Linux 4.2.1
[linux/fpc-iii.git] / drivers / gpu / drm / tegra / dc.c
bloba287e4fec8653d91e55bb2765e2379984b65bef5
1 /*
2 * Copyright (C) 2012 Avionic Design GmbH
3 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 */
10 #include <linux/clk.h>
11 #include <linux/debugfs.h>
12 #include <linux/iommu.h>
13 #include <linux/reset.h>
15 #include <soc/tegra/pmc.h>
17 #include "dc.h"
18 #include "drm.h"
19 #include "gem.h"
21 #include <drm/drm_atomic.h>
22 #include <drm/drm_atomic_helper.h>
23 #include <drm/drm_plane_helper.h>
25 struct tegra_dc_soc_info {
26 bool supports_border_color;
27 bool supports_interlacing;
28 bool supports_cursor;
29 bool supports_block_linear;
30 unsigned int pitch_align;
31 bool has_powergate;
34 struct tegra_plane {
35 struct drm_plane base;
36 unsigned int index;
39 static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
41 return container_of(plane, struct tegra_plane, base);
44 struct tegra_dc_state {
45 struct drm_crtc_state base;
47 struct clk *clk;
48 unsigned long pclk;
49 unsigned int div;
51 u32 planes;
54 static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
56 if (state)
57 return container_of(state, struct tegra_dc_state, base);
59 return NULL;
62 struct tegra_plane_state {
63 struct drm_plane_state base;
65 struct tegra_bo_tiling tiling;
66 u32 format;
67 u32 swap;
70 static inline struct tegra_plane_state *
71 to_tegra_plane_state(struct drm_plane_state *state)
73 if (state)
74 return container_of(state, struct tegra_plane_state, base);
76 return NULL;
80 * Reads the active copy of a register. This takes the dc->lock spinlock to
81 * prevent races with the VBLANK processing which also needs access to the
82 * active copy of some registers.
84 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
86 unsigned long flags;
87 u32 value;
89 spin_lock_irqsave(&dc->lock, flags);
91 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
92 value = tegra_dc_readl(dc, offset);
93 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
95 spin_unlock_irqrestore(&dc->lock, flags);
96 return value;
100 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
101 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
102 * Latching happens mmediately if the display controller is in STOP mode or
103 * on the next frame boundary otherwise.
105 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
106 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
107 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
108 * into the ACTIVE copy, either immediately if the display controller is in
109 * STOP mode, or at the next frame boundary otherwise.
111 void tegra_dc_commit(struct tegra_dc *dc)
113 tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
114 tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
117 static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
119 /* assume no swapping of fetched data */
120 if (swap)
121 *swap = BYTE_SWAP_NOSWAP;
123 switch (fourcc) {
124 case DRM_FORMAT_XBGR8888:
125 *format = WIN_COLOR_DEPTH_R8G8B8A8;
126 break;
128 case DRM_FORMAT_XRGB8888:
129 *format = WIN_COLOR_DEPTH_B8G8R8A8;
130 break;
132 case DRM_FORMAT_RGB565:
133 *format = WIN_COLOR_DEPTH_B5G6R5;
134 break;
136 case DRM_FORMAT_UYVY:
137 *format = WIN_COLOR_DEPTH_YCbCr422;
138 break;
140 case DRM_FORMAT_YUYV:
141 if (swap)
142 *swap = BYTE_SWAP_SWAP2;
144 *format = WIN_COLOR_DEPTH_YCbCr422;
145 break;
147 case DRM_FORMAT_YUV420:
148 *format = WIN_COLOR_DEPTH_YCbCr420P;
149 break;
151 case DRM_FORMAT_YUV422:
152 *format = WIN_COLOR_DEPTH_YCbCr422P;
153 break;
155 default:
156 return -EINVAL;
159 return 0;
162 static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
164 switch (format) {
165 case WIN_COLOR_DEPTH_YCbCr422:
166 case WIN_COLOR_DEPTH_YUV422:
167 if (planar)
168 *planar = false;
170 return true;
172 case WIN_COLOR_DEPTH_YCbCr420P:
173 case WIN_COLOR_DEPTH_YUV420P:
174 case WIN_COLOR_DEPTH_YCbCr422P:
175 case WIN_COLOR_DEPTH_YUV422P:
176 case WIN_COLOR_DEPTH_YCbCr422R:
177 case WIN_COLOR_DEPTH_YUV422R:
178 case WIN_COLOR_DEPTH_YCbCr422RA:
179 case WIN_COLOR_DEPTH_YUV422RA:
180 if (planar)
181 *planar = true;
183 return true;
186 if (planar)
187 *planar = false;
189 return false;
192 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
193 unsigned int bpp)
195 fixed20_12 outf = dfixed_init(out);
196 fixed20_12 inf = dfixed_init(in);
197 u32 dda_inc;
198 int max;
200 if (v)
201 max = 15;
202 else {
203 switch (bpp) {
204 case 2:
205 max = 8;
206 break;
208 default:
209 WARN_ON_ONCE(1);
210 /* fallthrough */
211 case 4:
212 max = 4;
213 break;
217 outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
218 inf.full -= dfixed_const(1);
220 dda_inc = dfixed_div(inf, outf);
221 dda_inc = min_t(u32, dda_inc, dfixed_const(max));
223 return dda_inc;
226 static inline u32 compute_initial_dda(unsigned int in)
228 fixed20_12 inf = dfixed_init(in);
229 return dfixed_frac(inf);
232 static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
233 const struct tegra_dc_window *window)
235 unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
236 unsigned long value, flags;
237 bool yuv, planar;
240 * For YUV planar modes, the number of bytes per pixel takes into
241 * account only the luma component and therefore is 1.
243 yuv = tegra_dc_format_is_yuv(window->format, &planar);
244 if (!yuv)
245 bpp = window->bits_per_pixel / 8;
246 else
247 bpp = planar ? 1 : 2;
249 spin_lock_irqsave(&dc->lock, flags);
251 value = WINDOW_A_SELECT << index;
252 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
254 tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
255 tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
257 value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
258 tegra_dc_writel(dc, value, DC_WIN_POSITION);
260 value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
261 tegra_dc_writel(dc, value, DC_WIN_SIZE);
263 h_offset = window->src.x * bpp;
264 v_offset = window->src.y;
265 h_size = window->src.w * bpp;
266 v_size = window->src.h;
268 value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
269 tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
272 * For DDA computations the number of bytes per pixel for YUV planar
273 * modes needs to take into account all Y, U and V components.
275 if (yuv && planar)
276 bpp = 2;
278 h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
279 v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
281 value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
282 tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
284 h_dda = compute_initial_dda(window->src.x);
285 v_dda = compute_initial_dda(window->src.y);
287 tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
288 tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
290 tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
291 tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
293 tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
295 if (yuv && planar) {
296 tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
297 tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
298 value = window->stride[1] << 16 | window->stride[0];
299 tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
300 } else {
301 tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
304 if (window->bottom_up)
305 v_offset += window->src.h - 1;
307 tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
308 tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
310 if (dc->soc->supports_block_linear) {
311 unsigned long height = window->tiling.value;
313 switch (window->tiling.mode) {
314 case TEGRA_BO_TILING_MODE_PITCH:
315 value = DC_WINBUF_SURFACE_KIND_PITCH;
316 break;
318 case TEGRA_BO_TILING_MODE_TILED:
319 value = DC_WINBUF_SURFACE_KIND_TILED;
320 break;
322 case TEGRA_BO_TILING_MODE_BLOCK:
323 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
324 DC_WINBUF_SURFACE_KIND_BLOCK;
325 break;
328 tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
329 } else {
330 switch (window->tiling.mode) {
331 case TEGRA_BO_TILING_MODE_PITCH:
332 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
333 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
334 break;
336 case TEGRA_BO_TILING_MODE_TILED:
337 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
338 DC_WIN_BUFFER_ADDR_MODE_TILE;
339 break;
341 case TEGRA_BO_TILING_MODE_BLOCK:
343 * No need to handle this here because ->atomic_check
344 * will already have filtered it out.
346 break;
349 tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
352 value = WIN_ENABLE;
354 if (yuv) {
355 /* setup default colorspace conversion coefficients */
356 tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
357 tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
358 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
359 tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
360 tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
361 tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
362 tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
363 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
365 value |= CSC_ENABLE;
366 } else if (window->bits_per_pixel < 24) {
367 value |= COLOR_EXPAND;
370 if (window->bottom_up)
371 value |= V_DIRECTION;
373 tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
376 * Disable blending and assume Window A is the bottom-most window,
377 * Window C is the top-most window and Window B is in the middle.
379 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
380 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
382 switch (index) {
383 case 0:
384 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
385 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
386 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
387 break;
389 case 1:
390 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
391 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
392 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
393 break;
395 case 2:
396 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
397 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
398 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
399 break;
402 spin_unlock_irqrestore(&dc->lock, flags);
405 static void tegra_plane_destroy(struct drm_plane *plane)
407 struct tegra_plane *p = to_tegra_plane(plane);
409 drm_plane_cleanup(plane);
410 kfree(p);
413 static const u32 tegra_primary_plane_formats[] = {
414 DRM_FORMAT_XBGR8888,
415 DRM_FORMAT_XRGB8888,
416 DRM_FORMAT_RGB565,
419 static void tegra_primary_plane_destroy(struct drm_plane *plane)
421 tegra_plane_destroy(plane);
424 static void tegra_plane_reset(struct drm_plane *plane)
426 struct tegra_plane_state *state;
428 if (plane->state)
429 __drm_atomic_helper_plane_destroy_state(plane, plane->state);
431 kfree(plane->state);
432 plane->state = NULL;
434 state = kzalloc(sizeof(*state), GFP_KERNEL);
435 if (state) {
436 plane->state = &state->base;
437 plane->state->plane = plane;
441 static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
443 struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
444 struct tegra_plane_state *copy;
446 copy = kmalloc(sizeof(*copy), GFP_KERNEL);
447 if (!copy)
448 return NULL;
450 __drm_atomic_helper_plane_duplicate_state(plane, &copy->base);
451 copy->tiling = state->tiling;
452 copy->format = state->format;
453 copy->swap = state->swap;
455 return &copy->base;
458 static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
459 struct drm_plane_state *state)
461 __drm_atomic_helper_plane_destroy_state(plane, state);
462 kfree(state);
465 static const struct drm_plane_funcs tegra_primary_plane_funcs = {
466 .update_plane = drm_atomic_helper_update_plane,
467 .disable_plane = drm_atomic_helper_disable_plane,
468 .destroy = tegra_primary_plane_destroy,
469 .reset = tegra_plane_reset,
470 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
471 .atomic_destroy_state = tegra_plane_atomic_destroy_state,
474 static int tegra_plane_prepare_fb(struct drm_plane *plane,
475 struct drm_framebuffer *fb,
476 const struct drm_plane_state *new_state)
478 return 0;
481 static void tegra_plane_cleanup_fb(struct drm_plane *plane,
482 struct drm_framebuffer *fb,
483 const struct drm_plane_state *old_fb)
487 static int tegra_plane_state_add(struct tegra_plane *plane,
488 struct drm_plane_state *state)
490 struct drm_crtc_state *crtc_state;
491 struct tegra_dc_state *tegra;
493 /* Propagate errors from allocation or locking failures. */
494 crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
495 if (IS_ERR(crtc_state))
496 return PTR_ERR(crtc_state);
498 tegra = to_dc_state(crtc_state);
500 tegra->planes |= WIN_A_ACT_REQ << plane->index;
502 return 0;
505 static int tegra_plane_atomic_check(struct drm_plane *plane,
506 struct drm_plane_state *state)
508 struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
509 struct tegra_bo_tiling *tiling = &plane_state->tiling;
510 struct tegra_plane *tegra = to_tegra_plane(plane);
511 struct tegra_dc *dc = to_tegra_dc(state->crtc);
512 int err;
514 /* no need for further checks if the plane is being disabled */
515 if (!state->crtc)
516 return 0;
518 err = tegra_dc_format(state->fb->pixel_format, &plane_state->format,
519 &plane_state->swap);
520 if (err < 0)
521 return err;
523 err = tegra_fb_get_tiling(state->fb, tiling);
524 if (err < 0)
525 return err;
527 if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
528 !dc->soc->supports_block_linear) {
529 DRM_ERROR("hardware doesn't support block linear mode\n");
530 return -EINVAL;
534 * Tegra doesn't support different strides for U and V planes so we
535 * error out if the user tries to display a framebuffer with such a
536 * configuration.
538 if (drm_format_num_planes(state->fb->pixel_format) > 2) {
539 if (state->fb->pitches[2] != state->fb->pitches[1]) {
540 DRM_ERROR("unsupported UV-plane configuration\n");
541 return -EINVAL;
545 err = tegra_plane_state_add(tegra, state);
546 if (err < 0)
547 return err;
549 return 0;
552 static void tegra_plane_atomic_update(struct drm_plane *plane,
553 struct drm_plane_state *old_state)
555 struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
556 struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
557 struct drm_framebuffer *fb = plane->state->fb;
558 struct tegra_plane *p = to_tegra_plane(plane);
559 struct tegra_dc_window window;
560 unsigned int i;
562 /* rien ne va plus */
563 if (!plane->state->crtc || !plane->state->fb)
564 return;
566 memset(&window, 0, sizeof(window));
567 window.src.x = plane->state->src_x >> 16;
568 window.src.y = plane->state->src_y >> 16;
569 window.src.w = plane->state->src_w >> 16;
570 window.src.h = plane->state->src_h >> 16;
571 window.dst.x = plane->state->crtc_x;
572 window.dst.y = plane->state->crtc_y;
573 window.dst.w = plane->state->crtc_w;
574 window.dst.h = plane->state->crtc_h;
575 window.bits_per_pixel = fb->bits_per_pixel;
576 window.bottom_up = tegra_fb_is_bottom_up(fb);
578 /* copy from state */
579 window.tiling = state->tiling;
580 window.format = state->format;
581 window.swap = state->swap;
583 for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
584 struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
586 window.base[i] = bo->paddr + fb->offsets[i];
587 window.stride[i] = fb->pitches[i];
590 tegra_dc_setup_window(dc, p->index, &window);
593 static void tegra_plane_atomic_disable(struct drm_plane *plane,
594 struct drm_plane_state *old_state)
596 struct tegra_plane *p = to_tegra_plane(plane);
597 struct tegra_dc *dc;
598 unsigned long flags;
599 u32 value;
601 /* rien ne va plus */
602 if (!old_state || !old_state->crtc)
603 return;
605 dc = to_tegra_dc(old_state->crtc);
607 spin_lock_irqsave(&dc->lock, flags);
609 value = WINDOW_A_SELECT << p->index;
610 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
612 value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
613 value &= ~WIN_ENABLE;
614 tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
616 spin_unlock_irqrestore(&dc->lock, flags);
619 static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
620 .prepare_fb = tegra_plane_prepare_fb,
621 .cleanup_fb = tegra_plane_cleanup_fb,
622 .atomic_check = tegra_plane_atomic_check,
623 .atomic_update = tegra_plane_atomic_update,
624 .atomic_disable = tegra_plane_atomic_disable,
627 static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
628 struct tegra_dc *dc)
631 * Ideally this would use drm_crtc_mask(), but that would require the
632 * CRTC to already be in the mode_config's list of CRTCs. However, it
633 * will only be added to that list in the drm_crtc_init_with_planes()
634 * (in tegra_dc_init()), which in turn requires registration of these
635 * planes. So we have ourselves a nice little chicken and egg problem
636 * here.
638 * We work around this by manually creating the mask from the number
639 * of CRTCs that have been registered, and should therefore always be
640 * the same as drm_crtc_index() after registration.
642 unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
643 struct tegra_plane *plane;
644 unsigned int num_formats;
645 const u32 *formats;
646 int err;
648 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
649 if (!plane)
650 return ERR_PTR(-ENOMEM);
652 num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
653 formats = tegra_primary_plane_formats;
655 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
656 &tegra_primary_plane_funcs, formats,
657 num_formats, DRM_PLANE_TYPE_PRIMARY);
658 if (err < 0) {
659 kfree(plane);
660 return ERR_PTR(err);
663 drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
665 return &plane->base;
668 static const u32 tegra_cursor_plane_formats[] = {
669 DRM_FORMAT_RGBA8888,
672 static int tegra_cursor_atomic_check(struct drm_plane *plane,
673 struct drm_plane_state *state)
675 struct tegra_plane *tegra = to_tegra_plane(plane);
676 int err;
678 /* no need for further checks if the plane is being disabled */
679 if (!state->crtc)
680 return 0;
682 /* scaling not supported for cursor */
683 if ((state->src_w >> 16 != state->crtc_w) ||
684 (state->src_h >> 16 != state->crtc_h))
685 return -EINVAL;
687 /* only square cursors supported */
688 if (state->src_w != state->src_h)
689 return -EINVAL;
691 if (state->crtc_w != 32 && state->crtc_w != 64 &&
692 state->crtc_w != 128 && state->crtc_w != 256)
693 return -EINVAL;
695 err = tegra_plane_state_add(tegra, state);
696 if (err < 0)
697 return err;
699 return 0;
702 static void tegra_cursor_atomic_update(struct drm_plane *plane,
703 struct drm_plane_state *old_state)
705 struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
706 struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
707 struct drm_plane_state *state = plane->state;
708 u32 value = CURSOR_CLIP_DISPLAY;
710 /* rien ne va plus */
711 if (!plane->state->crtc || !plane->state->fb)
712 return;
714 switch (state->crtc_w) {
715 case 32:
716 value |= CURSOR_SIZE_32x32;
717 break;
719 case 64:
720 value |= CURSOR_SIZE_64x64;
721 break;
723 case 128:
724 value |= CURSOR_SIZE_128x128;
725 break;
727 case 256:
728 value |= CURSOR_SIZE_256x256;
729 break;
731 default:
732 WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
733 state->crtc_h);
734 return;
737 value |= (bo->paddr >> 10) & 0x3fffff;
738 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
740 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
741 value = (bo->paddr >> 32) & 0x3;
742 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
743 #endif
745 /* enable cursor and set blend mode */
746 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
747 value |= CURSOR_ENABLE;
748 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
750 value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
751 value &= ~CURSOR_DST_BLEND_MASK;
752 value &= ~CURSOR_SRC_BLEND_MASK;
753 value |= CURSOR_MODE_NORMAL;
754 value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
755 value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
756 value |= CURSOR_ALPHA;
757 tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
759 /* position the cursor */
760 value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
761 tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
765 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
766 struct drm_plane_state *old_state)
768 struct tegra_dc *dc;
769 u32 value;
771 /* rien ne va plus */
772 if (!old_state || !old_state->crtc)
773 return;
775 dc = to_tegra_dc(old_state->crtc);
777 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
778 value &= ~CURSOR_ENABLE;
779 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
782 static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
783 .update_plane = drm_atomic_helper_update_plane,
784 .disable_plane = drm_atomic_helper_disable_plane,
785 .destroy = tegra_plane_destroy,
786 .reset = tegra_plane_reset,
787 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
788 .atomic_destroy_state = tegra_plane_atomic_destroy_state,
791 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
792 .prepare_fb = tegra_plane_prepare_fb,
793 .cleanup_fb = tegra_plane_cleanup_fb,
794 .atomic_check = tegra_cursor_atomic_check,
795 .atomic_update = tegra_cursor_atomic_update,
796 .atomic_disable = tegra_cursor_atomic_disable,
799 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
800 struct tegra_dc *dc)
802 struct tegra_plane *plane;
803 unsigned int num_formats;
804 const u32 *formats;
805 int err;
807 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
808 if (!plane)
809 return ERR_PTR(-ENOMEM);
812 * We'll treat the cursor as an overlay plane with index 6 here so
813 * that the update and activation request bits in DC_CMD_STATE_CONTROL
814 * match up.
816 plane->index = 6;
818 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
819 formats = tegra_cursor_plane_formats;
821 err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
822 &tegra_cursor_plane_funcs, formats,
823 num_formats, DRM_PLANE_TYPE_CURSOR);
824 if (err < 0) {
825 kfree(plane);
826 return ERR_PTR(err);
829 drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
831 return &plane->base;
834 static void tegra_overlay_plane_destroy(struct drm_plane *plane)
836 tegra_plane_destroy(plane);
839 static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
840 .update_plane = drm_atomic_helper_update_plane,
841 .disable_plane = drm_atomic_helper_disable_plane,
842 .destroy = tegra_overlay_plane_destroy,
843 .reset = tegra_plane_reset,
844 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
845 .atomic_destroy_state = tegra_plane_atomic_destroy_state,
848 static const uint32_t tegra_overlay_plane_formats[] = {
849 DRM_FORMAT_XBGR8888,
850 DRM_FORMAT_XRGB8888,
851 DRM_FORMAT_RGB565,
852 DRM_FORMAT_UYVY,
853 DRM_FORMAT_YUYV,
854 DRM_FORMAT_YUV420,
855 DRM_FORMAT_YUV422,
858 static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
859 .prepare_fb = tegra_plane_prepare_fb,
860 .cleanup_fb = tegra_plane_cleanup_fb,
861 .atomic_check = tegra_plane_atomic_check,
862 .atomic_update = tegra_plane_atomic_update,
863 .atomic_disable = tegra_plane_atomic_disable,
866 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
867 struct tegra_dc *dc,
868 unsigned int index)
870 struct tegra_plane *plane;
871 unsigned int num_formats;
872 const u32 *formats;
873 int err;
875 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
876 if (!plane)
877 return ERR_PTR(-ENOMEM);
879 plane->index = index;
881 num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
882 formats = tegra_overlay_plane_formats;
884 err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
885 &tegra_overlay_plane_funcs, formats,
886 num_formats, DRM_PLANE_TYPE_OVERLAY);
887 if (err < 0) {
888 kfree(plane);
889 return ERR_PTR(err);
892 drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
894 return &plane->base;
897 static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
899 struct drm_plane *plane;
900 unsigned int i;
902 for (i = 0; i < 2; i++) {
903 plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
904 if (IS_ERR(plane))
905 return PTR_ERR(plane);
908 return 0;
911 u32 tegra_dc_get_vblank_counter(struct tegra_dc *dc)
913 if (dc->syncpt)
914 return host1x_syncpt_read(dc->syncpt);
916 /* fallback to software emulated VBLANK counter */
917 return drm_crtc_vblank_count(&dc->base);
920 void tegra_dc_enable_vblank(struct tegra_dc *dc)
922 unsigned long value, flags;
924 spin_lock_irqsave(&dc->lock, flags);
926 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
927 value |= VBLANK_INT;
928 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
930 spin_unlock_irqrestore(&dc->lock, flags);
933 void tegra_dc_disable_vblank(struct tegra_dc *dc)
935 unsigned long value, flags;
937 spin_lock_irqsave(&dc->lock, flags);
939 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
940 value &= ~VBLANK_INT;
941 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
943 spin_unlock_irqrestore(&dc->lock, flags);
946 static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
948 struct drm_device *drm = dc->base.dev;
949 struct drm_crtc *crtc = &dc->base;
950 unsigned long flags, base;
951 struct tegra_bo *bo;
953 spin_lock_irqsave(&drm->event_lock, flags);
955 if (!dc->event) {
956 spin_unlock_irqrestore(&drm->event_lock, flags);
957 return;
960 bo = tegra_fb_get_plane(crtc->primary->fb, 0);
962 spin_lock(&dc->lock);
964 /* check if new start address has been latched */
965 tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
966 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
967 base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
968 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
970 spin_unlock(&dc->lock);
972 if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
973 drm_crtc_send_vblank_event(crtc, dc->event);
974 drm_crtc_vblank_put(crtc);
975 dc->event = NULL;
978 spin_unlock_irqrestore(&drm->event_lock, flags);
981 void tegra_dc_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file)
983 struct tegra_dc *dc = to_tegra_dc(crtc);
984 struct drm_device *drm = crtc->dev;
985 unsigned long flags;
987 spin_lock_irqsave(&drm->event_lock, flags);
989 if (dc->event && dc->event->base.file_priv == file) {
990 dc->event->base.destroy(&dc->event->base);
991 drm_crtc_vblank_put(crtc);
992 dc->event = NULL;
995 spin_unlock_irqrestore(&drm->event_lock, flags);
998 static void tegra_dc_destroy(struct drm_crtc *crtc)
1000 drm_crtc_cleanup(crtc);
1003 static void tegra_crtc_reset(struct drm_crtc *crtc)
1005 struct tegra_dc_state *state;
1007 if (crtc->state)
1008 __drm_atomic_helper_crtc_destroy_state(crtc, crtc->state);
1010 kfree(crtc->state);
1011 crtc->state = NULL;
1013 state = kzalloc(sizeof(*state), GFP_KERNEL);
1014 if (state) {
1015 crtc->state = &state->base;
1016 crtc->state->crtc = crtc;
1020 static struct drm_crtc_state *
1021 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1023 struct tegra_dc_state *state = to_dc_state(crtc->state);
1024 struct tegra_dc_state *copy;
1026 copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1027 if (!copy)
1028 return NULL;
1030 __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1031 copy->clk = state->clk;
1032 copy->pclk = state->pclk;
1033 copy->div = state->div;
1034 copy->planes = state->planes;
1036 return &copy->base;
1039 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1040 struct drm_crtc_state *state)
1042 __drm_atomic_helper_crtc_destroy_state(crtc, state);
1043 kfree(state);
1046 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1047 .page_flip = drm_atomic_helper_page_flip,
1048 .set_config = drm_atomic_helper_set_config,
1049 .destroy = tegra_dc_destroy,
1050 .reset = tegra_crtc_reset,
1051 .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1052 .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1055 static void tegra_dc_stop(struct tegra_dc *dc)
1057 u32 value;
1059 /* stop the display controller */
1060 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1061 value &= ~DISP_CTRL_MODE_MASK;
1062 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1064 tegra_dc_commit(dc);
1067 static bool tegra_dc_idle(struct tegra_dc *dc)
1069 u32 value;
1071 value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1073 return (value & DISP_CTRL_MODE_MASK) == 0;
1076 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1078 timeout = jiffies + msecs_to_jiffies(timeout);
1080 while (time_before(jiffies, timeout)) {
1081 if (tegra_dc_idle(dc))
1082 return 0;
1084 usleep_range(1000, 2000);
1087 dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1088 return -ETIMEDOUT;
1091 static void tegra_crtc_disable(struct drm_crtc *crtc)
1093 struct tegra_dc *dc = to_tegra_dc(crtc);
1094 u32 value;
1096 if (!tegra_dc_idle(dc)) {
1097 tegra_dc_stop(dc);
1100 * Ignore the return value, there isn't anything useful to do
1101 * in case this fails.
1103 tegra_dc_wait_idle(dc, 100);
1107 * This should really be part of the RGB encoder driver, but clearing
1108 * these bits has the side-effect of stopping the display controller.
1109 * When that happens no VBLANK interrupts will be raised. At the same
1110 * time the encoder is disabled before the display controller, so the
1111 * above code is always going to timeout waiting for the controller
1112 * to go idle.
1114 * Given the close coupling between the RGB encoder and the display
1115 * controller doing it here is still kind of okay. None of the other
1116 * encoder drivers require these bits to be cleared.
1118 * XXX: Perhaps given that the display controller is switched off at
1119 * this point anyway maybe clearing these bits isn't even useful for
1120 * the RGB encoder?
1122 if (dc->rgb) {
1123 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1124 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1125 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1126 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1129 drm_crtc_vblank_off(crtc);
1132 static bool tegra_crtc_mode_fixup(struct drm_crtc *crtc,
1133 const struct drm_display_mode *mode,
1134 struct drm_display_mode *adjusted)
1136 return true;
1139 static int tegra_dc_set_timings(struct tegra_dc *dc,
1140 struct drm_display_mode *mode)
1142 unsigned int h_ref_to_sync = 1;
1143 unsigned int v_ref_to_sync = 1;
1144 unsigned long value;
1146 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1148 value = (v_ref_to_sync << 16) | h_ref_to_sync;
1149 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1151 value = ((mode->vsync_end - mode->vsync_start) << 16) |
1152 ((mode->hsync_end - mode->hsync_start) << 0);
1153 tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1155 value = ((mode->vtotal - mode->vsync_end) << 16) |
1156 ((mode->htotal - mode->hsync_end) << 0);
1157 tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1159 value = ((mode->vsync_start - mode->vdisplay) << 16) |
1160 ((mode->hsync_start - mode->hdisplay) << 0);
1161 tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1163 value = (mode->vdisplay << 16) | mode->hdisplay;
1164 tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1166 return 0;
1170 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1171 * state
1172 * @dc: display controller
1173 * @crtc_state: CRTC atomic state
1174 * @clk: parent clock for display controller
1175 * @pclk: pixel clock
1176 * @div: shift clock divider
1178 * Returns:
1179 * 0 on success or a negative error-code on failure.
1181 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1182 struct drm_crtc_state *crtc_state,
1183 struct clk *clk, unsigned long pclk,
1184 unsigned int div)
1186 struct tegra_dc_state *state = to_dc_state(crtc_state);
1188 if (!clk_has_parent(dc->clk, clk))
1189 return -EINVAL;
1191 state->clk = clk;
1192 state->pclk = pclk;
1193 state->div = div;
1195 return 0;
1198 static void tegra_dc_commit_state(struct tegra_dc *dc,
1199 struct tegra_dc_state *state)
1201 u32 value;
1202 int err;
1204 err = clk_set_parent(dc->clk, state->clk);
1205 if (err < 0)
1206 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1209 * Outputs may not want to change the parent clock rate. This is only
1210 * relevant to Tegra20 where only a single display PLL is available.
1211 * Since that PLL would typically be used for HDMI, an internal LVDS
1212 * panel would need to be driven by some other clock such as PLL_P
1213 * which is shared with other peripherals. Changing the clock rate
1214 * should therefore be avoided.
1216 if (state->pclk > 0) {
1217 err = clk_set_rate(state->clk, state->pclk);
1218 if (err < 0)
1219 dev_err(dc->dev,
1220 "failed to set clock rate to %lu Hz\n",
1221 state->pclk);
1224 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1225 state->div);
1226 DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1228 value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1229 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1232 static void tegra_crtc_mode_set_nofb(struct drm_crtc *crtc)
1234 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1235 struct tegra_dc_state *state = to_dc_state(crtc->state);
1236 struct tegra_dc *dc = to_tegra_dc(crtc);
1237 u32 value;
1239 tegra_dc_commit_state(dc, state);
1241 /* program display mode */
1242 tegra_dc_set_timings(dc, mode);
1244 /* interlacing isn't supported yet, so disable it */
1245 if (dc->soc->supports_interlacing) {
1246 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1247 value &= ~INTERLACE_ENABLE;
1248 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1251 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1252 value &= ~DISP_CTRL_MODE_MASK;
1253 value |= DISP_CTRL_MODE_C_DISPLAY;
1254 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1256 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1257 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1258 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1259 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1261 tegra_dc_commit(dc);
1264 static void tegra_crtc_prepare(struct drm_crtc *crtc)
1266 drm_crtc_vblank_off(crtc);
1269 static void tegra_crtc_commit(struct drm_crtc *crtc)
1271 drm_crtc_vblank_on(crtc);
1274 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1275 struct drm_crtc_state *state)
1277 return 0;
1280 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc)
1282 struct tegra_dc *dc = to_tegra_dc(crtc);
1284 if (crtc->state->event) {
1285 crtc->state->event->pipe = drm_crtc_index(crtc);
1287 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1289 dc->event = crtc->state->event;
1290 crtc->state->event = NULL;
1294 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc)
1296 struct tegra_dc_state *state = to_dc_state(crtc->state);
1297 struct tegra_dc *dc = to_tegra_dc(crtc);
1299 tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1300 tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
1303 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1304 .disable = tegra_crtc_disable,
1305 .mode_fixup = tegra_crtc_mode_fixup,
1306 .mode_set_nofb = tegra_crtc_mode_set_nofb,
1307 .prepare = tegra_crtc_prepare,
1308 .commit = tegra_crtc_commit,
1309 .atomic_check = tegra_crtc_atomic_check,
1310 .atomic_begin = tegra_crtc_atomic_begin,
1311 .atomic_flush = tegra_crtc_atomic_flush,
1314 static irqreturn_t tegra_dc_irq(int irq, void *data)
1316 struct tegra_dc *dc = data;
1317 unsigned long status;
1319 status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1320 tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1322 if (status & FRAME_END_INT) {
1324 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1328 if (status & VBLANK_INT) {
1330 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1332 drm_crtc_handle_vblank(&dc->base);
1333 tegra_dc_finish_page_flip(dc);
1336 if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1338 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1342 return IRQ_HANDLED;
1345 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1347 struct drm_info_node *node = s->private;
1348 struct tegra_dc *dc = node->info_ent->data;
1350 #define DUMP_REG(name) \
1351 seq_printf(s, "%-40s %#05x %08x\n", #name, name, \
1352 tegra_dc_readl(dc, name))
1354 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1355 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1356 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1357 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1358 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1359 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1360 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1361 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1362 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1363 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1364 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1365 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1366 DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1367 DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1368 DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1369 DUMP_REG(DC_CMD_SIGNAL_RAISE);
1370 DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1371 DUMP_REG(DC_CMD_INT_STATUS);
1372 DUMP_REG(DC_CMD_INT_MASK);
1373 DUMP_REG(DC_CMD_INT_ENABLE);
1374 DUMP_REG(DC_CMD_INT_TYPE);
1375 DUMP_REG(DC_CMD_INT_POLARITY);
1376 DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1377 DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1378 DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1379 DUMP_REG(DC_CMD_STATE_ACCESS);
1380 DUMP_REG(DC_CMD_STATE_CONTROL);
1381 DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1382 DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1383 DUMP_REG(DC_COM_CRC_CONTROL);
1384 DUMP_REG(DC_COM_CRC_CHECKSUM);
1385 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1386 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1387 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1388 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1389 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1390 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1391 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1392 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1393 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1394 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1395 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1396 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1397 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1398 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1399 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1400 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1401 DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1402 DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1403 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1404 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1405 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1406 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1407 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1408 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1409 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1410 DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1411 DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1412 DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1413 DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1414 DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1415 DUMP_REG(DC_COM_SPI_CONTROL);
1416 DUMP_REG(DC_COM_SPI_START_BYTE);
1417 DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1418 DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1419 DUMP_REG(DC_COM_HSPI_CS_DC);
1420 DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1421 DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1422 DUMP_REG(DC_COM_GPIO_CTRL);
1423 DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1424 DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1425 DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1426 DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1427 DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1428 DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1429 DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1430 DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1431 DUMP_REG(DC_DISP_REF_TO_SYNC);
1432 DUMP_REG(DC_DISP_SYNC_WIDTH);
1433 DUMP_REG(DC_DISP_BACK_PORCH);
1434 DUMP_REG(DC_DISP_ACTIVE);
1435 DUMP_REG(DC_DISP_FRONT_PORCH);
1436 DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1437 DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1438 DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1439 DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1440 DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1441 DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1442 DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1443 DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1444 DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1445 DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1446 DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1447 DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1448 DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1449 DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1450 DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1451 DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1452 DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1453 DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1454 DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1455 DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1456 DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1457 DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1458 DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1459 DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1460 DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1461 DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1462 DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1463 DUMP_REG(DC_DISP_M0_CONTROL);
1464 DUMP_REG(DC_DISP_M1_CONTROL);
1465 DUMP_REG(DC_DISP_DI_CONTROL);
1466 DUMP_REG(DC_DISP_PP_CONTROL);
1467 DUMP_REG(DC_DISP_PP_SELECT_A);
1468 DUMP_REG(DC_DISP_PP_SELECT_B);
1469 DUMP_REG(DC_DISP_PP_SELECT_C);
1470 DUMP_REG(DC_DISP_PP_SELECT_D);
1471 DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1472 DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1473 DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1474 DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1475 DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1476 DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1477 DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1478 DUMP_REG(DC_DISP_BORDER_COLOR);
1479 DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1480 DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1481 DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1482 DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1483 DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1484 DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1485 DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1486 DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1487 DUMP_REG(DC_DISP_CURSOR_POSITION);
1488 DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1489 DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1490 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1491 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1492 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1493 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1494 DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1495 DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1496 DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1497 DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1498 DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1499 DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1500 DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1501 DUMP_REG(DC_DISP_SD_CONTROL);
1502 DUMP_REG(DC_DISP_SD_CSC_COEFF);
1503 DUMP_REG(DC_DISP_SD_LUT(0));
1504 DUMP_REG(DC_DISP_SD_LUT(1));
1505 DUMP_REG(DC_DISP_SD_LUT(2));
1506 DUMP_REG(DC_DISP_SD_LUT(3));
1507 DUMP_REG(DC_DISP_SD_LUT(4));
1508 DUMP_REG(DC_DISP_SD_LUT(5));
1509 DUMP_REG(DC_DISP_SD_LUT(6));
1510 DUMP_REG(DC_DISP_SD_LUT(7));
1511 DUMP_REG(DC_DISP_SD_LUT(8));
1512 DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1513 DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1514 DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1515 DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1516 DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1517 DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1518 DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1519 DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1520 DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1521 DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1522 DUMP_REG(DC_DISP_SD_BL_TF(0));
1523 DUMP_REG(DC_DISP_SD_BL_TF(1));
1524 DUMP_REG(DC_DISP_SD_BL_TF(2));
1525 DUMP_REG(DC_DISP_SD_BL_TF(3));
1526 DUMP_REG(DC_DISP_SD_BL_CONTROL);
1527 DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1528 DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1529 DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1530 DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1531 DUMP_REG(DC_WIN_WIN_OPTIONS);
1532 DUMP_REG(DC_WIN_BYTE_SWAP);
1533 DUMP_REG(DC_WIN_BUFFER_CONTROL);
1534 DUMP_REG(DC_WIN_COLOR_DEPTH);
1535 DUMP_REG(DC_WIN_POSITION);
1536 DUMP_REG(DC_WIN_SIZE);
1537 DUMP_REG(DC_WIN_PRESCALED_SIZE);
1538 DUMP_REG(DC_WIN_H_INITIAL_DDA);
1539 DUMP_REG(DC_WIN_V_INITIAL_DDA);
1540 DUMP_REG(DC_WIN_DDA_INC);
1541 DUMP_REG(DC_WIN_LINE_STRIDE);
1542 DUMP_REG(DC_WIN_BUF_STRIDE);
1543 DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1544 DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1545 DUMP_REG(DC_WIN_DV_CONTROL);
1546 DUMP_REG(DC_WIN_BLEND_NOKEY);
1547 DUMP_REG(DC_WIN_BLEND_1WIN);
1548 DUMP_REG(DC_WIN_BLEND_2WIN_X);
1549 DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1550 DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1551 DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1552 DUMP_REG(DC_WINBUF_START_ADDR);
1553 DUMP_REG(DC_WINBUF_START_ADDR_NS);
1554 DUMP_REG(DC_WINBUF_START_ADDR_U);
1555 DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1556 DUMP_REG(DC_WINBUF_START_ADDR_V);
1557 DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1558 DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1559 DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1560 DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1561 DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1562 DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1563 DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1564 DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1565 DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1567 #undef DUMP_REG
1569 return 0;
1572 static struct drm_info_list debugfs_files[] = {
1573 { "regs", tegra_dc_show_regs, 0, NULL },
1576 static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1578 unsigned int i;
1579 char *name;
1580 int err;
1582 name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1583 dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1584 kfree(name);
1586 if (!dc->debugfs)
1587 return -ENOMEM;
1589 dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1590 GFP_KERNEL);
1591 if (!dc->debugfs_files) {
1592 err = -ENOMEM;
1593 goto remove;
1596 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1597 dc->debugfs_files[i].data = dc;
1599 err = drm_debugfs_create_files(dc->debugfs_files,
1600 ARRAY_SIZE(debugfs_files),
1601 dc->debugfs, minor);
1602 if (err < 0)
1603 goto free;
1605 dc->minor = minor;
1607 return 0;
1609 free:
1610 kfree(dc->debugfs_files);
1611 dc->debugfs_files = NULL;
1612 remove:
1613 debugfs_remove(dc->debugfs);
1614 dc->debugfs = NULL;
1616 return err;
1619 static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1621 drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1622 dc->minor);
1623 dc->minor = NULL;
1625 kfree(dc->debugfs_files);
1626 dc->debugfs_files = NULL;
1628 debugfs_remove(dc->debugfs);
1629 dc->debugfs = NULL;
1631 return 0;
1634 static int tegra_dc_init(struct host1x_client *client)
1636 struct drm_device *drm = dev_get_drvdata(client->parent);
1637 struct tegra_dc *dc = host1x_client_to_dc(client);
1638 struct tegra_drm *tegra = drm->dev_private;
1639 struct drm_plane *primary = NULL;
1640 struct drm_plane *cursor = NULL;
1641 u32 value;
1642 int err;
1644 if (tegra->domain) {
1645 err = iommu_attach_device(tegra->domain, dc->dev);
1646 if (err < 0) {
1647 dev_err(dc->dev, "failed to attach to domain: %d\n",
1648 err);
1649 return err;
1652 dc->domain = tegra->domain;
1655 primary = tegra_dc_primary_plane_create(drm, dc);
1656 if (IS_ERR(primary)) {
1657 err = PTR_ERR(primary);
1658 goto cleanup;
1661 if (dc->soc->supports_cursor) {
1662 cursor = tegra_dc_cursor_plane_create(drm, dc);
1663 if (IS_ERR(cursor)) {
1664 err = PTR_ERR(cursor);
1665 goto cleanup;
1669 err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1670 &tegra_crtc_funcs);
1671 if (err < 0)
1672 goto cleanup;
1674 drm_mode_crtc_set_gamma_size(&dc->base, 256);
1675 drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1678 * Keep track of the minimum pitch alignment across all display
1679 * controllers.
1681 if (dc->soc->pitch_align > tegra->pitch_align)
1682 tegra->pitch_align = dc->soc->pitch_align;
1684 err = tegra_dc_rgb_init(drm, dc);
1685 if (err < 0 && err != -ENODEV) {
1686 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1687 goto cleanup;
1690 err = tegra_dc_add_planes(drm, dc);
1691 if (err < 0)
1692 goto cleanup;
1694 if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1695 err = tegra_dc_debugfs_init(dc, drm->primary);
1696 if (err < 0)
1697 dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1700 err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1701 dev_name(dc->dev), dc);
1702 if (err < 0) {
1703 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1704 err);
1705 goto cleanup;
1708 /* initialize display controller */
1709 if (dc->syncpt) {
1710 u32 syncpt = host1x_syncpt_id(dc->syncpt);
1712 value = SYNCPT_CNTRL_NO_STALL;
1713 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1715 value = SYNCPT_VSYNC_ENABLE | syncpt;
1716 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1719 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | WIN_A_OF_INT;
1720 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1722 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1723 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1724 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1726 /* initialize timer */
1727 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1728 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1729 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1731 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1732 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1733 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1735 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT;
1736 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1738 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT;
1739 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1741 if (dc->soc->supports_border_color)
1742 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1744 return 0;
1746 cleanup:
1747 if (cursor)
1748 drm_plane_cleanup(cursor);
1750 if (primary)
1751 drm_plane_cleanup(primary);
1753 if (tegra->domain) {
1754 iommu_detach_device(tegra->domain, dc->dev);
1755 dc->domain = NULL;
1758 return err;
1761 static int tegra_dc_exit(struct host1x_client *client)
1763 struct tegra_dc *dc = host1x_client_to_dc(client);
1764 int err;
1766 devm_free_irq(dc->dev, dc->irq, dc);
1768 if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1769 err = tegra_dc_debugfs_exit(dc);
1770 if (err < 0)
1771 dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1774 err = tegra_dc_rgb_exit(dc);
1775 if (err) {
1776 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1777 return err;
1780 if (dc->domain) {
1781 iommu_detach_device(dc->domain, dc->dev);
1782 dc->domain = NULL;
1785 return 0;
1788 static const struct host1x_client_ops dc_client_ops = {
1789 .init = tegra_dc_init,
1790 .exit = tegra_dc_exit,
1793 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1794 .supports_border_color = true,
1795 .supports_interlacing = false,
1796 .supports_cursor = false,
1797 .supports_block_linear = false,
1798 .pitch_align = 8,
1799 .has_powergate = false,
1802 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1803 .supports_border_color = true,
1804 .supports_interlacing = false,
1805 .supports_cursor = false,
1806 .supports_block_linear = false,
1807 .pitch_align = 8,
1808 .has_powergate = false,
1811 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1812 .supports_border_color = true,
1813 .supports_interlacing = false,
1814 .supports_cursor = false,
1815 .supports_block_linear = false,
1816 .pitch_align = 64,
1817 .has_powergate = true,
1820 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1821 .supports_border_color = false,
1822 .supports_interlacing = true,
1823 .supports_cursor = true,
1824 .supports_block_linear = true,
1825 .pitch_align = 64,
1826 .has_powergate = true,
1829 static const struct of_device_id tegra_dc_of_match[] = {
1831 .compatible = "nvidia,tegra124-dc",
1832 .data = &tegra124_dc_soc_info,
1833 }, {
1834 .compatible = "nvidia,tegra114-dc",
1835 .data = &tegra114_dc_soc_info,
1836 }, {
1837 .compatible = "nvidia,tegra30-dc",
1838 .data = &tegra30_dc_soc_info,
1839 }, {
1840 .compatible = "nvidia,tegra20-dc",
1841 .data = &tegra20_dc_soc_info,
1842 }, {
1843 /* sentinel */
1846 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1848 static int tegra_dc_parse_dt(struct tegra_dc *dc)
1850 struct device_node *np;
1851 u32 value = 0;
1852 int err;
1854 err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1855 if (err < 0) {
1856 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1859 * If the nvidia,head property isn't present, try to find the
1860 * correct head number by looking up the position of this
1861 * display controller's node within the device tree. Assuming
1862 * that the nodes are ordered properly in the DTS file and
1863 * that the translation into a flattened device tree blob
1864 * preserves that ordering this will actually yield the right
1865 * head number.
1867 * If those assumptions don't hold, this will still work for
1868 * cases where only a single display controller is used.
1870 for_each_matching_node(np, tegra_dc_of_match) {
1871 if (np == dc->dev->of_node)
1872 break;
1874 value++;
1878 dc->pipe = value;
1880 return 0;
1883 static int tegra_dc_probe(struct platform_device *pdev)
1885 unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1886 const struct of_device_id *id;
1887 struct resource *regs;
1888 struct tegra_dc *dc;
1889 int err;
1891 dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1892 if (!dc)
1893 return -ENOMEM;
1895 id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1896 if (!id)
1897 return -ENODEV;
1899 spin_lock_init(&dc->lock);
1900 INIT_LIST_HEAD(&dc->list);
1901 dc->dev = &pdev->dev;
1902 dc->soc = id->data;
1904 err = tegra_dc_parse_dt(dc);
1905 if (err < 0)
1906 return err;
1908 dc->clk = devm_clk_get(&pdev->dev, NULL);
1909 if (IS_ERR(dc->clk)) {
1910 dev_err(&pdev->dev, "failed to get clock\n");
1911 return PTR_ERR(dc->clk);
1914 dc->rst = devm_reset_control_get(&pdev->dev, "dc");
1915 if (IS_ERR(dc->rst)) {
1916 dev_err(&pdev->dev, "failed to get reset\n");
1917 return PTR_ERR(dc->rst);
1920 if (dc->soc->has_powergate) {
1921 if (dc->pipe == 0)
1922 dc->powergate = TEGRA_POWERGATE_DIS;
1923 else
1924 dc->powergate = TEGRA_POWERGATE_DISB;
1926 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
1927 dc->rst);
1928 if (err < 0) {
1929 dev_err(&pdev->dev, "failed to power partition: %d\n",
1930 err);
1931 return err;
1933 } else {
1934 err = clk_prepare_enable(dc->clk);
1935 if (err < 0) {
1936 dev_err(&pdev->dev, "failed to enable clock: %d\n",
1937 err);
1938 return err;
1941 err = reset_control_deassert(dc->rst);
1942 if (err < 0) {
1943 dev_err(&pdev->dev, "failed to deassert reset: %d\n",
1944 err);
1945 return err;
1949 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1950 dc->regs = devm_ioremap_resource(&pdev->dev, regs);
1951 if (IS_ERR(dc->regs))
1952 return PTR_ERR(dc->regs);
1954 dc->irq = platform_get_irq(pdev, 0);
1955 if (dc->irq < 0) {
1956 dev_err(&pdev->dev, "failed to get IRQ\n");
1957 return -ENXIO;
1960 INIT_LIST_HEAD(&dc->client.list);
1961 dc->client.ops = &dc_client_ops;
1962 dc->client.dev = &pdev->dev;
1964 err = tegra_dc_rgb_probe(dc);
1965 if (err < 0 && err != -ENODEV) {
1966 dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
1967 return err;
1970 err = host1x_client_register(&dc->client);
1971 if (err < 0) {
1972 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
1973 err);
1974 return err;
1977 dc->syncpt = host1x_syncpt_request(&pdev->dev, flags);
1978 if (!dc->syncpt)
1979 dev_warn(&pdev->dev, "failed to allocate syncpoint\n");
1981 platform_set_drvdata(pdev, dc);
1983 return 0;
1986 static int tegra_dc_remove(struct platform_device *pdev)
1988 struct tegra_dc *dc = platform_get_drvdata(pdev);
1989 int err;
1991 host1x_syncpt_free(dc->syncpt);
1993 err = host1x_client_unregister(&dc->client);
1994 if (err < 0) {
1995 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
1996 err);
1997 return err;
2000 err = tegra_dc_rgb_remove(dc);
2001 if (err < 0) {
2002 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2003 return err;
2006 reset_control_assert(dc->rst);
2008 if (dc->soc->has_powergate)
2009 tegra_powergate_power_off(dc->powergate);
2011 clk_disable_unprepare(dc->clk);
2013 return 0;
2016 struct platform_driver tegra_dc_driver = {
2017 .driver = {
2018 .name = "tegra-dc",
2019 .owner = THIS_MODULE,
2020 .of_match_table = tegra_dc_of_match,
2022 .probe = tegra_dc_probe,
2023 .remove = tegra_dc_remove,