2 * Copyright 2007 Dave Airlied
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
25 * Authors: Dave Airlied <airlied@linux.ie>
26 * Ben Skeggs <darktama@iinet.net.au>
27 * Jeremy Kolb <jkolb@brandeis.edu>
30 #include <linux/dma-mapping.h>
31 #include <linux/swiotlb.h>
33 #include "nouveau_drm.h"
34 #include "nouveau_dma.h"
35 #include "nouveau_fence.h"
37 #include "nouveau_bo.h"
38 #include "nouveau_ttm.h"
39 #include "nouveau_gem.h"
42 * NV10-NV40 tiling helpers
46 nv10_bo_update_tile_region(struct drm_device
*dev
, struct nouveau_drm_tile
*reg
,
47 u32 addr
, u32 size
, u32 pitch
, u32 flags
)
49 struct nouveau_drm
*drm
= nouveau_drm(dev
);
50 int i
= reg
- drm
->tile
.reg
;
51 struct nvkm_fb
*pfb
= nvxx_fb(&drm
->device
);
52 struct nvkm_fb_tile
*tile
= &pfb
->tile
.region
[i
];
53 struct nvkm_engine
*engine
;
55 nouveau_fence_unref(®
->fence
);
58 pfb
->tile
.fini(pfb
, i
, tile
);
61 pfb
->tile
.init(pfb
, i
, addr
, size
, pitch
, flags
, tile
);
63 pfb
->tile
.prog(pfb
, i
, tile
);
65 if ((engine
= nvkm_engine(pfb
, NVDEV_ENGINE_GR
)))
66 engine
->tile_prog(engine
, i
);
67 if ((engine
= nvkm_engine(pfb
, NVDEV_ENGINE_MPEG
)))
68 engine
->tile_prog(engine
, i
);
71 static struct nouveau_drm_tile
*
72 nv10_bo_get_tile_region(struct drm_device
*dev
, int i
)
74 struct nouveau_drm
*drm
= nouveau_drm(dev
);
75 struct nouveau_drm_tile
*tile
= &drm
->tile
.reg
[i
];
77 spin_lock(&drm
->tile
.lock
);
80 (!tile
->fence
|| nouveau_fence_done(tile
->fence
)))
85 spin_unlock(&drm
->tile
.lock
);
90 nv10_bo_put_tile_region(struct drm_device
*dev
, struct nouveau_drm_tile
*tile
,
93 struct nouveau_drm
*drm
= nouveau_drm(dev
);
96 spin_lock(&drm
->tile
.lock
);
97 tile
->fence
= (struct nouveau_fence
*)fence_get(fence
);
99 spin_unlock(&drm
->tile
.lock
);
103 static struct nouveau_drm_tile
*
104 nv10_bo_set_tiling(struct drm_device
*dev
, u32 addr
,
105 u32 size
, u32 pitch
, u32 flags
)
107 struct nouveau_drm
*drm
= nouveau_drm(dev
);
108 struct nvkm_fb
*pfb
= nvxx_fb(&drm
->device
);
109 struct nouveau_drm_tile
*tile
, *found
= NULL
;
112 for (i
= 0; i
< pfb
->tile
.regions
; i
++) {
113 tile
= nv10_bo_get_tile_region(dev
, i
);
115 if (pitch
&& !found
) {
119 } else if (tile
&& pfb
->tile
.region
[i
].pitch
) {
120 /* Kill an unused tile region. */
121 nv10_bo_update_tile_region(dev
, tile
, 0, 0, 0, 0);
124 nv10_bo_put_tile_region(dev
, tile
, NULL
);
128 nv10_bo_update_tile_region(dev
, found
, addr
, size
,
134 nouveau_bo_del_ttm(struct ttm_buffer_object
*bo
)
136 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
137 struct drm_device
*dev
= drm
->dev
;
138 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
140 if (unlikely(nvbo
->gem
.filp
))
141 DRM_ERROR("bo %p still attached to GEM object\n", bo
);
142 WARN_ON(nvbo
->pin_refcnt
> 0);
143 nv10_bo_put_tile_region(dev
, nvbo
->tile
, NULL
);
148 nouveau_bo_fixup_align(struct nouveau_bo
*nvbo
, u32 flags
,
149 int *align
, int *size
)
151 struct nouveau_drm
*drm
= nouveau_bdev(nvbo
->bo
.bdev
);
152 struct nvif_device
*device
= &drm
->device
;
154 if (device
->info
.family
< NV_DEVICE_INFO_V0_TESLA
) {
155 if (nvbo
->tile_mode
) {
156 if (device
->info
.chipset
>= 0x40) {
158 *size
= roundup(*size
, 64 * nvbo
->tile_mode
);
160 } else if (device
->info
.chipset
>= 0x30) {
162 *size
= roundup(*size
, 64 * nvbo
->tile_mode
);
164 } else if (device
->info
.chipset
>= 0x20) {
166 *size
= roundup(*size
, 64 * nvbo
->tile_mode
);
168 } else if (device
->info
.chipset
>= 0x10) {
170 *size
= roundup(*size
, 32 * nvbo
->tile_mode
);
174 *size
= roundup(*size
, (1 << nvbo
->page_shift
));
175 *align
= max((1 << nvbo
->page_shift
), *align
);
178 *size
= roundup(*size
, PAGE_SIZE
);
182 nouveau_bo_new(struct drm_device
*dev
, int size
, int align
,
183 uint32_t flags
, uint32_t tile_mode
, uint32_t tile_flags
,
184 struct sg_table
*sg
, struct reservation_object
*robj
,
185 struct nouveau_bo
**pnvbo
)
187 struct nouveau_drm
*drm
= nouveau_drm(dev
);
188 struct nouveau_bo
*nvbo
;
191 int type
= ttm_bo_type_device
;
196 lpg_shift
= drm
->client
.vm
->mmu
->lpg_shift
;
197 max_size
= INT_MAX
& ~((1 << lpg_shift
) - 1);
199 if (size
<= 0 || size
> max_size
) {
200 NV_WARN(drm
, "skipped size %x\n", (u32
)size
);
205 type
= ttm_bo_type_sg
;
207 nvbo
= kzalloc(sizeof(struct nouveau_bo
), GFP_KERNEL
);
210 INIT_LIST_HEAD(&nvbo
->head
);
211 INIT_LIST_HEAD(&nvbo
->entry
);
212 INIT_LIST_HEAD(&nvbo
->vma_list
);
213 nvbo
->tile_mode
= tile_mode
;
214 nvbo
->tile_flags
= tile_flags
;
215 nvbo
->bo
.bdev
= &drm
->ttm
.bdev
;
217 if (!nv_device_is_cpu_coherent(nvxx_device(&drm
->device
)))
218 nvbo
->force_coherent
= flags
& TTM_PL_FLAG_UNCACHED
;
220 nvbo
->page_shift
= 12;
221 if (drm
->client
.vm
) {
222 if (!(flags
& TTM_PL_FLAG_TT
) && size
> 256 * 1024)
223 nvbo
->page_shift
= drm
->client
.vm
->mmu
->lpg_shift
;
226 nouveau_bo_fixup_align(nvbo
, flags
, &align
, &size
);
227 nvbo
->bo
.mem
.num_pages
= size
>> PAGE_SHIFT
;
228 nouveau_bo_placement_set(nvbo
, flags
, 0);
230 acc_size
= ttm_bo_dma_acc_size(&drm
->ttm
.bdev
, size
,
231 sizeof(struct nouveau_bo
));
233 ret
= ttm_bo_init(&drm
->ttm
.bdev
, &nvbo
->bo
, size
,
234 type
, &nvbo
->placement
,
235 align
>> PAGE_SHIFT
, false, NULL
, acc_size
, sg
,
236 robj
, nouveau_bo_del_ttm
);
238 /* ttm will call nouveau_bo_del_ttm if it fails.. */
247 set_placement_list(struct ttm_place
*pl
, unsigned *n
, uint32_t type
, uint32_t flags
)
251 if (type
& TTM_PL_FLAG_VRAM
)
252 pl
[(*n
)++].flags
= TTM_PL_FLAG_VRAM
| flags
;
253 if (type
& TTM_PL_FLAG_TT
)
254 pl
[(*n
)++].flags
= TTM_PL_FLAG_TT
| flags
;
255 if (type
& TTM_PL_FLAG_SYSTEM
)
256 pl
[(*n
)++].flags
= TTM_PL_FLAG_SYSTEM
| flags
;
260 set_placement_range(struct nouveau_bo
*nvbo
, uint32_t type
)
262 struct nouveau_drm
*drm
= nouveau_bdev(nvbo
->bo
.bdev
);
263 u32 vram_pages
= drm
->device
.info
.ram_size
>> PAGE_SHIFT
;
264 unsigned i
, fpfn
, lpfn
;
266 if (drm
->device
.info
.family
== NV_DEVICE_INFO_V0_CELSIUS
&&
267 nvbo
->tile_mode
&& (type
& TTM_PL_FLAG_VRAM
) &&
268 nvbo
->bo
.mem
.num_pages
< vram_pages
/ 4) {
270 * Make sure that the color and depth buffers are handled
271 * by independent memory controller units. Up to a 9x
272 * speed up when alpha-blending and depth-test are enabled
275 if (nvbo
->tile_flags
& NOUVEAU_GEM_TILE_ZETA
) {
276 fpfn
= vram_pages
/ 2;
280 lpfn
= vram_pages
/ 2;
282 for (i
= 0; i
< nvbo
->placement
.num_placement
; ++i
) {
283 nvbo
->placements
[i
].fpfn
= fpfn
;
284 nvbo
->placements
[i
].lpfn
= lpfn
;
286 for (i
= 0; i
< nvbo
->placement
.num_busy_placement
; ++i
) {
287 nvbo
->busy_placements
[i
].fpfn
= fpfn
;
288 nvbo
->busy_placements
[i
].lpfn
= lpfn
;
294 nouveau_bo_placement_set(struct nouveau_bo
*nvbo
, uint32_t type
, uint32_t busy
)
296 struct ttm_placement
*pl
= &nvbo
->placement
;
297 uint32_t flags
= (nvbo
->force_coherent
? TTM_PL_FLAG_UNCACHED
:
298 TTM_PL_MASK_CACHING
) |
299 (nvbo
->pin_refcnt
? TTM_PL_FLAG_NO_EVICT
: 0);
301 pl
->placement
= nvbo
->placements
;
302 set_placement_list(nvbo
->placements
, &pl
->num_placement
,
305 pl
->busy_placement
= nvbo
->busy_placements
;
306 set_placement_list(nvbo
->busy_placements
, &pl
->num_busy_placement
,
309 set_placement_range(nvbo
, type
);
313 nouveau_bo_pin(struct nouveau_bo
*nvbo
, uint32_t memtype
, bool contig
)
315 struct nouveau_drm
*drm
= nouveau_bdev(nvbo
->bo
.bdev
);
316 struct ttm_buffer_object
*bo
= &nvbo
->bo
;
317 bool force
= false, evict
= false;
320 ret
= ttm_bo_reserve(bo
, false, false, false, NULL
);
324 if (drm
->device
.info
.family
>= NV_DEVICE_INFO_V0_TESLA
&&
325 memtype
== TTM_PL_FLAG_VRAM
&& contig
) {
326 if (nvbo
->tile_flags
& NOUVEAU_GEM_TILE_NONCONTIG
) {
327 if (bo
->mem
.mem_type
== TTM_PL_VRAM
) {
328 struct nvkm_mem
*mem
= bo
->mem
.mm_node
;
329 if (!list_is_singular(&mem
->regions
))
332 nvbo
->tile_flags
&= ~NOUVEAU_GEM_TILE_NONCONTIG
;
337 if (nvbo
->pin_refcnt
) {
338 if (!(memtype
& (1 << bo
->mem
.mem_type
)) || evict
) {
339 NV_ERROR(drm
, "bo %p pinned elsewhere: "
340 "0x%08x vs 0x%08x\n", bo
,
341 1 << bo
->mem
.mem_type
, memtype
);
349 nouveau_bo_placement_set(nvbo
, TTM_PL_FLAG_TT
, 0);
350 ret
= nouveau_bo_validate(nvbo
, false, false);
356 nouveau_bo_placement_set(nvbo
, memtype
, 0);
358 /* drop pin_refcnt temporarily, so we don't trip the assertion
359 * in nouveau_bo_move() that makes sure we're not trying to
360 * move a pinned buffer
363 ret
= nouveau_bo_validate(nvbo
, false, false);
368 switch (bo
->mem
.mem_type
) {
370 drm
->gem
.vram_available
-= bo
->mem
.size
;
373 drm
->gem
.gart_available
-= bo
->mem
.size
;
381 nvbo
->tile_flags
|= NOUVEAU_GEM_TILE_NONCONTIG
;
382 ttm_bo_unreserve(bo
);
387 nouveau_bo_unpin(struct nouveau_bo
*nvbo
)
389 struct nouveau_drm
*drm
= nouveau_bdev(nvbo
->bo
.bdev
);
390 struct ttm_buffer_object
*bo
= &nvbo
->bo
;
393 ret
= ttm_bo_reserve(bo
, false, false, false, NULL
);
397 ref
= --nvbo
->pin_refcnt
;
398 WARN_ON_ONCE(ref
< 0);
402 nouveau_bo_placement_set(nvbo
, bo
->mem
.placement
, 0);
404 ret
= nouveau_bo_validate(nvbo
, false, false);
406 switch (bo
->mem
.mem_type
) {
408 drm
->gem
.vram_available
+= bo
->mem
.size
;
411 drm
->gem
.gart_available
+= bo
->mem
.size
;
419 ttm_bo_unreserve(bo
);
424 nouveau_bo_map(struct nouveau_bo
*nvbo
)
428 ret
= ttm_bo_reserve(&nvbo
->bo
, false, false, false, NULL
);
433 * TTM buffers allocated using the DMA API already have a mapping, let's
436 if (!nvbo
->force_coherent
)
437 ret
= ttm_bo_kmap(&nvbo
->bo
, 0, nvbo
->bo
.mem
.num_pages
,
440 ttm_bo_unreserve(&nvbo
->bo
);
445 nouveau_bo_unmap(struct nouveau_bo
*nvbo
)
451 * TTM buffers allocated using the DMA API already had a coherent
452 * mapping which we used, no need to unmap.
454 if (!nvbo
->force_coherent
)
455 ttm_bo_kunmap(&nvbo
->kmap
);
459 nouveau_bo_sync_for_device(struct nouveau_bo
*nvbo
)
461 struct nouveau_drm
*drm
= nouveau_bdev(nvbo
->bo
.bdev
);
462 struct nvkm_device
*device
= nvxx_device(&drm
->device
);
463 struct ttm_dma_tt
*ttm_dma
= (struct ttm_dma_tt
*)nvbo
->bo
.ttm
;
469 /* Don't waste time looping if the object is coherent */
470 if (nvbo
->force_coherent
)
473 for (i
= 0; i
< ttm_dma
->ttm
.num_pages
; i
++)
474 dma_sync_single_for_device(nv_device_base(device
),
475 ttm_dma
->dma_address
[i
], PAGE_SIZE
, DMA_TO_DEVICE
);
479 nouveau_bo_sync_for_cpu(struct nouveau_bo
*nvbo
)
481 struct nouveau_drm
*drm
= nouveau_bdev(nvbo
->bo
.bdev
);
482 struct nvkm_device
*device
= nvxx_device(&drm
->device
);
483 struct ttm_dma_tt
*ttm_dma
= (struct ttm_dma_tt
*)nvbo
->bo
.ttm
;
489 /* Don't waste time looping if the object is coherent */
490 if (nvbo
->force_coherent
)
493 for (i
= 0; i
< ttm_dma
->ttm
.num_pages
; i
++)
494 dma_sync_single_for_cpu(nv_device_base(device
),
495 ttm_dma
->dma_address
[i
], PAGE_SIZE
, DMA_FROM_DEVICE
);
499 nouveau_bo_validate(struct nouveau_bo
*nvbo
, bool interruptible
,
504 ret
= ttm_bo_validate(&nvbo
->bo
, &nvbo
->placement
,
505 interruptible
, no_wait_gpu
);
509 nouveau_bo_sync_for_device(nvbo
);
515 _nouveau_bo_mem_index(struct nouveau_bo
*nvbo
, unsigned index
, void *mem
, u8 sz
)
517 struct ttm_dma_tt
*dma_tt
;
523 /* kmap'd address, return the corresponding offset */
526 /* DMA-API mapping, lookup the right address */
527 dma_tt
= (struct ttm_dma_tt
*)nvbo
->bo
.ttm
;
528 m
= dma_tt
->cpu_address
[index
/ PAGE_SIZE
];
529 m
+= index
% PAGE_SIZE
;
534 #define nouveau_bo_mem_index(o, i, m) _nouveau_bo_mem_index(o, i, m, sizeof(*m))
537 nouveau_bo_wr16(struct nouveau_bo
*nvbo
, unsigned index
, u16 val
)
540 u16
*mem
= ttm_kmap_obj_virtual(&nvbo
->kmap
, &is_iomem
);
542 mem
= nouveau_bo_mem_index(nvbo
, index
, mem
);
545 iowrite16_native(val
, (void __force __iomem
*)mem
);
551 nouveau_bo_rd32(struct nouveau_bo
*nvbo
, unsigned index
)
554 u32
*mem
= ttm_kmap_obj_virtual(&nvbo
->kmap
, &is_iomem
);
556 mem
= nouveau_bo_mem_index(nvbo
, index
, mem
);
559 return ioread32_native((void __force __iomem
*)mem
);
565 nouveau_bo_wr32(struct nouveau_bo
*nvbo
, unsigned index
, u32 val
)
568 u32
*mem
= ttm_kmap_obj_virtual(&nvbo
->kmap
, &is_iomem
);
570 mem
= nouveau_bo_mem_index(nvbo
, index
, mem
);
573 iowrite32_native(val
, (void __force __iomem
*)mem
);
578 static struct ttm_tt
*
579 nouveau_ttm_tt_create(struct ttm_bo_device
*bdev
, unsigned long size
,
580 uint32_t page_flags
, struct page
*dummy_read
)
583 struct nouveau_drm
*drm
= nouveau_bdev(bdev
);
584 struct drm_device
*dev
= drm
->dev
;
586 if (drm
->agp
.stat
== ENABLED
) {
587 return ttm_agp_tt_create(bdev
, dev
->agp
->bridge
, size
,
588 page_flags
, dummy_read
);
592 return nouveau_sgdma_create_ttm(bdev
, size
, page_flags
, dummy_read
);
596 nouveau_bo_invalidate_caches(struct ttm_bo_device
*bdev
, uint32_t flags
)
598 /* We'll do this from user space. */
603 nouveau_bo_init_mem_type(struct ttm_bo_device
*bdev
, uint32_t type
,
604 struct ttm_mem_type_manager
*man
)
606 struct nouveau_drm
*drm
= nouveau_bdev(bdev
);
610 man
->flags
= TTM_MEMTYPE_FLAG_MAPPABLE
;
611 man
->available_caching
= TTM_PL_MASK_CACHING
;
612 man
->default_caching
= TTM_PL_FLAG_CACHED
;
615 man
->flags
= TTM_MEMTYPE_FLAG_FIXED
|
616 TTM_MEMTYPE_FLAG_MAPPABLE
;
617 man
->available_caching
= TTM_PL_FLAG_UNCACHED
|
619 man
->default_caching
= TTM_PL_FLAG_WC
;
621 if (drm
->device
.info
.family
>= NV_DEVICE_INFO_V0_TESLA
) {
622 /* Some BARs do not support being ioremapped WC */
623 if (nvxx_bar(&drm
->device
)->iomap_uncached
) {
624 man
->available_caching
= TTM_PL_FLAG_UNCACHED
;
625 man
->default_caching
= TTM_PL_FLAG_UNCACHED
;
628 man
->func
= &nouveau_vram_manager
;
629 man
->io_reserve_fastpath
= false;
630 man
->use_io_reserve_lru
= true;
632 man
->func
= &ttm_bo_manager_func
;
636 if (drm
->device
.info
.family
>= NV_DEVICE_INFO_V0_TESLA
)
637 man
->func
= &nouveau_gart_manager
;
639 if (drm
->agp
.stat
!= ENABLED
)
640 man
->func
= &nv04_gart_manager
;
642 man
->func
= &ttm_bo_manager_func
;
644 if (drm
->agp
.stat
== ENABLED
) {
645 man
->flags
= TTM_MEMTYPE_FLAG_MAPPABLE
;
646 man
->available_caching
= TTM_PL_FLAG_UNCACHED
|
648 man
->default_caching
= TTM_PL_FLAG_WC
;
650 man
->flags
= TTM_MEMTYPE_FLAG_MAPPABLE
|
651 TTM_MEMTYPE_FLAG_CMA
;
652 man
->available_caching
= TTM_PL_MASK_CACHING
;
653 man
->default_caching
= TTM_PL_FLAG_CACHED
;
664 nouveau_bo_evict_flags(struct ttm_buffer_object
*bo
, struct ttm_placement
*pl
)
666 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
668 switch (bo
->mem
.mem_type
) {
670 nouveau_bo_placement_set(nvbo
, TTM_PL_FLAG_TT
,
674 nouveau_bo_placement_set(nvbo
, TTM_PL_FLAG_SYSTEM
, 0);
678 *pl
= nvbo
->placement
;
683 nve0_bo_move_init(struct nouveau_channel
*chan
, u32 handle
)
685 int ret
= RING_SPACE(chan
, 2);
687 BEGIN_NVC0(chan
, NvSubCopy
, 0x0000, 1);
688 OUT_RING (chan
, handle
& 0x0000ffff);
695 nve0_bo_move_copy(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
696 struct ttm_mem_reg
*old_mem
, struct ttm_mem_reg
*new_mem
)
698 struct nvkm_mem
*node
= old_mem
->mm_node
;
699 int ret
= RING_SPACE(chan
, 10);
701 BEGIN_NVC0(chan
, NvSubCopy
, 0x0400, 8);
702 OUT_RING (chan
, upper_32_bits(node
->vma
[0].offset
));
703 OUT_RING (chan
, lower_32_bits(node
->vma
[0].offset
));
704 OUT_RING (chan
, upper_32_bits(node
->vma
[1].offset
));
705 OUT_RING (chan
, lower_32_bits(node
->vma
[1].offset
));
706 OUT_RING (chan
, PAGE_SIZE
);
707 OUT_RING (chan
, PAGE_SIZE
);
708 OUT_RING (chan
, PAGE_SIZE
);
709 OUT_RING (chan
, new_mem
->num_pages
);
710 BEGIN_IMC0(chan
, NvSubCopy
, 0x0300, 0x0386);
716 nvc0_bo_move_init(struct nouveau_channel
*chan
, u32 handle
)
718 int ret
= RING_SPACE(chan
, 2);
720 BEGIN_NVC0(chan
, NvSubCopy
, 0x0000, 1);
721 OUT_RING (chan
, handle
);
727 nvc0_bo_move_copy(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
728 struct ttm_mem_reg
*old_mem
, struct ttm_mem_reg
*new_mem
)
730 struct nvkm_mem
*node
= old_mem
->mm_node
;
731 u64 src_offset
= node
->vma
[0].offset
;
732 u64 dst_offset
= node
->vma
[1].offset
;
733 u32 page_count
= new_mem
->num_pages
;
736 page_count
= new_mem
->num_pages
;
738 int line_count
= (page_count
> 8191) ? 8191 : page_count
;
740 ret
= RING_SPACE(chan
, 11);
744 BEGIN_NVC0(chan
, NvSubCopy
, 0x030c, 8);
745 OUT_RING (chan
, upper_32_bits(src_offset
));
746 OUT_RING (chan
, lower_32_bits(src_offset
));
747 OUT_RING (chan
, upper_32_bits(dst_offset
));
748 OUT_RING (chan
, lower_32_bits(dst_offset
));
749 OUT_RING (chan
, PAGE_SIZE
);
750 OUT_RING (chan
, PAGE_SIZE
);
751 OUT_RING (chan
, PAGE_SIZE
);
752 OUT_RING (chan
, line_count
);
753 BEGIN_NVC0(chan
, NvSubCopy
, 0x0300, 1);
754 OUT_RING (chan
, 0x00000110);
756 page_count
-= line_count
;
757 src_offset
+= (PAGE_SIZE
* line_count
);
758 dst_offset
+= (PAGE_SIZE
* line_count
);
765 nvc0_bo_move_m2mf(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
766 struct ttm_mem_reg
*old_mem
, struct ttm_mem_reg
*new_mem
)
768 struct nvkm_mem
*node
= old_mem
->mm_node
;
769 u64 src_offset
= node
->vma
[0].offset
;
770 u64 dst_offset
= node
->vma
[1].offset
;
771 u32 page_count
= new_mem
->num_pages
;
774 page_count
= new_mem
->num_pages
;
776 int line_count
= (page_count
> 2047) ? 2047 : page_count
;
778 ret
= RING_SPACE(chan
, 12);
782 BEGIN_NVC0(chan
, NvSubCopy
, 0x0238, 2);
783 OUT_RING (chan
, upper_32_bits(dst_offset
));
784 OUT_RING (chan
, lower_32_bits(dst_offset
));
785 BEGIN_NVC0(chan
, NvSubCopy
, 0x030c, 6);
786 OUT_RING (chan
, upper_32_bits(src_offset
));
787 OUT_RING (chan
, lower_32_bits(src_offset
));
788 OUT_RING (chan
, PAGE_SIZE
); /* src_pitch */
789 OUT_RING (chan
, PAGE_SIZE
); /* dst_pitch */
790 OUT_RING (chan
, PAGE_SIZE
); /* line_length */
791 OUT_RING (chan
, line_count
);
792 BEGIN_NVC0(chan
, NvSubCopy
, 0x0300, 1);
793 OUT_RING (chan
, 0x00100110);
795 page_count
-= line_count
;
796 src_offset
+= (PAGE_SIZE
* line_count
);
797 dst_offset
+= (PAGE_SIZE
* line_count
);
804 nva3_bo_move_copy(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
805 struct ttm_mem_reg
*old_mem
, struct ttm_mem_reg
*new_mem
)
807 struct nvkm_mem
*node
= old_mem
->mm_node
;
808 u64 src_offset
= node
->vma
[0].offset
;
809 u64 dst_offset
= node
->vma
[1].offset
;
810 u32 page_count
= new_mem
->num_pages
;
813 page_count
= new_mem
->num_pages
;
815 int line_count
= (page_count
> 8191) ? 8191 : page_count
;
817 ret
= RING_SPACE(chan
, 11);
821 BEGIN_NV04(chan
, NvSubCopy
, 0x030c, 8);
822 OUT_RING (chan
, upper_32_bits(src_offset
));
823 OUT_RING (chan
, lower_32_bits(src_offset
));
824 OUT_RING (chan
, upper_32_bits(dst_offset
));
825 OUT_RING (chan
, lower_32_bits(dst_offset
));
826 OUT_RING (chan
, PAGE_SIZE
);
827 OUT_RING (chan
, PAGE_SIZE
);
828 OUT_RING (chan
, PAGE_SIZE
);
829 OUT_RING (chan
, line_count
);
830 BEGIN_NV04(chan
, NvSubCopy
, 0x0300, 1);
831 OUT_RING (chan
, 0x00000110);
833 page_count
-= line_count
;
834 src_offset
+= (PAGE_SIZE
* line_count
);
835 dst_offset
+= (PAGE_SIZE
* line_count
);
842 nv98_bo_move_exec(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
843 struct ttm_mem_reg
*old_mem
, struct ttm_mem_reg
*new_mem
)
845 struct nvkm_mem
*node
= old_mem
->mm_node
;
846 int ret
= RING_SPACE(chan
, 7);
848 BEGIN_NV04(chan
, NvSubCopy
, 0x0320, 6);
849 OUT_RING (chan
, upper_32_bits(node
->vma
[0].offset
));
850 OUT_RING (chan
, lower_32_bits(node
->vma
[0].offset
));
851 OUT_RING (chan
, upper_32_bits(node
->vma
[1].offset
));
852 OUT_RING (chan
, lower_32_bits(node
->vma
[1].offset
));
853 OUT_RING (chan
, 0x00000000 /* COPY */);
854 OUT_RING (chan
, new_mem
->num_pages
<< PAGE_SHIFT
);
860 nv84_bo_move_exec(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
861 struct ttm_mem_reg
*old_mem
, struct ttm_mem_reg
*new_mem
)
863 struct nvkm_mem
*node
= old_mem
->mm_node
;
864 int ret
= RING_SPACE(chan
, 7);
866 BEGIN_NV04(chan
, NvSubCopy
, 0x0304, 6);
867 OUT_RING (chan
, new_mem
->num_pages
<< PAGE_SHIFT
);
868 OUT_RING (chan
, upper_32_bits(node
->vma
[0].offset
));
869 OUT_RING (chan
, lower_32_bits(node
->vma
[0].offset
));
870 OUT_RING (chan
, upper_32_bits(node
->vma
[1].offset
));
871 OUT_RING (chan
, lower_32_bits(node
->vma
[1].offset
));
872 OUT_RING (chan
, 0x00000000 /* MODE_COPY, QUERY_NONE */);
878 nv50_bo_move_init(struct nouveau_channel
*chan
, u32 handle
)
880 int ret
= RING_SPACE(chan
, 6);
882 BEGIN_NV04(chan
, NvSubCopy
, 0x0000, 1);
883 OUT_RING (chan
, handle
);
884 BEGIN_NV04(chan
, NvSubCopy
, 0x0180, 3);
885 OUT_RING (chan
, chan
->drm
->ntfy
.handle
);
886 OUT_RING (chan
, chan
->vram
.handle
);
887 OUT_RING (chan
, chan
->vram
.handle
);
894 nv50_bo_move_m2mf(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
895 struct ttm_mem_reg
*old_mem
, struct ttm_mem_reg
*new_mem
)
897 struct nvkm_mem
*node
= old_mem
->mm_node
;
898 u64 length
= (new_mem
->num_pages
<< PAGE_SHIFT
);
899 u64 src_offset
= node
->vma
[0].offset
;
900 u64 dst_offset
= node
->vma
[1].offset
;
901 int src_tiled
= !!node
->memtype
;
902 int dst_tiled
= !!((struct nvkm_mem
*)new_mem
->mm_node
)->memtype
;
906 u32 amount
, stride
, height
;
908 ret
= RING_SPACE(chan
, 18 + 6 * (src_tiled
+ dst_tiled
));
912 amount
= min(length
, (u64
)(4 * 1024 * 1024));
914 height
= amount
/ stride
;
917 BEGIN_NV04(chan
, NvSubCopy
, 0x0200, 7);
920 OUT_RING (chan
, stride
);
921 OUT_RING (chan
, height
);
926 BEGIN_NV04(chan
, NvSubCopy
, 0x0200, 1);
930 BEGIN_NV04(chan
, NvSubCopy
, 0x021c, 7);
933 OUT_RING (chan
, stride
);
934 OUT_RING (chan
, height
);
939 BEGIN_NV04(chan
, NvSubCopy
, 0x021c, 1);
943 BEGIN_NV04(chan
, NvSubCopy
, 0x0238, 2);
944 OUT_RING (chan
, upper_32_bits(src_offset
));
945 OUT_RING (chan
, upper_32_bits(dst_offset
));
946 BEGIN_NV04(chan
, NvSubCopy
, 0x030c, 8);
947 OUT_RING (chan
, lower_32_bits(src_offset
));
948 OUT_RING (chan
, lower_32_bits(dst_offset
));
949 OUT_RING (chan
, stride
);
950 OUT_RING (chan
, stride
);
951 OUT_RING (chan
, stride
);
952 OUT_RING (chan
, height
);
953 OUT_RING (chan
, 0x00000101);
954 OUT_RING (chan
, 0x00000000);
955 BEGIN_NV04(chan
, NvSubCopy
, NV_MEMORY_TO_MEMORY_FORMAT_NOP
, 1);
959 src_offset
+= amount
;
960 dst_offset
+= amount
;
967 nv04_bo_move_init(struct nouveau_channel
*chan
, u32 handle
)
969 int ret
= RING_SPACE(chan
, 4);
971 BEGIN_NV04(chan
, NvSubCopy
, 0x0000, 1);
972 OUT_RING (chan
, handle
);
973 BEGIN_NV04(chan
, NvSubCopy
, 0x0180, 1);
974 OUT_RING (chan
, chan
->drm
->ntfy
.handle
);
980 static inline uint32_t
981 nouveau_bo_mem_ctxdma(struct ttm_buffer_object
*bo
,
982 struct nouveau_channel
*chan
, struct ttm_mem_reg
*mem
)
984 if (mem
->mem_type
== TTM_PL_TT
)
986 return chan
->vram
.handle
;
990 nv04_bo_move_m2mf(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
991 struct ttm_mem_reg
*old_mem
, struct ttm_mem_reg
*new_mem
)
993 u32 src_offset
= old_mem
->start
<< PAGE_SHIFT
;
994 u32 dst_offset
= new_mem
->start
<< PAGE_SHIFT
;
995 u32 page_count
= new_mem
->num_pages
;
998 ret
= RING_SPACE(chan
, 3);
1002 BEGIN_NV04(chan
, NvSubCopy
, NV_MEMORY_TO_MEMORY_FORMAT_DMA_SOURCE
, 2);
1003 OUT_RING (chan
, nouveau_bo_mem_ctxdma(bo
, chan
, old_mem
));
1004 OUT_RING (chan
, nouveau_bo_mem_ctxdma(bo
, chan
, new_mem
));
1006 page_count
= new_mem
->num_pages
;
1007 while (page_count
) {
1008 int line_count
= (page_count
> 2047) ? 2047 : page_count
;
1010 ret
= RING_SPACE(chan
, 11);
1014 BEGIN_NV04(chan
, NvSubCopy
,
1015 NV_MEMORY_TO_MEMORY_FORMAT_OFFSET_IN
, 8);
1016 OUT_RING (chan
, src_offset
);
1017 OUT_RING (chan
, dst_offset
);
1018 OUT_RING (chan
, PAGE_SIZE
); /* src_pitch */
1019 OUT_RING (chan
, PAGE_SIZE
); /* dst_pitch */
1020 OUT_RING (chan
, PAGE_SIZE
); /* line_length */
1021 OUT_RING (chan
, line_count
);
1022 OUT_RING (chan
, 0x00000101);
1023 OUT_RING (chan
, 0x00000000);
1024 BEGIN_NV04(chan
, NvSubCopy
, NV_MEMORY_TO_MEMORY_FORMAT_NOP
, 1);
1027 page_count
-= line_count
;
1028 src_offset
+= (PAGE_SIZE
* line_count
);
1029 dst_offset
+= (PAGE_SIZE
* line_count
);
1036 nouveau_bo_move_prep(struct nouveau_drm
*drm
, struct ttm_buffer_object
*bo
,
1037 struct ttm_mem_reg
*mem
)
1039 struct nvkm_mem
*old_node
= bo
->mem
.mm_node
;
1040 struct nvkm_mem
*new_node
= mem
->mm_node
;
1041 u64 size
= (u64
)mem
->num_pages
<< PAGE_SHIFT
;
1044 ret
= nvkm_vm_get(drm
->client
.vm
, size
, old_node
->page_shift
,
1045 NV_MEM_ACCESS_RW
, &old_node
->vma
[0]);
1049 ret
= nvkm_vm_get(drm
->client
.vm
, size
, new_node
->page_shift
,
1050 NV_MEM_ACCESS_RW
, &old_node
->vma
[1]);
1052 nvkm_vm_put(&old_node
->vma
[0]);
1056 nvkm_vm_map(&old_node
->vma
[0], old_node
);
1057 nvkm_vm_map(&old_node
->vma
[1], new_node
);
1062 nouveau_bo_move_m2mf(struct ttm_buffer_object
*bo
, int evict
, bool intr
,
1063 bool no_wait_gpu
, struct ttm_mem_reg
*new_mem
)
1065 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
1066 struct nouveau_channel
*chan
= drm
->ttm
.chan
;
1067 struct nouveau_cli
*cli
= (void *)nvif_client(&chan
->device
->base
);
1068 struct nouveau_fence
*fence
;
1071 /* create temporary vmas for the transfer and attach them to the
1072 * old nvkm_mem node, these will get cleaned up after ttm has
1073 * destroyed the ttm_mem_reg
1075 if (drm
->device
.info
.family
>= NV_DEVICE_INFO_V0_TESLA
) {
1076 ret
= nouveau_bo_move_prep(drm
, bo
, new_mem
);
1081 mutex_lock_nested(&cli
->mutex
, SINGLE_DEPTH_NESTING
);
1082 ret
= nouveau_fence_sync(nouveau_bo(bo
), chan
, true, intr
);
1084 ret
= drm
->ttm
.move(chan
, bo
, &bo
->mem
, new_mem
);
1086 ret
= nouveau_fence_new(chan
, false, &fence
);
1088 ret
= ttm_bo_move_accel_cleanup(bo
,
1093 nouveau_fence_unref(&fence
);
1097 mutex_unlock(&cli
->mutex
);
1102 nouveau_bo_move_init(struct nouveau_drm
*drm
)
1104 static const struct {
1108 int (*exec
)(struct nouveau_channel
*,
1109 struct ttm_buffer_object
*,
1110 struct ttm_mem_reg
*, struct ttm_mem_reg
*);
1111 int (*init
)(struct nouveau_channel
*, u32 handle
);
1113 { "COPY", 4, 0xb0b5, nve0_bo_move_copy
, nve0_bo_move_init
},
1114 { "GRCE", 0, 0xb0b5, nve0_bo_move_copy
, nvc0_bo_move_init
},
1115 { "COPY", 4, 0xa0b5, nve0_bo_move_copy
, nve0_bo_move_init
},
1116 { "GRCE", 0, 0xa0b5, nve0_bo_move_copy
, nvc0_bo_move_init
},
1117 { "COPY1", 5, 0x90b8, nvc0_bo_move_copy
, nvc0_bo_move_init
},
1118 { "COPY0", 4, 0x90b5, nvc0_bo_move_copy
, nvc0_bo_move_init
},
1119 { "COPY", 0, 0x85b5, nva3_bo_move_copy
, nv50_bo_move_init
},
1120 { "CRYPT", 0, 0x74c1, nv84_bo_move_exec
, nv50_bo_move_init
},
1121 { "M2MF", 0, 0x9039, nvc0_bo_move_m2mf
, nvc0_bo_move_init
},
1122 { "M2MF", 0, 0x5039, nv50_bo_move_m2mf
, nv50_bo_move_init
},
1123 { "M2MF", 0, 0x0039, nv04_bo_move_m2mf
, nv04_bo_move_init
},
1125 { "CRYPT", 0, 0x88b4, nv98_bo_move_exec
, nv50_bo_move_init
},
1126 }, *mthd
= _methods
;
1127 const char *name
= "CPU";
1131 struct nouveau_channel
*chan
;
1136 chan
= drm
->channel
;
1140 ret
= nvif_object_init(chan
->object
, NULL
,
1141 mthd
->oclass
| (mthd
->engine
<< 16),
1142 mthd
->oclass
, NULL
, 0,
1145 ret
= mthd
->init(chan
, drm
->ttm
.copy
.handle
);
1147 nvif_object_fini(&drm
->ttm
.copy
);
1151 drm
->ttm
.move
= mthd
->exec
;
1152 drm
->ttm
.chan
= chan
;
1156 } while ((++mthd
)->exec
);
1158 NV_INFO(drm
, "MM: using %s for buffer copies\n", name
);
1162 nouveau_bo_move_flipd(struct ttm_buffer_object
*bo
, bool evict
, bool intr
,
1163 bool no_wait_gpu
, struct ttm_mem_reg
*new_mem
)
1165 struct ttm_place placement_memtype
= {
1168 .flags
= TTM_PL_FLAG_TT
| TTM_PL_MASK_CACHING
1170 struct ttm_placement placement
;
1171 struct ttm_mem_reg tmp_mem
;
1174 placement
.num_placement
= placement
.num_busy_placement
= 1;
1175 placement
.placement
= placement
.busy_placement
= &placement_memtype
;
1178 tmp_mem
.mm_node
= NULL
;
1179 ret
= ttm_bo_mem_space(bo
, &placement
, &tmp_mem
, intr
, no_wait_gpu
);
1183 ret
= ttm_tt_bind(bo
->ttm
, &tmp_mem
);
1187 ret
= nouveau_bo_move_m2mf(bo
, true, intr
, no_wait_gpu
, &tmp_mem
);
1191 ret
= ttm_bo_move_ttm(bo
, true, no_wait_gpu
, new_mem
);
1193 ttm_bo_mem_put(bo
, &tmp_mem
);
1198 nouveau_bo_move_flips(struct ttm_buffer_object
*bo
, bool evict
, bool intr
,
1199 bool no_wait_gpu
, struct ttm_mem_reg
*new_mem
)
1201 struct ttm_place placement_memtype
= {
1204 .flags
= TTM_PL_FLAG_TT
| TTM_PL_MASK_CACHING
1206 struct ttm_placement placement
;
1207 struct ttm_mem_reg tmp_mem
;
1210 placement
.num_placement
= placement
.num_busy_placement
= 1;
1211 placement
.placement
= placement
.busy_placement
= &placement_memtype
;
1214 tmp_mem
.mm_node
= NULL
;
1215 ret
= ttm_bo_mem_space(bo
, &placement
, &tmp_mem
, intr
, no_wait_gpu
);
1219 ret
= ttm_bo_move_ttm(bo
, true, no_wait_gpu
, &tmp_mem
);
1223 ret
= nouveau_bo_move_m2mf(bo
, true, intr
, no_wait_gpu
, new_mem
);
1228 ttm_bo_mem_put(bo
, &tmp_mem
);
1233 nouveau_bo_move_ntfy(struct ttm_buffer_object
*bo
, struct ttm_mem_reg
*new_mem
)
1235 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
1236 struct nvkm_vma
*vma
;
1238 /* ttm can now (stupidly) pass the driver bos it didn't create... */
1239 if (bo
->destroy
!= nouveau_bo_del_ttm
)
1242 list_for_each_entry(vma
, &nvbo
->vma_list
, head
) {
1243 if (new_mem
&& new_mem
->mem_type
!= TTM_PL_SYSTEM
&&
1244 (new_mem
->mem_type
== TTM_PL_VRAM
||
1245 nvbo
->page_shift
!= vma
->vm
->mmu
->lpg_shift
)) {
1246 nvkm_vm_map(vma
, new_mem
->mm_node
);
1254 nouveau_bo_vm_bind(struct ttm_buffer_object
*bo
, struct ttm_mem_reg
*new_mem
,
1255 struct nouveau_drm_tile
**new_tile
)
1257 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
1258 struct drm_device
*dev
= drm
->dev
;
1259 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
1260 u64 offset
= new_mem
->start
<< PAGE_SHIFT
;
1263 if (new_mem
->mem_type
!= TTM_PL_VRAM
)
1266 if (drm
->device
.info
.family
>= NV_DEVICE_INFO_V0_CELSIUS
) {
1267 *new_tile
= nv10_bo_set_tiling(dev
, offset
, new_mem
->size
,
1276 nouveau_bo_vm_cleanup(struct ttm_buffer_object
*bo
,
1277 struct nouveau_drm_tile
*new_tile
,
1278 struct nouveau_drm_tile
**old_tile
)
1280 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
1281 struct drm_device
*dev
= drm
->dev
;
1282 struct fence
*fence
= reservation_object_get_excl(bo
->resv
);
1284 nv10_bo_put_tile_region(dev
, *old_tile
, fence
);
1285 *old_tile
= new_tile
;
1289 nouveau_bo_move(struct ttm_buffer_object
*bo
, bool evict
, bool intr
,
1290 bool no_wait_gpu
, struct ttm_mem_reg
*new_mem
)
1292 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
1293 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
1294 struct ttm_mem_reg
*old_mem
= &bo
->mem
;
1295 struct nouveau_drm_tile
*new_tile
= NULL
;
1298 if (nvbo
->pin_refcnt
)
1299 NV_WARN(drm
, "Moving pinned object %p!\n", nvbo
);
1301 if (drm
->device
.info
.family
< NV_DEVICE_INFO_V0_TESLA
) {
1302 ret
= nouveau_bo_vm_bind(bo
, new_mem
, &new_tile
);
1308 if (old_mem
->mem_type
== TTM_PL_SYSTEM
&& !bo
->ttm
) {
1309 BUG_ON(bo
->mem
.mm_node
!= NULL
);
1311 new_mem
->mm_node
= NULL
;
1315 /* Hardware assisted copy. */
1316 if (drm
->ttm
.move
) {
1317 if (new_mem
->mem_type
== TTM_PL_SYSTEM
)
1318 ret
= nouveau_bo_move_flipd(bo
, evict
, intr
,
1319 no_wait_gpu
, new_mem
);
1320 else if (old_mem
->mem_type
== TTM_PL_SYSTEM
)
1321 ret
= nouveau_bo_move_flips(bo
, evict
, intr
,
1322 no_wait_gpu
, new_mem
);
1324 ret
= nouveau_bo_move_m2mf(bo
, evict
, intr
,
1325 no_wait_gpu
, new_mem
);
1330 /* Fallback to software copy. */
1331 ret
= ttm_bo_wait(bo
, true, intr
, no_wait_gpu
);
1333 ret
= ttm_bo_move_memcpy(bo
, evict
, no_wait_gpu
, new_mem
);
1336 if (drm
->device
.info
.family
< NV_DEVICE_INFO_V0_TESLA
) {
1338 nouveau_bo_vm_cleanup(bo
, NULL
, &new_tile
);
1340 nouveau_bo_vm_cleanup(bo
, new_tile
, &nvbo
->tile
);
1347 nouveau_bo_verify_access(struct ttm_buffer_object
*bo
, struct file
*filp
)
1349 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
1351 return drm_vma_node_verify_access(&nvbo
->gem
.vma_node
, filp
);
1355 nouveau_ttm_io_mem_reserve(struct ttm_bo_device
*bdev
, struct ttm_mem_reg
*mem
)
1357 struct ttm_mem_type_manager
*man
= &bdev
->man
[mem
->mem_type
];
1358 struct nouveau_drm
*drm
= nouveau_bdev(bdev
);
1359 struct nvkm_mem
*node
= mem
->mm_node
;
1362 mem
->bus
.addr
= NULL
;
1363 mem
->bus
.offset
= 0;
1364 mem
->bus
.size
= mem
->num_pages
<< PAGE_SHIFT
;
1366 mem
->bus
.is_iomem
= false;
1367 if (!(man
->flags
& TTM_MEMTYPE_FLAG_MAPPABLE
))
1369 switch (mem
->mem_type
) {
1375 if (drm
->agp
.stat
== ENABLED
) {
1376 mem
->bus
.offset
= mem
->start
<< PAGE_SHIFT
;
1377 mem
->bus
.base
= drm
->agp
.base
;
1378 mem
->bus
.is_iomem
= !drm
->dev
->agp
->cant_use_aperture
;
1381 if (drm
->device
.info
.family
< NV_DEVICE_INFO_V0_TESLA
|| !node
->memtype
)
1384 /* fallthrough, tiled memory */
1386 mem
->bus
.offset
= mem
->start
<< PAGE_SHIFT
;
1387 mem
->bus
.base
= nv_device_resource_start(nvxx_device(&drm
->device
), 1);
1388 mem
->bus
.is_iomem
= true;
1389 if (drm
->device
.info
.family
>= NV_DEVICE_INFO_V0_TESLA
) {
1390 struct nvkm_bar
*bar
= nvxx_bar(&drm
->device
);
1392 ret
= bar
->umap(bar
, node
, NV_MEM_ACCESS_RW
,
1397 mem
->bus
.offset
= node
->bar_vma
.offset
;
1407 nouveau_ttm_io_mem_free(struct ttm_bo_device
*bdev
, struct ttm_mem_reg
*mem
)
1409 struct nouveau_drm
*drm
= nouveau_bdev(bdev
);
1410 struct nvkm_bar
*bar
= nvxx_bar(&drm
->device
);
1411 struct nvkm_mem
*node
= mem
->mm_node
;
1413 if (!node
->bar_vma
.node
)
1416 bar
->unmap(bar
, &node
->bar_vma
);
1420 nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object
*bo
)
1422 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
1423 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
1424 struct nvif_device
*device
= &drm
->device
;
1425 u32 mappable
= nv_device_resource_len(nvxx_device(device
), 1) >> PAGE_SHIFT
;
1428 /* as long as the bo isn't in vram, and isn't tiled, we've got
1429 * nothing to do here.
1431 if (bo
->mem
.mem_type
!= TTM_PL_VRAM
) {
1432 if (drm
->device
.info
.family
< NV_DEVICE_INFO_V0_TESLA
||
1433 !nouveau_bo_tile_layout(nvbo
))
1436 if (bo
->mem
.mem_type
== TTM_PL_SYSTEM
) {
1437 nouveau_bo_placement_set(nvbo
, TTM_PL_TT
, 0);
1439 ret
= nouveau_bo_validate(nvbo
, false, false);
1446 /* make sure bo is in mappable vram */
1447 if (drm
->device
.info
.family
>= NV_DEVICE_INFO_V0_TESLA
||
1448 bo
->mem
.start
+ bo
->mem
.num_pages
< mappable
)
1451 for (i
= 0; i
< nvbo
->placement
.num_placement
; ++i
) {
1452 nvbo
->placements
[i
].fpfn
= 0;
1453 nvbo
->placements
[i
].lpfn
= mappable
;
1456 for (i
= 0; i
< nvbo
->placement
.num_busy_placement
; ++i
) {
1457 nvbo
->busy_placements
[i
].fpfn
= 0;
1458 nvbo
->busy_placements
[i
].lpfn
= mappable
;
1461 nouveau_bo_placement_set(nvbo
, TTM_PL_FLAG_VRAM
, 0);
1462 return nouveau_bo_validate(nvbo
, false, false);
1466 nouveau_ttm_tt_populate(struct ttm_tt
*ttm
)
1468 struct ttm_dma_tt
*ttm_dma
= (void *)ttm
;
1469 struct nouveau_drm
*drm
;
1470 struct nvkm_device
*device
;
1471 struct drm_device
*dev
;
1472 struct device
*pdev
;
1475 bool slave
= !!(ttm
->page_flags
& TTM_PAGE_FLAG_SG
);
1477 if (ttm
->state
!= tt_unpopulated
)
1480 if (slave
&& ttm
->sg
) {
1481 /* make userspace faulting work */
1482 drm_prime_sg_to_page_addr_arrays(ttm
->sg
, ttm
->pages
,
1483 ttm_dma
->dma_address
, ttm
->num_pages
);
1484 ttm
->state
= tt_unbound
;
1488 drm
= nouveau_bdev(ttm
->bdev
);
1489 device
= nvxx_device(&drm
->device
);
1491 pdev
= nv_device_base(device
);
1494 * Objects matching this condition have been marked as force_coherent,
1495 * so use the DMA API for them.
1497 if (!nv_device_is_cpu_coherent(device
) &&
1498 ttm
->caching_state
== tt_uncached
)
1499 return ttm_dma_populate(ttm_dma
, dev
->dev
);
1502 if (drm
->agp
.stat
== ENABLED
) {
1503 return ttm_agp_tt_populate(ttm
);
1507 #ifdef CONFIG_SWIOTLB
1508 if (swiotlb_nr_tbl()) {
1509 return ttm_dma_populate((void *)ttm
, dev
->dev
);
1513 r
= ttm_pool_populate(ttm
);
1518 for (i
= 0; i
< ttm
->num_pages
; i
++) {
1521 addr
= dma_map_page(pdev
, ttm
->pages
[i
], 0, PAGE_SIZE
,
1524 if (dma_mapping_error(pdev
, addr
)) {
1526 dma_unmap_page(pdev
, ttm_dma
->dma_address
[i
],
1527 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
1528 ttm_dma
->dma_address
[i
] = 0;
1530 ttm_pool_unpopulate(ttm
);
1534 ttm_dma
->dma_address
[i
] = addr
;
1540 nouveau_ttm_tt_unpopulate(struct ttm_tt
*ttm
)
1542 struct ttm_dma_tt
*ttm_dma
= (void *)ttm
;
1543 struct nouveau_drm
*drm
;
1544 struct nvkm_device
*device
;
1545 struct drm_device
*dev
;
1546 struct device
*pdev
;
1548 bool slave
= !!(ttm
->page_flags
& TTM_PAGE_FLAG_SG
);
1553 drm
= nouveau_bdev(ttm
->bdev
);
1554 device
= nvxx_device(&drm
->device
);
1556 pdev
= nv_device_base(device
);
1559 * Objects matching this condition have been marked as force_coherent,
1560 * so use the DMA API for them.
1562 if (!nv_device_is_cpu_coherent(device
) &&
1563 ttm
->caching_state
== tt_uncached
) {
1564 ttm_dma_unpopulate(ttm_dma
, dev
->dev
);
1569 if (drm
->agp
.stat
== ENABLED
) {
1570 ttm_agp_tt_unpopulate(ttm
);
1575 #ifdef CONFIG_SWIOTLB
1576 if (swiotlb_nr_tbl()) {
1577 ttm_dma_unpopulate((void *)ttm
, dev
->dev
);
1582 for (i
= 0; i
< ttm
->num_pages
; i
++) {
1583 if (ttm_dma
->dma_address
[i
]) {
1584 dma_unmap_page(pdev
, ttm_dma
->dma_address
[i
], PAGE_SIZE
,
1589 ttm_pool_unpopulate(ttm
);
1593 nouveau_bo_fence(struct nouveau_bo
*nvbo
, struct nouveau_fence
*fence
, bool exclusive
)
1595 struct reservation_object
*resv
= nvbo
->bo
.resv
;
1598 reservation_object_add_excl_fence(resv
, &fence
->base
);
1600 reservation_object_add_shared_fence(resv
, &fence
->base
);
1603 struct ttm_bo_driver nouveau_bo_driver
= {
1604 .ttm_tt_create
= &nouveau_ttm_tt_create
,
1605 .ttm_tt_populate
= &nouveau_ttm_tt_populate
,
1606 .ttm_tt_unpopulate
= &nouveau_ttm_tt_unpopulate
,
1607 .invalidate_caches
= nouveau_bo_invalidate_caches
,
1608 .init_mem_type
= nouveau_bo_init_mem_type
,
1609 .evict_flags
= nouveau_bo_evict_flags
,
1610 .move_notify
= nouveau_bo_move_ntfy
,
1611 .move
= nouveau_bo_move
,
1612 .verify_access
= nouveau_bo_verify_access
,
1613 .fault_reserve_notify
= &nouveau_ttm_fault_reserve_notify
,
1614 .io_mem_reserve
= &nouveau_ttm_io_mem_reserve
,
1615 .io_mem_free
= &nouveau_ttm_io_mem_free
,
1619 nouveau_bo_vma_find(struct nouveau_bo
*nvbo
, struct nvkm_vm
*vm
)
1621 struct nvkm_vma
*vma
;
1622 list_for_each_entry(vma
, &nvbo
->vma_list
, head
) {
1631 nouveau_bo_vma_add(struct nouveau_bo
*nvbo
, struct nvkm_vm
*vm
,
1632 struct nvkm_vma
*vma
)
1634 const u32 size
= nvbo
->bo
.mem
.num_pages
<< PAGE_SHIFT
;
1637 ret
= nvkm_vm_get(vm
, size
, nvbo
->page_shift
,
1638 NV_MEM_ACCESS_RW
, vma
);
1642 if ( nvbo
->bo
.mem
.mem_type
!= TTM_PL_SYSTEM
&&
1643 (nvbo
->bo
.mem
.mem_type
== TTM_PL_VRAM
||
1644 nvbo
->page_shift
!= vma
->vm
->mmu
->lpg_shift
))
1645 nvkm_vm_map(vma
, nvbo
->bo
.mem
.mm_node
);
1647 list_add_tail(&vma
->head
, &nvbo
->vma_list
);
1653 nouveau_bo_vma_del(struct nouveau_bo
*nvbo
, struct nvkm_vma
*vma
)
1656 if (nvbo
->bo
.mem
.mem_type
!= TTM_PL_SYSTEM
)
1659 list_del(&vma
->head
);