2 * Copyright © 2012-2014 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
26 #include <drm/i915_drm.h>
28 #include "i915_trace.h"
29 #include "intel_drv.h"
30 #include <linux/mmu_context.h>
31 #include <linux/mmu_notifier.h>
32 #include <linux/mempolicy.h>
33 #include <linux/swap.h>
35 struct i915_mm_struct
{
37 struct drm_device
*dev
;
38 struct i915_mmu_notifier
*mn
;
39 struct hlist_node node
;
41 struct work_struct work
;
44 #if defined(CONFIG_MMU_NOTIFIER)
45 #include <linux/interval_tree.h>
47 struct i915_mmu_notifier
{
49 struct hlist_node node
;
50 struct mmu_notifier mn
;
51 struct rb_root objects
;
52 struct list_head linear
;
57 struct i915_mmu_object
{
58 struct i915_mmu_notifier
*mn
;
59 struct interval_tree_node it
;
60 struct list_head link
;
61 struct drm_i915_gem_object
*obj
;
65 static unsigned long cancel_userptr(struct drm_i915_gem_object
*obj
)
67 struct drm_device
*dev
= obj
->base
.dev
;
70 mutex_lock(&dev
->struct_mutex
);
71 /* Cancel any active worker and force us to re-evaluate gup */
72 obj
->userptr
.work
= NULL
;
74 if (obj
->pages
!= NULL
) {
75 struct drm_i915_private
*dev_priv
= to_i915(dev
);
76 struct i915_vma
*vma
, *tmp
;
77 bool was_interruptible
;
79 was_interruptible
= dev_priv
->mm
.interruptible
;
80 dev_priv
->mm
.interruptible
= false;
82 list_for_each_entry_safe(vma
, tmp
, &obj
->vma_list
, vma_link
) {
83 int ret
= i915_vma_unbind(vma
);
84 WARN_ON(ret
&& ret
!= -EIO
);
86 WARN_ON(i915_gem_object_put_pages(obj
));
88 dev_priv
->mm
.interruptible
= was_interruptible
;
91 end
= obj
->userptr
.ptr
+ obj
->base
.size
;
93 drm_gem_object_unreference(&obj
->base
);
94 mutex_unlock(&dev
->struct_mutex
);
99 static void *invalidate_range__linear(struct i915_mmu_notifier
*mn
,
100 struct mm_struct
*mm
,
104 struct i915_mmu_object
*mo
;
105 unsigned long serial
;
109 list_for_each_entry(mo
, &mn
->linear
, link
) {
110 struct drm_i915_gem_object
*obj
;
112 if (mo
->it
.last
< start
|| mo
->it
.start
> end
)
117 if (!kref_get_unless_zero(&obj
->base
.refcount
))
120 spin_unlock(&mn
->lock
);
124 spin_lock(&mn
->lock
);
125 if (serial
!= mn
->serial
)
132 static void i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier
*_mn
,
133 struct mm_struct
*mm
,
137 struct i915_mmu_notifier
*mn
= container_of(_mn
, struct i915_mmu_notifier
, mn
);
138 struct interval_tree_node
*it
= NULL
;
139 unsigned long next
= start
;
140 unsigned long serial
= 0;
142 end
--; /* interval ranges are inclusive, but invalidate range is exclusive */
144 struct drm_i915_gem_object
*obj
= NULL
;
146 spin_lock(&mn
->lock
);
148 it
= invalidate_range__linear(mn
, mm
, start
, end
);
149 else if (serial
== mn
->serial
)
150 it
= interval_tree_iter_next(it
, next
, end
);
152 it
= interval_tree_iter_first(&mn
->objects
, start
, end
);
154 obj
= container_of(it
, struct i915_mmu_object
, it
)->obj
;
156 /* The mmu_object is released late when destroying the
157 * GEM object so it is entirely possible to gain a
158 * reference on an object in the process of being freed
159 * since our serialisation is via the spinlock and not
160 * the struct_mutex - and consequently use it after it
161 * is freed and then double free it.
163 if (!kref_get_unless_zero(&obj
->base
.refcount
)) {
164 spin_unlock(&mn
->lock
);
171 spin_unlock(&mn
->lock
);
175 next
= cancel_userptr(obj
);
179 static const struct mmu_notifier_ops i915_gem_userptr_notifier
= {
180 .invalidate_range_start
= i915_gem_userptr_mn_invalidate_range_start
,
183 static struct i915_mmu_notifier
*
184 i915_mmu_notifier_create(struct mm_struct
*mm
)
186 struct i915_mmu_notifier
*mn
;
189 mn
= kmalloc(sizeof(*mn
), GFP_KERNEL
);
191 return ERR_PTR(-ENOMEM
);
193 spin_lock_init(&mn
->lock
);
194 mn
->mn
.ops
= &i915_gem_userptr_notifier
;
195 mn
->objects
= RB_ROOT
;
197 INIT_LIST_HEAD(&mn
->linear
);
198 mn
->has_linear
= false;
200 /* Protected by mmap_sem (write-lock) */
201 ret
= __mmu_notifier_register(&mn
->mn
, mm
);
210 static void __i915_mmu_notifier_update_serial(struct i915_mmu_notifier
*mn
)
212 if (++mn
->serial
== 0)
217 i915_mmu_notifier_add(struct drm_device
*dev
,
218 struct i915_mmu_notifier
*mn
,
219 struct i915_mmu_object
*mo
)
221 struct interval_tree_node
*it
;
224 /* By this point we have already done a lot of expensive setup that
225 * we do not want to repeat just because the caller (e.g. X) has a
226 * signal pending (and partly because of that expensive setup, X
227 * using an interrupt timer is likely to get stuck in an EINTR loop).
229 mutex_lock(&dev
->struct_mutex
);
231 /* Make sure we drop the final active reference (and thereby
232 * remove the objects from the interval tree) before we do
233 * the check for overlapping objects.
235 i915_gem_retire_requests(dev
);
237 spin_lock(&mn
->lock
);
238 it
= interval_tree_iter_first(&mn
->objects
,
239 mo
->it
.start
, mo
->it
.last
);
241 struct drm_i915_gem_object
*obj
;
243 /* We only need to check the first object in the range as it
244 * either has cancelled gup work queued and we need to
245 * return back to the user to give time for the gup-workers
246 * to flush their object references upon which the object will
247 * be removed from the interval-tree, or the the range is
248 * still in use by another client and the overlap is invalid.
250 * If we do have an overlap, we cannot use the interval tree
251 * for fast range invalidation.
254 obj
= container_of(it
, struct i915_mmu_object
, it
)->obj
;
255 if (!obj
->userptr
.workers
)
256 mn
->has_linear
= mo
->is_linear
= true;
260 interval_tree_insert(&mo
->it
, &mn
->objects
);
263 list_add(&mo
->link
, &mn
->linear
);
264 __i915_mmu_notifier_update_serial(mn
);
266 spin_unlock(&mn
->lock
);
267 mutex_unlock(&dev
->struct_mutex
);
272 static bool i915_mmu_notifier_has_linear(struct i915_mmu_notifier
*mn
)
274 struct i915_mmu_object
*mo
;
276 list_for_each_entry(mo
, &mn
->linear
, link
)
284 i915_mmu_notifier_del(struct i915_mmu_notifier
*mn
,
285 struct i915_mmu_object
*mo
)
287 spin_lock(&mn
->lock
);
290 mn
->has_linear
= i915_mmu_notifier_has_linear(mn
);
292 interval_tree_remove(&mo
->it
, &mn
->objects
);
293 __i915_mmu_notifier_update_serial(mn
);
294 spin_unlock(&mn
->lock
);
298 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object
*obj
)
300 struct i915_mmu_object
*mo
;
302 mo
= obj
->userptr
.mmu_object
;
306 i915_mmu_notifier_del(mo
->mn
, mo
);
309 obj
->userptr
.mmu_object
= NULL
;
312 static struct i915_mmu_notifier
*
313 i915_mmu_notifier_find(struct i915_mm_struct
*mm
)
315 struct i915_mmu_notifier
*mn
= mm
->mn
;
321 down_write(&mm
->mm
->mmap_sem
);
322 mutex_lock(&to_i915(mm
->dev
)->mm_lock
);
323 if ((mn
= mm
->mn
) == NULL
) {
324 mn
= i915_mmu_notifier_create(mm
->mm
);
328 mutex_unlock(&to_i915(mm
->dev
)->mm_lock
);
329 up_write(&mm
->mm
->mmap_sem
);
335 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object
*obj
,
338 struct i915_mmu_notifier
*mn
;
339 struct i915_mmu_object
*mo
;
342 if (flags
& I915_USERPTR_UNSYNCHRONIZED
)
343 return capable(CAP_SYS_ADMIN
) ? 0 : -EPERM
;
345 if (WARN_ON(obj
->userptr
.mm
== NULL
))
348 mn
= i915_mmu_notifier_find(obj
->userptr
.mm
);
352 mo
= kzalloc(sizeof(*mo
), GFP_KERNEL
);
357 mo
->it
.start
= obj
->userptr
.ptr
;
358 mo
->it
.last
= mo
->it
.start
+ obj
->base
.size
- 1;
361 ret
= i915_mmu_notifier_add(obj
->base
.dev
, mn
, mo
);
367 obj
->userptr
.mmu_object
= mo
;
372 i915_mmu_notifier_free(struct i915_mmu_notifier
*mn
,
373 struct mm_struct
*mm
)
378 mmu_notifier_unregister(&mn
->mn
, mm
);
385 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object
*obj
)
390 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object
*obj
,
393 if ((flags
& I915_USERPTR_UNSYNCHRONIZED
) == 0)
396 if (!capable(CAP_SYS_ADMIN
))
403 i915_mmu_notifier_free(struct i915_mmu_notifier
*mn
,
404 struct mm_struct
*mm
)
410 static struct i915_mm_struct
*
411 __i915_mm_struct_find(struct drm_i915_private
*dev_priv
, struct mm_struct
*real
)
413 struct i915_mm_struct
*mm
;
415 /* Protected by dev_priv->mm_lock */
416 hash_for_each_possible(dev_priv
->mm_structs
, mm
, node
, (unsigned long)real
)
424 i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object
*obj
)
426 struct drm_i915_private
*dev_priv
= to_i915(obj
->base
.dev
);
427 struct i915_mm_struct
*mm
;
430 /* During release of the GEM object we hold the struct_mutex. This
431 * precludes us from calling mmput() at that time as that may be
432 * the last reference and so call exit_mmap(). exit_mmap() will
433 * attempt to reap the vma, and if we were holding a GTT mmap
434 * would then call drm_gem_vm_close() and attempt to reacquire
435 * the struct mutex. So in order to avoid that recursion, we have
436 * to defer releasing the mm reference until after we drop the
437 * struct_mutex, i.e. we need to schedule a worker to do the clean
440 mutex_lock(&dev_priv
->mm_lock
);
441 mm
= __i915_mm_struct_find(dev_priv
, current
->mm
);
443 mm
= kmalloc(sizeof(*mm
), GFP_KERNEL
);
449 kref_init(&mm
->kref
);
450 mm
->dev
= obj
->base
.dev
;
452 mm
->mm
= current
->mm
;
453 atomic_inc(¤t
->mm
->mm_count
);
457 /* Protected by dev_priv->mm_lock */
458 hash_add(dev_priv
->mm_structs
,
459 &mm
->node
, (unsigned long)mm
->mm
);
463 obj
->userptr
.mm
= mm
;
465 mutex_unlock(&dev_priv
->mm_lock
);
470 __i915_mm_struct_free__worker(struct work_struct
*work
)
472 struct i915_mm_struct
*mm
= container_of(work
, typeof(*mm
), work
);
473 i915_mmu_notifier_free(mm
->mn
, mm
->mm
);
479 __i915_mm_struct_free(struct kref
*kref
)
481 struct i915_mm_struct
*mm
= container_of(kref
, typeof(*mm
), kref
);
483 /* Protected by dev_priv->mm_lock */
485 mutex_unlock(&to_i915(mm
->dev
)->mm_lock
);
487 INIT_WORK(&mm
->work
, __i915_mm_struct_free__worker
);
488 schedule_work(&mm
->work
);
492 i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object
*obj
)
494 if (obj
->userptr
.mm
== NULL
)
497 kref_put_mutex(&obj
->userptr
.mm
->kref
,
498 __i915_mm_struct_free
,
499 &to_i915(obj
->base
.dev
)->mm_lock
);
500 obj
->userptr
.mm
= NULL
;
503 struct get_pages_work
{
504 struct work_struct work
;
505 struct drm_i915_gem_object
*obj
;
506 struct task_struct
*task
;
509 #if IS_ENABLED(CONFIG_SWIOTLB)
510 #define swiotlb_active() swiotlb_nr_tbl()
512 #define swiotlb_active() 0
516 st_set_pages(struct sg_table
**st
, struct page
**pvec
, int num_pages
)
518 struct scatterlist
*sg
;
521 *st
= kmalloc(sizeof(**st
), GFP_KERNEL
);
525 if (swiotlb_active()) {
526 ret
= sg_alloc_table(*st
, num_pages
, GFP_KERNEL
);
530 for_each_sg((*st
)->sgl
, sg
, num_pages
, n
)
531 sg_set_page(sg
, pvec
[n
], PAGE_SIZE
, 0);
533 ret
= sg_alloc_table_from_pages(*st
, pvec
, num_pages
,
534 0, num_pages
<< PAGE_SHIFT
,
549 __i915_gem_userptr_set_pages(struct drm_i915_gem_object
*obj
,
550 struct page
**pvec
, int num_pages
)
554 ret
= st_set_pages(&obj
->pages
, pvec
, num_pages
);
558 ret
= i915_gem_gtt_prepare_object(obj
);
560 sg_free_table(obj
->pages
);
569 __i915_gem_userptr_get_pages_worker(struct work_struct
*_work
)
571 struct get_pages_work
*work
= container_of(_work
, typeof(*work
), work
);
572 struct drm_i915_gem_object
*obj
= work
->obj
;
573 struct drm_device
*dev
= obj
->base
.dev
;
574 const int num_pages
= obj
->base
.size
>> PAGE_SHIFT
;
581 pvec
= kmalloc(num_pages
*sizeof(struct page
*),
582 GFP_TEMPORARY
| __GFP_NOWARN
| __GFP_NORETRY
);
584 pvec
= drm_malloc_ab(num_pages
, sizeof(struct page
*));
586 struct mm_struct
*mm
= obj
->userptr
.mm
->mm
;
588 down_read(&mm
->mmap_sem
);
589 while (pinned
< num_pages
) {
590 ret
= get_user_pages(work
->task
, mm
,
591 obj
->userptr
.ptr
+ pinned
* PAGE_SIZE
,
593 !obj
->userptr
.read_only
, 0,
594 pvec
+ pinned
, NULL
);
600 up_read(&mm
->mmap_sem
);
603 mutex_lock(&dev
->struct_mutex
);
604 if (obj
->userptr
.work
!= &work
->work
) {
606 } else if (pinned
== num_pages
) {
607 ret
= __i915_gem_userptr_set_pages(obj
, pvec
, num_pages
);
609 list_add_tail(&obj
->global_list
, &to_i915(dev
)->mm
.unbound_list
);
610 obj
->get_page
.sg
= obj
->pages
->sgl
;
611 obj
->get_page
.last
= 0;
617 obj
->userptr
.work
= ERR_PTR(ret
);
618 obj
->userptr
.workers
--;
619 drm_gem_object_unreference(&obj
->base
);
620 mutex_unlock(&dev
->struct_mutex
);
622 release_pages(pvec
, pinned
, 0);
623 drm_free_large(pvec
);
625 put_task_struct(work
->task
);
630 i915_gem_userptr_get_pages(struct drm_i915_gem_object
*obj
)
632 const int num_pages
= obj
->base
.size
>> PAGE_SHIFT
;
636 /* If userspace should engineer that these pages are replaced in
637 * the vma between us binding this page into the GTT and completion
638 * of rendering... Their loss. If they change the mapping of their
639 * pages they need to create a new bo to point to the new vma.
641 * However, that still leaves open the possibility of the vma
642 * being copied upon fork. Which falls under the same userspace
643 * synchronisation issue as a regular bo, except that this time
644 * the process may not be expecting that a particular piece of
645 * memory is tied to the GPU.
647 * Fortunately, we can hook into the mmu_notifier in order to
648 * discard the page references prior to anything nasty happening
649 * to the vma (discard or cloning) which should prevent the more
650 * egregious cases from causing harm.
655 if (obj
->userptr
.mm
->mm
== current
->mm
) {
656 pvec
= kmalloc(num_pages
*sizeof(struct page
*),
657 GFP_TEMPORARY
| __GFP_NOWARN
| __GFP_NORETRY
);
659 pvec
= drm_malloc_ab(num_pages
, sizeof(struct page
*));
664 pinned
= __get_user_pages_fast(obj
->userptr
.ptr
, num_pages
,
665 !obj
->userptr
.read_only
, pvec
);
667 if (pinned
< num_pages
) {
672 /* Spawn a worker so that we can acquire the
673 * user pages without holding our mutex. Access
674 * to the user pages requires mmap_sem, and we have
675 * a strict lock ordering of mmap_sem, struct_mutex -
676 * we already hold struct_mutex here and so cannot
677 * call gup without encountering a lock inversion.
679 * Userspace will keep on repeating the operation
680 * (thanks to EAGAIN) until either we hit the fast
681 * path or the worker completes. If the worker is
682 * cancelled or superseded, the task is still run
683 * but the results ignored. (This leads to
684 * complications that we may have a stray object
685 * refcount that we need to be wary of when
686 * checking for existing objects during creation.)
687 * If the worker encounters an error, it reports
688 * that error back to this function through
689 * obj->userptr.work = ERR_PTR.
692 if (obj
->userptr
.work
== NULL
&&
693 obj
->userptr
.workers
< I915_GEM_USERPTR_MAX_WORKERS
) {
694 struct get_pages_work
*work
;
696 work
= kmalloc(sizeof(*work
), GFP_KERNEL
);
698 obj
->userptr
.work
= &work
->work
;
699 obj
->userptr
.workers
++;
702 drm_gem_object_reference(&obj
->base
);
704 work
->task
= current
;
705 get_task_struct(work
->task
);
707 INIT_WORK(&work
->work
, __i915_gem_userptr_get_pages_worker
);
708 schedule_work(&work
->work
);
712 if (IS_ERR(obj
->userptr
.work
)) {
713 ret
= PTR_ERR(obj
->userptr
.work
);
714 obj
->userptr
.work
= NULL
;
719 ret
= __i915_gem_userptr_set_pages(obj
, pvec
, num_pages
);
721 obj
->userptr
.work
= NULL
;
726 release_pages(pvec
, pinned
, 0);
727 drm_free_large(pvec
);
732 i915_gem_userptr_put_pages(struct drm_i915_gem_object
*obj
)
734 struct sg_page_iter sg_iter
;
736 BUG_ON(obj
->userptr
.work
!= NULL
);
738 if (obj
->madv
!= I915_MADV_WILLNEED
)
741 i915_gem_gtt_finish_object(obj
);
743 for_each_sg_page(obj
->pages
->sgl
, &sg_iter
, obj
->pages
->nents
, 0) {
744 struct page
*page
= sg_page_iter_page(&sg_iter
);
747 set_page_dirty(page
);
749 mark_page_accessed(page
);
750 page_cache_release(page
);
754 sg_free_table(obj
->pages
);
759 i915_gem_userptr_release(struct drm_i915_gem_object
*obj
)
761 i915_gem_userptr_release__mmu_notifier(obj
);
762 i915_gem_userptr_release__mm_struct(obj
);
766 i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object
*obj
)
768 if (obj
->userptr
.mmu_object
)
771 return i915_gem_userptr_init__mmu_notifier(obj
, 0);
774 static const struct drm_i915_gem_object_ops i915_gem_userptr_ops
= {
775 .dmabuf_export
= i915_gem_userptr_dmabuf_export
,
776 .get_pages
= i915_gem_userptr_get_pages
,
777 .put_pages
= i915_gem_userptr_put_pages
,
778 .release
= i915_gem_userptr_release
,
782 * Creates a new mm object that wraps some normal memory from the process
783 * context - user memory.
785 * We impose several restrictions upon the memory being mapped
787 * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
788 * 2. It must be normal system memory, not a pointer into another map of IO
789 * space (e.g. it must not be a GTT mmapping of another object).
790 * 3. We only allow a bo as large as we could in theory map into the GTT,
791 * that is we limit the size to the total size of the GTT.
792 * 4. The bo is marked as being snoopable. The backing pages are left
793 * accessible directly by the CPU, but reads and writes by the GPU may
794 * incur the cost of a snoop (unless you have an LLC architecture).
796 * Synchronisation between multiple users and the GPU is left to userspace
797 * through the normal set-domain-ioctl. The kernel will enforce that the
798 * GPU relinquishes the VMA before it is returned back to the system
799 * i.e. upon free(), munmap() or process termination. However, the userspace
800 * malloc() library may not immediately relinquish the VMA after free() and
801 * instead reuse it whilst the GPU is still reading and writing to the VMA.
804 * Also note, that the object created here is not currently a "first class"
805 * object, in that several ioctls are banned. These are the CPU access
806 * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
807 * direct access via your pointer rather than use those ioctls.
809 * If you think this is a good interface to use to pass GPU memory between
810 * drivers, please use dma-buf instead. In fact, wherever possible use
814 i915_gem_userptr_ioctl(struct drm_device
*dev
, void *data
, struct drm_file
*file
)
816 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
817 struct drm_i915_gem_userptr
*args
= data
;
818 struct drm_i915_gem_object
*obj
;
822 if (args
->flags
& ~(I915_USERPTR_READ_ONLY
|
823 I915_USERPTR_UNSYNCHRONIZED
))
826 if (offset_in_page(args
->user_ptr
| args
->user_size
))
829 if (args
->user_size
> dev_priv
->gtt
.base
.total
)
832 if (!access_ok(args
->flags
& I915_USERPTR_READ_ONLY
? VERIFY_READ
: VERIFY_WRITE
,
833 (char __user
*)(unsigned long)args
->user_ptr
, args
->user_size
))
836 if (args
->flags
& I915_USERPTR_READ_ONLY
) {
837 /* On almost all of the current hw, we cannot tell the GPU that a
838 * page is readonly, so this is just a placeholder in the uAPI.
843 obj
= i915_gem_object_alloc(dev
);
847 drm_gem_private_object_init(dev
, &obj
->base
, args
->user_size
);
848 i915_gem_object_init(obj
, &i915_gem_userptr_ops
);
849 obj
->cache_level
= I915_CACHE_LLC
;
850 obj
->base
.write_domain
= I915_GEM_DOMAIN_CPU
;
851 obj
->base
.read_domains
= I915_GEM_DOMAIN_CPU
;
853 obj
->userptr
.ptr
= args
->user_ptr
;
854 obj
->userptr
.read_only
= !!(args
->flags
& I915_USERPTR_READ_ONLY
);
856 /* And keep a pointer to the current->mm for resolving the user pages
857 * at binding. This means that we need to hook into the mmu_notifier
858 * in order to detect if the mmu is destroyed.
860 ret
= i915_gem_userptr_init__mm_struct(obj
);
862 ret
= i915_gem_userptr_init__mmu_notifier(obj
, args
->flags
);
864 ret
= drm_gem_handle_create(file
, &obj
->base
, &handle
);
866 /* drop reference from allocate - handle holds it now */
867 drm_gem_object_unreference_unlocked(&obj
->base
);
871 args
->handle
= handle
;
876 i915_gem_init_userptr(struct drm_device
*dev
)
878 struct drm_i915_private
*dev_priv
= to_i915(dev
);
879 mutex_init(&dev_priv
->mm_lock
);
880 hash_init(dev_priv
->mm_structs
);