Linux 4.2.1
[linux/fpc-iii.git] / drivers / gpu / drm / nouveau / nouveau_bo.c
blob6edcce1658b70aa7626e7f57b38d3aa55f837685
1 /*
2 * Copyright 2007 Dave Airlied
3 * All Rights Reserved.
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
25 * Authors: Dave Airlied <airlied@linux.ie>
26 * Ben Skeggs <darktama@iinet.net.au>
27 * Jeremy Kolb <jkolb@brandeis.edu>
30 #include <linux/dma-mapping.h>
31 #include <linux/swiotlb.h>
33 #include "nouveau_drm.h"
34 #include "nouveau_dma.h"
35 #include "nouveau_fence.h"
37 #include "nouveau_bo.h"
38 #include "nouveau_ttm.h"
39 #include "nouveau_gem.h"
42 * NV10-NV40 tiling helpers
45 static void
46 nv10_bo_update_tile_region(struct drm_device *dev, struct nouveau_drm_tile *reg,
47 u32 addr, u32 size, u32 pitch, u32 flags)
49 struct nouveau_drm *drm = nouveau_drm(dev);
50 int i = reg - drm->tile.reg;
51 struct nvkm_fb *pfb = nvxx_fb(&drm->device);
52 struct nvkm_fb_tile *tile = &pfb->tile.region[i];
53 struct nvkm_engine *engine;
55 nouveau_fence_unref(&reg->fence);
57 if (tile->pitch)
58 pfb->tile.fini(pfb, i, tile);
60 if (pitch)
61 pfb->tile.init(pfb, i, addr, size, pitch, flags, tile);
63 pfb->tile.prog(pfb, i, tile);
65 if ((engine = nvkm_engine(pfb, NVDEV_ENGINE_GR)))
66 engine->tile_prog(engine, i);
67 if ((engine = nvkm_engine(pfb, NVDEV_ENGINE_MPEG)))
68 engine->tile_prog(engine, i);
71 static struct nouveau_drm_tile *
72 nv10_bo_get_tile_region(struct drm_device *dev, int i)
74 struct nouveau_drm *drm = nouveau_drm(dev);
75 struct nouveau_drm_tile *tile = &drm->tile.reg[i];
77 spin_lock(&drm->tile.lock);
79 if (!tile->used &&
80 (!tile->fence || nouveau_fence_done(tile->fence)))
81 tile->used = true;
82 else
83 tile = NULL;
85 spin_unlock(&drm->tile.lock);
86 return tile;
89 static void
90 nv10_bo_put_tile_region(struct drm_device *dev, struct nouveau_drm_tile *tile,
91 struct fence *fence)
93 struct nouveau_drm *drm = nouveau_drm(dev);
95 if (tile) {
96 spin_lock(&drm->tile.lock);
97 tile->fence = (struct nouveau_fence *)fence_get(fence);
98 tile->used = false;
99 spin_unlock(&drm->tile.lock);
103 static struct nouveau_drm_tile *
104 nv10_bo_set_tiling(struct drm_device *dev, u32 addr,
105 u32 size, u32 pitch, u32 flags)
107 struct nouveau_drm *drm = nouveau_drm(dev);
108 struct nvkm_fb *pfb = nvxx_fb(&drm->device);
109 struct nouveau_drm_tile *tile, *found = NULL;
110 int i;
112 for (i = 0; i < pfb->tile.regions; i++) {
113 tile = nv10_bo_get_tile_region(dev, i);
115 if (pitch && !found) {
116 found = tile;
117 continue;
119 } else if (tile && pfb->tile.region[i].pitch) {
120 /* Kill an unused tile region. */
121 nv10_bo_update_tile_region(dev, tile, 0, 0, 0, 0);
124 nv10_bo_put_tile_region(dev, tile, NULL);
127 if (found)
128 nv10_bo_update_tile_region(dev, found, addr, size,
129 pitch, flags);
130 return found;
133 static void
134 nouveau_bo_del_ttm(struct ttm_buffer_object *bo)
136 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
137 struct drm_device *dev = drm->dev;
138 struct nouveau_bo *nvbo = nouveau_bo(bo);
140 if (unlikely(nvbo->gem.filp))
141 DRM_ERROR("bo %p still attached to GEM object\n", bo);
142 WARN_ON(nvbo->pin_refcnt > 0);
143 nv10_bo_put_tile_region(dev, nvbo->tile, NULL);
144 kfree(nvbo);
147 static void
148 nouveau_bo_fixup_align(struct nouveau_bo *nvbo, u32 flags,
149 int *align, int *size)
151 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
152 struct nvif_device *device = &drm->device;
154 if (device->info.family < NV_DEVICE_INFO_V0_TESLA) {
155 if (nvbo->tile_mode) {
156 if (device->info.chipset >= 0x40) {
157 *align = 65536;
158 *size = roundup(*size, 64 * nvbo->tile_mode);
160 } else if (device->info.chipset >= 0x30) {
161 *align = 32768;
162 *size = roundup(*size, 64 * nvbo->tile_mode);
164 } else if (device->info.chipset >= 0x20) {
165 *align = 16384;
166 *size = roundup(*size, 64 * nvbo->tile_mode);
168 } else if (device->info.chipset >= 0x10) {
169 *align = 16384;
170 *size = roundup(*size, 32 * nvbo->tile_mode);
173 } else {
174 *size = roundup(*size, (1 << nvbo->page_shift));
175 *align = max((1 << nvbo->page_shift), *align);
178 *size = roundup(*size, PAGE_SIZE);
182 nouveau_bo_new(struct drm_device *dev, int size, int align,
183 uint32_t flags, uint32_t tile_mode, uint32_t tile_flags,
184 struct sg_table *sg, struct reservation_object *robj,
185 struct nouveau_bo **pnvbo)
187 struct nouveau_drm *drm = nouveau_drm(dev);
188 struct nouveau_bo *nvbo;
189 size_t acc_size;
190 int ret;
191 int type = ttm_bo_type_device;
192 int lpg_shift = 12;
193 int max_size;
195 if (drm->client.vm)
196 lpg_shift = drm->client.vm->mmu->lpg_shift;
197 max_size = INT_MAX & ~((1 << lpg_shift) - 1);
199 if (size <= 0 || size > max_size) {
200 NV_WARN(drm, "skipped size %x\n", (u32)size);
201 return -EINVAL;
204 if (sg)
205 type = ttm_bo_type_sg;
207 nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL);
208 if (!nvbo)
209 return -ENOMEM;
210 INIT_LIST_HEAD(&nvbo->head);
211 INIT_LIST_HEAD(&nvbo->entry);
212 INIT_LIST_HEAD(&nvbo->vma_list);
213 nvbo->tile_mode = tile_mode;
214 nvbo->tile_flags = tile_flags;
215 nvbo->bo.bdev = &drm->ttm.bdev;
217 if (!nv_device_is_cpu_coherent(nvxx_device(&drm->device)))
218 nvbo->force_coherent = flags & TTM_PL_FLAG_UNCACHED;
220 nvbo->page_shift = 12;
221 if (drm->client.vm) {
222 if (!(flags & TTM_PL_FLAG_TT) && size > 256 * 1024)
223 nvbo->page_shift = drm->client.vm->mmu->lpg_shift;
226 nouveau_bo_fixup_align(nvbo, flags, &align, &size);
227 nvbo->bo.mem.num_pages = size >> PAGE_SHIFT;
228 nouveau_bo_placement_set(nvbo, flags, 0);
230 acc_size = ttm_bo_dma_acc_size(&drm->ttm.bdev, size,
231 sizeof(struct nouveau_bo));
233 ret = ttm_bo_init(&drm->ttm.bdev, &nvbo->bo, size,
234 type, &nvbo->placement,
235 align >> PAGE_SHIFT, false, NULL, acc_size, sg,
236 robj, nouveau_bo_del_ttm);
237 if (ret) {
238 /* ttm will call nouveau_bo_del_ttm if it fails.. */
239 return ret;
242 *pnvbo = nvbo;
243 return 0;
246 static void
247 set_placement_list(struct ttm_place *pl, unsigned *n, uint32_t type, uint32_t flags)
249 *n = 0;
251 if (type & TTM_PL_FLAG_VRAM)
252 pl[(*n)++].flags = TTM_PL_FLAG_VRAM | flags;
253 if (type & TTM_PL_FLAG_TT)
254 pl[(*n)++].flags = TTM_PL_FLAG_TT | flags;
255 if (type & TTM_PL_FLAG_SYSTEM)
256 pl[(*n)++].flags = TTM_PL_FLAG_SYSTEM | flags;
259 static void
260 set_placement_range(struct nouveau_bo *nvbo, uint32_t type)
262 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
263 u32 vram_pages = drm->device.info.ram_size >> PAGE_SHIFT;
264 unsigned i, fpfn, lpfn;
266 if (drm->device.info.family == NV_DEVICE_INFO_V0_CELSIUS &&
267 nvbo->tile_mode && (type & TTM_PL_FLAG_VRAM) &&
268 nvbo->bo.mem.num_pages < vram_pages / 4) {
270 * Make sure that the color and depth buffers are handled
271 * by independent memory controller units. Up to a 9x
272 * speed up when alpha-blending and depth-test are enabled
273 * at the same time.
275 if (nvbo->tile_flags & NOUVEAU_GEM_TILE_ZETA) {
276 fpfn = vram_pages / 2;
277 lpfn = ~0;
278 } else {
279 fpfn = 0;
280 lpfn = vram_pages / 2;
282 for (i = 0; i < nvbo->placement.num_placement; ++i) {
283 nvbo->placements[i].fpfn = fpfn;
284 nvbo->placements[i].lpfn = lpfn;
286 for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
287 nvbo->busy_placements[i].fpfn = fpfn;
288 nvbo->busy_placements[i].lpfn = lpfn;
293 void
294 nouveau_bo_placement_set(struct nouveau_bo *nvbo, uint32_t type, uint32_t busy)
296 struct ttm_placement *pl = &nvbo->placement;
297 uint32_t flags = (nvbo->force_coherent ? TTM_PL_FLAG_UNCACHED :
298 TTM_PL_MASK_CACHING) |
299 (nvbo->pin_refcnt ? TTM_PL_FLAG_NO_EVICT : 0);
301 pl->placement = nvbo->placements;
302 set_placement_list(nvbo->placements, &pl->num_placement,
303 type, flags);
305 pl->busy_placement = nvbo->busy_placements;
306 set_placement_list(nvbo->busy_placements, &pl->num_busy_placement,
307 type | busy, flags);
309 set_placement_range(nvbo, type);
313 nouveau_bo_pin(struct nouveau_bo *nvbo, uint32_t memtype, bool contig)
315 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
316 struct ttm_buffer_object *bo = &nvbo->bo;
317 bool force = false, evict = false;
318 int ret;
320 ret = ttm_bo_reserve(bo, false, false, false, NULL);
321 if (ret)
322 return ret;
324 if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
325 memtype == TTM_PL_FLAG_VRAM && contig) {
326 if (nvbo->tile_flags & NOUVEAU_GEM_TILE_NONCONTIG) {
327 if (bo->mem.mem_type == TTM_PL_VRAM) {
328 struct nvkm_mem *mem = bo->mem.mm_node;
329 if (!list_is_singular(&mem->regions))
330 evict = true;
332 nvbo->tile_flags &= ~NOUVEAU_GEM_TILE_NONCONTIG;
333 force = true;
337 if (nvbo->pin_refcnt) {
338 if (!(memtype & (1 << bo->mem.mem_type)) || evict) {
339 NV_ERROR(drm, "bo %p pinned elsewhere: "
340 "0x%08x vs 0x%08x\n", bo,
341 1 << bo->mem.mem_type, memtype);
342 ret = -EBUSY;
344 nvbo->pin_refcnt++;
345 goto out;
348 if (evict) {
349 nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_TT, 0);
350 ret = nouveau_bo_validate(nvbo, false, false);
351 if (ret)
352 goto out;
355 nvbo->pin_refcnt++;
356 nouveau_bo_placement_set(nvbo, memtype, 0);
358 /* drop pin_refcnt temporarily, so we don't trip the assertion
359 * in nouveau_bo_move() that makes sure we're not trying to
360 * move a pinned buffer
362 nvbo->pin_refcnt--;
363 ret = nouveau_bo_validate(nvbo, false, false);
364 if (ret)
365 goto out;
366 nvbo->pin_refcnt++;
368 switch (bo->mem.mem_type) {
369 case TTM_PL_VRAM:
370 drm->gem.vram_available -= bo->mem.size;
371 break;
372 case TTM_PL_TT:
373 drm->gem.gart_available -= bo->mem.size;
374 break;
375 default:
376 break;
379 out:
380 if (force && ret)
381 nvbo->tile_flags |= NOUVEAU_GEM_TILE_NONCONTIG;
382 ttm_bo_unreserve(bo);
383 return ret;
387 nouveau_bo_unpin(struct nouveau_bo *nvbo)
389 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
390 struct ttm_buffer_object *bo = &nvbo->bo;
391 int ret, ref;
393 ret = ttm_bo_reserve(bo, false, false, false, NULL);
394 if (ret)
395 return ret;
397 ref = --nvbo->pin_refcnt;
398 WARN_ON_ONCE(ref < 0);
399 if (ref)
400 goto out;
402 nouveau_bo_placement_set(nvbo, bo->mem.placement, 0);
404 ret = nouveau_bo_validate(nvbo, false, false);
405 if (ret == 0) {
406 switch (bo->mem.mem_type) {
407 case TTM_PL_VRAM:
408 drm->gem.vram_available += bo->mem.size;
409 break;
410 case TTM_PL_TT:
411 drm->gem.gart_available += bo->mem.size;
412 break;
413 default:
414 break;
418 out:
419 ttm_bo_unreserve(bo);
420 return ret;
424 nouveau_bo_map(struct nouveau_bo *nvbo)
426 int ret;
428 ret = ttm_bo_reserve(&nvbo->bo, false, false, false, NULL);
429 if (ret)
430 return ret;
433 * TTM buffers allocated using the DMA API already have a mapping, let's
434 * use it instead.
436 if (!nvbo->force_coherent)
437 ret = ttm_bo_kmap(&nvbo->bo, 0, nvbo->bo.mem.num_pages,
438 &nvbo->kmap);
440 ttm_bo_unreserve(&nvbo->bo);
441 return ret;
444 void
445 nouveau_bo_unmap(struct nouveau_bo *nvbo)
447 if (!nvbo)
448 return;
451 * TTM buffers allocated using the DMA API already had a coherent
452 * mapping which we used, no need to unmap.
454 if (!nvbo->force_coherent)
455 ttm_bo_kunmap(&nvbo->kmap);
458 void
459 nouveau_bo_sync_for_device(struct nouveau_bo *nvbo)
461 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
462 struct nvkm_device *device = nvxx_device(&drm->device);
463 struct ttm_dma_tt *ttm_dma = (struct ttm_dma_tt *)nvbo->bo.ttm;
464 int i;
466 if (!ttm_dma)
467 return;
469 /* Don't waste time looping if the object is coherent */
470 if (nvbo->force_coherent)
471 return;
473 for (i = 0; i < ttm_dma->ttm.num_pages; i++)
474 dma_sync_single_for_device(nv_device_base(device),
475 ttm_dma->dma_address[i], PAGE_SIZE, DMA_TO_DEVICE);
478 void
479 nouveau_bo_sync_for_cpu(struct nouveau_bo *nvbo)
481 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
482 struct nvkm_device *device = nvxx_device(&drm->device);
483 struct ttm_dma_tt *ttm_dma = (struct ttm_dma_tt *)nvbo->bo.ttm;
484 int i;
486 if (!ttm_dma)
487 return;
489 /* Don't waste time looping if the object is coherent */
490 if (nvbo->force_coherent)
491 return;
493 for (i = 0; i < ttm_dma->ttm.num_pages; i++)
494 dma_sync_single_for_cpu(nv_device_base(device),
495 ttm_dma->dma_address[i], PAGE_SIZE, DMA_FROM_DEVICE);
499 nouveau_bo_validate(struct nouveau_bo *nvbo, bool interruptible,
500 bool no_wait_gpu)
502 int ret;
504 ret = ttm_bo_validate(&nvbo->bo, &nvbo->placement,
505 interruptible, no_wait_gpu);
506 if (ret)
507 return ret;
509 nouveau_bo_sync_for_device(nvbo);
511 return 0;
514 static inline void *
515 _nouveau_bo_mem_index(struct nouveau_bo *nvbo, unsigned index, void *mem, u8 sz)
517 struct ttm_dma_tt *dma_tt;
518 u8 *m = mem;
520 index *= sz;
522 if (m) {
523 /* kmap'd address, return the corresponding offset */
524 m += index;
525 } else {
526 /* DMA-API mapping, lookup the right address */
527 dma_tt = (struct ttm_dma_tt *)nvbo->bo.ttm;
528 m = dma_tt->cpu_address[index / PAGE_SIZE];
529 m += index % PAGE_SIZE;
532 return m;
534 #define nouveau_bo_mem_index(o, i, m) _nouveau_bo_mem_index(o, i, m, sizeof(*m))
536 void
537 nouveau_bo_wr16(struct nouveau_bo *nvbo, unsigned index, u16 val)
539 bool is_iomem;
540 u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
542 mem = nouveau_bo_mem_index(nvbo, index, mem);
544 if (is_iomem)
545 iowrite16_native(val, (void __force __iomem *)mem);
546 else
547 *mem = val;
551 nouveau_bo_rd32(struct nouveau_bo *nvbo, unsigned index)
553 bool is_iomem;
554 u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
556 mem = nouveau_bo_mem_index(nvbo, index, mem);
558 if (is_iomem)
559 return ioread32_native((void __force __iomem *)mem);
560 else
561 return *mem;
564 void
565 nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val)
567 bool is_iomem;
568 u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
570 mem = nouveau_bo_mem_index(nvbo, index, mem);
572 if (is_iomem)
573 iowrite32_native(val, (void __force __iomem *)mem);
574 else
575 *mem = val;
578 static struct ttm_tt *
579 nouveau_ttm_tt_create(struct ttm_bo_device *bdev, unsigned long size,
580 uint32_t page_flags, struct page *dummy_read)
582 #if __OS_HAS_AGP
583 struct nouveau_drm *drm = nouveau_bdev(bdev);
584 struct drm_device *dev = drm->dev;
586 if (drm->agp.stat == ENABLED) {
587 return ttm_agp_tt_create(bdev, dev->agp->bridge, size,
588 page_flags, dummy_read);
590 #endif
592 return nouveau_sgdma_create_ttm(bdev, size, page_flags, dummy_read);
595 static int
596 nouveau_bo_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
598 /* We'll do this from user space. */
599 return 0;
602 static int
603 nouveau_bo_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
604 struct ttm_mem_type_manager *man)
606 struct nouveau_drm *drm = nouveau_bdev(bdev);
608 switch (type) {
609 case TTM_PL_SYSTEM:
610 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
611 man->available_caching = TTM_PL_MASK_CACHING;
612 man->default_caching = TTM_PL_FLAG_CACHED;
613 break;
614 case TTM_PL_VRAM:
615 man->flags = TTM_MEMTYPE_FLAG_FIXED |
616 TTM_MEMTYPE_FLAG_MAPPABLE;
617 man->available_caching = TTM_PL_FLAG_UNCACHED |
618 TTM_PL_FLAG_WC;
619 man->default_caching = TTM_PL_FLAG_WC;
621 if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
622 /* Some BARs do not support being ioremapped WC */
623 if (nvxx_bar(&drm->device)->iomap_uncached) {
624 man->available_caching = TTM_PL_FLAG_UNCACHED;
625 man->default_caching = TTM_PL_FLAG_UNCACHED;
628 man->func = &nouveau_vram_manager;
629 man->io_reserve_fastpath = false;
630 man->use_io_reserve_lru = true;
631 } else {
632 man->func = &ttm_bo_manager_func;
634 break;
635 case TTM_PL_TT:
636 if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA)
637 man->func = &nouveau_gart_manager;
638 else
639 if (drm->agp.stat != ENABLED)
640 man->func = &nv04_gart_manager;
641 else
642 man->func = &ttm_bo_manager_func;
644 if (drm->agp.stat == ENABLED) {
645 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
646 man->available_caching = TTM_PL_FLAG_UNCACHED |
647 TTM_PL_FLAG_WC;
648 man->default_caching = TTM_PL_FLAG_WC;
649 } else {
650 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE |
651 TTM_MEMTYPE_FLAG_CMA;
652 man->available_caching = TTM_PL_MASK_CACHING;
653 man->default_caching = TTM_PL_FLAG_CACHED;
656 break;
657 default:
658 return -EINVAL;
660 return 0;
663 static void
664 nouveau_bo_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *pl)
666 struct nouveau_bo *nvbo = nouveau_bo(bo);
668 switch (bo->mem.mem_type) {
669 case TTM_PL_VRAM:
670 nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_TT,
671 TTM_PL_FLAG_SYSTEM);
672 break;
673 default:
674 nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_SYSTEM, 0);
675 break;
678 *pl = nvbo->placement;
682 static int
683 nve0_bo_move_init(struct nouveau_channel *chan, u32 handle)
685 int ret = RING_SPACE(chan, 2);
686 if (ret == 0) {
687 BEGIN_NVC0(chan, NvSubCopy, 0x0000, 1);
688 OUT_RING (chan, handle & 0x0000ffff);
689 FIRE_RING (chan);
691 return ret;
694 static int
695 nve0_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
696 struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
698 struct nvkm_mem *node = old_mem->mm_node;
699 int ret = RING_SPACE(chan, 10);
700 if (ret == 0) {
701 BEGIN_NVC0(chan, NvSubCopy, 0x0400, 8);
702 OUT_RING (chan, upper_32_bits(node->vma[0].offset));
703 OUT_RING (chan, lower_32_bits(node->vma[0].offset));
704 OUT_RING (chan, upper_32_bits(node->vma[1].offset));
705 OUT_RING (chan, lower_32_bits(node->vma[1].offset));
706 OUT_RING (chan, PAGE_SIZE);
707 OUT_RING (chan, PAGE_SIZE);
708 OUT_RING (chan, PAGE_SIZE);
709 OUT_RING (chan, new_mem->num_pages);
710 BEGIN_IMC0(chan, NvSubCopy, 0x0300, 0x0386);
712 return ret;
715 static int
716 nvc0_bo_move_init(struct nouveau_channel *chan, u32 handle)
718 int ret = RING_SPACE(chan, 2);
719 if (ret == 0) {
720 BEGIN_NVC0(chan, NvSubCopy, 0x0000, 1);
721 OUT_RING (chan, handle);
723 return ret;
726 static int
727 nvc0_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
728 struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
730 struct nvkm_mem *node = old_mem->mm_node;
731 u64 src_offset = node->vma[0].offset;
732 u64 dst_offset = node->vma[1].offset;
733 u32 page_count = new_mem->num_pages;
734 int ret;
736 page_count = new_mem->num_pages;
737 while (page_count) {
738 int line_count = (page_count > 8191) ? 8191 : page_count;
740 ret = RING_SPACE(chan, 11);
741 if (ret)
742 return ret;
744 BEGIN_NVC0(chan, NvSubCopy, 0x030c, 8);
745 OUT_RING (chan, upper_32_bits(src_offset));
746 OUT_RING (chan, lower_32_bits(src_offset));
747 OUT_RING (chan, upper_32_bits(dst_offset));
748 OUT_RING (chan, lower_32_bits(dst_offset));
749 OUT_RING (chan, PAGE_SIZE);
750 OUT_RING (chan, PAGE_SIZE);
751 OUT_RING (chan, PAGE_SIZE);
752 OUT_RING (chan, line_count);
753 BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
754 OUT_RING (chan, 0x00000110);
756 page_count -= line_count;
757 src_offset += (PAGE_SIZE * line_count);
758 dst_offset += (PAGE_SIZE * line_count);
761 return 0;
764 static int
765 nvc0_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
766 struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
768 struct nvkm_mem *node = old_mem->mm_node;
769 u64 src_offset = node->vma[0].offset;
770 u64 dst_offset = node->vma[1].offset;
771 u32 page_count = new_mem->num_pages;
772 int ret;
774 page_count = new_mem->num_pages;
775 while (page_count) {
776 int line_count = (page_count > 2047) ? 2047 : page_count;
778 ret = RING_SPACE(chan, 12);
779 if (ret)
780 return ret;
782 BEGIN_NVC0(chan, NvSubCopy, 0x0238, 2);
783 OUT_RING (chan, upper_32_bits(dst_offset));
784 OUT_RING (chan, lower_32_bits(dst_offset));
785 BEGIN_NVC0(chan, NvSubCopy, 0x030c, 6);
786 OUT_RING (chan, upper_32_bits(src_offset));
787 OUT_RING (chan, lower_32_bits(src_offset));
788 OUT_RING (chan, PAGE_SIZE); /* src_pitch */
789 OUT_RING (chan, PAGE_SIZE); /* dst_pitch */
790 OUT_RING (chan, PAGE_SIZE); /* line_length */
791 OUT_RING (chan, line_count);
792 BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
793 OUT_RING (chan, 0x00100110);
795 page_count -= line_count;
796 src_offset += (PAGE_SIZE * line_count);
797 dst_offset += (PAGE_SIZE * line_count);
800 return 0;
803 static int
804 nva3_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
805 struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
807 struct nvkm_mem *node = old_mem->mm_node;
808 u64 src_offset = node->vma[0].offset;
809 u64 dst_offset = node->vma[1].offset;
810 u32 page_count = new_mem->num_pages;
811 int ret;
813 page_count = new_mem->num_pages;
814 while (page_count) {
815 int line_count = (page_count > 8191) ? 8191 : page_count;
817 ret = RING_SPACE(chan, 11);
818 if (ret)
819 return ret;
821 BEGIN_NV04(chan, NvSubCopy, 0x030c, 8);
822 OUT_RING (chan, upper_32_bits(src_offset));
823 OUT_RING (chan, lower_32_bits(src_offset));
824 OUT_RING (chan, upper_32_bits(dst_offset));
825 OUT_RING (chan, lower_32_bits(dst_offset));
826 OUT_RING (chan, PAGE_SIZE);
827 OUT_RING (chan, PAGE_SIZE);
828 OUT_RING (chan, PAGE_SIZE);
829 OUT_RING (chan, line_count);
830 BEGIN_NV04(chan, NvSubCopy, 0x0300, 1);
831 OUT_RING (chan, 0x00000110);
833 page_count -= line_count;
834 src_offset += (PAGE_SIZE * line_count);
835 dst_offset += (PAGE_SIZE * line_count);
838 return 0;
841 static int
842 nv98_bo_move_exec(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
843 struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
845 struct nvkm_mem *node = old_mem->mm_node;
846 int ret = RING_SPACE(chan, 7);
847 if (ret == 0) {
848 BEGIN_NV04(chan, NvSubCopy, 0x0320, 6);
849 OUT_RING (chan, upper_32_bits(node->vma[0].offset));
850 OUT_RING (chan, lower_32_bits(node->vma[0].offset));
851 OUT_RING (chan, upper_32_bits(node->vma[1].offset));
852 OUT_RING (chan, lower_32_bits(node->vma[1].offset));
853 OUT_RING (chan, 0x00000000 /* COPY */);
854 OUT_RING (chan, new_mem->num_pages << PAGE_SHIFT);
856 return ret;
859 static int
860 nv84_bo_move_exec(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
861 struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
863 struct nvkm_mem *node = old_mem->mm_node;
864 int ret = RING_SPACE(chan, 7);
865 if (ret == 0) {
866 BEGIN_NV04(chan, NvSubCopy, 0x0304, 6);
867 OUT_RING (chan, new_mem->num_pages << PAGE_SHIFT);
868 OUT_RING (chan, upper_32_bits(node->vma[0].offset));
869 OUT_RING (chan, lower_32_bits(node->vma[0].offset));
870 OUT_RING (chan, upper_32_bits(node->vma[1].offset));
871 OUT_RING (chan, lower_32_bits(node->vma[1].offset));
872 OUT_RING (chan, 0x00000000 /* MODE_COPY, QUERY_NONE */);
874 return ret;
877 static int
878 nv50_bo_move_init(struct nouveau_channel *chan, u32 handle)
880 int ret = RING_SPACE(chan, 6);
881 if (ret == 0) {
882 BEGIN_NV04(chan, NvSubCopy, 0x0000, 1);
883 OUT_RING (chan, handle);
884 BEGIN_NV04(chan, NvSubCopy, 0x0180, 3);
885 OUT_RING (chan, chan->drm->ntfy.handle);
886 OUT_RING (chan, chan->vram.handle);
887 OUT_RING (chan, chan->vram.handle);
890 return ret;
893 static int
894 nv50_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
895 struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
897 struct nvkm_mem *node = old_mem->mm_node;
898 u64 length = (new_mem->num_pages << PAGE_SHIFT);
899 u64 src_offset = node->vma[0].offset;
900 u64 dst_offset = node->vma[1].offset;
901 int src_tiled = !!node->memtype;
902 int dst_tiled = !!((struct nvkm_mem *)new_mem->mm_node)->memtype;
903 int ret;
905 while (length) {
906 u32 amount, stride, height;
908 ret = RING_SPACE(chan, 18 + 6 * (src_tiled + dst_tiled));
909 if (ret)
910 return ret;
912 amount = min(length, (u64)(4 * 1024 * 1024));
913 stride = 16 * 4;
914 height = amount / stride;
916 if (src_tiled) {
917 BEGIN_NV04(chan, NvSubCopy, 0x0200, 7);
918 OUT_RING (chan, 0);
919 OUT_RING (chan, 0);
920 OUT_RING (chan, stride);
921 OUT_RING (chan, height);
922 OUT_RING (chan, 1);
923 OUT_RING (chan, 0);
924 OUT_RING (chan, 0);
925 } else {
926 BEGIN_NV04(chan, NvSubCopy, 0x0200, 1);
927 OUT_RING (chan, 1);
929 if (dst_tiled) {
930 BEGIN_NV04(chan, NvSubCopy, 0x021c, 7);
931 OUT_RING (chan, 0);
932 OUT_RING (chan, 0);
933 OUT_RING (chan, stride);
934 OUT_RING (chan, height);
935 OUT_RING (chan, 1);
936 OUT_RING (chan, 0);
937 OUT_RING (chan, 0);
938 } else {
939 BEGIN_NV04(chan, NvSubCopy, 0x021c, 1);
940 OUT_RING (chan, 1);
943 BEGIN_NV04(chan, NvSubCopy, 0x0238, 2);
944 OUT_RING (chan, upper_32_bits(src_offset));
945 OUT_RING (chan, upper_32_bits(dst_offset));
946 BEGIN_NV04(chan, NvSubCopy, 0x030c, 8);
947 OUT_RING (chan, lower_32_bits(src_offset));
948 OUT_RING (chan, lower_32_bits(dst_offset));
949 OUT_RING (chan, stride);
950 OUT_RING (chan, stride);
951 OUT_RING (chan, stride);
952 OUT_RING (chan, height);
953 OUT_RING (chan, 0x00000101);
954 OUT_RING (chan, 0x00000000);
955 BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_NOP, 1);
956 OUT_RING (chan, 0);
958 length -= amount;
959 src_offset += amount;
960 dst_offset += amount;
963 return 0;
966 static int
967 nv04_bo_move_init(struct nouveau_channel *chan, u32 handle)
969 int ret = RING_SPACE(chan, 4);
970 if (ret == 0) {
971 BEGIN_NV04(chan, NvSubCopy, 0x0000, 1);
972 OUT_RING (chan, handle);
973 BEGIN_NV04(chan, NvSubCopy, 0x0180, 1);
974 OUT_RING (chan, chan->drm->ntfy.handle);
977 return ret;
980 static inline uint32_t
981 nouveau_bo_mem_ctxdma(struct ttm_buffer_object *bo,
982 struct nouveau_channel *chan, struct ttm_mem_reg *mem)
984 if (mem->mem_type == TTM_PL_TT)
985 return NvDmaTT;
986 return chan->vram.handle;
989 static int
990 nv04_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
991 struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
993 u32 src_offset = old_mem->start << PAGE_SHIFT;
994 u32 dst_offset = new_mem->start << PAGE_SHIFT;
995 u32 page_count = new_mem->num_pages;
996 int ret;
998 ret = RING_SPACE(chan, 3);
999 if (ret)
1000 return ret;
1002 BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_DMA_SOURCE, 2);
1003 OUT_RING (chan, nouveau_bo_mem_ctxdma(bo, chan, old_mem));
1004 OUT_RING (chan, nouveau_bo_mem_ctxdma(bo, chan, new_mem));
1006 page_count = new_mem->num_pages;
1007 while (page_count) {
1008 int line_count = (page_count > 2047) ? 2047 : page_count;
1010 ret = RING_SPACE(chan, 11);
1011 if (ret)
1012 return ret;
1014 BEGIN_NV04(chan, NvSubCopy,
1015 NV_MEMORY_TO_MEMORY_FORMAT_OFFSET_IN, 8);
1016 OUT_RING (chan, src_offset);
1017 OUT_RING (chan, dst_offset);
1018 OUT_RING (chan, PAGE_SIZE); /* src_pitch */
1019 OUT_RING (chan, PAGE_SIZE); /* dst_pitch */
1020 OUT_RING (chan, PAGE_SIZE); /* line_length */
1021 OUT_RING (chan, line_count);
1022 OUT_RING (chan, 0x00000101);
1023 OUT_RING (chan, 0x00000000);
1024 BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_NOP, 1);
1025 OUT_RING (chan, 0);
1027 page_count -= line_count;
1028 src_offset += (PAGE_SIZE * line_count);
1029 dst_offset += (PAGE_SIZE * line_count);
1032 return 0;
1035 static int
1036 nouveau_bo_move_prep(struct nouveau_drm *drm, struct ttm_buffer_object *bo,
1037 struct ttm_mem_reg *mem)
1039 struct nvkm_mem *old_node = bo->mem.mm_node;
1040 struct nvkm_mem *new_node = mem->mm_node;
1041 u64 size = (u64)mem->num_pages << PAGE_SHIFT;
1042 int ret;
1044 ret = nvkm_vm_get(drm->client.vm, size, old_node->page_shift,
1045 NV_MEM_ACCESS_RW, &old_node->vma[0]);
1046 if (ret)
1047 return ret;
1049 ret = nvkm_vm_get(drm->client.vm, size, new_node->page_shift,
1050 NV_MEM_ACCESS_RW, &old_node->vma[1]);
1051 if (ret) {
1052 nvkm_vm_put(&old_node->vma[0]);
1053 return ret;
1056 nvkm_vm_map(&old_node->vma[0], old_node);
1057 nvkm_vm_map(&old_node->vma[1], new_node);
1058 return 0;
1061 static int
1062 nouveau_bo_move_m2mf(struct ttm_buffer_object *bo, int evict, bool intr,
1063 bool no_wait_gpu, struct ttm_mem_reg *new_mem)
1065 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1066 struct nouveau_channel *chan = drm->ttm.chan;
1067 struct nouveau_cli *cli = (void *)nvif_client(&chan->device->base);
1068 struct nouveau_fence *fence;
1069 int ret;
1071 /* create temporary vmas for the transfer and attach them to the
1072 * old nvkm_mem node, these will get cleaned up after ttm has
1073 * destroyed the ttm_mem_reg
1075 if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
1076 ret = nouveau_bo_move_prep(drm, bo, new_mem);
1077 if (ret)
1078 return ret;
1081 mutex_lock_nested(&cli->mutex, SINGLE_DEPTH_NESTING);
1082 ret = nouveau_fence_sync(nouveau_bo(bo), chan, true, intr);
1083 if (ret == 0) {
1084 ret = drm->ttm.move(chan, bo, &bo->mem, new_mem);
1085 if (ret == 0) {
1086 ret = nouveau_fence_new(chan, false, &fence);
1087 if (ret == 0) {
1088 ret = ttm_bo_move_accel_cleanup(bo,
1089 &fence->base,
1090 evict,
1091 no_wait_gpu,
1092 new_mem);
1093 nouveau_fence_unref(&fence);
1097 mutex_unlock(&cli->mutex);
1098 return ret;
1101 void
1102 nouveau_bo_move_init(struct nouveau_drm *drm)
1104 static const struct {
1105 const char *name;
1106 int engine;
1107 u32 oclass;
1108 int (*exec)(struct nouveau_channel *,
1109 struct ttm_buffer_object *,
1110 struct ttm_mem_reg *, struct ttm_mem_reg *);
1111 int (*init)(struct nouveau_channel *, u32 handle);
1112 } _methods[] = {
1113 { "COPY", 4, 0xb0b5, nve0_bo_move_copy, nve0_bo_move_init },
1114 { "GRCE", 0, 0xb0b5, nve0_bo_move_copy, nvc0_bo_move_init },
1115 { "COPY", 4, 0xa0b5, nve0_bo_move_copy, nve0_bo_move_init },
1116 { "GRCE", 0, 0xa0b5, nve0_bo_move_copy, nvc0_bo_move_init },
1117 { "COPY1", 5, 0x90b8, nvc0_bo_move_copy, nvc0_bo_move_init },
1118 { "COPY0", 4, 0x90b5, nvc0_bo_move_copy, nvc0_bo_move_init },
1119 { "COPY", 0, 0x85b5, nva3_bo_move_copy, nv50_bo_move_init },
1120 { "CRYPT", 0, 0x74c1, nv84_bo_move_exec, nv50_bo_move_init },
1121 { "M2MF", 0, 0x9039, nvc0_bo_move_m2mf, nvc0_bo_move_init },
1122 { "M2MF", 0, 0x5039, nv50_bo_move_m2mf, nv50_bo_move_init },
1123 { "M2MF", 0, 0x0039, nv04_bo_move_m2mf, nv04_bo_move_init },
1125 { "CRYPT", 0, 0x88b4, nv98_bo_move_exec, nv50_bo_move_init },
1126 }, *mthd = _methods;
1127 const char *name = "CPU";
1128 int ret;
1130 do {
1131 struct nouveau_channel *chan;
1133 if (mthd->engine)
1134 chan = drm->cechan;
1135 else
1136 chan = drm->channel;
1137 if (chan == NULL)
1138 continue;
1140 ret = nvif_object_init(chan->object, NULL,
1141 mthd->oclass | (mthd->engine << 16),
1142 mthd->oclass, NULL, 0,
1143 &drm->ttm.copy);
1144 if (ret == 0) {
1145 ret = mthd->init(chan, drm->ttm.copy.handle);
1146 if (ret) {
1147 nvif_object_fini(&drm->ttm.copy);
1148 continue;
1151 drm->ttm.move = mthd->exec;
1152 drm->ttm.chan = chan;
1153 name = mthd->name;
1154 break;
1156 } while ((++mthd)->exec);
1158 NV_INFO(drm, "MM: using %s for buffer copies\n", name);
1161 static int
1162 nouveau_bo_move_flipd(struct ttm_buffer_object *bo, bool evict, bool intr,
1163 bool no_wait_gpu, struct ttm_mem_reg *new_mem)
1165 struct ttm_place placement_memtype = {
1166 .fpfn = 0,
1167 .lpfn = 0,
1168 .flags = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING
1170 struct ttm_placement placement;
1171 struct ttm_mem_reg tmp_mem;
1172 int ret;
1174 placement.num_placement = placement.num_busy_placement = 1;
1175 placement.placement = placement.busy_placement = &placement_memtype;
1177 tmp_mem = *new_mem;
1178 tmp_mem.mm_node = NULL;
1179 ret = ttm_bo_mem_space(bo, &placement, &tmp_mem, intr, no_wait_gpu);
1180 if (ret)
1181 return ret;
1183 ret = ttm_tt_bind(bo->ttm, &tmp_mem);
1184 if (ret)
1185 goto out;
1187 ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_gpu, &tmp_mem);
1188 if (ret)
1189 goto out;
1191 ret = ttm_bo_move_ttm(bo, true, no_wait_gpu, new_mem);
1192 out:
1193 ttm_bo_mem_put(bo, &tmp_mem);
1194 return ret;
1197 static int
1198 nouveau_bo_move_flips(struct ttm_buffer_object *bo, bool evict, bool intr,
1199 bool no_wait_gpu, struct ttm_mem_reg *new_mem)
1201 struct ttm_place placement_memtype = {
1202 .fpfn = 0,
1203 .lpfn = 0,
1204 .flags = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING
1206 struct ttm_placement placement;
1207 struct ttm_mem_reg tmp_mem;
1208 int ret;
1210 placement.num_placement = placement.num_busy_placement = 1;
1211 placement.placement = placement.busy_placement = &placement_memtype;
1213 tmp_mem = *new_mem;
1214 tmp_mem.mm_node = NULL;
1215 ret = ttm_bo_mem_space(bo, &placement, &tmp_mem, intr, no_wait_gpu);
1216 if (ret)
1217 return ret;
1219 ret = ttm_bo_move_ttm(bo, true, no_wait_gpu, &tmp_mem);
1220 if (ret)
1221 goto out;
1223 ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_gpu, new_mem);
1224 if (ret)
1225 goto out;
1227 out:
1228 ttm_bo_mem_put(bo, &tmp_mem);
1229 return ret;
1232 static void
1233 nouveau_bo_move_ntfy(struct ttm_buffer_object *bo, struct ttm_mem_reg *new_mem)
1235 struct nouveau_bo *nvbo = nouveau_bo(bo);
1236 struct nvkm_vma *vma;
1238 /* ttm can now (stupidly) pass the driver bos it didn't create... */
1239 if (bo->destroy != nouveau_bo_del_ttm)
1240 return;
1242 list_for_each_entry(vma, &nvbo->vma_list, head) {
1243 if (new_mem && new_mem->mem_type != TTM_PL_SYSTEM &&
1244 (new_mem->mem_type == TTM_PL_VRAM ||
1245 nvbo->page_shift != vma->vm->mmu->lpg_shift)) {
1246 nvkm_vm_map(vma, new_mem->mm_node);
1247 } else {
1248 nvkm_vm_unmap(vma);
1253 static int
1254 nouveau_bo_vm_bind(struct ttm_buffer_object *bo, struct ttm_mem_reg *new_mem,
1255 struct nouveau_drm_tile **new_tile)
1257 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1258 struct drm_device *dev = drm->dev;
1259 struct nouveau_bo *nvbo = nouveau_bo(bo);
1260 u64 offset = new_mem->start << PAGE_SHIFT;
1262 *new_tile = NULL;
1263 if (new_mem->mem_type != TTM_PL_VRAM)
1264 return 0;
1266 if (drm->device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) {
1267 *new_tile = nv10_bo_set_tiling(dev, offset, new_mem->size,
1268 nvbo->tile_mode,
1269 nvbo->tile_flags);
1272 return 0;
1275 static void
1276 nouveau_bo_vm_cleanup(struct ttm_buffer_object *bo,
1277 struct nouveau_drm_tile *new_tile,
1278 struct nouveau_drm_tile **old_tile)
1280 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1281 struct drm_device *dev = drm->dev;
1282 struct fence *fence = reservation_object_get_excl(bo->resv);
1284 nv10_bo_put_tile_region(dev, *old_tile, fence);
1285 *old_tile = new_tile;
1288 static int
1289 nouveau_bo_move(struct ttm_buffer_object *bo, bool evict, bool intr,
1290 bool no_wait_gpu, struct ttm_mem_reg *new_mem)
1292 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1293 struct nouveau_bo *nvbo = nouveau_bo(bo);
1294 struct ttm_mem_reg *old_mem = &bo->mem;
1295 struct nouveau_drm_tile *new_tile = NULL;
1296 int ret = 0;
1298 if (nvbo->pin_refcnt)
1299 NV_WARN(drm, "Moving pinned object %p!\n", nvbo);
1301 if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1302 ret = nouveau_bo_vm_bind(bo, new_mem, &new_tile);
1303 if (ret)
1304 return ret;
1307 /* Fake bo copy. */
1308 if (old_mem->mem_type == TTM_PL_SYSTEM && !bo->ttm) {
1309 BUG_ON(bo->mem.mm_node != NULL);
1310 bo->mem = *new_mem;
1311 new_mem->mm_node = NULL;
1312 goto out;
1315 /* Hardware assisted copy. */
1316 if (drm->ttm.move) {
1317 if (new_mem->mem_type == TTM_PL_SYSTEM)
1318 ret = nouveau_bo_move_flipd(bo, evict, intr,
1319 no_wait_gpu, new_mem);
1320 else if (old_mem->mem_type == TTM_PL_SYSTEM)
1321 ret = nouveau_bo_move_flips(bo, evict, intr,
1322 no_wait_gpu, new_mem);
1323 else
1324 ret = nouveau_bo_move_m2mf(bo, evict, intr,
1325 no_wait_gpu, new_mem);
1326 if (!ret)
1327 goto out;
1330 /* Fallback to software copy. */
1331 ret = ttm_bo_wait(bo, true, intr, no_wait_gpu);
1332 if (ret == 0)
1333 ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, new_mem);
1335 out:
1336 if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1337 if (ret)
1338 nouveau_bo_vm_cleanup(bo, NULL, &new_tile);
1339 else
1340 nouveau_bo_vm_cleanup(bo, new_tile, &nvbo->tile);
1343 return ret;
1346 static int
1347 nouveau_bo_verify_access(struct ttm_buffer_object *bo, struct file *filp)
1349 struct nouveau_bo *nvbo = nouveau_bo(bo);
1351 return drm_vma_node_verify_access(&nvbo->gem.vma_node, filp);
1354 static int
1355 nouveau_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1357 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1358 struct nouveau_drm *drm = nouveau_bdev(bdev);
1359 struct nvkm_mem *node = mem->mm_node;
1360 int ret;
1362 mem->bus.addr = NULL;
1363 mem->bus.offset = 0;
1364 mem->bus.size = mem->num_pages << PAGE_SHIFT;
1365 mem->bus.base = 0;
1366 mem->bus.is_iomem = false;
1367 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
1368 return -EINVAL;
1369 switch (mem->mem_type) {
1370 case TTM_PL_SYSTEM:
1371 /* System memory */
1372 return 0;
1373 case TTM_PL_TT:
1374 #if __OS_HAS_AGP
1375 if (drm->agp.stat == ENABLED) {
1376 mem->bus.offset = mem->start << PAGE_SHIFT;
1377 mem->bus.base = drm->agp.base;
1378 mem->bus.is_iomem = !drm->dev->agp->cant_use_aperture;
1380 #endif
1381 if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA || !node->memtype)
1382 /* untiled */
1383 break;
1384 /* fallthrough, tiled memory */
1385 case TTM_PL_VRAM:
1386 mem->bus.offset = mem->start << PAGE_SHIFT;
1387 mem->bus.base = nv_device_resource_start(nvxx_device(&drm->device), 1);
1388 mem->bus.is_iomem = true;
1389 if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
1390 struct nvkm_bar *bar = nvxx_bar(&drm->device);
1392 ret = bar->umap(bar, node, NV_MEM_ACCESS_RW,
1393 &node->bar_vma);
1394 if (ret)
1395 return ret;
1397 mem->bus.offset = node->bar_vma.offset;
1399 break;
1400 default:
1401 return -EINVAL;
1403 return 0;
1406 static void
1407 nouveau_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1409 struct nouveau_drm *drm = nouveau_bdev(bdev);
1410 struct nvkm_bar *bar = nvxx_bar(&drm->device);
1411 struct nvkm_mem *node = mem->mm_node;
1413 if (!node->bar_vma.node)
1414 return;
1416 bar->unmap(bar, &node->bar_vma);
1419 static int
1420 nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
1422 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1423 struct nouveau_bo *nvbo = nouveau_bo(bo);
1424 struct nvif_device *device = &drm->device;
1425 u32 mappable = nv_device_resource_len(nvxx_device(device), 1) >> PAGE_SHIFT;
1426 int i, ret;
1428 /* as long as the bo isn't in vram, and isn't tiled, we've got
1429 * nothing to do here.
1431 if (bo->mem.mem_type != TTM_PL_VRAM) {
1432 if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA ||
1433 !nouveau_bo_tile_layout(nvbo))
1434 return 0;
1436 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
1437 nouveau_bo_placement_set(nvbo, TTM_PL_TT, 0);
1439 ret = nouveau_bo_validate(nvbo, false, false);
1440 if (ret)
1441 return ret;
1443 return 0;
1446 /* make sure bo is in mappable vram */
1447 if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA ||
1448 bo->mem.start + bo->mem.num_pages < mappable)
1449 return 0;
1451 for (i = 0; i < nvbo->placement.num_placement; ++i) {
1452 nvbo->placements[i].fpfn = 0;
1453 nvbo->placements[i].lpfn = mappable;
1456 for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
1457 nvbo->busy_placements[i].fpfn = 0;
1458 nvbo->busy_placements[i].lpfn = mappable;
1461 nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_VRAM, 0);
1462 return nouveau_bo_validate(nvbo, false, false);
1465 static int
1466 nouveau_ttm_tt_populate(struct ttm_tt *ttm)
1468 struct ttm_dma_tt *ttm_dma = (void *)ttm;
1469 struct nouveau_drm *drm;
1470 struct nvkm_device *device;
1471 struct drm_device *dev;
1472 struct device *pdev;
1473 unsigned i;
1474 int r;
1475 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1477 if (ttm->state != tt_unpopulated)
1478 return 0;
1480 if (slave && ttm->sg) {
1481 /* make userspace faulting work */
1482 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1483 ttm_dma->dma_address, ttm->num_pages);
1484 ttm->state = tt_unbound;
1485 return 0;
1488 drm = nouveau_bdev(ttm->bdev);
1489 device = nvxx_device(&drm->device);
1490 dev = drm->dev;
1491 pdev = nv_device_base(device);
1494 * Objects matching this condition have been marked as force_coherent,
1495 * so use the DMA API for them.
1497 if (!nv_device_is_cpu_coherent(device) &&
1498 ttm->caching_state == tt_uncached)
1499 return ttm_dma_populate(ttm_dma, dev->dev);
1501 #if __OS_HAS_AGP
1502 if (drm->agp.stat == ENABLED) {
1503 return ttm_agp_tt_populate(ttm);
1505 #endif
1507 #ifdef CONFIG_SWIOTLB
1508 if (swiotlb_nr_tbl()) {
1509 return ttm_dma_populate((void *)ttm, dev->dev);
1511 #endif
1513 r = ttm_pool_populate(ttm);
1514 if (r) {
1515 return r;
1518 for (i = 0; i < ttm->num_pages; i++) {
1519 dma_addr_t addr;
1521 addr = dma_map_page(pdev, ttm->pages[i], 0, PAGE_SIZE,
1522 DMA_BIDIRECTIONAL);
1524 if (dma_mapping_error(pdev, addr)) {
1525 while (--i) {
1526 dma_unmap_page(pdev, ttm_dma->dma_address[i],
1527 PAGE_SIZE, DMA_BIDIRECTIONAL);
1528 ttm_dma->dma_address[i] = 0;
1530 ttm_pool_unpopulate(ttm);
1531 return -EFAULT;
1534 ttm_dma->dma_address[i] = addr;
1536 return 0;
1539 static void
1540 nouveau_ttm_tt_unpopulate(struct ttm_tt *ttm)
1542 struct ttm_dma_tt *ttm_dma = (void *)ttm;
1543 struct nouveau_drm *drm;
1544 struct nvkm_device *device;
1545 struct drm_device *dev;
1546 struct device *pdev;
1547 unsigned i;
1548 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1550 if (slave)
1551 return;
1553 drm = nouveau_bdev(ttm->bdev);
1554 device = nvxx_device(&drm->device);
1555 dev = drm->dev;
1556 pdev = nv_device_base(device);
1559 * Objects matching this condition have been marked as force_coherent,
1560 * so use the DMA API for them.
1562 if (!nv_device_is_cpu_coherent(device) &&
1563 ttm->caching_state == tt_uncached) {
1564 ttm_dma_unpopulate(ttm_dma, dev->dev);
1565 return;
1568 #if __OS_HAS_AGP
1569 if (drm->agp.stat == ENABLED) {
1570 ttm_agp_tt_unpopulate(ttm);
1571 return;
1573 #endif
1575 #ifdef CONFIG_SWIOTLB
1576 if (swiotlb_nr_tbl()) {
1577 ttm_dma_unpopulate((void *)ttm, dev->dev);
1578 return;
1580 #endif
1582 for (i = 0; i < ttm->num_pages; i++) {
1583 if (ttm_dma->dma_address[i]) {
1584 dma_unmap_page(pdev, ttm_dma->dma_address[i], PAGE_SIZE,
1585 DMA_BIDIRECTIONAL);
1589 ttm_pool_unpopulate(ttm);
1592 void
1593 nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence, bool exclusive)
1595 struct reservation_object *resv = nvbo->bo.resv;
1597 if (exclusive)
1598 reservation_object_add_excl_fence(resv, &fence->base);
1599 else if (fence)
1600 reservation_object_add_shared_fence(resv, &fence->base);
1603 struct ttm_bo_driver nouveau_bo_driver = {
1604 .ttm_tt_create = &nouveau_ttm_tt_create,
1605 .ttm_tt_populate = &nouveau_ttm_tt_populate,
1606 .ttm_tt_unpopulate = &nouveau_ttm_tt_unpopulate,
1607 .invalidate_caches = nouveau_bo_invalidate_caches,
1608 .init_mem_type = nouveau_bo_init_mem_type,
1609 .evict_flags = nouveau_bo_evict_flags,
1610 .move_notify = nouveau_bo_move_ntfy,
1611 .move = nouveau_bo_move,
1612 .verify_access = nouveau_bo_verify_access,
1613 .fault_reserve_notify = &nouveau_ttm_fault_reserve_notify,
1614 .io_mem_reserve = &nouveau_ttm_io_mem_reserve,
1615 .io_mem_free = &nouveau_ttm_io_mem_free,
1618 struct nvkm_vma *
1619 nouveau_bo_vma_find(struct nouveau_bo *nvbo, struct nvkm_vm *vm)
1621 struct nvkm_vma *vma;
1622 list_for_each_entry(vma, &nvbo->vma_list, head) {
1623 if (vma->vm == vm)
1624 return vma;
1627 return NULL;
1631 nouveau_bo_vma_add(struct nouveau_bo *nvbo, struct nvkm_vm *vm,
1632 struct nvkm_vma *vma)
1634 const u32 size = nvbo->bo.mem.num_pages << PAGE_SHIFT;
1635 int ret;
1637 ret = nvkm_vm_get(vm, size, nvbo->page_shift,
1638 NV_MEM_ACCESS_RW, vma);
1639 if (ret)
1640 return ret;
1642 if ( nvbo->bo.mem.mem_type != TTM_PL_SYSTEM &&
1643 (nvbo->bo.mem.mem_type == TTM_PL_VRAM ||
1644 nvbo->page_shift != vma->vm->mmu->lpg_shift))
1645 nvkm_vm_map(vma, nvbo->bo.mem.mm_node);
1647 list_add_tail(&vma->head, &nvbo->vma_list);
1648 vma->refcount = 1;
1649 return 0;
1652 void
1653 nouveau_bo_vma_del(struct nouveau_bo *nvbo, struct nvkm_vma *vma)
1655 if (vma->node) {
1656 if (nvbo->bo.mem.mem_type != TTM_PL_SYSTEM)
1657 nvkm_vm_unmap(vma);
1658 nvkm_vm_put(vma);
1659 list_del(&vma->head);