) \
363 pt = ppgtt->pd.page_table[iter], iter < I915_PDES; \
366 static inline uint32_t i915_pte_index(uint64_t address
, uint32_t pde_shift
)
368 const uint32_t mask
= NUM_PTE(pde_shift
) - 1;
370 return (address
>> PAGE_SHIFT
) & mask
;
373 /* Helper to counts the number of PTEs within the given length. This count
374 * does not cross a page table boundary, so the max value would be
375 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
377 static inline uint32_t i915_pte_count(uint64_t addr
, size_t length
,
380 const uint64_t mask
= ~((1 << pde_shift
) - 1);
383 WARN_ON(length
== 0);
384 WARN_ON(offset_in_page(addr
|length
));
388 if ((addr
& mask
) != (end
& mask
))
389 return NUM_PTE(pde_shift
) - i915_pte_index(addr
, pde_shift
);
391 return i915_pte_index(end
, pde_shift
) - i915_pte_index(addr
, pde_shift
);
394 static inline uint32_t i915_pde_index(uint64_t addr
, uint32_t shift
)
396 return (addr
>> shift
) & I915_PDE_MASK
;
399 static inline uint32_t gen6_pte_index(uint32_t addr
)
401 return i915_pte_index(addr
, GEN6_PDE_SHIFT
);
404 static inline size_t gen6_pte_count(uint32_t addr
, uint32_t length
)
406 return i915_pte_count(addr
, length
, GEN6_PDE_SHIFT
);
409 static inline uint32_t gen6_pde_index(uint32_t addr
)
411 return i915_pde_index(addr
, GEN6_PDE_SHIFT
);
414 /* Equivalent to the gen6 version, For each pde iterates over every pde
415 * between from start until start + length. On gen8+ it simply iterates
416 * over every page directory entry in a page directory.
418 #define gen8_for_each_pde(pt, pd, start, length, temp, iter) \
419 for (iter = gen8_pde_index(start); \
420 pt = (pd)->page_table[iter], length > 0 && iter < I915_PDES; \
422 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT) - start, \
423 temp = min(temp, length), \
424 start += temp, length -= temp)
426 #define gen8_for_each_pdpe(pd, pdp, start, length, temp, iter) \
427 for (iter = gen8_pdpe_index(start); \
428 pd = (pdp)->page_directory[iter], length > 0 && iter < GEN8_LEGACY_PDPES; \
430 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT) - start, \
431 temp = min(temp, length), \
432 start += temp, length -= temp)
434 /* Clamp length to the next page_directory boundary */
435 static inline uint64_t gen8_clamp_pd(uint64_t start
, uint64_t length
)
437 uint64_t next_pd
= ALIGN(start
+ 1, 1 << GEN8_PDPE_SHIFT
);
439 if (next_pd
> (start
+ length
))
442 return next_pd
- start
;
445 static inline uint32_t gen8_pte_index(uint64_t address
)
447 return i915_pte_index(address
, GEN8_PDE_SHIFT
);
450 static inline uint32_t gen8_pde_index(uint64_t address
)
452 return i915_pde_index(address
, GEN8_PDE_SHIFT
);
455 static inline uint32_t gen8_pdpe_index(uint64_t address
)
457 return (address
>> GEN8_PDPE_SHIFT
) & GEN8_PDPE_MASK
;
460 static inline uint32_t gen8_pml4e_index(uint64_t address
)
462 WARN_ON(1); /* For 64B */
466 static inline size_t gen8_pte_count(uint64_t address
, uint64_t length
)
468 return i915_pte_count(address
, length
, GEN8_PDE_SHIFT
);
471 int i915_gem_gtt_init(struct drm_device
*dev
);
472 void i915_gem_init_global_gtt(struct drm_device
*dev
);
473 void i915_global_gtt_cleanup(struct drm_device
*dev
);
476 int i915_ppgtt_init(struct drm_device
*dev
, struct i915_hw_ppgtt
*ppgtt
);
477 int i915_ppgtt_init_hw(struct drm_device
*dev
);
478 void i915_ppgtt_release(struct kref
*kref
);
479 struct i915_hw_ppgtt
*i915_ppgtt_create(struct drm_device
*dev
,
480 struct drm_i915_file_private
*fpriv
);
481 static inline void i915_ppgtt_get(struct i915_hw_ppgtt
*ppgtt
)
484 kref_get(&ppgtt
->ref
);
486 static inline void i915_ppgtt_put(struct i915_hw_ppgtt
*ppgtt
)
489 kref_put(&ppgtt
->ref
, i915_ppgtt_release
);
492 void i915_check_and_clear_faults(struct drm_device
*dev
);
493 void i915_gem_suspend_gtt_mappings(struct drm_device
*dev
);
494 void i915_gem_restore_gtt_mappings(struct drm_device
*dev
);
496 int __must_check
i915_gem_gtt_prepare_object(struct drm_i915_gem_object
*obj
);
497 void i915_gem_gtt_finish_object(struct drm_i915_gem_object
*obj
);
500 i915_ggtt_view_equal(const struct i915_ggtt_view
*a
,
501 const struct i915_ggtt_view
*b
)
503 if (WARN_ON(!a
|| !b
))
506 if (a
->type
!= b
->type
)
508 if (a
->type
== I915_GGTT_VIEW_PARTIAL
)
509 return !memcmp(&a
->params
, &b
->params
, sizeof(a
->params
));
514 i915_ggtt_view_size(struct drm_i915_gem_object
*obj
,
515 const struct i915_ggtt_view
*view
);