2 * Copyright 1993-2003 NVIDIA, Corporation
3 * Copyright 2006 Dave Airlie
4 * Copyright 2007 Maarten Maathuis
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
25 #include <linux/pm_runtime.h>
28 #include <drm/drm_crtc_helper.h>
29 #include <drm/drm_plane_helper.h>
31 #include "nouveau_drm.h"
32 #include "nouveau_reg.h"
33 #include "nouveau_bo.h"
34 #include "nouveau_gem.h"
35 #include "nouveau_encoder.h"
36 #include "nouveau_connector.h"
37 #include "nouveau_crtc.h"
40 #include "nouveau_fbcon.h"
43 #include <subdev/bios/pll.h>
44 #include <subdev/clk.h>
47 nv04_crtc_mode_set_base(struct drm_crtc
*crtc
, int x
, int y
,
48 struct drm_framebuffer
*old_fb
);
51 crtc_wr_cio_state(struct drm_crtc
*crtc
, struct nv04_crtc_reg
*crtcstate
, int index
)
53 NVWriteVgaCrtc(crtc
->dev
, nouveau_crtc(crtc
)->index
, index
,
54 crtcstate
->CRTC
[index
]);
57 static void nv_crtc_set_digital_vibrance(struct drm_crtc
*crtc
, int level
)
59 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
60 struct drm_device
*dev
= crtc
->dev
;
61 struct nv04_crtc_reg
*regp
= &nv04_display(dev
)->mode_reg
.crtc_reg
[nv_crtc
->index
];
63 regp
->CRTC
[NV_CIO_CRE_CSB
] = nv_crtc
->saturation
= level
;
64 if (nv_crtc
->saturation
&& nv_gf4_disp_arch(crtc
->dev
)) {
65 regp
->CRTC
[NV_CIO_CRE_CSB
] = 0x80;
66 regp
->CRTC
[NV_CIO_CRE_5B
] = nv_crtc
->saturation
<< 2;
67 crtc_wr_cio_state(crtc
, regp
, NV_CIO_CRE_5B
);
69 crtc_wr_cio_state(crtc
, regp
, NV_CIO_CRE_CSB
);
72 static void nv_crtc_set_image_sharpening(struct drm_crtc
*crtc
, int level
)
74 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
75 struct drm_device
*dev
= crtc
->dev
;
76 struct nv04_crtc_reg
*regp
= &nv04_display(dev
)->mode_reg
.crtc_reg
[nv_crtc
->index
];
78 nv_crtc
->sharpness
= level
;
79 if (level
< 0) /* blur is in hw range 0x3f -> 0x20 */
81 regp
->ramdac_634
= level
;
82 NVWriteRAMDAC(crtc
->dev
, nv_crtc
->index
, NV_PRAMDAC_634
, regp
->ramdac_634
);
85 #define PLLSEL_VPLL1_MASK \
86 (NV_PRAMDAC_PLL_COEFF_SELECT_SOURCE_PROG_VPLL \
87 | NV_PRAMDAC_PLL_COEFF_SELECT_VCLK_RATIO_DB2)
88 #define PLLSEL_VPLL2_MASK \
89 (NV_PRAMDAC_PLL_COEFF_SELECT_PLL_SOURCE_VPLL2 \
90 | NV_PRAMDAC_PLL_COEFF_SELECT_VCLK2_RATIO_DB2)
91 #define PLLSEL_TV_MASK \
92 (NV_PRAMDAC_PLL_COEFF_SELECT_TV_VSCLK1 \
93 | NV_PRAMDAC_PLL_COEFF_SELECT_TV_PCLK1 \
94 | NV_PRAMDAC_PLL_COEFF_SELECT_TV_VSCLK2 \
95 | NV_PRAMDAC_PLL_COEFF_SELECT_TV_PCLK2)
97 /* NV4x 0x40.. pll notes:
98 * gpu pll: 0x4000 + 0x4004
99 * ?gpu? pll: 0x4008 + 0x400c
100 * vpll1: 0x4010 + 0x4014
101 * vpll2: 0x4018 + 0x401c
102 * mpll: 0x4020 + 0x4024
103 * mpll: 0x4038 + 0x403c
105 * the first register of each pair has some unknown details:
106 * bits 0-7: redirected values from elsewhere? (similar to PLL_SETUP_CONTROL?)
107 * bits 20-23: (mpll) something to do with post divider?
108 * bits 28-31: related to single stage mode? (bit 8/12)
111 static void nv_crtc_calc_state_ext(struct drm_crtc
*crtc
, struct drm_display_mode
* mode
, int dot_clock
)
113 struct drm_device
*dev
= crtc
->dev
;
114 struct nouveau_drm
*drm
= nouveau_drm(dev
);
115 struct nvkm_bios
*bios
= nvxx_bios(&drm
->device
);
116 struct nvkm_clk
*clk
= nvxx_clk(&drm
->device
);
117 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
118 struct nv04_mode_state
*state
= &nv04_display(dev
)->mode_reg
;
119 struct nv04_crtc_reg
*regp
= &state
->crtc_reg
[nv_crtc
->index
];
120 struct nvkm_pll_vals
*pv
= ®p
->pllvals
;
121 struct nvbios_pll pll_lim
;
123 if (nvbios_pll_parse(bios
, nv_crtc
->index
? PLL_VPLL1
: PLL_VPLL0
,
127 /* NM2 == 0 is used to determine single stage mode on two stage plls */
130 /* for newer nv4x the blob uses only the first stage of the vpll below a
131 * certain clock. for a certain nv4b this is 150MHz. since the max
132 * output frequency of the first stage for this card is 300MHz, it is
133 * assumed the threshold is given by vco1 maxfreq/2
135 /* for early nv4x, specifically nv40 and *some* nv43 (devids 0 and 6,
136 * not 8, others unknown), the blob always uses both plls. no problem
137 * has yet been observed in allowing the use a single stage pll on all
138 * nv43 however. the behaviour of single stage use is untested on nv40
140 if (drm
->device
.info
.chipset
> 0x40 && dot_clock
<= (pll_lim
.vco1
.max_freq
/ 2))
141 memset(&pll_lim
.vco2
, 0, sizeof(pll_lim
.vco2
));
144 if (!clk
->pll_calc(clk
, &pll_lim
, dot_clock
, pv
))
147 state
->pllsel
&= PLLSEL_VPLL1_MASK
| PLLSEL_VPLL2_MASK
| PLLSEL_TV_MASK
;
149 /* The blob uses this always, so let's do the same */
150 if (drm
->device
.info
.family
== NV_DEVICE_INFO_V0_CURIE
)
151 state
->pllsel
|= NV_PRAMDAC_PLL_COEFF_SELECT_USE_VPLL2_TRUE
;
152 /* again nv40 and some nv43 act more like nv3x as described above */
153 if (drm
->device
.info
.chipset
< 0x41)
154 state
->pllsel
|= NV_PRAMDAC_PLL_COEFF_SELECT_SOURCE_PROG_MPLL
|
155 NV_PRAMDAC_PLL_COEFF_SELECT_SOURCE_PROG_NVPLL
;
156 state
->pllsel
|= nv_crtc
->index
? PLLSEL_VPLL2_MASK
: PLLSEL_VPLL1_MASK
;
159 NV_DEBUG(drm
, "vpll: n1 %d n2 %d m1 %d m2 %d log2p %d\n",
160 pv
->N1
, pv
->N2
, pv
->M1
, pv
->M2
, pv
->log2P
);
162 NV_DEBUG(drm
, "vpll: n %d m %d log2p %d\n",
163 pv
->N1
, pv
->M1
, pv
->log2P
);
165 nv_crtc
->cursor
.set_offset(nv_crtc
, nv_crtc
->cursor
.offset
);
169 nv_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
171 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
172 struct drm_device
*dev
= crtc
->dev
;
173 struct nouveau_drm
*drm
= nouveau_drm(dev
);
174 unsigned char seq1
= 0, crtc17
= 0;
175 unsigned char crtc1A
;
177 NV_DEBUG(drm
, "Setting dpms mode %d on CRTC %d\n", mode
,
180 if (nv_crtc
->last_dpms
== mode
) /* Don't do unnecessary mode changes. */
183 nv_crtc
->last_dpms
= mode
;
185 if (nv_two_heads(dev
))
186 NVSetOwner(dev
, nv_crtc
->index
);
188 /* nv4ref indicates these two RPC1 bits inhibit h/v sync */
189 crtc1A
= NVReadVgaCrtc(dev
, nv_crtc
->index
,
190 NV_CIO_CRE_RPC1_INDEX
) & ~0xC0;
192 case DRM_MODE_DPMS_STANDBY
:
193 /* Screen: Off; HSync: Off, VSync: On -- Not Supported */
198 case DRM_MODE_DPMS_SUSPEND
:
199 /* Screen: Off; HSync: On, VSync: Off -- Not Supported */
204 case DRM_MODE_DPMS_OFF
:
205 /* Screen: Off; HSync: Off, VSync: Off */
210 case DRM_MODE_DPMS_ON
:
212 /* Screen: On; HSync: On, VSync: On */
218 NVVgaSeqReset(dev
, nv_crtc
->index
, true);
219 /* Each head has it's own sequencer, so we can turn it off when we want */
220 seq1
|= (NVReadVgaSeq(dev
, nv_crtc
->index
, NV_VIO_SR_CLOCK_INDEX
) & ~0x20);
221 NVWriteVgaSeq(dev
, nv_crtc
->index
, NV_VIO_SR_CLOCK_INDEX
, seq1
);
222 crtc17
|= (NVReadVgaCrtc(dev
, nv_crtc
->index
, NV_CIO_CR_MODE_INDEX
) & ~0x80);
224 NVWriteVgaCrtc(dev
, nv_crtc
->index
, NV_CIO_CR_MODE_INDEX
, crtc17
);
225 NVVgaSeqReset(dev
, nv_crtc
->index
, false);
227 NVWriteVgaCrtc(dev
, nv_crtc
->index
, NV_CIO_CRE_RPC1_INDEX
, crtc1A
);
231 nv_crtc_mode_fixup(struct drm_crtc
*crtc
, const struct drm_display_mode
*mode
,
232 struct drm_display_mode
*adjusted_mode
)
238 nv_crtc_mode_set_vga(struct drm_crtc
*crtc
, struct drm_display_mode
*mode
)
240 struct drm_device
*dev
= crtc
->dev
;
241 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
242 struct nv04_crtc_reg
*regp
= &nv04_display(dev
)->mode_reg
.crtc_reg
[nv_crtc
->index
];
243 struct drm_framebuffer
*fb
= crtc
->primary
->fb
;
245 /* Calculate our timings */
246 int horizDisplay
= (mode
->crtc_hdisplay
>> 3) - 1;
247 int horizStart
= (mode
->crtc_hsync_start
>> 3) + 1;
248 int horizEnd
= (mode
->crtc_hsync_end
>> 3) + 1;
249 int horizTotal
= (mode
->crtc_htotal
>> 3) - 5;
250 int horizBlankStart
= (mode
->crtc_hdisplay
>> 3) - 1;
251 int horizBlankEnd
= (mode
->crtc_htotal
>> 3) - 1;
252 int vertDisplay
= mode
->crtc_vdisplay
- 1;
253 int vertStart
= mode
->crtc_vsync_start
- 1;
254 int vertEnd
= mode
->crtc_vsync_end
- 1;
255 int vertTotal
= mode
->crtc_vtotal
- 2;
256 int vertBlankStart
= mode
->crtc_vdisplay
- 1;
257 int vertBlankEnd
= mode
->crtc_vtotal
- 1;
259 struct drm_encoder
*encoder
;
260 bool fp_output
= false;
262 list_for_each_entry(encoder
, &dev
->mode_config
.encoder_list
, head
) {
263 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
265 if (encoder
->crtc
== crtc
&&
266 (nv_encoder
->dcb
->type
== DCB_OUTPUT_LVDS
||
267 nv_encoder
->dcb
->type
== DCB_OUTPUT_TMDS
))
272 vertStart
= vertTotal
- 3;
273 vertEnd
= vertTotal
- 2;
274 vertBlankStart
= vertStart
;
275 horizStart
= horizTotal
- 5;
276 horizEnd
= horizTotal
- 2;
277 horizBlankEnd
= horizTotal
+ 4;
279 if (dev
->overlayAdaptor
&& drm
->device
.info
.family
>= NV_DEVICE_INFO_V0_CELSIUS
)
280 /* This reportedly works around some video overlay bandwidth problems */
285 if (mode
->flags
& DRM_MODE_FLAG_INTERLACE
)
289 ErrorF("horizDisplay: 0x%X \n", horizDisplay
);
290 ErrorF("horizStart: 0x%X \n", horizStart
);
291 ErrorF("horizEnd: 0x%X \n", horizEnd
);
292 ErrorF("horizTotal: 0x%X \n", horizTotal
);
293 ErrorF("horizBlankStart: 0x%X \n", horizBlankStart
);
294 ErrorF("horizBlankEnd: 0x%X \n", horizBlankEnd
);
295 ErrorF("vertDisplay: 0x%X \n", vertDisplay
);
296 ErrorF("vertStart: 0x%X \n", vertStart
);
297 ErrorF("vertEnd: 0x%X \n", vertEnd
);
298 ErrorF("vertTotal: 0x%X \n", vertTotal
);
299 ErrorF("vertBlankStart: 0x%X \n", vertBlankStart
);
300 ErrorF("vertBlankEnd: 0x%X \n", vertBlankEnd
);
304 * compute correct Hsync & Vsync polarity
306 if ((mode
->flags
& (DRM_MODE_FLAG_PHSYNC
| DRM_MODE_FLAG_NHSYNC
))
307 && (mode
->flags
& (DRM_MODE_FLAG_PVSYNC
| DRM_MODE_FLAG_NVSYNC
))) {
309 regp
->MiscOutReg
= 0x23;
310 if (mode
->flags
& DRM_MODE_FLAG_NHSYNC
)
311 regp
->MiscOutReg
|= 0x40;
312 if (mode
->flags
& DRM_MODE_FLAG_NVSYNC
)
313 regp
->MiscOutReg
|= 0x80;
315 int vdisplay
= mode
->vdisplay
;
316 if (mode
->flags
& DRM_MODE_FLAG_DBLSCAN
)
319 vdisplay
*= mode
->vscan
;
321 regp
->MiscOutReg
= 0xA3; /* +hsync -vsync */
322 else if (vdisplay
< 480)
323 regp
->MiscOutReg
= 0x63; /* -hsync +vsync */
324 else if (vdisplay
< 768)
325 regp
->MiscOutReg
= 0xE3; /* -hsync -vsync */
327 regp
->MiscOutReg
= 0x23; /* +hsync +vsync */
333 regp
->Sequencer
[NV_VIO_SR_RESET_INDEX
] = 0x00;
334 /* 0x20 disables the sequencer */
335 if (mode
->flags
& DRM_MODE_FLAG_CLKDIV2
)
336 regp
->Sequencer
[NV_VIO_SR_CLOCK_INDEX
] = 0x29;
338 regp
->Sequencer
[NV_VIO_SR_CLOCK_INDEX
] = 0x21;
339 regp
->Sequencer
[NV_VIO_SR_PLANE_MASK_INDEX
] = 0x0F;
340 regp
->Sequencer
[NV_VIO_SR_CHAR_MAP_INDEX
] = 0x00;
341 regp
->Sequencer
[NV_VIO_SR_MEM_MODE_INDEX
] = 0x0E;
346 regp
->CRTC
[NV_CIO_CR_HDT_INDEX
] = horizTotal
;
347 regp
->CRTC
[NV_CIO_CR_HDE_INDEX
] = horizDisplay
;
348 regp
->CRTC
[NV_CIO_CR_HBS_INDEX
] = horizBlankStart
;
349 regp
->CRTC
[NV_CIO_CR_HBE_INDEX
] = (1 << 7) |
350 XLATE(horizBlankEnd
, 0, NV_CIO_CR_HBE_4_0
);
351 regp
->CRTC
[NV_CIO_CR_HRS_INDEX
] = horizStart
;
352 regp
->CRTC
[NV_CIO_CR_HRE_INDEX
] = XLATE(horizBlankEnd
, 5, NV_CIO_CR_HRE_HBE_5
) |
353 XLATE(horizEnd
, 0, NV_CIO_CR_HRE_4_0
);
354 regp
->CRTC
[NV_CIO_CR_VDT_INDEX
] = vertTotal
;
355 regp
->CRTC
[NV_CIO_CR_OVL_INDEX
] = XLATE(vertStart
, 9, NV_CIO_CR_OVL_VRS_9
) |
356 XLATE(vertDisplay
, 9, NV_CIO_CR_OVL_VDE_9
) |
357 XLATE(vertTotal
, 9, NV_CIO_CR_OVL_VDT_9
) |
359 XLATE(vertBlankStart
, 8, NV_CIO_CR_OVL_VBS_8
) |
360 XLATE(vertStart
, 8, NV_CIO_CR_OVL_VRS_8
) |
361 XLATE(vertDisplay
, 8, NV_CIO_CR_OVL_VDE_8
) |
362 XLATE(vertTotal
, 8, NV_CIO_CR_OVL_VDT_8
);
363 regp
->CRTC
[NV_CIO_CR_RSAL_INDEX
] = 0x00;
364 regp
->CRTC
[NV_CIO_CR_CELL_HT_INDEX
] = ((mode
->flags
& DRM_MODE_FLAG_DBLSCAN
) ? MASK(NV_CIO_CR_CELL_HT_SCANDBL
) : 0) |
366 XLATE(vertBlankStart
, 9, NV_CIO_CR_CELL_HT_VBS_9
);
367 regp
->CRTC
[NV_CIO_CR_CURS_ST_INDEX
] = 0x00;
368 regp
->CRTC
[NV_CIO_CR_CURS_END_INDEX
] = 0x00;
369 regp
->CRTC
[NV_CIO_CR_SA_HI_INDEX
] = 0x00;
370 regp
->CRTC
[NV_CIO_CR_SA_LO_INDEX
] = 0x00;
371 regp
->CRTC
[NV_CIO_CR_TCOFF_HI_INDEX
] = 0x00;
372 regp
->CRTC
[NV_CIO_CR_TCOFF_LO_INDEX
] = 0x00;
373 regp
->CRTC
[NV_CIO_CR_VRS_INDEX
] = vertStart
;
374 regp
->CRTC
[NV_CIO_CR_VRE_INDEX
] = 1 << 5 | XLATE(vertEnd
, 0, NV_CIO_CR_VRE_3_0
);
375 regp
->CRTC
[NV_CIO_CR_VDE_INDEX
] = vertDisplay
;
376 /* framebuffer can be larger than crtc scanout area. */
377 regp
->CRTC
[NV_CIO_CR_OFFSET_INDEX
] = fb
->pitches
[0] / 8;
378 regp
->CRTC
[NV_CIO_CR_ULINE_INDEX
] = 0x00;
379 regp
->CRTC
[NV_CIO_CR_VBS_INDEX
] = vertBlankStart
;
380 regp
->CRTC
[NV_CIO_CR_VBE_INDEX
] = vertBlankEnd
;
381 regp
->CRTC
[NV_CIO_CR_MODE_INDEX
] = 0x43;
382 regp
->CRTC
[NV_CIO_CR_LCOMP_INDEX
] = 0xff;
385 * Some extended CRTC registers (they are not saved with the rest of the vga regs).
388 /* framebuffer can be larger than crtc scanout area. */
389 regp
->CRTC
[NV_CIO_CRE_RPC0_INDEX
] =
390 XLATE(fb
->pitches
[0] / 8, 8, NV_CIO_CRE_RPC0_OFFSET_10_8
);
391 regp
->CRTC
[NV_CIO_CRE_42
] =
392 XLATE(fb
->pitches
[0] / 8, 11, NV_CIO_CRE_42_OFFSET_11
);
393 regp
->CRTC
[NV_CIO_CRE_RPC1_INDEX
] = mode
->crtc_hdisplay
< 1280 ?
394 MASK(NV_CIO_CRE_RPC1_LARGE
) : 0x00;
395 regp
->CRTC
[NV_CIO_CRE_LSR_INDEX
] = XLATE(horizBlankEnd
, 6, NV_CIO_CRE_LSR_HBE_6
) |
396 XLATE(vertBlankStart
, 10, NV_CIO_CRE_LSR_VBS_10
) |
397 XLATE(vertStart
, 10, NV_CIO_CRE_LSR_VRS_10
) |
398 XLATE(vertDisplay
, 10, NV_CIO_CRE_LSR_VDE_10
) |
399 XLATE(vertTotal
, 10, NV_CIO_CRE_LSR_VDT_10
);
400 regp
->CRTC
[NV_CIO_CRE_HEB__INDEX
] = XLATE(horizStart
, 8, NV_CIO_CRE_HEB_HRS_8
) |
401 XLATE(horizBlankStart
, 8, NV_CIO_CRE_HEB_HBS_8
) |
402 XLATE(horizDisplay
, 8, NV_CIO_CRE_HEB_HDE_8
) |
403 XLATE(horizTotal
, 8, NV_CIO_CRE_HEB_HDT_8
);
404 regp
->CRTC
[NV_CIO_CRE_EBR_INDEX
] = XLATE(vertBlankStart
, 11, NV_CIO_CRE_EBR_VBS_11
) |
405 XLATE(vertStart
, 11, NV_CIO_CRE_EBR_VRS_11
) |
406 XLATE(vertDisplay
, 11, NV_CIO_CRE_EBR_VDE_11
) |
407 XLATE(vertTotal
, 11, NV_CIO_CRE_EBR_VDT_11
);
409 if (mode
->flags
& DRM_MODE_FLAG_INTERLACE
) {
410 horizTotal
= (horizTotal
>> 1) & ~1;
411 regp
->CRTC
[NV_CIO_CRE_ILACE__INDEX
] = horizTotal
;
412 regp
->CRTC
[NV_CIO_CRE_HEB__INDEX
] |= XLATE(horizTotal
, 8, NV_CIO_CRE_HEB_ILC_8
);
414 regp
->CRTC
[NV_CIO_CRE_ILACE__INDEX
] = 0xff; /* interlace off */
417 * Graphics Display Controller
419 regp
->Graphics
[NV_VIO_GX_SR_INDEX
] = 0x00;
420 regp
->Graphics
[NV_VIO_GX_SREN_INDEX
] = 0x00;
421 regp
->Graphics
[NV_VIO_GX_CCOMP_INDEX
] = 0x00;
422 regp
->Graphics
[NV_VIO_GX_ROP_INDEX
] = 0x00;
423 regp
->Graphics
[NV_VIO_GX_READ_MAP_INDEX
] = 0x00;
424 regp
->Graphics
[NV_VIO_GX_MODE_INDEX
] = 0x40; /* 256 color mode */
425 regp
->Graphics
[NV_VIO_GX_MISC_INDEX
] = 0x05; /* map 64k mem + graphic mode */
426 regp
->Graphics
[NV_VIO_GX_DONT_CARE_INDEX
] = 0x0F;
427 regp
->Graphics
[NV_VIO_GX_BIT_MASK_INDEX
] = 0xFF;
429 regp
->Attribute
[0] = 0x00; /* standard colormap translation */
430 regp
->Attribute
[1] = 0x01;
431 regp
->Attribute
[2] = 0x02;
432 regp
->Attribute
[3] = 0x03;
433 regp
->Attribute
[4] = 0x04;
434 regp
->Attribute
[5] = 0x05;
435 regp
->Attribute
[6] = 0x06;
436 regp
->Attribute
[7] = 0x07;
437 regp
->Attribute
[8] = 0x08;
438 regp
->Attribute
[9] = 0x09;
439 regp
->Attribute
[10] = 0x0A;
440 regp
->Attribute
[11] = 0x0B;
441 regp
->Attribute
[12] = 0x0C;
442 regp
->Attribute
[13] = 0x0D;
443 regp
->Attribute
[14] = 0x0E;
444 regp
->Attribute
[15] = 0x0F;
445 regp
->Attribute
[NV_CIO_AR_MODE_INDEX
] = 0x01; /* Enable graphic mode */
447 regp
->Attribute
[NV_CIO_AR_OSCAN_INDEX
] = 0x00;
448 regp
->Attribute
[NV_CIO_AR_PLANE_INDEX
] = 0x0F; /* enable all color planes */
449 regp
->Attribute
[NV_CIO_AR_HPP_INDEX
] = 0x00;
450 regp
->Attribute
[NV_CIO_AR_CSEL_INDEX
] = 0x00;
454 * Sets up registers for the given mode/adjusted_mode pair.
456 * The clocks, CRTCs and outputs attached to this CRTC must be off.
458 * This shouldn't enable any clocks, CRTCs, or outputs, but they should
459 * be easily turned on/off after this.
462 nv_crtc_mode_set_regs(struct drm_crtc
*crtc
, struct drm_display_mode
* mode
)
464 struct drm_device
*dev
= crtc
->dev
;
465 struct nouveau_drm
*drm
= nouveau_drm(dev
);
466 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
467 struct nv04_crtc_reg
*regp
= &nv04_display(dev
)->mode_reg
.crtc_reg
[nv_crtc
->index
];
468 struct nv04_crtc_reg
*savep
= &nv04_display(dev
)->saved_reg
.crtc_reg
[nv_crtc
->index
];
469 struct drm_encoder
*encoder
;
470 bool lvds_output
= false, tmds_output
= false, tv_output
= false,
471 off_chip_digital
= false;
473 list_for_each_entry(encoder
, &dev
->mode_config
.encoder_list
, head
) {
474 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
475 bool digital
= false;
477 if (encoder
->crtc
!= crtc
)
480 if (nv_encoder
->dcb
->type
== DCB_OUTPUT_LVDS
)
481 digital
= lvds_output
= true;
482 if (nv_encoder
->dcb
->type
== DCB_OUTPUT_TV
)
484 if (nv_encoder
->dcb
->type
== DCB_OUTPUT_TMDS
)
485 digital
= tmds_output
= true;
486 if (nv_encoder
->dcb
->location
!= DCB_LOC_ON_CHIP
&& digital
)
487 off_chip_digital
= true;
490 /* Registers not directly related to the (s)vga mode */
492 /* What is the meaning of this register? */
493 /* A few popular values are 0x18, 0x1c, 0x38, 0x3c */
494 regp
->CRTC
[NV_CIO_CRE_ENH_INDEX
] = savep
->CRTC
[NV_CIO_CRE_ENH_INDEX
] & ~(1<<5);
496 regp
->crtc_eng_ctrl
= 0;
497 /* Except for rare conditions I2C is enabled on the primary crtc */
498 if (nv_crtc
->index
== 0)
499 regp
->crtc_eng_ctrl
|= NV_CRTC_FSEL_I2C
;
501 /* Set overlay to desired crtc. */
502 if (dev
->overlayAdaptor
) {
503 NVPortPrivPtr pPriv
= GET_OVERLAY_PRIVATE(dev
);
504 if (pPriv
->overlayCRTC
== nv_crtc
->index
)
505 regp
->crtc_eng_ctrl
|= NV_CRTC_FSEL_OVERLAY
;
509 /* ADDRESS_SPACE_PNVM is the same as setting HCUR_ASI */
510 regp
->cursor_cfg
= NV_PCRTC_CURSOR_CONFIG_CUR_LINES_64
|
511 NV_PCRTC_CURSOR_CONFIG_CUR_PIXELS_64
|
512 NV_PCRTC_CURSOR_CONFIG_ADDRESS_SPACE_PNVM
;
513 if (drm
->device
.info
.chipset
>= 0x11)
514 regp
->cursor_cfg
|= NV_PCRTC_CURSOR_CONFIG_CUR_BPP_32
;
515 if (mode
->flags
& DRM_MODE_FLAG_DBLSCAN
)
516 regp
->cursor_cfg
|= NV_PCRTC_CURSOR_CONFIG_DOUBLE_SCAN_ENABLE
;
518 /* Unblock some timings */
519 regp
->CRTC
[NV_CIO_CRE_53
] = 0;
520 regp
->CRTC
[NV_CIO_CRE_54
] = 0;
522 /* 0x00 is disabled, 0x11 is lvds, 0x22 crt and 0x88 tmds */
524 regp
->CRTC
[NV_CIO_CRE_SCRATCH3__INDEX
] = 0x11;
525 else if (tmds_output
)
526 regp
->CRTC
[NV_CIO_CRE_SCRATCH3__INDEX
] = 0x88;
528 regp
->CRTC
[NV_CIO_CRE_SCRATCH3__INDEX
] = 0x22;
530 /* These values seem to vary */
531 /* This register seems to be used by the bios to make certain decisions on some G70 cards? */
532 regp
->CRTC
[NV_CIO_CRE_SCRATCH4__INDEX
] = savep
->CRTC
[NV_CIO_CRE_SCRATCH4__INDEX
];
534 nv_crtc_set_digital_vibrance(crtc
, nv_crtc
->saturation
);
536 /* probably a scratch reg, but kept for cargo-cult purposes:
537 * bit0: crtc0?, head A
539 * bit7: (only in X), head A
541 if (nv_crtc
->index
== 0)
542 regp
->CRTC
[NV_CIO_CRE_4B
] = savep
->CRTC
[NV_CIO_CRE_4B
] | 0x80;
544 /* The blob seems to take the current value from crtc 0, add 4 to that
545 * and reuse the old value for crtc 1 */
546 regp
->CRTC
[NV_CIO_CRE_TVOUT_LATENCY
] = nv04_display(dev
)->saved_reg
.crtc_reg
[0].CRTC
[NV_CIO_CRE_TVOUT_LATENCY
];
548 regp
->CRTC
[NV_CIO_CRE_TVOUT_LATENCY
] += 4;
550 /* the blob sometimes sets |= 0x10 (which is the same as setting |=
551 * 1 << 30 on 0x60.830), for no apparent reason */
552 regp
->CRTC
[NV_CIO_CRE_59
] = off_chip_digital
;
554 if (drm
->device
.info
.family
>= NV_DEVICE_INFO_V0_RANKINE
)
555 regp
->CRTC
[0x9f] = off_chip_digital
? 0x11 : 0x1;
557 regp
->crtc_830
= mode
->crtc_vdisplay
- 3;
558 regp
->crtc_834
= mode
->crtc_vdisplay
- 1;
560 if (drm
->device
.info
.family
== NV_DEVICE_INFO_V0_CURIE
)
561 /* This is what the blob does */
562 regp
->crtc_850
= NVReadCRTC(dev
, 0, NV_PCRTC_850
);
564 if (drm
->device
.info
.family
>= NV_DEVICE_INFO_V0_RANKINE
)
565 regp
->gpio_ext
= NVReadCRTC(dev
, 0, NV_PCRTC_GPIO_EXT
);
567 if (drm
->device
.info
.family
>= NV_DEVICE_INFO_V0_CELSIUS
)
568 regp
->crtc_cfg
= NV10_PCRTC_CONFIG_START_ADDRESS_HSYNC
;
570 regp
->crtc_cfg
= NV04_PCRTC_CONFIG_START_ADDRESS_HSYNC
;
573 if (drm
->device
.info
.family
== NV_DEVICE_INFO_V0_CURIE
) {
574 regp
->CRTC
[NV_CIO_CRE_85
] = 0xFF;
575 regp
->CRTC
[NV_CIO_CRE_86
] = 0x1;
578 regp
->CRTC
[NV_CIO_CRE_PIXEL_INDEX
] = (crtc
->primary
->fb
->depth
+ 1) / 8;
579 /* Enable slaved mode (called MODE_TV in nv4ref.h) */
580 if (lvds_output
|| tmds_output
|| tv_output
)
581 regp
->CRTC
[NV_CIO_CRE_PIXEL_INDEX
] |= (1 << 7);
583 /* Generic PRAMDAC regs */
585 if (drm
->device
.info
.family
>= NV_DEVICE_INFO_V0_CELSIUS
)
586 /* Only bit that bios and blob set. */
587 regp
->nv10_cursync
= (1 << 25);
589 regp
->ramdac_gen_ctrl
= NV_PRAMDAC_GENERAL_CONTROL_BPC_8BITS
|
590 NV_PRAMDAC_GENERAL_CONTROL_VGA_STATE_SEL
|
591 NV_PRAMDAC_GENERAL_CONTROL_PIXMIX_ON
;
592 if (crtc
->primary
->fb
->depth
== 16)
593 regp
->ramdac_gen_ctrl
|= NV_PRAMDAC_GENERAL_CONTROL_ALT_MODE_SEL
;
594 if (drm
->device
.info
.chipset
>= 0x11)
595 regp
->ramdac_gen_ctrl
|= NV_PRAMDAC_GENERAL_CONTROL_PIPE_LONG
;
597 regp
->ramdac_630
= 0; /* turn off green mode (tv test pattern?) */
600 nv_crtc_set_image_sharpening(crtc
, nv_crtc
->sharpness
);
602 /* Some values the blob sets */
603 regp
->ramdac_8c0
= 0x100;
604 regp
->ramdac_a20
= 0x0;
605 regp
->ramdac_a24
= 0xfffff;
606 regp
->ramdac_a34
= 0x1;
610 nv_crtc_swap_fbs(struct drm_crtc
*crtc
, struct drm_framebuffer
*old_fb
)
612 struct nv04_display
*disp
= nv04_display(crtc
->dev
);
613 struct nouveau_framebuffer
*nvfb
= nouveau_framebuffer(crtc
->primary
->fb
);
614 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
617 ret
= nouveau_bo_pin(nvfb
->nvbo
, TTM_PL_FLAG_VRAM
, false);
619 if (disp
->image
[nv_crtc
->index
])
620 nouveau_bo_unpin(disp
->image
[nv_crtc
->index
]);
621 nouveau_bo_ref(nvfb
->nvbo
, &disp
->image
[nv_crtc
->index
]);
628 * Sets up registers for the given mode/adjusted_mode pair.
630 * The clocks, CRTCs and outputs attached to this CRTC must be off.
632 * This shouldn't enable any clocks, CRTCs, or outputs, but they should
633 * be easily turned on/off after this.
636 nv_crtc_mode_set(struct drm_crtc
*crtc
, struct drm_display_mode
*mode
,
637 struct drm_display_mode
*adjusted_mode
,
638 int x
, int y
, struct drm_framebuffer
*old_fb
)
640 struct drm_device
*dev
= crtc
->dev
;
641 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
642 struct nouveau_drm
*drm
= nouveau_drm(dev
);
645 NV_DEBUG(drm
, "CTRC mode on CRTC %d:\n", nv_crtc
->index
);
646 drm_mode_debug_printmodeline(adjusted_mode
);
648 ret
= nv_crtc_swap_fbs(crtc
, old_fb
);
652 /* unlock must come after turning off FP_TG_CONTROL in output_prepare */
653 nv_lock_vga_crtc_shadow(dev
, nv_crtc
->index
, -1);
655 nv_crtc_mode_set_vga(crtc
, adjusted_mode
);
656 /* calculated in nv04_dfp_prepare, nv40 needs it written before calculating PLLs */
657 if (drm
->device
.info
.family
== NV_DEVICE_INFO_V0_CURIE
)
658 NVWriteRAMDAC(dev
, 0, NV_PRAMDAC_SEL_CLK
, nv04_display(dev
)->mode_reg
.sel_clk
);
659 nv_crtc_mode_set_regs(crtc
, adjusted_mode
);
660 nv_crtc_calc_state_ext(crtc
, mode
, adjusted_mode
->clock
);
664 static void nv_crtc_save(struct drm_crtc
*crtc
)
666 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
667 struct drm_device
*dev
= crtc
->dev
;
668 struct nv04_mode_state
*state
= &nv04_display(dev
)->mode_reg
;
669 struct nv04_crtc_reg
*crtc_state
= &state
->crtc_reg
[nv_crtc
->index
];
670 struct nv04_mode_state
*saved
= &nv04_display(dev
)->saved_reg
;
671 struct nv04_crtc_reg
*crtc_saved
= &saved
->crtc_reg
[nv_crtc
->index
];
673 if (nv_two_heads(crtc
->dev
))
674 NVSetOwner(crtc
->dev
, nv_crtc
->index
);
676 nouveau_hw_save_state(crtc
->dev
, nv_crtc
->index
, saved
);
678 /* init some state to saved value */
679 state
->sel_clk
= saved
->sel_clk
& ~(0x5 << 16);
680 crtc_state
->CRTC
[NV_CIO_CRE_LCD__INDEX
] = crtc_saved
->CRTC
[NV_CIO_CRE_LCD__INDEX
];
681 state
->pllsel
= saved
->pllsel
& ~(PLLSEL_VPLL1_MASK
| PLLSEL_VPLL2_MASK
| PLLSEL_TV_MASK
);
682 crtc_state
->gpio_ext
= crtc_saved
->gpio_ext
;
685 static void nv_crtc_restore(struct drm_crtc
*crtc
)
687 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
688 struct drm_device
*dev
= crtc
->dev
;
689 int head
= nv_crtc
->index
;
690 uint8_t saved_cr21
= nv04_display(dev
)->saved_reg
.crtc_reg
[head
].CRTC
[NV_CIO_CRE_21
];
692 if (nv_two_heads(crtc
->dev
))
693 NVSetOwner(crtc
->dev
, head
);
695 nouveau_hw_load_state(crtc
->dev
, head
, &nv04_display(dev
)->saved_reg
);
696 nv_lock_vga_crtc_shadow(crtc
->dev
, head
, saved_cr21
);
698 nv_crtc
->last_dpms
= NV_DPMS_CLEARED
;
701 static void nv_crtc_prepare(struct drm_crtc
*crtc
)
703 struct drm_device
*dev
= crtc
->dev
;
704 struct nouveau_drm
*drm
= nouveau_drm(dev
);
705 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
706 const struct drm_crtc_helper_funcs
*funcs
= crtc
->helper_private
;
708 if (nv_two_heads(dev
))
709 NVSetOwner(dev
, nv_crtc
->index
);
711 drm_vblank_pre_modeset(dev
, nv_crtc
->index
);
712 funcs
->dpms(crtc
, DRM_MODE_DPMS_OFF
);
714 NVBlankScreen(dev
, nv_crtc
->index
, true);
716 /* Some more preparation. */
717 NVWriteCRTC(dev
, nv_crtc
->index
, NV_PCRTC_CONFIG
, NV_PCRTC_CONFIG_START_ADDRESS_NON_VGA
);
718 if (drm
->device
.info
.family
== NV_DEVICE_INFO_V0_CURIE
) {
719 uint32_t reg900
= NVReadRAMDAC(dev
, nv_crtc
->index
, NV_PRAMDAC_900
);
720 NVWriteRAMDAC(dev
, nv_crtc
->index
, NV_PRAMDAC_900
, reg900
& ~0x10000);
724 static void nv_crtc_commit(struct drm_crtc
*crtc
)
726 struct drm_device
*dev
= crtc
->dev
;
727 const struct drm_crtc_helper_funcs
*funcs
= crtc
->helper_private
;
728 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
730 nouveau_hw_load_state(dev
, nv_crtc
->index
, &nv04_display(dev
)->mode_reg
);
731 nv04_crtc_mode_set_base(crtc
, crtc
->x
, crtc
->y
, NULL
);
734 /* turn on LFB swapping */
736 uint8_t tmp
= NVReadVgaCrtc(dev
, nv_crtc
->index
, NV_CIO_CRE_RCR
);
737 tmp
|= MASK(NV_CIO_CRE_RCR_ENDIAN_BIG
);
738 NVWriteVgaCrtc(dev
, nv_crtc
->index
, NV_CIO_CRE_RCR
, tmp
);
742 funcs
->dpms(crtc
, DRM_MODE_DPMS_ON
);
743 drm_vblank_post_modeset(dev
, nv_crtc
->index
);
746 static void nv_crtc_destroy(struct drm_crtc
*crtc
)
748 struct nv04_display
*disp
= nv04_display(crtc
->dev
);
749 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
754 drm_crtc_cleanup(crtc
);
756 if (disp
->image
[nv_crtc
->index
])
757 nouveau_bo_unpin(disp
->image
[nv_crtc
->index
]);
758 nouveau_bo_ref(NULL
, &disp
->image
[nv_crtc
->index
]);
760 nouveau_bo_unmap(nv_crtc
->cursor
.nvbo
);
761 nouveau_bo_unpin(nv_crtc
->cursor
.nvbo
);
762 nouveau_bo_ref(NULL
, &nv_crtc
->cursor
.nvbo
);
767 nv_crtc_gamma_load(struct drm_crtc
*crtc
)
769 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
770 struct drm_device
*dev
= nv_crtc
->base
.dev
;
771 struct rgb
{ uint8_t r
, g
, b
; } __attribute__((packed
)) *rgbs
;
774 rgbs
= (struct rgb
*)nv04_display(dev
)->mode_reg
.crtc_reg
[nv_crtc
->index
].DAC
;
775 for (i
= 0; i
< 256; i
++) {
776 rgbs
[i
].r
= nv_crtc
->lut
.r
[i
] >> 8;
777 rgbs
[i
].g
= nv_crtc
->lut
.g
[i
] >> 8;
778 rgbs
[i
].b
= nv_crtc
->lut
.b
[i
] >> 8;
781 nouveau_hw_load_state_palette(dev
, nv_crtc
->index
, &nv04_display(dev
)->mode_reg
);
785 nv_crtc_disable(struct drm_crtc
*crtc
)
787 struct nv04_display
*disp
= nv04_display(crtc
->dev
);
788 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
789 if (disp
->image
[nv_crtc
->index
])
790 nouveau_bo_unpin(disp
->image
[nv_crtc
->index
]);
791 nouveau_bo_ref(NULL
, &disp
->image
[nv_crtc
->index
]);
795 nv_crtc_gamma_set(struct drm_crtc
*crtc
, u16
*r
, u16
*g
, u16
*b
, uint32_t start
,
798 int end
= (start
+ size
> 256) ? 256 : start
+ size
, i
;
799 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
801 for (i
= start
; i
< end
; i
++) {
802 nv_crtc
->lut
.r
[i
] = r
[i
];
803 nv_crtc
->lut
.g
[i
] = g
[i
];
804 nv_crtc
->lut
.b
[i
] = b
[i
];
807 /* We need to know the depth before we upload, but it's possible to
808 * get called before a framebuffer is bound. If this is the case,
809 * mark the lut values as dirty by setting depth==0, and it'll be
810 * uploaded on the first mode_set_base()
812 if (!nv_crtc
->base
.primary
->fb
) {
813 nv_crtc
->lut
.depth
= 0;
817 nv_crtc_gamma_load(crtc
);
821 nv04_crtc_do_mode_set_base(struct drm_crtc
*crtc
,
822 struct drm_framebuffer
*passed_fb
,
823 int x
, int y
, bool atomic
)
825 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
826 struct drm_device
*dev
= crtc
->dev
;
827 struct nouveau_drm
*drm
= nouveau_drm(dev
);
828 struct nv04_crtc_reg
*regp
= &nv04_display(dev
)->mode_reg
.crtc_reg
[nv_crtc
->index
];
829 struct drm_framebuffer
*drm_fb
;
830 struct nouveau_framebuffer
*fb
;
831 int arb_burst
, arb_lwm
;
833 NV_DEBUG(drm
, "index %d\n", nv_crtc
->index
);
836 if (!atomic
&& !crtc
->primary
->fb
) {
837 NV_DEBUG(drm
, "No FB bound\n");
841 /* If atomic, we want to switch to the fb we were passed, so
842 * now we update pointers to do that.
846 fb
= nouveau_framebuffer(passed_fb
);
848 drm_fb
= crtc
->primary
->fb
;
849 fb
= nouveau_framebuffer(crtc
->primary
->fb
);
852 nv_crtc
->fb
.offset
= fb
->nvbo
->bo
.offset
;
854 if (nv_crtc
->lut
.depth
!= drm_fb
->depth
) {
855 nv_crtc
->lut
.depth
= drm_fb
->depth
;
856 nv_crtc_gamma_load(crtc
);
859 /* Update the framebuffer format. */
860 regp
->CRTC
[NV_CIO_CRE_PIXEL_INDEX
] &= ~3;
861 regp
->CRTC
[NV_CIO_CRE_PIXEL_INDEX
] |= (crtc
->primary
->fb
->depth
+ 1) / 8;
862 regp
->ramdac_gen_ctrl
&= ~NV_PRAMDAC_GENERAL_CONTROL_ALT_MODE_SEL
;
863 if (crtc
->primary
->fb
->depth
== 16)
864 regp
->ramdac_gen_ctrl
|= NV_PRAMDAC_GENERAL_CONTROL_ALT_MODE_SEL
;
865 crtc_wr_cio_state(crtc
, regp
, NV_CIO_CRE_PIXEL_INDEX
);
866 NVWriteRAMDAC(dev
, nv_crtc
->index
, NV_PRAMDAC_GENERAL_CONTROL
,
867 regp
->ramdac_gen_ctrl
);
869 regp
->CRTC
[NV_CIO_CR_OFFSET_INDEX
] = drm_fb
->pitches
[0] >> 3;
870 regp
->CRTC
[NV_CIO_CRE_RPC0_INDEX
] =
871 XLATE(drm_fb
->pitches
[0] >> 3, 8, NV_CIO_CRE_RPC0_OFFSET_10_8
);
872 regp
->CRTC
[NV_CIO_CRE_42
] =
873 XLATE(drm_fb
->pitches
[0] / 8, 11, NV_CIO_CRE_42_OFFSET_11
);
874 crtc_wr_cio_state(crtc
, regp
, NV_CIO_CRE_RPC0_INDEX
);
875 crtc_wr_cio_state(crtc
, regp
, NV_CIO_CR_OFFSET_INDEX
);
876 crtc_wr_cio_state(crtc
, regp
, NV_CIO_CRE_42
);
878 /* Update the framebuffer location. */
879 regp
->fb_start
= nv_crtc
->fb
.offset
& ~3;
880 regp
->fb_start
+= (y
* drm_fb
->pitches
[0]) + (x
* drm_fb
->bits_per_pixel
/ 8);
881 nv_set_crtc_base(dev
, nv_crtc
->index
, regp
->fb_start
);
883 /* Update the arbitration parameters. */
884 nouveau_calc_arb(dev
, crtc
->mode
.clock
, drm_fb
->bits_per_pixel
,
885 &arb_burst
, &arb_lwm
);
887 regp
->CRTC
[NV_CIO_CRE_FF_INDEX
] = arb_burst
;
888 regp
->CRTC
[NV_CIO_CRE_FFLWM__INDEX
] = arb_lwm
& 0xff;
889 crtc_wr_cio_state(crtc
, regp
, NV_CIO_CRE_FF_INDEX
);
890 crtc_wr_cio_state(crtc
, regp
, NV_CIO_CRE_FFLWM__INDEX
);
892 if (drm
->device
.info
.family
>= NV_DEVICE_INFO_V0_KELVIN
) {
893 regp
->CRTC
[NV_CIO_CRE_47
] = arb_lwm
>> 8;
894 crtc_wr_cio_state(crtc
, regp
, NV_CIO_CRE_47
);
901 nv04_crtc_mode_set_base(struct drm_crtc
*crtc
, int x
, int y
,
902 struct drm_framebuffer
*old_fb
)
904 int ret
= nv_crtc_swap_fbs(crtc
, old_fb
);
907 return nv04_crtc_do_mode_set_base(crtc
, old_fb
, x
, y
, false);
911 nv04_crtc_mode_set_base_atomic(struct drm_crtc
*crtc
,
912 struct drm_framebuffer
*fb
,
913 int x
, int y
, enum mode_set_atomic state
)
915 struct nouveau_drm
*drm
= nouveau_drm(crtc
->dev
);
916 struct drm_device
*dev
= drm
->dev
;
918 if (state
== ENTER_ATOMIC_MODE_SET
)
919 nouveau_fbcon_accel_save_disable(dev
);
921 nouveau_fbcon_accel_restore(dev
);
923 return nv04_crtc_do_mode_set_base(crtc
, fb
, x
, y
, true);
926 static void nv04_cursor_upload(struct drm_device
*dev
, struct nouveau_bo
*src
,
927 struct nouveau_bo
*dst
)
929 int width
= nv_cursor_width(dev
);
933 for (i
= 0; i
< width
; i
++) {
934 for (j
= 0; j
< width
; j
++) {
935 pixel
= nouveau_bo_rd32(src
, i
*64 + j
);
937 nouveau_bo_wr16(dst
, i
*width
+ j
, (pixel
& 0x80000000) >> 16
938 | (pixel
& 0xf80000) >> 9
939 | (pixel
& 0xf800) >> 6
940 | (pixel
& 0xf8) >> 3);
945 static void nv11_cursor_upload(struct drm_device
*dev
, struct nouveau_bo
*src
,
946 struct nouveau_bo
*dst
)
951 /* nv11+ supports premultiplied (PM), or non-premultiplied (NPM) alpha
952 * cursors (though NPM in combination with fp dithering may not work on
953 * nv11, from "nv" driver history)
954 * NPM mode needs NV_PCRTC_CURSOR_CONFIG_ALPHA_BLEND set and is what the
955 * blob uses, however we get given PM cursors so we use PM mode
957 for (i
= 0; i
< 64 * 64; i
++) {
958 pixel
= nouveau_bo_rd32(src
, i
);
960 /* hw gets unhappy if alpha <= rgb values. for a PM image "less
961 * than" shouldn't happen; fix "equal to" case by adding one to
962 * alpha channel (slightly inaccurate, but so is attempting to
963 * get back to NPM images, due to limits of integer precision)
966 if (alpha
> 0 && alpha
< 255)
967 pixel
= (pixel
& 0x00ffffff) | ((alpha
+ 1) << 24);
971 struct nouveau_drm
*drm
= nouveau_drm(dev
);
973 if (drm
->device
.info
.chipset
== 0x11) {
974 pixel
= ((pixel
& 0x000000ff) << 24) |
975 ((pixel
& 0x0000ff00) << 8) |
976 ((pixel
& 0x00ff0000) >> 8) |
977 ((pixel
& 0xff000000) >> 24);
982 nouveau_bo_wr32(dst
, i
, pixel
);
987 nv04_crtc_cursor_set(struct drm_crtc
*crtc
, struct drm_file
*file_priv
,
988 uint32_t buffer_handle
, uint32_t width
, uint32_t height
)
990 struct nouveau_drm
*drm
= nouveau_drm(crtc
->dev
);
991 struct drm_device
*dev
= drm
->dev
;
992 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
993 struct nouveau_bo
*cursor
= NULL
;
994 struct drm_gem_object
*gem
;
997 if (!buffer_handle
) {
998 nv_crtc
->cursor
.hide(nv_crtc
, true);
1002 if (width
!= 64 || height
!= 64)
1005 gem
= drm_gem_object_lookup(dev
, file_priv
, buffer_handle
);
1008 cursor
= nouveau_gem_object(gem
);
1010 ret
= nouveau_bo_map(cursor
);
1014 if (drm
->device
.info
.chipset
>= 0x11)
1015 nv11_cursor_upload(dev
, cursor
, nv_crtc
->cursor
.nvbo
);
1017 nv04_cursor_upload(dev
, cursor
, nv_crtc
->cursor
.nvbo
);
1019 nouveau_bo_unmap(cursor
);
1020 nv_crtc
->cursor
.offset
= nv_crtc
->cursor
.nvbo
->bo
.offset
;
1021 nv_crtc
->cursor
.set_offset(nv_crtc
, nv_crtc
->cursor
.offset
);
1022 nv_crtc
->cursor
.show(nv_crtc
, true);
1024 drm_gem_object_unreference_unlocked(gem
);
1029 nv04_crtc_cursor_move(struct drm_crtc
*crtc
, int x
, int y
)
1031 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
1033 nv_crtc
->cursor
.set_pos(nv_crtc
, x
, y
);
1038 nouveau_crtc_set_config(struct drm_mode_set
*set
)
1040 struct drm_device
*dev
;
1041 struct nouveau_drm
*drm
;
1043 struct drm_crtc
*crtc
;
1044 bool active
= false;
1045 if (!set
|| !set
->crtc
)
1048 dev
= set
->crtc
->dev
;
1050 /* get a pm reference here */
1051 ret
= pm_runtime_get_sync(dev
->dev
);
1052 if (ret
< 0 && ret
!= -EACCES
)
1055 ret
= drm_crtc_helper_set_config(set
);
1057 drm
= nouveau_drm(dev
);
1059 /* if we get here with no crtcs active then we can drop a reference */
1060 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
1065 pm_runtime_mark_last_busy(dev
->dev
);
1066 /* if we have active crtcs and we don't have a power ref,
1067 take the current one */
1068 if (active
&& !drm
->have_disp_power_ref
) {
1069 drm
->have_disp_power_ref
= true;
1072 /* if we have no active crtcs, then drop the power ref
1074 if (!active
&& drm
->have_disp_power_ref
) {
1075 pm_runtime_put_autosuspend(dev
->dev
);
1076 drm
->have_disp_power_ref
= false;
1078 /* drop the power reference we got coming in here */
1079 pm_runtime_put_autosuspend(dev
->dev
);
1083 static const struct drm_crtc_funcs nv04_crtc_funcs
= {
1084 .save
= nv_crtc_save
,
1085 .restore
= nv_crtc_restore
,
1086 .cursor_set
= nv04_crtc_cursor_set
,
1087 .cursor_move
= nv04_crtc_cursor_move
,
1088 .gamma_set
= nv_crtc_gamma_set
,
1089 .set_config
= nouveau_crtc_set_config
,
1090 .page_flip
= nouveau_crtc_page_flip
,
1091 .destroy
= nv_crtc_destroy
,
1094 static const struct drm_crtc_helper_funcs nv04_crtc_helper_funcs
= {
1095 .dpms
= nv_crtc_dpms
,
1096 .prepare
= nv_crtc_prepare
,
1097 .commit
= nv_crtc_commit
,
1098 .mode_fixup
= nv_crtc_mode_fixup
,
1099 .mode_set
= nv_crtc_mode_set
,
1100 .mode_set_base
= nv04_crtc_mode_set_base
,
1101 .mode_set_base_atomic
= nv04_crtc_mode_set_base_atomic
,
1102 .load_lut
= nv_crtc_gamma_load
,
1103 .disable
= nv_crtc_disable
,
1107 nv04_crtc_create(struct drm_device
*dev
, int crtc_num
)
1109 struct nouveau_crtc
*nv_crtc
;
1112 nv_crtc
= kzalloc(sizeof(*nv_crtc
), GFP_KERNEL
);
1116 for (i
= 0; i
< 256; i
++) {
1117 nv_crtc
->lut
.r
[i
] = i
<< 8;
1118 nv_crtc
->lut
.g
[i
] = i
<< 8;
1119 nv_crtc
->lut
.b
[i
] = i
<< 8;
1121 nv_crtc
->lut
.depth
= 0;
1123 nv_crtc
->index
= crtc_num
;
1124 nv_crtc
->last_dpms
= NV_DPMS_CLEARED
;
1126 drm_crtc_init(dev
, &nv_crtc
->base
, &nv04_crtc_funcs
);
1127 drm_crtc_helper_add(&nv_crtc
->base
, &nv04_crtc_helper_funcs
);
1128 drm_mode_crtc_set_gamma_size(&nv_crtc
->base
, 256);
1130 ret
= nouveau_bo_new(dev
, 64*64*4, 0x100, TTM_PL_FLAG_VRAM
,
1131 0, 0x0000, NULL
, NULL
, &nv_crtc
->cursor
.nvbo
);
1133 ret
= nouveau_bo_pin(nv_crtc
->cursor
.nvbo
, TTM_PL_FLAG_VRAM
, false);
1135 ret
= nouveau_bo_map(nv_crtc
->cursor
.nvbo
);
1137 nouveau_bo_unpin(nv_crtc
->cursor
.nvbo
);
1140 nouveau_bo_ref(NULL
, &nv_crtc
->cursor
.nvbo
);
1143 nv04_cursor_init(nv_crtc
);